EP1996368B1 - Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant - Google Patents

Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant Download PDF

Info

Publication number
EP1996368B1
EP1996368B1 EP07731098A EP07731098A EP1996368B1 EP 1996368 B1 EP1996368 B1 EP 1996368B1 EP 07731098 A EP07731098 A EP 07731098A EP 07731098 A EP07731098 A EP 07731098A EP 1996368 B1 EP1996368 B1 EP 1996368B1
Authority
EP
European Patent Office
Prior art keywords
feeler
speed
axis
component
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07731098A
Other languages
German (de)
English (en)
Other versions
EP1996368A1 (fr
EP1996368B9 (fr
Inventor
Christophe Sillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Publication of EP1996368A1 publication Critical patent/EP1996368A1/fr
Publication of EP1996368B1 publication Critical patent/EP1996368B1/fr
Application granted granted Critical
Publication of EP1996368B9 publication Critical patent/EP1996368B9/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/144Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms the spectacles being used as a template

Definitions

  • the present invention relates generally to the field of eyewear and more specifically the probing of the bezel of a frame rimmed glasses.
  • It relates more particularly to a method of reading the outline of the bezel of a spectacle frame circle comprising a step of contacting a probe against the bezel and a step of probing the bezel by sliding or rolling said probe along the bezel, the position of the probe being determined and the probe speed comprising first, second and third components.
  • the method finds a particularly advantageous application by its application to glasses with elongated or strongly arched frames.
  • lens a bevel to hold the lens in the bezel that includes the mount.
  • the objective of this operation is in particular to follow exactly the bottom of the bezel that includes the circle to read so as to memorize a precise digital image of the geometry of the bezel.
  • the document US 6,871,158 has a bezel tracking device provided to overcome the problems of inaccuracies in the reading of the bezels due to the deformation of the frames during the passage of the probe.
  • This device comprises in particular means for identifying the type of frame to be read and means for controlling the speed of rotation of the probe for sliding along the complete contour of the bezel.
  • this device is adapted to determine the type of the frame to be read, then, depending on whether this type of frame is characteristic or not of a frame that can encounter problems of deformation, to control the probe in rotation at a speed depending on the type of frame, constant on the whole bezel.
  • this device can provide for splitting the outline of the bezel into different predetermined zones in which the speed of rotation of the feeler is constant but between which it varies.
  • the disadvantage of such a device is that to substantially improve the reading accuracy of the bezel, it is necessary to very strongly reduce the speed of rotation of the feeler along the entire bezel, which greatly increases and detrimental to the reading time of the outline of the bezel, it is necessary to divide the outline of the bezel into different zones, in which case the applicant has noticed that there are reading.
  • the splitting operation is further manually performed by the operator on a suitable interface, which requires experience and takes time.
  • the methods described each comprise a step of contacting the feeler against the bezel of the spectacle frame and a step of probing the bezel.
  • the motors are controlled to vary the position of the probe according to the curvature of the bezel of the frame, so that the probe follows this bezel and does not.
  • the present invention provides a method of fast contour reading and providing accurate results.
  • a contour reading method as defined in the introduction, wherein the first component of the speed of the probe is dynamically controlled to vary, continuously or in steps, during reading according at least one or the other of the second and third components of the probe speed.
  • the probe generally has the shape of an elongate rod along a probing axis and is conventionally driven in rotation about an axis of rotation for sliding along the complete contour of the bezel.
  • the probing axis of the probe can not be constantly presented orthogonally to the tangent to the outline of the bezel. Therefore, the longer the frame is elongated, the more the probe is presented inclined with respect to the bezel in certain areas of the frame, particularly near the nasal and temporal areas of the frame. When the frame is strongly arched, this inclination can present in these same areas very important values.
  • the control means reduce the first component of the probe speed so as to lower the bending forces to increase the accuracy of the measurements.
  • the probe being provided with three degrees of freedom
  • the first, second and third components of the probe speed are each associated with one of the three degrees of freedom of the sensor. probe.
  • the probe rotating around an axis of rotation for its sliding along the complete contour of the bezel of the eyeglass frame circle
  • the first component of the probe speed is constituted by the speed of rotation of the probe around said axis of rotation.
  • the second component of the speed of the probe is a transverse component of the speed of the probe axis perpendicular to the axis of rotation of the probe.
  • the third component of the speed of the probe is an axial component of the speed of the probe axis parallel to the axis of rotation of the probe.
  • the first component of the probe speed decreases when the second and / or third component of the probe speed increases.
  • the second and the third components of the probe speed varying one and the other continuously each in a range of intervals interval velocities, the means of control change the first component of the probe speed when the second and / or third component of the probe speed changes interval.
  • the method therefore provides for varying the first component of the speed of the probe in steps such that the probe has a constant and high speed of rotation in the areas other than these localized areas of the frame, and a lower speed in these localized areas.
  • the present invention also provides a contour reading apparatus as defined in the introduction, wherein the determining means is adapted to determine at least one and / or the other of the second and third components of the probe speed. and the control means are capable of driving dynamically, continuously or in stages, the first component of the speed of the probe as a function of at least the second and / or third component of the speed of the probe determined by the determination means.
  • the contour reading apparatus comprises a turntable rotatably mounted about the axis of rotation relative to the mounting means of the frame, this turntable carrying a reading subassembly which comprises the movable feeler of one part in a direction parallel to the axis of rotation and secondly in a plane transverse to the axis of rotation, the reading subassembly further comprises another axis of rotation called transverse bearing axis on the surface of the turntable and a support arm which, at one of its ends, is rotatably mounted around said carrier axis and on which is embarked at the other end of said probe.
  • a reading subassembly which comprises the movable feeler of one part in a direction parallel to the axis of rotation and secondly in a plane transverse to the axis of rotation
  • the reading subassembly further comprises another axis of rotation called transverse bearing axis on the surface of the turntable and a support arm which, at one of its ends, is rotatably mounted
  • the reading subassembly pivoting about the carrier axis the probe rod may have a very large inclination relative to the normal to the tangent to the bezel. This inclination depends in fact on the shape of the frame, but also on the angular position of the reading subassembly around the bearing axis. Consequently, the control means make it possible to control the speed of rotation of the turntable, which corresponds here to the first component of the speed of the probe, as a function of the second and third components of the speed of the probe, which makes it possible to take account of not only the shape of the frame (elongated and / or arched) but also the angular position of the reading subassembly.
  • the figure 1 is a general view of a contour reading apparatus 1 as it is presented to its user.
  • This apparatus comprises an upper cover 2 covering the entire apparatus except for a central upper portion.
  • the contour reading device 1 also comprises a set of two jaws 3, at least one of the jaws 3 is movable with respect to the other so that the jaws 3 can be moved closer to each other or separated from each other. form a clamping device.
  • Each of the jaws 3 is further provided with two clamps each formed of two movable studs 4 to be adapted to clamp together a frame 10 of spectacles. The frame 10 can then be held stationary on the contour reading device 1.
  • a frame 5 In the space left visible by the upper central opening of the cover 2, a frame 5 is visible.
  • a plate (not visible) can move in translation on this frame 5 according to a transfer axis D.
  • On this plate is mounted rotating 6.
  • This turntable 6 is therefore able to take two positions on the transfer axis D, a first position in which the center of the turntable 6 is disposed between the two pairs of studs 4 fixing the right circle of the mount 10, and a second position in which the center of the turntable 6 is disposed between the two pairs of studs 4 fixing the left circle of the frame 10.
  • the right circle and the left circle of the frame are circles intended to be respectively positioned opposite the right eye and the left eye of the wearer when the latter carries said frame.
  • the turntable 6 has an axis of rotation B defined as the axis normal to the front face of the turntable 6 and passing through its center.
  • the turntable 6 further comprises an oblong slot 7 in the form of an arc of a circle through which a feeler 8 has a bearing rod 8A and at its end a feeler pin 8B intended to follow by sliding or possibly rolling the contour of the frame 10 palpated.
  • the turntable 6 is guided in rotation about a first axis, its axis of rotation B, by three guide rollers (not shown) arranged regularly along its periphery and held on the plate 5 of the reading device of FIG. contour 1.
  • the rotation of the plate 6 is controlled by a motor-encoder (not shown) whose output shaft is provided with a pinion meshing with a ring gear equipping the periphery of the plate 6.
  • This motor-encoder allows a reading at any time of the angular position of the plate 6 corresponding to an angular position TETA of the probe 8.
  • the arcuate light 7 has a length approximately corresponding to the radius of the turntable 6 and extends between the center of the turntable 6 and its periphery.
  • the circular arc described by the light 7 is centered around a carrier axis A.
  • the turntable 6 can be extracted from the frame 5. It is then as shown on the figures 2 and 3 .
  • the perspective view of the figure 2 shows a groove 14 disposed on the edge of the turntable 6, over its entire circumference. This groove 14 cooperates with the guide rollers of the plate.
  • the turntable 6 carries a reading subassembly 15.
  • the figures 2 and 3 allow to see the reading subset 15 according to two different angles of view.
  • the reading subassembly 15 comprises a bearing 16 on which is mounted a carrier shaft 17 rotatably mounted on the turntable 6. This carrier shaft 17 has as axis the carrier axis A.
  • a carrier arm 18 is mounted on the carrier shaft 17.
  • the carrier arm 18 has at one of its ends a ring 20 allowing the carrier arm 18 to rotate about the carrier axis A and a translational movement along that axis.
  • the support arm 18 comprises a cylindrical support 21 on which is fixed the support rod 8A of the probe 8 so that the axis of this support rod 8A remains parallel to the carrier axis A .
  • This assembly allows the probe 8 to present a movement in an arc along the light 7, in a plane orthogonal to the axis of rotation B of the turntable 6, this axis of rotation B being here parallel to the axis A
  • the probe 8 can perform an input / output movement with respect to the front face of the turntable 6, when the carrier arm 18 slides along the axis A.
  • the feeler 8 is provided with three degrees of freedom, including a first degree of freedom TETA consisting of the ability of the feeler 8 to rotate about the axis of rotation B through the rotation of the turntable 6, a second degree of freedom Z constituted by the ability of the probe 8 to translate along an axis parallel to the axis of rotation B by sliding the support arm 18 along the axis A, and a third degree of freedom R constituted by the ability of the feeler 8 to move relative to the axis of rotation B thanks to its freedom of movement along the arc formed by the light 7.
  • a first degree of freedom TETA consisting of the ability of the feeler 8 to rotate about the axis of rotation B through the rotation of the turntable 6
  • a second degree of freedom Z constituted by the ability of the probe 8 to translate along an axis parallel to the axis of rotation B by sliding the support arm 18 along the axis A
  • a third degree of freedom R constituted by the ability of the feeler 8 to move relative to the axis of rotation B thanks to
  • Each point read by the end of the probe 8 is located in a corresponding coordinate system R, TETA, Z.
  • the probe 8 thus has a decomposable speed in three distinct components, a first component called rotation speed VP corresponding to the speed of rotation of the turntable 6, a second component called radial velocity VR corresponding to the transverse component of the speed of the probe 8 along an axis perpendicular to the axis of rotation B and passing through the end of the probe 8, and a third component called axial speed VZ corresponding to the axial component of the speed of the probe 8 along the axis of rotation B.
  • rotation speed VP corresponding to the speed of rotation of the turntable 6
  • VR radial velocity
  • VZ axial speed
  • the reading subassembly 15 also comprises a guide arm 22 attached to the base of the shaft 17.
  • This guide arm 22 has a length sufficient to reach the light 7.
  • the guide arm 22 comprises a semicircular portion toothed 26 centered on the carrier axis A.
  • the teeth of the semicircular portion 26 mesh with an intermediate gear 27 which itself meshes with the pinion (not visible) of a motor-encoder 28 mounted on a yoke 29 which is fixed on the turntable 6.
  • the teeth of the intermediate gear 27 have not been shown to make the drawings clearer.
  • the guide arm 22 comprises a vertical clevis 30, arranged parallel to the bearing axis A, on which is fixed a motor-encoder 31 whose pinion 32 meshes with a rack 33 fixed on the ring 20 of the carrier arm 18.
  • the rack 33 is arranged parallel to the carrier axis A.
  • the teeth of the pinion 32 have not been represented for the same reasons of clarity as before.
  • the encoder motor 28 is therefore able to rotate the feeler 8 about the carrier axis A. It therefore allows the probe 8 to exert a force along an axis of effort E tangent to the arc described by the light 7.
  • the motor-encoder 31 is itself able to move the probe 8 along an axis parallel to the carrier axis A. In particular, it makes it possible to exert a so-called mass compensation torque Cz which cancels the mass of the probe 8 and the carrier arm 18 seen by the bezel 10A of the frame 10 when the bezel and the probe are in contact with each other.
  • the contour reading apparatus 1 further comprises means 101 for determining the position R, TETA, Z of the end of the feeler finger 8B of the feeler 8 and of its speed, in particular of its axial and radial components VZ VR.
  • It also comprises dynamic control means 102, that is to say in real time, the speed of the probe 8.
  • dynamic control means 102 that is to say in real time, the speed of the probe 8.
  • the rotational speed VP of the turntable 6 is controlled.
  • All of these determination means 101 and control 102 is integrated in an electronic device and / or computer 100 allowing, on the one hand, to actuate the encoder motors 28, 31, and on the other hand, recovering and recording the data transmitted by these encoder motors 28, 31. These data are here transmitted in the form of voltage slots sent by the encoder motors 28, 31 when they pivot.
  • the figure 4 represents the upper end of the probe 8 comprising the feeler finger 8B.
  • This feeler finger 8B points along an axis perpendicular to the axis of the support rod 8A. It has a pointed end intended to fit into the bezel 10A of a circle of the frame 10 to raise the geometry of its outline.
  • each point of the contour of the bezel 10A can be defined by three spatial coordinates corresponding to the coordinates R, TETA, Z of the end of the probe 8.
  • a point of the mount is therefore identified by its radial coordinate R separating this point from the center of the turntable 6, its angular position TETA relative to, for example, the angular position of the first point palpated, and its altitude Z.
  • the camber of a frame can be quantified using a curve angle J.
  • This curve angle J corresponds to the angle formed between the general plane K of the circles of the frame 10 (vertical plane passing through the bridge) nasal connecting the two circles of the frame) and the axis L defined as being the axis passing through two distinct points of the bezel 10A (typically one located near the nasal part of the circle and the other near the part temporal circle) and having the greatest inclination relative to the general plane K of the circles of the frame 10.
  • This type of strongly arched frames 10 generally also has a twisting of the bezel 10A commonly called "pouring".
  • each of the points P1, P2, P3, P4, P5, P6, P7, P8 has an altitude Z respectively denoted Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 represented on FIG. figure 6 .
  • a standard caliber of shape is used any.
  • 800 separate points are used.
  • the coordinates of these measurement points are preferably stored in memory in the contour reading apparatus 1. If several calibres are used, these calibers are numbered, and these numbers are stored in memory in the apparatus, in order to avoid associating a set of measurement points with a gauge does not correspond to it.
  • Such a three-dimensional machine may for example be constituted by a contour reading device of the same type as that described here and shown on the Figures 1 to 3 but suitably calibrated and / or made with a structure and / or mechanical components of higher precision.
  • the caliber has a geometry such that, when probing in the three-dimensional machine, the measured radius and height vary in large proportions, ideally throughout the measurement range of the contour reading apparatus.
  • the template may have a shape in two dimensions (for example an ellipse) in a plane inclined by twenty degrees relative to the horizontal.
  • the measuring points MRi (XRi, YRi, ZRi) are given in a coordinate system whose X axis is the horizontal axis passing through the center of the two jaws of the three-dimensional machine, of which the Y axis is the horizontal axis perpendicular to the X axis, whose Z axis is the vertical axis perpendicular to the X and Y axes and whose origin O is located at the center of the segment connecting the centers of the two upper jaws.
  • the difference along the X axis between a point measured on the contour reading apparatus 1 and this same point measured on the three-dimensional machine is defined by dXO.
  • the distance along the Y axis between a point measured on the contour reading apparatus 1 and this same point measured on the three-dimensional machine is defined by dYO.
  • the difference along the Z axis between a point measured on the contour reading apparatus 1 and this same point measured on the three-dimensional machine is defined by dZO.
  • Calibration is then performed according to the following steps.
  • the 800 measurement points of the calibration caliber are acquired and recovered using the three-dimensional machine.
  • a reading of the standard caliber is carried out by means of the contour reading apparatus 1.
  • the parameters TETAO, PCX, R0, PPY, PPX, dAB, LBille, dXO, dYO and dZO are then searched which make it possible to minimize the difference between the two sets of points MLi and MRi.
  • the points MLi are corrected by modifying the values of the parameters chosen, a set of MLCORRi points is deduced therefrom, and the difference between the coordinates of the points MLCORRi and MRi is calculated.
  • this difference between the points MLCORRi and MRi is not negligible (that is to say as long as the differences between their respective coordinates are not all less than predefined threshold values), the parameters are modified again. to reduce this difference.
  • the measured points MLi can be corrected with the optimum parameters obtained TETA0optim, PCXoptim, R0optim, PPYoptim, PPXoptim, and Aboptim. LBilleoptim.
  • this frame 10 is inserted between the pads 4 of the jaws 3 so that each of the circles of the frame 10 is ready to be palpated along a path starting by the insertion of the probe between two studs 4 corresponding to the lower part of the frame 10, then following the bezel 10A of the frame 10, to cover the entire circumference of the circle of the frame 10.
  • the electronic and / or computer device 100 calibrates the mass compensation torque Cz so that the probe 8 is at equilibrium irrespective of its altitude Z with respect to the turntable 6.
  • the probe 8 is first inserted in the right circle of the mount 10.
  • the plate 5 on which the turntable 6 is mounted moves with the aid of a motor and a link rack (not shown) so that the center of the turntable 6 is disposed between the two pairs of studs 4 of the two jaws 3 fixing the right circle of the frame 10.
  • the feeler finger 8B is then automatically placed at a known altitude Z and corresponding to the altitude of the point situated at half height between two studs 4 for fixing the frame 10.
  • the reading subassembly 15 has an on-board mechanism allowing movement of the feeler 8 parallel to the axis A.
  • This mechanism comprises the encoder motor 31 which is adapted to arrange the ring 20, and consequently the carrier arm 18, at the desired height on the shaft 17.
  • the probe 8 can thus have a vertical movement along the axis Z '.
  • the feeler finger 8B then moves in the plane of attachment of the frames 10 towards a point located between the two studs 4 for fixing the frame 10 on its lower part.
  • a joint movement of rotation about the axis A of the guide arm 22 and the support arm 18 allows the guide arm 22, driven by the motor-encoder 28, to drive itself the feeler 8 in rotation around the axis A, along the light 7.
  • the turntable 6 defines as zero the angular position TETA and the altitude Z of the end of the 8.
  • the guide rollers of the turntable 6 are then able to rotate the reading subassembly 15 relative to the fixed frame 5, the reading subassembly 15 being embarked on the turntable 6.
  • the motor- encoder (not shown) which drives the rollers inserted in the groove 14 not only causes rotation of the turntable 6 but also allows the electronic and / or computer device 100 to know the value of the angular position TETA (in degrees) that the feeler 8 from its initial position.
  • the value of the angular position TETA of the probe 8 increases at a nominal speed V0.
  • This nominal speed V0 here is 2.8 hundredths of a degree per millisecond.
  • the probe 8 moves along the bottom of the bezel 10A and is guided according to its radial coordinate R and according to its altitude Z by this bezel 10A.
  • the probe being inserted into the right circle of the frame 10, the probe 8 moves in the trigonometrical direction.
  • the encoder motor 28 thus drives the turntable and also acts as an encoder to identify the successive positions of the carrier arm 18 along the light 7.
  • the encoder motor 28 thus delivers a signal enabling the determination means 101 of the electronic and / or computer device 100 to know at all times the radial coordinate R of the feeler finger 8B with respect to the axis of rotation B of the turntable 6.
  • the motor-encoder 31 exerts a so-called mass compensation torque Cz intended to at least artificially cancel the weight of the assembly formed by the support arm 18 and the probe 8.
  • the encoder motor 31 also operates simultaneously in the same manner. encoder which allows the determination means 101 of the electronic device and / or computer 100 to know the altitude Z of the probe finger 8B of the probe 8. The variation of this altitude Z (in millimeters) as a function of the angular position TETA ( in degree) of the probe 8 is represented on the graph of the figure 6 . This graph highlights in particular the significant height of the nasal and temporal parts of the frame 10.
  • the electronic and / or computer device 100 can then possibly determine the coordinates of the feeler finger 8B in a fixed reference frame attached to the frame 5. It can thus store a digital image contours of the two bezels 10A circles of the frame in the same frame.
  • the set of encoder motors 28, 31 allows the electronic and / or computer device 100 to determine the spatial coordinates R, TETA, Z of the point palpated by the probe 8 and consequently the spatial coordinates of a set of points characterizing the outline of the bottom of the bezel when the probe 8 has accurately palpated the entire contour of the bezel 10A.
  • the electronic and / or computer device 100 notes in particular the values of the radial coordinates R of the probed points in order to determine, with the aid of a suitable derivation software, the instantaneous radial velocity V R of probe 8 (corresponding to the transverse component of the speed of the probe 8).
  • the evolution of this radial velocity VR (in hundredths of millimeters per millisecond) as a function of the angular position TETA of the turntable 6 (in degrees) is represented on the graph of the figure 7 for a rotation speed VP of the turntable 6 constant and equal to its nominal speed V0.
  • the radial velocities VR of the probe 8 denoted VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8 respectively taken at points P1, P2, P3, P4, P5, P6, P7, P8 are represented.
  • the electronic and / or computer device 100 also records the values of the elevations Z of the probed points in order to determine, using the derivation software, the instantaneous axial speed VZ of the probe 8 (corresponding to the axial component of the speed of the probe 8 ).
  • the evolution of this axial speed (in hundredths of millimeters per millisecond) according to the angular position of the turntable 6 (in degrees) is shown on the graph of the figure 8 for a rotation speed VP of the turntable 6 constant and equal to its nominal speed V0.
  • VZ1, VZ2, VZ3, VZ4, VZ5, VZ6, VZ7, VZ8 taken respectively at the points P1, P2, P3, P4, P5, P6, P7, P8.
  • the rotational speed VP of the turntable 6 is dynamically controlled to vary during reading as a function of the axial speed VZ and the radial speed VR of the probe 8.
  • the radial velocity VR of the probe 8 and the variation speed of the radial coordinate R of the probed point as a function of the angular position TETA of the turntable 6 are two identical quantities.
  • the TETA angular position of the turntable 6 is a function of time
  • the radial velocity VR is mathematically related to the speed of variation of the radial coordinate R of the probed point as a function of the TETA angular position of the turntable 6.
  • the axial velocity VZ of the probe 8 and the velocity variation of the altitude Z of the probed point as a function of the angular position TETA of the turntable 6 are two identical quantities. It is therefore possible to control the rotational speed VP of the turntable 6 according to one of these magnitudes.
  • the radial velocity V R and the axial velocity V Z of the probe 8 here and there vary each continuously in a velocity range respectively between -5 and 5 hundredths of a millimeter per millisecond and between -7 and 7 hundredths of a millimeter. millisecond.
  • these two velocity domains are divided into three intervals.
  • the measured values of radial velocity VR and axial VZ probe 8 can be filtered and smoothed by ad hoc software integrated electronic device and / or computer 100 before being compared across the aforementioned intervals.
  • the rotation speed VP of the probe 8 is not limited to three programmed speeds step-by-step, but that it can to vary continuously according to a preprogrammed function associating with each measured axial speed pair VZ and radial VZ, a rotational speed VP of the turntable 6.
  • the guide rollers of the turntable 6 stop.
  • the bezel 10A of the right circle of the frame 10 then has a contour of known shape.
  • the probe 8 descends along the axis Z 'under the mount 10.
  • the plate then moves transversely along the transfer axis D in order to reach its second position in which the center of the turntable 6 is positioned between the studs 4 of the two clamps 3 enclosing the left circle of the frame 10.
  • the feeler 8 is then placed automatically at the height Z inside the second circle of the frame 10 to be measured, against the bezel of this second circle, between the two studs 4 for fixing the lower part of this circle of the frame 10.
  • the probing of the bezel is then performed in the same manner as before but in the opposite trigonometrical direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Eyeglasses (AREA)

Abstract

La présente invention concerne un procédé de lecture du contour du drageoir (10A) d'un cercle *de monture (10) de lunettes comprenant une étape de mise en contact d'un palpeur (8) contre le drageoir (10A) et une étape de palpage (10A) du drageoir par glissement ou roulement dudit palpeur (8) le long du drageoir (10A) , la position du palpeur (8) étant déterminée et la vitesse du palpeur (8) comprenant des première, deuxième et troisième composantes (VP, VR, VZ) . Selon l'invention, la première composante (VP) de la vitesse du palpeur (8) est pilotée dynamiquement pour varier, continûment ou par palier, en cours de lecture en fonction au moins de l'une ou de l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8) .

Description

    DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION
  • La présente invention concerne de manière générale le domaine de la lunetterie et plus précisément le palpage du drageoir d'une monture de lunettes cerclées.
  • Elle concerne plus particulièrement un procédé de lecture du contour du drageoir d'un cercle de monture de lunettes comprenant une étape de mise en contact d'un palpeur contre le drageoir et une étape de palpage du drageoir par glissement ou roulement dudit palpeur le long du drageoir, la position du palpeur étant déterminée et la vitesse du palpeur comprenant des première, deuxième et troisième composantes.
  • Elle concerne également un appareil de lecture de contour du drageoir d'un cercle de monture de lunettes qui comporte des moyens de maintien de la monture, un palpeur, des moyens de détermination de la position du palpeur et des moyens de pilotage d'une première composante de la vitesse du palpeur, et qui est adapté à mettre en oeuvre les étapes de la méthode de lecture de contour.
  • La méthode trouve une application particulièrement avantageuse par son application aux lunettes comportant des montures allongées ou fortement cambrées.
  • ARRIÈRE-PLAN TECHNOLOGIQUE
  • La partie technique du métier de l'opticien consiste à monter une paire de lentilles ophtalmiques sur une monture sélectionnée par un porteur. Ce montage se décompose en cinq opérations principales :
    • la lecture du contour des drageoirs des cercles de la monture sélectionnée par le porteur, c'est-à-dire du contour des rainures qui parcourent l'intérieur de chaque cercle de la monture,
    • le centrage de chaque lentille qui consiste à déterminer la position qu'occupera chaque lentille sur la monture afin d'être convenablement centrée en regard de la pupille de l'oeil du porteur de manière à ce qu'elle exerce convenablement la fonction optique pour laquelle elle a été conçue,
    • le palpage de chaque lentille qui consiste à déterminer les coordonnées de points sur chacune des faces de la lentille caractérisant la géométrie du contour des lentilles, puis,
    • le détourage de chaque lentille qui consiste à usiner ou à découper son contour à la forme souhaitée, compte tenu des paramètres de centrage définis, avec, en fin d'usinage, le biseautage qui consiste à réaliser sur la tranche de la
  • lentille un biseau destiné à maintenir la lentille dans le drageoir que comporte la monture.
  • Dans le cadre de la présente invention, on s'intéresse à la première opération de lecture du contour des drageoirs des cercles de la monture. Il s'agit concrètement, pour l'opticien, de palper le contour intérieur des cercles de la monture des lunettes sélectionnées afin de déterminer précisément les coordonnées d'une pluralité de points caractérisant le contour du fond du drageoir de chaque cercle. La connaissance de ce contour permet à l'opticien de déduire la forme que devront présenter les lentilles, une fois détourées et biseautées, afin de pouvoir être montées sur cette monture.
  • L'objectif de cette opération est en particulier de suivre très exactement le fond du drageoir que comporte le cercle à lire de manière à pouvoir mémoriser une image numérique précise de la géométrie du drageoir.
  • Dans le cas des montures allongées (c'est-à-dire présentant une faible hauteur comparée à la distance séparant les deux points d'accroche des branches de la monture) ou fortement cambrées, un appui simple du palpeur sur le drageoir à vitesse constante le long de son contour ne permet pas de relever précisément les coordonnées des points caractérisant le contour du fond du drageoir.
  • Le document US 6 871 158 présente un dispositif de suivi de drageoir prévu pour pallier les problèmes d'imprécisions dans la lecture des drageoirs dus à la déformation des montures lors du passage du palpeur. Ce dispositif comprend en particulier des moyens d'identification du type de monture à lire et des moyens de pilotage de la vitesse de rotation du palpeur pour son glissement le long du contour complet du drageoir. Pour affiner la précision de la lecture des drageoirs, ce dispositif est adapté à déterminer le type de la monture à lire, puis, selon que ce type de monture est caractéristique ou non d'une monture pouvant rencontrer des problèmes de déformation, à commander le palpeur en rotation à une vitesse dépendant du type de la monture, constante sur l'ensemble du drageoir. Afin d'augmenter la vitesse de lecture, ce dispositif peut prévoir de fractionner le contour du drageoir en différentes zones prédéterminées au sein desquelles la vitesse de rotation du palpeur est constante mais entre lesquelles elle varie.
  • L'inconvénient d'un tel dispositif est que pour améliorer sensiblement la précision de la lecture du drageoir, il est soit nécessaire de réduire très fortement la vitesse de rotation du palpeur le long de l'ensemble du drageoir, ce qui augmente fortement et de manière préjudiciable le temps de lecture du contour du drageoir, soit nécessaire de fractionner le contour du drageoir en différentes zones, auquel cas la demanderesse a remarqué qu'il subsistait des erreurs de lecture. L'opération de fractionnement est outre effectuée manuellement par l'opérateur sur une interface adaptée, ce qui exige de l'expérience et prend du temps.
  • On connaît par ailleurs des documents EP 1 037 008 et US 6 325 700 des appareils de lecture de contours suivant le préambule de la revendication 8 et des procédés de lecture de contours de drageoirs de cercles de montures de lunettes suivant le préambule de la revendication 1.
  • Les procédés décrits comportent chacun une étape de mise en contact du palpeur contre le drageoir de la monture de lunettes et une étape de palpage du drageoir.
  • Dans le document EP 1 037 008 , au cours de l'étape de palpage, les effets de la gravité sur le palpeur sont compensés par les moteurs d'actionnement du palpeur. Ce procédé permet ainsi d'améliorer la précision du palpage effectué.
  • Dans le document US 6 325 700 , au cours de l'étape de palpage, les moteurs sont pilotés pour faire varier la position du palpeur en fonction de la courbure du drageoir de la monture, de manière que le palpeur suive ce drageoir et n'en sorte pas.
  • OBJET DE L'INVENTION
  • La présente invention propose un procédé de lecture de contour rapide et fournissant des résultats précis.
  • Plus particulièrement, on propose selon l'invention un procédé de lecture de contour tel que défini dans l'introduction, dans lequel la première composante de la vitesse du palpeur est pilotée dynamiquement pour varier, continûment ou par palier, en cours de lecture en fonction au moins de l'une ou de l'autre des deuxième et troisième composantes de la vitesse du palpeur.
  • Le palpeur présente généralement la forme d'une tige allongée selon un axe de palpage et est classiquement entraîné en rotation autour d'un axe de rotation pour son glissement le long du contour complet du drageoir.
  • Lors de la lecture de ce drageoir, si la monture n'est pas strictement circulaire, l'axe de palpage du palpeur ne peut pas être constamment présenté orthogonalement à la tangente au contour du drageoir. Par conséquent, plus la monture est allongée, plus le palpeur est présenté de manière inclinée par rapport au drageoir dans certaines zones de la monture, en particulier à proximité des zones nasales et temporales de la monture. Lorsque la monture est fortement cambrée, cette inclinaison peut présenter dans ces mêmes zones des valeurs très importantes.
  • Or, plus cette inclinaison est grande, plus la tige du palpeur est soumise à des efforts de flexion. Ces efforts de flexion engendrent alors des erreurs d'acquisition des coordonnées du drageoir dans la mesure où les coordonnées de l'extrémité du palpeur calculées par l'appareil de lecture de contour sont faussées.
  • Ainsi, grâce à l'invention, lorsque les moyens de mesure détectent qu'au moins une deuxième ou une troisième composante de la vitesse du palpeur croit brusquement, ce qui indique que le palpeur s'écarte de sa position idéale orthogonale au drageoir, les moyens de pilotage diminuent la première composante de la vitesse du palpeur de manière à abaisser les efforts de flexion pour accroître la précision des mesures.
  • Selon une première caractéristique avantageuse du procédé de lecture de contour conforme à l'invention, le palpeur étant pourvu de trois degrés de liberté, les première, deuxième et troisième composantes de la vitesse du palpeur sont chacune associées à un des trois degrés de liberté du palpeur.
  • Avantageusement, le palpeur tournant autour d'un axe de rotation pour son glissement le long du contour complet du drageoir du cercle de la monture de lunettes, la première composante de la vitesse du palpeur est constituée par la vitesse de rotation du palpeur autour dudit axe de rotation.
  • Ainsi, seule la vitesse de rotation du palpeur est modifiée pour diminuer les efforts de flexion appliqués au palpeur si bien qu'il est aisé d'adapter cette première composante de la vitesse du palpeur en fonction d'une ou des deux autres composante de sa vitesse.
  • Avantageusement, la deuxième composante de la vitesse du palpeur constitue une composante transversale de la vitesse du palpeur d'axe perpendiculaire à l'axe de rotation du palpeur. En outre, la troisième composante de la vitesse du palpeur constitue une composante axiale de la vitesse du palpeur d'axe parallèle à l'axe de rotation du palpeur.
  • Avantageusement, la première composante de la vitesse du palpeur diminue lorsque la deuxième et/ou la troisième composante de la vitesse du palpeur augmente.
  • Selon une autre caractéristique avantageuse du procédé de lecture de contour conforme à l'invention, la deuxième et la troisième composante de la vitesse du palpeur variant l'une et l'autre continûment chacune dans un domaine de vitesses fractionné en intervalles, les moyens de pilotage modifient la première composante de la vitesse du palpeur lorsque la deuxième et/ou la troisième composante de la vitesse du palpeur change d'intervalle.
  • La demanderesse a remarqué que les deuxième et troisième composante de la vitesse du palpeur varient continûment et présentent des valeurs élevées dans des zones localisées des cercles de la monture. Ainsi, le procédé prévoit donc de faire varier la première composante de la vitesse du palpeur par palier de telle sorte que le palpeur présente une vitesse de rotation constante et élevée dans les zones autres que ces zones localisées de la monture, et une vitesse moins élevée dans ces zones localisées.
  • La présente invention propose également un appareil de lecture de contour tel que défini dans l'introduction, dans lequel les moyens de détermination sont adaptés à déterminer au moins l'une et/ou l'autre des deuxième et troisième composante de la vitesse du palpeur et les moyens de pilotage sont aptes à piloter dynamiquement, continûment ou par palier, la première composante de la vitesse du palpeur en fonction au moins de la deuxième et/ou troisième composante de la vitesse du palpeur déterminée par les moyens de détermination.
  • D'autres caractéristiques avantageuses et non limitatives de l'appareil de lecture de contour selon l'invention sont les suivantes :
    • le palpeur étant pourvu de trois degrés de liberté, un premier des trois degrés de liberté du palpeur est constitué par son aptitude à pivoter autour d'un axe de rotation, un deuxième des trois degrés de liberté du palpeur est constitué par son aptitude à se translater selon un axe parallèle à l'axe de rotation et un troisième des trois degrés de liberté du palpeur est constitué par son aptitude à se mouvoir par rapport à l'axe de rotation ;
    • les moyens de pilotage sont aptes à piloter la première composante de la vitesse du palpeur selon le premier des trois degrés de liberté du palpeur ;
    • les moyens de détermination sont aptes à déterminer la deuxième composante de la vitesse du palpeur selon le deuxième des trois degrés de liberté du palpeur ; et
    • les moyens de détermination sont aptes à déterminer la troisième composante de la vitesse du palpeur selon le troisième des trois degrés de liberté du palpeur.
  • Avantageusement, l'appareil de lecture de contour comprend un plateau tournant monté en rotation autour de l'axe de rotation par rapport aux moyens de fixation de la monture, ce plateau tournant portant un sous-ensemble de lecture qui comporte le palpeur mobile d'une part selon une direction parallèle à l'axe de rotation et d'autre part selon un plan transversal à l'axe de rotation, le sous-ensemble de lecture comporte en outre un autre axe de rotation dénommé axe porteur transversal à la surface du plateau tournant et un bras porteur qui, à l'une de ses extrémités, est monté tournant autour dudit axe porteur et sur lequel est embarqué, à l'autre de ses extrémités, ledit palpeur.
  • Ainsi, le sous-ensemble de lecture pivotant autour de l'axe porteur, la tige du palpeur peut présenter une inclinaison très importante par rapport à la normale à la tangente au drageoir. Cette inclinaison dépend en effet de la forme de la monture, mais également de la position angulaire du sous-ensemble de lecture autour de l'axe porteur. Par conséquent, les moyens de pilotage permettent de piloter la vitesse de rotation du plateau tournant, qui correspond ici à la première composante de la vitesse du palpeur, en fonction des deuxième et troisième composante de la vitesse du palpeur, ce qui permet de tenir compte non seulement de la forme de la monture (allongée et/ou cambrée) mais aussi de la position angulaire du sous-ensemble de lecture.
  • DESCRIPTION DÉTAILLÉE D'UN EXEMPLE DE RÉALISATION
  • La description qui va suivre en regard des dessins annexés donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée.
  • Sur les dessins annexés :
    • la figure 1 est une vue en perspective d'un appareil de lecture de contour recevant une monture de lunettes dont la forme des cercles est destinée à être relevée par un palpeur ;
    • les figures 2 et 3 sont des vues en perspective du dessous du plateau tournant extrait de l'appareil de la figure 1, ces figures 2 et 3 permettant de voir selon deux angles différents le sous-ensemble de lecture porté par le plateau tournant ;
    • la figure 4 est une vue en coupe des cercles de la monture de lunettes reçue par l'appareil de lecture de contour de la figure 1 ;
    • la figure 5 est un graphique représentant le contour d'un des cercles de la monture de lunettes de la figure 4 ;
    • la figure 6 est un graphique représentant la variation de l'altitude des points du contour du drageoir d'un des cercles de la monture de lunettes de la figure 4 ;
    • la figure 7 est un graphique représentant la variation de la vitesse radiale du palpeur de la figure 1 lors de la lecture d'un des cercles de la monture de lunettes de la figure 4 ; et
    • la figure 8 est un graphique représentant la variation de la vitesse axiale (c'est-à-dire sensiblement suivant l'axe du cercle lu, qui est ici vertical) du palpeur de la figure 1 lors de la lecture d'un des cercles de la monture de lunettes de la figure 4.
  • La figure 1 est une vue générale d'un appareil de lecture de contour 1 tel qu'il se présente à son utilisateur. Cet appareil comporte un capot supérieur 2 recouvrant l'ensemble de l'appareil à l'exception d'une portion supérieure centrale.
  • L'appareil de lecture de contour 1 comporte également un jeu de deux mâchoires 3 dont au moins une des mâchoires 3 est mobile par rapport à l'autre de sorte que les mâchoires 3 peuvent être rapprochées ou écartées l'une de l'autre pour former un dispositif de serrage. Chacune des mâchoires 3 est de plus munie de deux pinces formées chacune de deux plots 4 mobiles pour être adaptés à serrer entre eux une monture 10 de lunettes. La monture 10 peut alors être maintenue immobile sur l'appareil de lecture de contour 1.
  • Dans l'espace laissé visible par l'ouverture supérieure centrale du capot 2, un châssis 5 est visible. Une platine (non visible) peut se déplacer en translation sur ce châssis 5 selon un axe de transfert D. Sur cette platine est monté tournant un plateau tournant 6. Ce plateau tournant 6 est donc apte à prendre deux positions sur l'axe de transfert D, une première position dans laquelle le centre du plateau tournant 6 est disposé entre les deux paires de plots 4 fixant le cercle droit de la monture 10, et une seconde position dans laquelle le centre du plateau tournant 6 est disposé entre les deux paires de plots 4 fixant le cercle gauche de la monture 10. On entend par cercle droit et cercle gauche de la monture les cercles destinés à être respectivement positionnés en regard de l'oeil droit et de l'oeil gauche du porteur lorsque ce dernier porte ladite monture.
  • Le plateau tournant 6 possède un axe de rotation B défini comme l'axe normal à la face avant de ce plateau tournant 6 et passant par son centre. Le plateau tournant 6 comporte par ailleurs une lumière 7 oblongue en forme d'arc de cercle à travers laquelle saille un palpeur 8 comportant une tige support 8A et, à son extrémité, un doigt de palpage 8B destiné à suivre par glissement ou éventuellement roulement le contour de la monture 10 palpée.
  • Le plateau tournant 6 est guidé en rotation autour d'un premier axe, son axe de rotation B, par trois galets de guidage (non représentés) disposés régulièrement le long de sa périphérie et maintenus sur la platine 5 de l'appareil de lecture de contour 1. La rotation du plateau 6 est commandée par un moteur-codeur (non représenté) dont l'arbre de sortie est pourvu d'un pignon engrenant avec une couronne dentée équipant la périphérie du plateau 6. Ce moteur-codeur permet un relevé à tout instant de la position angulaire du plateau 6 correspondant à une position angulaire TETA du palpeur 8.
  • On constate que, dans cet exemple, la lumière 7 en arc de cercle présente une longueur correspondant approximativement au rayon du plateau tournant 6 et s'étend entre le centre du plateau tournant 6 et sa périphérie. L'arc de cercle décrit par la lumière 7 est centré autour d'un axe porteur A.
  • Après démontage de l'appareil 1, le plateau tournant 6 peut être extrait du châssis 5. Il se présente alors tel que représenté sur les figures 2 et 3. La vue en perspective de la figure 2 fait apparaître une rainure 14 disposée sur la tranche du plateau tournant 6, sur toute sa circonférence. Cette rainure 14 coopère avec les galets de guidage de la platine. Le plateau tournant 6 porte un sous-ensemble de lecture 15. Les figures 2 et 3 permettent de voir le sous-ensemble de lecture 15 selon deux angles de vue différents. Le sous-ensemble de lecture 15 comporte un palier 16 sur lequel est monté un arbre porteur 17 monté en rotation sur le plateau tournant 6. Cet arbre porteur 17 possède comme axe l'axe porteur A.
  • En référence à la figure 2, un bras porteur 18 est monté sur l'arbre porteur 17. Le bras porteur 18 comporte à l'une de ses extrémités une bague 20 permettant au bras porteur 18 un mouvement de rotation autour de l'axe porteur A ainsi qu'un mouvement de translation le long de cet axe. À son extrémité opposée à la bague 20, le bras porteur 18 comporte un support cylindrique 21 sur lequel est fixée la tige support 8A du palpeur 8 de manière à ce que l'axe de cette tige support 8A reste parallèle à l'axe porteur A.
  • Ce montage permet au palpeur 8 de présenter un mouvement en arc de cercle le long de la lumière 7, dans un plan orthogonal à l'axe de rotation B du plateau tournant 6, cet axe de rotation B étant ici parallèle à l'axe A. De plus, le palpeur 8 peut effectuer un mouvement d'entrée/sortie par rapport à la face avant du plateau tournant 6, lorsque le bras porteur 18 coulisse le long de l'axe A.
  • En résumé, le palpeur 8 est pourvu de trois degrés de liberté, dont un premier degré de liberté TETA constitué par l'aptitude du palpeur 8 à pivoter autour de l'axe de rotation B grâce à la rotation du plateau tournant 6, un deuxième degré de liberté Z constitué par l'aptitude du palpeur 8 à se translater selon un axe parallèle à l'axe de rotation B grâce au coulissement du bras porteur 18 le long de l'axe A, et un troisième degré de liberté R constitué par l'aptitude du palpeur 8 à se mouvoir par rapport à l'axe de rotation B grâce à sa liberté de mouvement le long de l'arc de cercle formé par la lumière 7.
  • Chaque point lu par l'extrémité du palpeur 8 est repéré dans un système de coordonnées correspondant R, TETA, Z.
  • Le palpeur 8 présente donc une vitesse décomposable en trois composantes distinctes, dont une première composante appelée vitesse de rotation VP correspondant à la vitesse de rotation du plateau tournant 6, une deuxième composante appelée vitesse radiale VR correspondant à la composante transversale de la vitesse du palpeur 8 selon un axe perpendiculaire à l'axe de rotation B et passant par l'extrémité du palpeur 8, et une troisième composante appelée vitesse axiale VZ correspondant à la composante axiale de la vitesse du palpeur 8 selon l'axe de rotation B.
  • Le sous-ensemble de lecture 15 comporte également un bras de guidage 22 rattaché à la base de l'arbre 17. Ce bras de guidage 22 a une longueur suffisante pour atteindre la lumière 7. Le bras de guidage 22 comporte une portion semi-circulaire dentée 26 centrée sur l'axe porteur A. Les dents de la portion semi-circulaire 26 engrènent avec un pignon intermédiaire 27 qui engrène lui-même avec le pignon (non visible) d'un moteur-codeur 28 monté sur une chape 29 qui est fixée sur le plateau tournant 6. Les dents du pignon intermédiaire 27 n'ont pas été représentées pour rendre les dessins plus clairs. Le bras de guidage 22 comporte une chape verticale 30, disposée parallèlement à l'axe porteur A, sur laquelle est fixé un moteur-codeur 31 dont le pignon 32 engrène avec une crémaillère 33 fixée sur la bague 20 du bras porteur 18. La crémaillère 33 est disposée parallèlement à l'axe porteur A. Les dents du pignon 32 n'ont pas été représentées pour les mêmes raisons de clarté que précédemment.
  • Le moteur-codeur 28 est donc apte à faire pivoter le palpeur 8 autour de l'axe porteur A. Il permet par conséquent au palpeur 8 d'exercer un effort selon un axe d'effort E tangent à l'arc de cercle décrit par la lumière 7.
  • Le moteur-codeur 31 est quant à lui apte à mouvoir le palpeur 8 selon un axe parallèle à l'axe porteur A. Il permet en particulier d'exercer un couple dit de compensation de masse Cz qui annule la masse du palpeur 8 et du bras porteur 18 vue par le drageoir 10A de la monture 10 lorsque le drageoir et le palpeur sont au contact l'un de l'autre.
  • L'appareil de lecture de contour 1 comporte par ailleurs des moyens de détermination 101 de la position R, TETA, Z de l'extrémité du doigt de palpage 8B du palpeur 8 et de sa vitesse, en particulier de ses composantes axiale VZ et radiale VR.
  • Il comporte également des moyens de pilotage 102 dynamique, c'est-à-dire en temps réel, de la vitesse du palpeur 8. Avantageusement, seule la vitesse de rotation VP du plateau tournant 6 est pilotée.
  • L'ensemble de ces moyens de détermination 101 et de pilotage 102 est intégré dans un dispositif électronique et/ou informatique 100 permettant, d'une part, d'actionner les moteurs-codeurs 28, 31, et, d'autre part, de récupérer et d'enregistrer les données que lui transmettent ces moteurs-codeurs 28, 31. Ces données sont ici transmises sous forme de créneaux de tension envoyés par les moteurs-codeurs 28, 31 lorsqu'ils pivotent.
  • La figure 4 représente l'extrémité supérieure du palpeur 8 comportant le doigt de palpage 8B. Ce doigt de palpage 8B pointe selon un axe perpendiculaire à l'axe de la tige support 8A. Il présente une extrémité pointue destinée à s'insérer dans le drageoir 10A d'un cercle de la monture 10 pour relever la géométrie de son contour.
  • Lorsqu'une monture 10 est disposée dans l'appareil de lecture de contour 1, on peut définir chaque point du contour du drageoir 10A par trois coordonnées spatiales correspondant aux coordonnées R, TETA, Z de l'extrémité du palpeur 8. Un point de la monture est donc repéré par sa coordonnée radiale R séparant ce point du centre du plateau tournant 6, sa position angulaire TETA par rapport, par exemple à la position angulaire du premier point palpé, et son altitude Z.
  • Dans notre cas d'étude, on s'intéresse tout particulièrement aux montures allongées (c'est-à-dire présentant, une fois installées sur le visage du porteur, une faible hauteur et une grande largeur entre les deux branches de la monture) et/ou fortement cambrées par rapport au plan général des cercles de la monture 10. Un exemple d'une monture fortement cambrée est représenté sur la figure 4.
  • La cambrure d'une monture peut être quantifiée à l'aide d'un angle de galbe J. Cet angle de galbe J correspond à l'angle formé entre le plan général K des cercles de la monture 10 (plan vertical passant par le pontet nasal reliant les deux cercles de la monture) et l'axe L défini comme étant l'axe passant par deux points distincts du drageoir 10A (typiquement, l'un disposé près de la partie nasale du cercle et l'autre près de la partie temporale du cercle) et présentant la plus grande inclinaison par rapport au plan général K des cercles de la monture 10.
  • On entend ici par fortement cambrée une monture dont l'angle de galbe J est supérieur à 20 degrés.
  • Ce type de montures 10 fortement cambrées présente généralement aussi un vrillage du drageoir 10A communément appelé « versage ».
  • Le contour du fond du drageoir d'un cercle de la monture 10 a été schématisé sur la figure 5. Pour la bonne compréhension des figures 6 à 8, le contour représenté sur cette figure 5 a été discrétisé en huit arcs distincts présentant pour extrémités des points P1 et P2, P2 et P3 jusqu'à P8 et P1.
  • On notera en outre que chacun des points P1, P2, P3, P4, P5, P6, P7, P8 possède une altitude Z notée respectivement Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 représentée sur la figure 6.
  • Avant de palper une monture, il est possible d'étalonner l'appareil de lecture de contour 1. Cet étalonnage doit en particulier permettre de réaliser des mesures précises sur les montures à palper, quelles que soient les formes de ces montures (cercles de grands ou petits rayons, montures fortement cambrées...).
  • Pour réaliser cet étalonnage, il faut pouvoir mesurer et compenser les écarts entre, d'une part, le modèle cinématique théorique représentant la cinématique de l'appareil de lecture de contour 1, et, d'autre part, la cinématique réelle de l'appareil à un instant donné. Il est par exemple important de connaître très précisément, dans le référentiel de l'appareil, la position de l'extrémité du palpeur 8. Les écarts entre le modèle cinématique et la réalité sont dus aux imprécisions de réalisation des pièces, de montage de ces pièces, et à l'évolution dans le temps de l'appareil (usure, chocs, variations de température).
  • Pour étalonner l'appareil, on utilise un calibre étalon de forme quelconque. On mesure alors très précisément, par exemple sur une machine tridimensionnelle, la forme de ce calibre sur au moins plusieurs dizaines de points de coordonnées MRi =(XRi,YRi, ZRi, i=1 à N). En pratique, on utilise 800 points distincts. Les coordonnées de ces points de mesure sont préférentiellement stockées en mémoire dans l'appareil de lecture de contour 1. Si plusieurs calibres sont utilisés, ces calibres sont numérotés, et ces numéros sont stockés en mémoire dans l'appareil, afin d'éviter d'associer à un calibre un ensemble de points de mesure ne lui correspondant pas.
  • Une telle machine tridimensionnelle peut par exemple être constituée par un appareil de lecture de contour du même type de celui décrit ici et représenté sur les figures 1 à 3 mais convenablement étalonné et/ou réalisé avec une structure et/ou des composants mécaniques de précisions supérieures.
  • Préférentiellement, le calibre possède une géométrie telle que, lors de son palpage dans la machine tridimensionnelle, le rayon et la hauteur mesurés varient dans des proportions importantes, idéalement dans toute la plage de mesure de l'appareil de lecture de contour. A titre d'exemple, le gabarit peut présenter une forme en 2 dimensions (par exemple une ellipse) dans un plan incliné de vingt degrés par rapport à l'horizontale.
  • Quoi qu'il en soit, les points de mesure MRi=(XRi, YRi, ZRi) sont donnés dans un repère dont l'axe X est l'axe horizontal passant par le centre des 2 mâchoires de la machine tridimensionnelle, dont l'axe Y est l'axe horizontal perpendiculaire à l'axe X, dont l'axe Z est l'axe vertical perpendiculaire aux axes X et Y et dont l'origine O est située au centre du segment reliant les centres des deux mâchoires supérieures.
  • On cherche alors à trouver les écarts entre le modèle cinématique théorique et la cinématique réelle de l'appareil afin de pouvoir mesurer, grâce à l'appareil de lecture de contour 1 ainsi étalonné, un ensemble de points approchés MLi = (XLi, YLi, ZLi, i=1 à N) qui s'approchent au mieux de l'ensemble de points de mesure MRi = (XRi, YRi, ZRi).
  • Les paramètres à considérer pour caractériser un écart entre le modèle théorique et la cinématique réelle de l'appareil sont les suivants :
    • l'angle TETAO qui correspond à la différence entre la position angulaire TETA réelle d'un point mesuré par le palpeur et la position angulaire TETA acquise par l'appareil de lecture de contour, en supposant cette différence constante ;
    • l'angle PCX qui correspond au défaut de parallélisme, suivant l'axe X, entre l'axe de rotation B du plateau tournant 6 et l'axe vertical Z ;
    • l'angle PCY qui correspond au défaut de parallélisme, suivant l'axe Y, entre l'axe de rotation B du plateau tournant 6 et l'axe vertical Z ;
    • la distance R0 qui correspond à la différence entre le rayon réel et le rayon acquis par l'appareil de lecture de contour, que l'on suppose constante ;
    • l'angle PPX qui correspond au défaut de parallélisme, suivant l'axe X, entre l'axe porteur A et l'axe vertical Z ;
    • l'angle PPY qui correspond au défaut de parallélisme, suivant l'axe Y, entre l'axe porteur A et l'axe Z ;
    • la distance dAB réelle entre l'axe porteur A et l'axe de rotation B du plateau tournant 6 qui diffère en pratique de la distance considérée dans le modèle théorique ; et
    • la distance LBille entre l'extrémité du palpeur et l'axe porteur A qui diffère en pratique de la distance considérée dans le modèle théorique.
  • Bien sûr, d'autres paramètres peuvent être définis et calculés pour affiner l'étalonnage.
  • Il convient également de déterminer des paramètres non liés à l'étalonnage de l'appareil de lecture de contour 1 mais liés, d'une part, à l'incertitude de positionnement du calibre étalon dans le repère O,X,Y,Z de la machine tridimensionnelle, et, d'autre part, à la différence entre les origines de l'appareil de lecture de contour 1 et de la machine tridimensionnelle. A cet effet, on définit par dXO l'écart selon l'axe X entre un point mesuré sur l'appareil de lecture de contour 1 et ce même point mesuré sur la machine tridimensionnelle. On définit par dYO l'écart selon l'axe Y entre un point mesuré sur l'appareil de lecture de contour 1 et ce même point mesuré sur la machine tridimensionnelle. On définit par dZO l'écart selon l'axe Z entre un point mesuré sur l'appareil de lecture de contour 1 et ce même point mesuré sur la machine tridimensionnelle.
  • L'étalonnage est alors réalisé selon les étapes suivantes. Au cours d'une première étape, on acquiert et on récupère les 800 points de mesure du calibre étalon au moyen de la machine tridimensionnelle. Puis, on réalise une lecture du calibre étalon au moyen de l'appareil de lecture de contour 1. On recherche ensuite les paramètres TETAO, PCX, R0, PPY, PPX, dAB, LBille, dXO, dYO et dZO qui permettent de minimiser l'écart entre les 2 ensembles de points MLi et MRi. Pour ce faire, on corrige les points MLi en modifiant les valeurs des paramètres choisis, on en déduit un ensemble de points MLCORRi, et on calcule la différence entre les coordonnées des points MLCORRi et MRi. Tant que cette différence entre les points MLCORRi et MRi n'est pas négligeable (c'est-à-dire tant que les différences entre leurs coordonnées respectives ne sont pas toutes inférieures à des valeurs seuil prédéfinies), on modifie à nouveau les paramètres afin de réduire cette différence.
  • Cette modification peut être réalisée de manière empirique, paramètre après paramètre. Il est également possible d'utiliser la technique bien connue du gradient associée à un calcul de différence des points MRi/MLCORRi suivant la méthode des moindres carrés. On applique ici la technique du gradient sur la fonction Diff avec Diff (TETA0,PCX... dZO) = somme [ ( XLCOORi -XMi)^2 + ( YLCOORi -YMi)^2 + ( ZLCOORi -ZMi)^2 ], i=1..N.
  • Lorsque la différence entre les points MLCORRi et Mri devient inférieure à un seuil prédéfini, on obtient finalement les paramètres optimum TETA0optim, PCXoptim, R0optim, PPYoptim, PPXoptim, dABoptim, LBilleoptim, dXOoptim, dYOoptim et dZOoptim.
  • Ainsi, lors de la lecture de la monture de lunettes par l'appareil de lecture de contour 1 (décrite comme suit), on peut corriger les points mesurés MLi avec les paramètres optimums obtenus TETA0optim, PCXoptim, R0optim, PPYoptim, PPXoptim, dABoptim et LBilleoptim.
  • Préalablement au démarrage du palpage du drageoir 10A du cercle de la monture 10 dont le contour est représenté sur la figure 5, cette monture 10 est insérée entre les plots 4 des mâchoires 3 de sorte que chacun des cercles de la monture 10 soit prêt à être palpé selon un trajet démarrant par l'insertion du palpeur entre deux plots 4 correspondant à la partie inférieure de la monture 10, puis suivant le drageoir 10A de la monture 10, afin de couvrir toute la circonférence du cercle de la monture 10. À la suite de cette insertion, le dispositif électronique et/ou informatique 100 étalonne le couple de compensation de masse Cz de sorte que le palpeur 8 soit à l'équilibre quelle que soit son altitude Z par rapport au plateau tournant 6.
  • En fonctionnement, le palpeur 8 est tout d'abord inséré dans le cercle droit de la monture 10. Pour cela, la platine 5 sur laquelle est monté le plateau tournant 6 se déplace à l'aide d'un moteur et d'une liaison crémaillère (non représentés) de telle sorte que le centre du plateau tournant 6 soit disposé entre les deux paires de plots 4 des deux mâchoires 3 fixant le cercle droit de la monture 10.
  • Le doigt de palpage 8B se place alors automatiquement à une altitude Z connue et correspondant à l'altitude du point situé à mi-hauteur entre deux plots 4 de fixation de la monture 10. Afin de placer le doigt de palpage 8B à cette altitude Z, le sous-ensemble de lecture 15 dispose d'un mécanisme embarqué permettant le mouvement du palpeur 8 parallèlement à l'axe A. Ce mécanisme comporte le moteur-codeur 31 qui est adapté à disposer la bague 20, et par conséquent le bras porteur 18, à la hauteur désirée sur l'arbre 17. Le palpeur 8 peut ainsi présenter un mouvement vertical selon l'axe Z'.
  • Le doigt de palpage 8B se déplace alors dans le plan de fixation des montures 10 en direction d'un point situé entre les deux plots 4 de fixation de la monture 10 sur sa partie basse. Pour cela, un mouvement conjoint de rotation autour de l'axe A du bras de guidage 22 et du bras porteur 18 permet au bras de guidage 22, entraîné par le moteur-codeur 28, d'entraîner lui-même le palpeur 8 en rotation autour de l'axe A, le long de la lumière 7.
  • Dans cette position initiale, lorsque le doigt de palpage 8B est disposé entre les deux plots 4 (en un point ici distinct du point P1), le plateau tournant 6 définit comme nulles la position angulaire TETA et l'altitude Z de l'extrémité du palpeur 8. Les galets de guidage du plateau tournant 6 sont alors en mesure de faire pivoter le sous-ensemble de lecture 15 par rapport au châssis fixe 5, le sous-ensemble de lecture 15 étant embarqué sur le plateau tournant 6. Le moteur-codeur (non représenté) qui entraîne les galets insérés dans la rainure 14 non seulement provoque la rotation du plateau tournant 6 mais aussi permet au dispositif électronique et/ou informatique 100 de connaître la valeur de la position angulaire TETA (en degrés) que présente le palpeur 8 par rapport à sa position initiale.
  • Lorsque le plateau tournant 6 commence à pivoter, la valeur de la position angulaire TETA du palpeur 8 croît à une vitesse nominale V0. Cette vitesse nominale V0 est ici de 2,8 centièmes de degrés par milliseconde. Le palpeur 8 se déplace le long du fond du drageoir 10A et est guidé selon sa coordonnée radiale R et selon son altitude Z par ce drageoir 10A. Le palpeur étant inséré dans le cercle droit de la monture 10, le palpeur 8 se déplace dans le sens trigonométrique.
  • La conservation du contact du doigt de palpage 8B avec le drageoir 10A est assurée par les moteurs-codeurs 28,31. Ces derniers exercent en effet un effort global sur le palpeur 8 qui permet au doigt de palpage 8B de rester en contact avec le fond du drageoir 10A.
  • Pendant la rotation du plateau tournant 6, le moteur-codeur 28 entraîne donc le plateau en rotation et agit aussi en tant que codeur pour repérer les positions successives du bras porteur 18 le long de la lumière 7. Le moteur-codeur 28 délivre ainsi un signal permettant aux moyens de détermination 101 du dispositif électronique et/ou informatique 100 de connaître à tout instant la coordonnée radiale R du doigt de palpage 8B par rapport à l'axe de rotation B du plateau tournant 6.
  • Le moteur-codeur 31 exerce quant à lui un couple dit de compensation de masse Cz destiné à au moins annuler artificiellement le poids de l'ensemble formé par le bras porteur 18 et le palpeur 8. Le moteur-codeur 31 fonctionne par ailleurs simultanément en codeur ce qui permet aux moyens de détermination 101 du dispositif électronique et/ou informatique 100 de connaître l'altitude Z du doigt de palpage 8B du palpeur 8. La variation de cette altitude Z (en millimètres) en fonction de la position angulaire TETA (en degré) du palpeur 8 est représentée sur le graphique de la figure 6. Ce graphique met en particulier en exergue la hauteur importante des parties nasale et temporale de la monture 10.
  • Connaissant les coordonnées du centre du plateau tournant 6 par rapport au châssis 5, le dispositif électronique et/ou informatique 100 peut alors éventuellement déterminer les coordonnées du doigt de palpage 8B dans un repère fixe attaché au châssis 5. Il peut ainsi mémoriser une image numérique des contours des deux drageoirs 10A des cercles de la monture dans un même référentiel.
  • Quoi qu'il en soit, l'ensemble des moteurs-codeurs 28, 31 permet au dispositif électronique et/ou informatique 100 de déterminer les coordonnées spatiales R, TETA, Z du point palpé par le palpeur 8 et par conséquent les coordonnées spatiales d'un ensemble de points caractérisant le contour du fond du drageoir lorsque le palpeur 8 a palpé avec précision l'ensemble du contour du drageoir 10A.
  • Selon une caractéristique avantageuse de l'invention, le dispositif électronique et/ou informatique 100 relève en particulier les valeurs des coordonnées radiales R des points palpés pour déterminer, à l'aide d'un logiciel de dérivation adéquat, la vitesse radiale VR instantanée du palpeur 8 (correspondant à la composante transversale de la vitesse du palpeur 8). L'évolution de cette vitesse radiale VR (en centièmes de millimètres par milliseconde) en fonction de la position angulaire TETA du plateau tournant 6 (en degrés) est représentée sur le graphique de la figure 7 pour une vitesse de rotation VP du plateau tournant 6 constante et égale à sa vitesse nominale V0. Sont représentées en particulier les vitesses radiales VR du palpeur 8 notées VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8 relevées respectivement aux points P1, P2, P3, P4, P5, P6, P7, P8.
  • Le dispositif électronique et/ou informatique 100 relève également les valeurs des altitudes Z des points palpés pour déterminer, à l'aide du logiciel de dérivation, la vitesse axiale VZ instantanée du palpeur 8 (correspondant à la composante axiale de la vitesse du palpeur 8). L'évolution de cette vitesse axiale (en centièmes de millimètres par milliseconde) en fonction de la position angulaire du plateau tournant 6 (en degrés) est représentée sur le graphique de la figure 8 pour une vitesse de rotation VP du plateau tournant 6 constante et égale à sa vitesse nominale V0. Sont représentées en particulier les vitesses axiales VZ du palpeur 8 notées VZ1, VZ2, VZ3, VZ4, VZ5, VZ6, VZ7, VZ8 relevées respectivement aux points P1, P2, P3, P4, P5, P6, P7, P8.
  • Avantageusement, la vitesse de rotation VP du plateau tournant 6 est pilotée dynamiquement pour varier en cours de lecture en fonction de la vitesse axiale VZ et de la vitesse radiale VR du palpeur 8.
  • On comprend ici que la vitesse radiale VR du palpeur 8 et la vitesse variation de la coordonnée radiale R du point palpé en fonction de la position angulaire TETA du plateau tournant 6 sont deux grandeurs identiques. En effet, la position angulaire TETA du plateau tournant 6 étant une fonction du temps, la vitesse radiale VR est mathématiquement liée à la vitesse de variation de la coordonnée radiale R du point palpé en fonction de la position angulaire TETA du plateau tournant 6. De la même manière, la vitesse axiale VZ du palpeur 8 et la vitesse variation de l'altitude Z du point palpé en fonction de la position angulaire TETA du plateau tournant 6 sont deux grandeurs identiques. Il est par conséquent possible de piloter la vitesse de rotation VP du plateau tournant 6 en fonction de l'une de ces grandeurs.
  • La vitesse radiale VR et la vitesse axiale VZ du palpeur 8 varient ici l'une et l'autre continûment chacune dans un domaine de vitesses respectivement compris entre -5 et 5 centièmes de millimètres par milliseconde et entre -7 et 7 centièmes de millimètres par milliseconde. Avantageusement, ces deux domaines de vitesses sont fractionnés en trois intervalles. Lorsque les vitesses radiale et axiale du palpeur 8 restent confinées dans un intervalle sans en changer, les moyens de pilotage 102 commande le plateau tournant 6 à une vitesse de rotation VP constante. En revanche, lorsque l'une ou l'autre des vitesses axiale VZ et radiale VR change d'intervalle, les moyens de pilotage 102 modifient la vitesse de rotation VP du plateau tournant 6.
  • Plus précisément, le dispositif électronique et/ou informatique 100 est programmé pour que, la valeur de la position angulaire TETA du palpeur 8 augmentant,
    • si la vitesse radiale VR du palpeur 8 dépasse en valeur absolue la valeur de 3,3 centièmes de millimètres par milliseconde ou si sa vitesse axiale VZ dépasse la valeur de 4,6 centièmes de millimètres par milliseconde, alors les moyens de pilotage 102 diminuent la vitesse de rotation VP du plateau tournant 6 à une valeur correspondant au tiers de sa vitesse nominale V0 ;
    • si en revanche, la vitesse radiale VR du palpeur 8 est inférieure en valeur absolue à la valeur de 1,7 centièmes de millimètres par milliseconde et si sa vitesse axiale VZ est inférieure en valeur absolue à la valeur de 2,3 centièmes de millimètres par milliseconde, alors les moyens de pilotage 102 stabilisent la vitesse de rotation du plateau tournant 6 à sa vitesse nominale V0 ;
    • sinon, les moyens de pilotage 102 stabilisent la vitesse de rotation VP du plateau tournant 6 à une vitesse correspondant à la moitié de sa vitesse nominale V0.
  • Éventuellement, les valeurs mesurées des vitesses radiale VR et axiale VZ du palpeur 8 peuvent être filtrées et lissées par un logiciel ad hoc intégré au dispositif électronique et/ou informatique 100 avant d'être comparées aux bornes des intervalles précités.
  • Sur l'exemple de la monture 10 dont le contour est représenté sur la figure 5, on remarque tout d'abord sur le graphique de la figure 7 que la vitesse radiale VR du palpeur 8 dépasse, en valeur absolue, 1,7 centièmes de millimètre par milliseconde dans un intervalle angulaire d'environ 135 degrés morcelé entre les points P1 et P4 et entre les points P6 et P7 du contour du drageoir 10A.
  • On remarque par ailleurs sur le graphique de la figure 8 que la vitesse axiale VZ du palpeur 8 dépasse, en valeur absolue, 2,3 centièmes de millimètres par milliseconde dans un intervalle angulaire d'environ 90 degrés compris entre les points P1 et P3 du contour du drageoir 10A.
  • Il est donc utile dans cet exemple de diminuer la vitesse de rotation du plateau tournant 6 qu'entre les points P1 et P4 et entre les points P6 et P7 du contour du drageoir 10A afin de diminuer les efforts de flexion auxquels est soumis le palpeur 8 de manière à accroître la précision de la lecture du contour défini par le drageoir 10A.
  • Il est ainsi possible de garder sur la majorité du contour du drageoir 10A une vitesse de rotation VP du plateau tournant 6 importante. La durée nécessaire à la lecture de l'ensemble du drageoir 10A reste donc faible alors que la précision de cette lecture est fortement accrue.
  • On notera qu'en variante, il est possible de programmer le dispositif électronique et/ou informatique 100 de manière à ce que la vitesse de rotation VP du palpeur 8 ne soit pas limitée à trois vitesses programmées palier par palier, mais qu'elle puisse varier continûment selon une fonction préprogrammée associant à chaque couple de vitesse axiale VZ et radiale VZ mesuré, une vitesse de rotation VP du plateau tournant 6.
  • Quoi qu'il en soit, lorsque la valeur de la position angulaire TETA du palpeur 8 atteint 360 degrés, les galets de guidage du plateau tournant 6 s'arrêtent. Le drageoir 10A du cercle droit de la monture 10 présente alors un contour de forme connue.
  • Afin de palper le second cercle de la monture, le palpeur 8 descend selon l'axe Z' sous la monture 10. La platine se déplace alors transversalement selon l'axe de transfert D afin d'atteindre sa deuxième position dans laquelle le centre du plateau tournant 6 est positionné entre les plots 4 des deux pinces 3 enserrant le cercle gauche de la monture 10.
  • Le palpeur 8 est alors placé automatiquement à la hauteur Z à l'intérieur du second cercle de la monture 10 à mesurer, contre le drageoir de ce second cercle, entre les deux plots 4 de fixation de la partie basse de ce cercle de la monture 10.
  • Le palpage du drageoir est alors réalisé de la même manière que précédemment mais dans le sens trigonométrique inverse.

Claims (13)

  1. Procédé de lecture du contour du drageoir (10A) d'un cercle de monture (10) de lunettes comprenant une étape de mise en contact d'un palpeur (8) contre le drageoir (10A) et une étape de palpage du drageoir (10A) par glissement ou roulement dudit palpeur (8) le long du drageoir (10A), la position (R, TETA, Z) du palpeur (8) étant déterminée et la vitesse du palpeur (8) comprenant des première, deuxième et troisième composantes (VP, VR, VZ), caractérisé en ce que la première composante (VP) de la vitesse du palpeur (8) est pilotée dynamiquement pour varier, continûment ou par palier, en cours de lecture en fonction au moins de l'une ou de l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8).
  2. Procédé de lecture de contour selon la revendication précédente, dans lequel, le palpeur (8) étant pourvu de trois degrés de liberté (R, TETA, Z), les première, deuxième et troisième composantes (VP, VR, VZ) de la vitesse du palpeur (8) sont chacune associées à un des trois degrés de liberté (R, TETA, Z) du palpeur (8).
  3. Procédé de lecture de contour selon l'une des revendications précédentes, dans lequel, le palpeur (8) tournant autour d'un axe de rotation (B) pour son glissement le long du contour complet du drageoir (10A) du cercle de la monture (10) de lunettes, la première composante (VP) de la vitesse du palpeur (8) est constituée par la vitesse de rotation (VP) du palpeur (8) autour dudit axe de rotation (B).
  4. Procédé de lecture de contour selon la revendication précédente, dans lequel la deuxième composante de la vitesse du palpeur (8) constitue une composante transversale (VR) de la vitesse du palpeur (8) d'axe perpendiculaire à l'axe de rotation (B) du palpeur (8).
  5. Procédé de lecture de contour selon l'une des deux revendications précédentes, dans lequel la troisième composante de la vitesse du palpeur (8) constitue une composante axiale (VZ) de la vitesse du palpeur (8) d'axe parallèle à l'axe de rotation (B) du palpeur (8).
  6. Procédé de lecture de contour selon l'une des revendications précédentes, dans lequel la première composante (VP) de la vitesse du palpeur (8) diminue lorsque la deuxième et/ou la troisième composante (VR, VZ) de la vitesse du palpeur (8) augmente.
  7. Procédé de lecture de contour selon l'une des revendications précédentes, dans lequel, la deuxième composante (VR) et la troisième composante (VZ) de la vitesse du palpeur (8) variant l'une et l'autre continûment chacune dans un domaine de vitesses fractionné en intervalles, les moyens de pilotage (102) modifient la première composante (VP) de la vitesse du palpeur (8) lorsque la deuxième et/ou la troisième composante (VR, VZ) de la vitesse du palpeur (8) change d'intervalle.
  8. Appareil de lecture de contour (1) du drageoir (10A) d'un cercle de monture (10) de lunettes comportant des moyens de maintien (3, 4) de la monture (10), un palpeur (8), des moyens de détermination (101) de la position (R, TETA, Z) du palpeur (8) et des moyens de pilotage (102) d'une première composante (VP) de la vitesse du palpeur (8), caractérisé en ce que les moyens de détermination (101) sont adaptés à déterminer au moins l'une ou l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8) et les moyens de pilotage (102) sont aptes à piloter dynamiquement, continûment ou par palier, la première composante (VP) de la vitesse du palpeur (8) en fonction au moins de l'une ou l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8) déterminée par les moyens de détermination (101).
  9. Appareil de lecture de contour (1) selon la revendication précédente, dans lequel, le palpeur (8) étant pourvu de trois degrés de liberté (TETA, R, Z), un premier des trois degrés de liberté (TETA) du palpeur (8) est constitué par son aptitude à pivoter autour d'un axe de rotation (B), un deuxième des trois degrés de liberté (R) du palpeur (8) est constitué par son aptitude à se mouvoir par rapport à l'axe de rotation (B) et un troisième des trois degrés de liberté (Z) du palpeur (8) est constitué par son aptitude à se translater selon un axe parallèle à l'axe de rotation (B).
  10. Appareil de lecture de contour (1) selon la revendication précédente, dans lequel les moyens de pilotage (102) sont aptes à piloter la première composante (VP) de la vitesse du palpeur (8) selon le premier des trois degrés de liberté (TETA) du palpeur (8).
  11. Appareil de lecture de contour (1) selon l'une des deux revendications précédentes, dans lequel les moyens de détermination (101) sont aptes à déterminer la deuxième composante (VR) de la vitesse du palpeur (8) selon le deuxième des trois degrés de liberté (R) du palpeur (8).
  12. Appareil de lecture de contour (1) selon l'une des trois revendications précédentes, dans lequel les moyens de détermination (101) sont aptes à déterminer la troisième composante (VZ) de la vitesse du palpeur (8) selon le troisième des trois degrés de liberté (Z) du palpeur (8).
  13. Appareil de lecture de contour (1) selon l'une des revendications 8 à 12, qui comprend un plateau tournant (6) monté en rotation autour de l'axe de rotation (B) par rapport aux moyens de fixation (3,4) de la monture (10), ce plateau tournant (6) portant un sous-ensemble de lecture (15) qui comporte le palpeur (8) mobile d'une part selon une direction parallèle à l'axe de rotation (B) et d'autre part selon un plan transversal à l'axe de rotation (B), le sous-ensemble de lecture (15) comporte en outre un autre axe de rotation dénommé axe porteur (A) transversal à la surface du plateau tournant (6) et un bras porteur (18) qui, à l'une de ses extrémités, est monté tournant autour dudit axe porteur (A) et sur lequel est embarqué, à l'autre de ses extrémités, ledit palpeur (8).
EP07731098A 2006-03-17 2007-03-06 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant Active EP1996368B9 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0602361A FR2898690B1 (fr) 2006-03-17 2006-03-17 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant
PCT/FR2007/000399 WO2007107645A1 (fr) 2006-03-17 2007-03-06 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant

Publications (3)

Publication Number Publication Date
EP1996368A1 EP1996368A1 (fr) 2008-12-03
EP1996368B1 true EP1996368B1 (fr) 2012-06-27
EP1996368B9 EP1996368B9 (fr) 2012-10-03

Family

ID=36649865

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07731098A Active EP1996368B9 (fr) 2006-03-17 2007-03-06 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant

Country Status (3)

Country Link
EP (1) EP1996368B9 (fr)
FR (1) FR2898690B1 (fr)
WO (1) WO2007107645A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015808A1 (de) * 2007-03-30 2008-10-02 Buchmann Deutschland Gmbh Verfahren zum Abtasten der Kontur von Brillenfassungsöffnungen und Verwendung der Vorrichtung zum Abtasten der Kontur von Brillenfassungsöffnungen für das Umfangsschleifen von Brillengläsern
EP2027968B1 (fr) * 2007-12-28 2010-11-03 Essilor International (Compagnie Generale D'optique) Procédé de détermination de paramètres de monturisation d'une lentille ophtalmique
JP5377876B2 (ja) * 2008-03-28 2013-12-25 株式会社トプコン 眼鏡枠形状測定装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6243960B1 (en) * 1999-03-16 2001-06-12 National Optronics, Incorporated Tracer, clamp and object engager for holding and tracing a lens mount of an eyeglass frame, a lens, and/or a lens pattern, to reliably detect a shape thereof even when the shape includes high wrap
JP3839185B2 (ja) * 1999-04-30 2006-11-01 株式会社ニデック 眼鏡レンズ加工装置
DE60042467D1 (de) * 1999-04-30 2009-08-13 Nidek Kk Schablone Halter, gezielte Linzenform Messvorrichtung mit diesem Halter, und Brillenglaslinzen Bearbeitungsvorrichtung mit dieser Messvorrichtung
JP3695988B2 (ja) * 1999-04-30 2005-09-14 株式会社ニデック 眼鏡枠形状測定装置
JP4566372B2 (ja) * 2000-07-19 2010-10-20 株式会社トプコン レンズ枠形状測定装置
JP4267228B2 (ja) * 2001-12-03 2009-05-27 株式会社トプコン レンズ枠形状測定装置
FR2870933B1 (fr) * 2004-05-28 2008-03-14 Essilor Int Appareil de lecture de contour comportant un capteur d'effort

Also Published As

Publication number Publication date
EP1996368A1 (fr) 2008-12-03
FR2898690A1 (fr) 2007-09-21
WO2007107645A1 (fr) 2007-09-27
FR2898690B1 (fr) 2008-05-23
EP1996368B9 (fr) 2012-10-03

Similar Documents

Publication Publication Date Title
EP1952088B1 (fr) Procede de lecture de contour de drageoir de cercle de monture de lunettes
EP1919663B1 (fr) Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes
EP2139642B1 (fr) Dispositif et procédé de préparation d'une lentille ophtalmique en vue de son usinage
EP2016365B1 (fr) Procédé d'acquisition de la forme d'une partie au moins d'une section d'un cercle de monture de lunettes
EP2786202B1 (fr) Procédé de préparation d'une lentille ophtalmique
EP2092268B1 (fr) Procedé de correction de la géometrie d'une courbe palpée
EP2210703B1 (fr) Dispositif d'usinage d'une lentille ophtalmique
EP1996368B1 (fr) Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant
EP2077927B1 (fr) Procédé de détourage d'une lentille ophtalmique
EP2196845B1 (fr) Procédé de préparation d'une lentille ophtalmique en vue de son montage sur une monture de lunettes cambrée
EP2268997B1 (fr) Appareil de lecture de la géometrie d'un cercle ou d'une arcade de monture de lunettes et procédé de lecture correspondant
FR2894170A1 (fr) Methode d'etalonnage d'une meuleuse
EP3172011B1 (fr) Machine d'acquisition d'images de lentilles optiques et procédé de détourage de lentilles optiques
WO2006061475A1 (fr) Methode de blocage d'une lentille ophtalmique en vue de son detourage et dispositif de preparation automatique au montage d'une lentille ophtalmique
EP2160270B1 (fr) Procédés de détection automatique du matériau d'une monture de lunettes, de lecture de forme d'une monture et de détourage des lentilles associées à une monture
FR2893523A1 (fr) Methode d'etalonnage d'une meuleuse et dispositif correspondant
FR2932578A1 (fr) Appareil et procede manuels de lecture de contour de cercle de monture de lunettes et de gabarit de lentille ophtalmique.
FR2893724A1 (en) Ophthalmic lens working e.g. trimming method for mounting lens on frame involves embedding beveling groove with bevel from acquired geometrical coordinates by using relative mobility of lens with respect to finishing stone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20100929

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602007023606

Country of ref document: DE

Effective date: 20120823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130328

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602007023606

Country of ref document: DE

Effective date: 20130328

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602007023606

Country of ref document: DE

Representative=s name: CORALIS PATENTANWAELTE, FR

Ref country code: DE

Ref legal event code: R081

Ref document number: 602007023606

Country of ref document: DE

Owner name: ESSILOR INTERNATIONAL, FR

Free format text: FORMER OWNER: ESSILOR INTERNATIONAL COMPAGNIE GENERALE D'OPTIQUE, CHARENTON, FR

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20180517 AND 20180523

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ESSILOR INTERNATIONAL, FR

Effective date: 20180601

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230327

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240327

Year of fee payment: 18

Ref country code: GB

Payment date: 20240327

Year of fee payment: 18