FR2898690A1 - Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant - Google Patents

Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant Download PDF

Info

Publication number
FR2898690A1
FR2898690A1 FR0602361A FR0602361A FR2898690A1 FR 2898690 A1 FR2898690 A1 FR 2898690A1 FR 0602361 A FR0602361 A FR 0602361A FR 0602361 A FR0602361 A FR 0602361A FR 2898690 A1 FR2898690 A1 FR 2898690A1
Authority
FR
France
Prior art keywords
probe
speed
axis
component
rotation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
FR0602361A
Other languages
English (en)
Other versions
FR2898690B1 (fr
Inventor
Christophe Sillon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
EssilorLuxottica SA
Original Assignee
Essilor International Compagnie Generale dOptique SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Essilor International Compagnie Generale dOptique SA filed Critical Essilor International Compagnie Generale dOptique SA
Priority to FR0602361A priority Critical patent/FR2898690B1/fr
Priority to EP07731098A priority patent/EP1996368B9/fr
Priority to PCT/FR2007/000399 priority patent/WO2007107645A1/fr
Publication of FR2898690A1 publication Critical patent/FR2898690A1/fr
Application granted granted Critical
Publication of FR2898690B1 publication Critical patent/FR2898690B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor
    • B24B9/02Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground
    • B24B9/06Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain
    • B24B9/08Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass
    • B24B9/14Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms
    • B24B9/144Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor characterised by a special design with respect to properties of materials specific to articles to be ground of non-metallic inorganic material, e.g. stone, ceramics, porcelain of glass of optical work, e.g. lenses, prisms the spectacles being used as a template

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • A Measuring Device Byusing Mechanical Method (AREA)
  • Eyeglasses (AREA)

Abstract

La présente invention concerne un procédé de lecture du contour du drageoir d'un cercle de monture (10) de lunettes comprenant une étape de mise en contact d'un palpeur (8) contre le drageoir et une étape de palpage du drageoir par glissement ou roulement dudit palpeur le long du drageoir, la position du palpeur étant déterminée et la vitesse du palpeur comprenant des première, deuxième et troisième composantes.Selon l'invention, la première composante de la vitesse du palpeur est pilotée dynamiquement pour varier, continûment ou par palier, en cours de lecture en fonction au moins de l'une ou de l'autre des deuxième et troisième composantes de la vitesse du palpeur.

Description

DOMAINE TECHNIQUE AUQUEL SE RAPPORTE L'INVENTION La présente invention
concerne de manière générale le domaine de la lunetterie et plus précisément le palpage du drageoir d'une monture de lunettes cerclées.
Elle concerne plus particulièrement un procédé de lecture du contour du drageoir d'un cercle de monture de lunettes comprenant une étape de mise en contact d'un palpeur contre le drageoir et une étape de palpage du drageoir par glissement ou roulement dudit palpeur le long du drageoir, la position du palpeur étant déterminée et la vitesse du palpeur comprenant des première, deuxième et troisième composantes. Elle concerne également un appareil de lecture de contour du drageoir d'un cercle de rnonture de lunettes qui comporte des moyens de maintien de la monture, un palpeur, des moyens de détermination de la position du palpeur et des moyens de pilotage d'une première composante de la vitesse du palpeur, et qui est adapté à mettre en oeuvre les étapes de la méthode de lecture de contour. La méthode trouve une application particulièrement avantageuse par son application aux lunettes comportant des montures allongées ou fortement cambrées. ARRIERE-PLAN TECHNOLOGIQUE La partie technique du métier de l'opticien consiste à monter une paire de lentilles ophtalmiques sur une monture sélectionnée par un porteur. Ce montage se décompose en cinq opérations principales : - la lecture du contour des drageoirs des cercles de la monture sélectionnée par le porteur, c'est-à-dire du contour des rainures qui parcourent l'intérieur de chaque cercle de la monture, - le centrage de chaque lentille qui consiste à déterminer la position qu'occupera chaque lentille sur la monture afin d'être convenablement centrée en regard de la pupille de l'oeil du porteur de manière à ce qu'elle exerce convenablement la fonction optique pour laquelle elle a été conçue, - le palpage de chaque lentille qui consiste à déterminer les coordonnées de points sur chacune des faces de la lentille caractérisant la géométrie du contour des lentilles, puis, - le détourage de chaque lentille qui consiste à usiner ou à découper son contour à la forme souhaitée, compte tenu des paramètres de centrage définis, avec, en fin d'usinage, le biseautage qui consiste à réaliser sur la tranche de la lentille un biseau destiné à maintenir la lentille dans le drageoir que comporte la monture. Dans Ile cadre de la présente invention, on s'intéresse à la première opération de lecture du contour des drageoirs des cercles de la monture. II s'agit concrètement, pour l'opticien, de palper le contour intérieur des cercles de la monture des lunettes sélectionnées afin de déterminer précisément les coordonnées d'une pluralité de points caractérisant le contour du fond du drageoir de chaque cercle. La connaissance de ce contour permet à l'opticien de déduire la forme que devront présenter les lentilles, une fois détourées et biseautées, afin de pouvoir être montées sur cette monture. L'objectif de cette opération est en particulier de suivre très exactement le fond du drageoir que comporte le cercle à lire de manière à pouvoir mémoriser une image numérique précise de la géométrie du drageoir.
Dans le cas des montures allongées (c'est-à-dire présentant une faible hauteur comparée à la distance séparant les deux points d'accroche des branches de la monture) ou fortement cambrées, un appui simple du palpeur sur le drageoir à vitesse constante le long de son contour ne permet pas de relever précisément les coordonnées des points caractérisant le contour du fond du drageoir.
Le document US 6 871 158 présente un dispositif de suivi de drageoir prévu pour pallier les problèmes d'imprécisions dans la lecture des drageoirs dus à la déformation des montures lors du passage du palpeur. Ce dispositif comprend en particulier des moyens d'identification du type de monture à lire et des moyens de pilotage de la vitesse de rotation du palpeur pour son glissement le long du contour complet du drageoir. Pour affiner la précision de la lecture des drageoirs, ce dispositif est adapté à déterminer le type de la monture à lire, puis, selon que ce type de monture est caractéristique ou non d'une monture pouvant rencontrer des problèmes de déformation, à commander le palpeur en rotation à une vitesse dépendant du type de la monture, constante sur l'ensemble du drageoir. Afin d'augmenter la vitesse de lecture, ce dispositif peut prévoir de fractionner le contour du drageoir en différentes zones prédéterminées au sein desquelles la vitesse de rotation du palpeur est constante mais entre lesquelles elle varie. L'inconvénient d'un tel dispositif est que pour améliorer sensiblement la précision de la lecture du drageoir, il est soit nécessaire de réduire très fortement la vitesse de rotation du palpeur le long de l'ensemble du drageoir, ce qui augmente fortement et de manière préjudiciable le temps de lecture du contour du drageoir, soit nécessaire de fractionner le contour du drageoir en différentes zones, auquel cas la demanderesse a remarqué qu'il subsistait des erreurs de lecture. L'opération de fractionnement est outre effectuée manuellement par l'opérateur sur une interface adaptée, ce qui exige de l'expérience et prend du temps. OBJET DE L'INVENTION Afin de remédier à l'inconvénient précité de l'état de la technique, la présente invention propose un procédé de lecture de contour rapide et fournissant des résultats précis. Plus particulièrement, on propose selon l'invention un procédé de lecture de contour tel que défini dans l'introduction, dans lequel la première composante de la vitesse du palpeur est pilotée dynamiquement pour varier, continûment ou par palier, en cours de lecture en fonction au moins de l'une ou de l'autre des deuxième et troisième composantes de la vitesse du palpeur. Le palpeur présente généralement la forme d'une tige allongée selon un axe de palpage et est classiquement entraîné en rotation autour d'un axe de rotation pour son glissement le long du contour complet du drageoir.
Lors de la lecture de ce drageoir, si la monture n'est pas strictement circulaire, l'axe de palpage du palpeur ne peut pas être constamment présenté orthogonalement à la tangente au contour du drageoir. Par conséquent, plus la monture est allongée, plus le palpeur est présenté de manière inclinée par rapport au drageoir dans certaines zones de la monture, en particulier à proximité des zones nasales et temporales de la monture. Lorsque la monture est fortement cambrée, cette inclinaison peut présenter dans ces mêmes zones des valeurs très importantes. Or, plus cette inclinaison est grande, plus la tige du palpeur est soumise à des efforts de flexion. Ces efforts de flexion engendrent alors des erreurs d'acquisition des coordonnées du drageoir dans la mesure où les coordonnées de l'extrémité du palpeur calculées par l'appareil de lecture de contour sont faussées. Ainsi, grâce à l'invention, lorsque les moyens de mesure détectent qu'au moins une deuxième ou une troisième composante de la vitesse du palpeur croit brusquement, ce qui indique que le palpeur s'écarte de sa position idéale orthogonale au drageoir, les moyens de pilotage diminuent la première composante de la vitesse du palpeur de manière à abaisser les efforts de flexion pour accroître la précision des mesures. Selon aune première caractéristique avantageuse du procédé de lecture de contour conforme à l'invention, le palpeur étant pourvu de trois degrés de liberté, les première, deuxième et troisième composantes de la vitesse du palpeur sont chacune associées à un des trois degrés de liberté du palpeur. Avantageusement, le palpeur tournant autour d'un axe de rotation pour son glissement le long du contour complet du drageoir du cercle de la monture de lunettes, la première composante de la vitesse du palpeur est constituée par la vitesse de rotation du palpeur autour dudit axe de rotation. Ainsi, seule la vitesse de rotation du palpeur est modifiée pour diminuer les efforts de flexion appliqués au palpeur si bien qu'il est aisé d'adapter cette première composante de la vitesse du palpeur en fonction d'une ou des deux autres composante de sa vitesse. Avantageusement, la deuxième composante de la vitesse du palpeur constitue une composante transversale de la vitesse du palpeur d'axe perpendiculaire .à l'axe de rotation du palpeur. En outre, la troisième composante de la vitesse du palpeur constitue une composante axiale de la vitesse du palpeur d'axe parallèle à l'axe de rotation du palpeur. Avantageusement, la première composante de la vitesse du palpeur diminue lorsque la deuxième et/ou la troisième composante de la vitesse du palpeur augmente. Selon une autre caractéristique avantageuse du procédé de lecture de contour conforme à l'invention, la deuxième et la troisième composante de la vitesse du palpeur variant l'une et l'autre continûment chacune dans un domaine de vitesses fractionné en intervalles, les moyens de pilotage modifient la première composante de la vitesse du palpeur lorsque la deuxième et/ou la troisième composante de la vitesse du palpeur change d'intervalle.
La demanderesse a remarqué que les deuxième et troisième composante de la vitesse du palpeur varient continûment et présentent des valeurs élevées dans des zones localisées des cercles de la monture. Ainsi, le procédé prévoit donc de faire varier la première composante de la vitesse du palpeur par palier de telle sorte que le palpeur présente une vitesse de rotation constante et éllevée dans les zones autres que ces zones localisées de la monture, et une vitesse moins élevée dans ces zones localisées. La présente invention propose également un appareil de lecture de contour tel que défini dans l'introduction, dans lequel les moyens de détermination sont adaptés à déterminer au moins l'une et/ou l'autre des deuxième et troisième composante de la vitesse du palpeur et les moyens de pilotage sont aptes à piloter dynamiquement, continûment ou par palier, la première composante de la vitesse du palpeur en fonction au moins de la deuxième et/ou troisième composante de la vitesse du palpeur déterminée par les moyens de détermination. D'autres caractéristiques avantageuses et non limitatives de l'appareil de lecture de contour selon l'invention sont les suivantes : - le palpeur étant pourvu de trois degrés de liberté, un premier des trois degrés de liberté du palpeur est constitué par son aptitude à pivoter autour d'un axe de rotation, un deuxième des trois degrés de liberté du palpeur est constitué par son aptitude à se translater selon un axe parallèle à l'axe de rotation et un troisième des trois degrés de liberté du palpeur est constitué par son aptitude à se mouvoir par rapport à l'axe de rotation ; - les moyens de pilotage sont aptes à piloter la première composante de la vitesse du palpeur selon le premier des trois degrés de liberté du palpeur ; - les moyens de détermination sont aptes à déterminer la deuxième composante de la vitesse du palpeur selon le deuxième des trois degrés de liberté du palpeur ; et -les moyens de détermination sont aptes à déterminer la troisième composante 25 de la vitesse du palpeur selon le troisième des trois degrés de liberté du palpeur. Avantageusement, l'appareil de lecture de contour comprend un plateau tournant monté en rotation autour de l'axe de rotation par rapport aux moyens de fixation de la monture, ce plateau tournant portant un sous-ensemble de lecture 30 qui comporte le palpeur mobile d'une part selon une direction parallèle à l'axe de rotation et d'autre part selon un plan transversal à l'axe de rotation, le sous-ensemble de lecture comporte en outre un autre axe de rotation dénommé axe porteur transversal à la surface du plateau tournant et un bras porteur qui, à l'une de ses extrémités, est monté tournant autour dudit axe porteur et sur lequel est embarqué, à l'autre de ses extrémités, ledit palpeur. Ainsi, le sous-ensemble de lecture pivotant autour de l'axe porteur, la tige du palpeur peut présenter une inclinaison très importante par rapport à la normale à la tangente au drageoir. Cette inclinaison dépend en effet de la forme de la monture, mais également de la position angulaire du sous-ensemble de lecture autour de l'axe porteur. Par conséquent, les moyens de pilotage permettent de piloter la vitesse de rotation du plateau tournant, qui correspond ici à la première composante de la vitesse du palpeur, en fonction des deuxième et troisième composante de la vitesse du palpeur, ce qui permet de tenir compte non seulement de la forme de la monture (allongée et/ou cambrée) mais aussi de la position angulaire du sous-ensemble de lecture. DESCRIPTION DETAILLEE D'UN EXEMPLE DE REALISATION La description qui va suivre en regard des dessins annexés donnés à titre d'exemples non limitatifs, fera bien comprendre en quoi consiste l'invention et comment elle peut être réalisée. Sur les dessins annexés : - la figure 1 est une vue en perspective d'un appareil de lecture de contour recevant une monture de lunettes dont la forme des cercles est destinée à être relevée par un palpeur ; - les figures 2 et 3 sont des vues en perspective du dessous du plateau tournant extrait de l'appareil de la figure 1, ces figures 2 et 3 permettant de voir selon deux angles différents le sous-ensemble de lecture porté par le plateau tournant ; - la figure 4 est une vue en coupe des cercles de la monture de lunettes reçue par l'appareil de lecture de contour de la figure 1 ; - la figure 5 est un graphique représentant le contour d'un des cercles de la monture de lunettes de la figure 4 ; la figure 6 est un graphique représentant la variation de l'altitude des points du contour du drageoir d'un des cercles de la monture de lunettes de la figure 4 ; - la figure 7 est un graphique représentant la variation de la vitesse radiale du palpeur de la figure 1 lors de la lecture d'un des cercles de la monture de lunettes de la figure 4 ; et - la figure 8 est un graphique représentant la variation de la vitesse axiale (c'est-à-dire sensiblement suivant l'axe du cercle lu, qui est ici vertical) du palpeur de la figure 1 lors de la lecture d'un des cercles de la monture de lunettes de la figure 4.
La figure 1 est une vue générale d'un appareil de lecture de contour 1 tel qu'il se présente à son utilisateur. Cet appareil comporte un capot supérieur 2 recouvrant l'ensemble de l'appareil à l'exception d'une portion supérieure centrale. L'appareil de lecture de contour 1 comporte également un jeu de deux mâchoires 3 dont au moins une des mâchoires 3 est mobile par rapport à l'autre de sorte que les mâchoires 3 peuvent être rapprochées ou écartées l'une de l'autre pour former un dispositif de serrage. Chacune des mâchoires 3 est de plus munie de deux pinces formées chacune de deux plots 4 mobiles pour être adaptés à serrer entre eux une monture 10 de lunettes. La monture 10 peut alors être maintenue immobile sur l'appareil de lecture de contour 1.
Dans l'espace laissé visible par l'ouverture supérieure centrale du capot 2, un châssis 5 est visible. Une platine (non visible) peut se déplacer en translation sur ce châssis 5 selon un axe de transfert D. Sur cette platine est monté tournant un plateau tournant 6. Ce plateau tournant 6 est donc apte à prendre deux positions sur l'axe de transfert D, une première position dans laquelle le centre du plateau tournant 6 est disposé entre les deux paires de plots 4 fixant le cercle droit de la monture 10, et une seconde position dans laquelle le centre du plateau tournant 6 est disposé entre les deux paires de plots 4 fixant le cercle gauche de la monture 10. On entend par cercle droit et cercle gauche de la monture les cercles destinés à être respectivement positionnés en regard de l'oeil droit et de l'oeil gauche du porteur lorsque ce dernier porte ladite monture. Le plateau tournant 6 possède un axe de rotation B défini comme l'axe normal à la face avant de ce plateau tournant 6 et passant par son centre. Le plateau tournant 6 comporte par ailleurs une lumière 7 oblongue en forme d'arc de cercle à travers laquelle saille un palpeur 8 comportant une tige support 8A et, à son extrémité, un doigt de palpage 8B destiné à suivre par glissement ou éventuellement roulement le contour de la monture 10 palpée. Le plateau tournant 6 est guidé en rotation autour d'un premier axe, son axe de rotation B, par trois galets de guidage (non représentés) disposés régulièrement le long de sa périphérie et maintenus sur la platine 5 de l'appareil de lecture de contour 1. La rotation du plateau 6 est commandée par un moteur-codeur (non représenté) dont l'arbre de sortie est pourvu d'un pignon engrenant avec une couronne dentée équipant la périphérie du plateau 6. Ce moteur-codeur permet un relevé à tout instant de la position angulaire du plateau 6 correspondant à une position angulaire TETA du palpeur 8. On constate que, dans cet exemple, la lumière 7 en arc de cercle présente une longueur correspondant approximativement au rayon du plateau tournant 6 et s'étend entre le centre du plateau tournant 6 et sa périphérie. L'arc de cercle décrit par la lumière 7 est centré autour d'un axe porteur A.
Après démontage de l'appareil 1, le plateau tournant 6 peut être extrait du châssis 5. Il se présente alors tel que représenté sur les figures 2 et 3. La vue en perspective de la figure 2 fait apparaître une rainure 14 disposée sur la tranche du plateau tournant 6, sur toute sa circonférence. Cette rainure 14 coopère avec les galets de guidage de la platine. Le plateau tournant 6 porte un sous-ensemble de lecture 15. Les figures 2 et 3 permettent de voir le sous-ensemble de lecture 15 selon deux angles de vue différents. Le sous-ensemble de lecture 15 comporte un palier 16 sur lequel est monté un arbre porteur 17 monté en rotation sur le plateau tournant 6. Cet arbre porteur 17 possède comme axe l'axe porteur A. En référence à la figure 2, un bras porteur 18 est monté sur l'arbre porteur 17. Le bras porteur 18 comporte à l'une de ses extrémités une bague 20 permettant au bras porteur 18 un mouvement de rotation autour de l'axe porteur A ainsi qu'un mouvement de translation le long de cet axe. À son extrémité opposée à la bague 20, le bras porteur 18 comporte un support cylindrique 21 sur lequel est fixée la tige support 8A du palpeur 8 de manière à ce que l'axe de cette tige support 8A reste parallèle à l'axe porteur A. Ce montage permet au palpeur 8 de présenter un mouvement en arc de cercle le long de la lumière 7, dans un plan orthogonal à l'axe de rotation B du plateau tournant 6, cet axe de rotation B étant ici parallèle à l'axe A. De plus, le palpeur 8 peut effectuer un mouvement d'entrée/sortie par rapport à la face avant du plateau tournant 6, lorsque le bras porteur 18 coulisse le long de l'axe A. En résumé, le palpeur 8 est pourvu de trois degrés de liberté, dont un premier degré de liberté TETA constitué par l'aptitude du palpeur 8 à pivoter autour de l'axe de rotation B grâce à la rotation du plateau tournant 6, un deuxième degré de liberté Z constitué par l'aptitude du palpeur 8 à se translater selon un axe parallèle à l'axe de rotation B grâce au coulissement du bras porteur 18 le long de l'axe A, et un troisième degré de liberté R constitué par l'aptitude du palpeur 8 à se 1mouvoir par rapport à l'axe de rotation B grâce à sa liberté de mouvement le long de l'arc de cercle formé par la lumière 7.
Chaque point lu par l'extrémité du palpeur 8 est repéré dans un système de coordonnées correspondant R, TETA, Z. Le palpeur 8 présente donc une vitesse décomposable en trois composantes distinctes, dont une première composante appelée vitesse de rotation VP correspondant à la vitesse de rotation du plateau tournant 6, une deuxième composante appelée vitesse radiale VR correspondant à la composante transversale de la vitesse du palpeur 8 selon un axe perpendiculaire à l'axe de rotation B et passant par l'extrémité du palpeur 8, et une troisième composante appelée vitesse axiale VZ correspondant à la composante axiale de la vitesse du palpeur 8 selon l'axe de rotation B.
Le sous-ensemble de lecture 15 comporte également un bras de guidage 22 rattaché à la base de l'arbre 17. Ce bras de guidage 22 a une longueur suffisante pour atteindre la lumière 7. Le bras de guidage 22 comporte une portion semi-circulaire dentée 26 centrée sur l'axe porteur A. Les dents de la portion semi-circulaire 26 engrènent avec un pignon intermédiaire 27 qui engrène lui-même avec le pignon (non visible) d'un moteur-codeur 28 monté sur une chape 29 qui est fixée sur le plateau tournant 6. Les dents du pignon intermédiaire 27 n'ont pas été représentées pour rendre les dessins plus clairs. Le bras de guidage 22 comporte une chape verticale 30, disposée parallèlement à l'axe porteur A, sur laquelle est fixé un moteur-codeur 31 dont le pignon 32 engrène avec une crémaillère 33 fixée sur la bague 20 du bras porteur 18. La crémaillère 33 est disposée parallèlement à l'axe porteur A. Les dents du pignon 32 n'ont pas été représentées pour les mêmes raisons de clarté que précédemment. Le moteur-codeur 28 est donc apte à faire pivoter le palpeur 8 autour de l'axe porteur A. Il permet par conséquent au palpeur 8 d'exercer un effort selon un axe d'effort E tangent à l'arc de cercle décrit par la lumière 7. Le moteur-codeur 31 est quant à lui apte à mouvoir le palpeur 8 selon un axe parallèle à t'axe porteur A. Il permet en particulier d'exercer un couple dit de compensation de masse Cz qui annule la masse du palpeur 8 et du bras porteur 18 vue par le drageoir 10A de la monture 10 lorsque le drageoir et le palpeur sont au contact l'un de l'autre. L'appareil de lecture de contour 1 comporte par ailleurs des moyens de détermination 101 de la position R, TETA, Z de l'extrémité du doigt de palpage 8B du palpeur 8 et de sa vitesse, en particulier de ses composantes axiale VZ et radiale VR. Il comporte également des moyens de pilotage 102 dynamique, c'est-à-dire en temps réel, de la vitesse du palpeur 8. Avantageusement, seule la vitesse de rotation VP du plateau tournant 6 est pilotée.
L'ensemble de ces moyens de détermination 101 et de pilotage 102 est intégré dans un dispositif électronique et/ou informatique 100 permettant, d'une part, d'actionner les moteurs-codeurs 28, 31, et, d'autre part, de récupérer et d'enregistrer les données que lui transmettent ces moteurs-codeurs 28, 31. Ces données sont ici transmises sous forme de créneaux de tension envoyés par les moteurs-codeurs 28, 31 lorsqu'ils pivotent. La figure 4 représente l'extrémité supérieure du palpeur 8 comportant le doigt de palpage 8B. Ce doigt de palpage 8B pointe selon un axe perpendiculaire à l'axe de la tige support 8A. Il présente une extrémité pointue destinée à s'insérer dans le drageoir 10A d'un cercle de la monture 10 pour relever la géométrie de son contour. Lorsqu'une monture 10 est disposée dans l'appareil de lecture de contour 1, on peut définir chaque point du contour du drageoir 10A par trois coordonnées spatiales correspondant aux coordonnées R, TETA, Z de l'extrémité du palpeur 8. Un point de la monture est donc repéré par sa coordonnée radiale R séparant ce point du centre du plateau tournant 6, sa position angulaire TETA par rapport, par exemple à la position angulaire du premier point palpé, et son altitude Z. Dans notre cas d'étude, on s'intéresse tout particulièrement aux montures allongées (c'est-à-dire présentant, une fois installées sur le visage du porteur, une faible hauteur et une grande largeur entre les deux branches de la monture) et/ou fortement cambrées par rapport au plan général des cercles de la monture 10. Un exemple d'une monture fortement cambrée est représenté sur la figure 4.
La cambrure d'une monture peut être quantifiée à l'aide d'un angle de gabe J. Cet angle de galbe J correspond à l'angle formé entre le plan général K des cercles de la monture 10 (plan vertical passant par le pontet nasal reliant les deux cercles de la monture) et l'axe L défini comme étant l'axe passant par deux points distincts du drageoir 10A (typiquement, l'un disposé près de la partie nasale du cercle et l'autre près de la partie temporale du cercle) et présentant la plus grande inclinaison par rapport au plan général K des cercles de la monture 10. On entend ici par fortement cambrée une monture dont l'angle de galbe J est supérieur à 20 degrés.
Ce type de montures 10 fortement cambrées présente généralement aussi un vrillage du drageoir 10A communément appelé versage . Le contour du fond du drageoir d'un cercle de la monture 10 a été schématisé sur la figure 5. Pour la bonne compréhension des figures 6 à 8, le contour représenté sur cette figure 5 a été discrétisé en huit arcs distincts présentant pour extrémités des points P1 et P2, P2 et P3 jusqu'à P8 et P1. On notera en outre que chacun des points P1, P2, P3, P4, P5, P6, P7, P8 possède une altitude Z notée respectivement Z1, Z2, Z3, Z4, Z5, Z6, Z7, Z8 représentée sur la figure 6. Préalablement au démarrage du palpage du drageoir 10A du cercle de la monture 10 dont le contour est représenté sur la figure 5, cette monture 10 est insérée entre les plots 4 des mâchoires 3 de sorte que chacun des cercles de la monture 10 soit prêt à être palpé selon un trajet démarrant par l'insertion du palpeur entre deux plots 4 correspondant à la partie inférieure de la monture 10, puis suivant le drageoir 10A de la monture 10, afin de couvrir toute la circonférence du cercle de la monture 10. À la suite de cette insertion, le dispositif électronique et/ou informatique 100 étalonne le couple de compensation de masse Cz de sorte que le palpeur 8 soit à l'équilibre quelle que soit son altitude Z par rapport au plateau tournant 6. En fonctionnement, le palpeur 8 est tout d'abord inséré dans le cercle droit de la monture 10. Pour cela, la platine 5 sur laquelle est monté le plateau tournant 6 se déplace à l'aide d'un moteur et d'une liaison crémaillère (non représentés) de telle sorte que le centre du plateau tournant 6 soit disposé entre les deux paires de plots 4 des deux mâchoires 3 fixant le cercle droit de la monture 10.
Le doigt de palpage 8B se place alors automatiquement à une altitude Z connue et correspondant à l'altitude du point situé à mi-hauteur entre deux plots 4 de fixation de la monture 10. Afin de placer le doigt de palpage 8B à cette altitude Z, le sous-ensemble de lecture 15 dispose d'un mécanisme embarqué permettant le mouvement du palpeur 8 parallèlement à l'axe A. Ce mécanisme comporte le moteur-codeur 31 qui est adapté à disposer la bague 20, et par conséquent le bras porteur 18, à la hauteur désirée sur l'arbre 17. Le palpeur 8 peut ainsi présenter un mouvement vertical selon l'axe Z'. Le doigt de palpage 8B se déplace alors dans le plan de fixation des montures 10 en direction d'un point situé entre les deux plots 4 de fixation de la monture 10 sur sa partie basse. Pour cela, un mouvement conjoint de rotation autour de l'axe A du bras de guidage 22 et du bras porteur 18 permet au bras de guidage 22, entraîné par le moteur-codeur 28, d'entraîner lui-même le palpeur 8 en rotation autour de l'axe A, le long de la lumière 7.
Dans cette position initiale, lorsque le doigt de palpage 8B est disposé entre les deux plots 4 (en un point ici distinct du point P1), le plateau tournant 6 définit comme nulles la position angulaire TETA, l'altitude Z et la coordonnée radiale R de l'extrémité du palpeur 8. Les galets de guidage du plateau tournant 6 sont alors en mesure de faire pivoter le sous-ensemble de lecture 15 par rapport au châssis fixe 5, le sous-ensemble de lecture 15 étant embarqué sur le plateau tournant 6. Le moteur-codeur (non représenté) qui entraîne les galets insérés dans larainure 14 non seulement provoque la rotation du plateau tournant 6 mais aussi permet au dispositif électronique et/ou informatique 100 de connaître la valeur de la position angulaire TETA (en degrés) que présente le palpeur 8 par rapport à sa position initiale. Lorsque le plateau tournant 6 commence à pivoter, la valeur de la position angulaire TETA du palpeur 8 croît à une vitesse nominale VO. Cette vitesse nominale VO est ici de 2,8 centièmes de degrés par milliseconde. Le palpeur 8 se déplace le long du fond du drageoir 10A et est guidé selon sa coordonnée radiale R et selon son altitude Z par ce drageoir 10A. Le palpeur étant inséré dans le cercle droit de la monture 10, le palpeur 8 se déplace dans le sens trigonométrique. La conservation du contact du doigt de palpage 8B avec le drageoir 10A est assurée par les moteurs-codeurs 28,31. Ces derniers exercent en effet un effort global sur le palpeur 8 qui permet au doigt de palpage 8B de rester en contact avec le fond du drageoir 10A. Pendant la rotation du plateau tournant 6, le moteur-codeur 28 entraîne donc le plateau en rotation et agit aussi en tant que codeur pour repérer les positions successives du bras porteur 18 le long de la lumière 7. Le moteur-codeur 28 délivre ainsi un signal permettant aux moyens de détermination 101 du dispositif électronique et/ou informatique 100 de connaître à tout instant la coordonnée radiale R du doigt de palpage 8B par rapport à l'axe de rotation B du plateau tournant 6.
Le moteur-codeur 31 exerce quant à lui un couple dit de compensation de masse Cz destiné à au moins annuler artificiellement le poids de l'ensemble formé par le bras porteur 18 et le palpeur 8. Le moteur-codeur 31 fonctionne par ailleurs simultanément en codeur ce qui permet aux moyens de détermination 101 du dispositif électronique et/ou informatique 100 de connaître l'altitude Z du doigt de palpage 8B du palpeur 8. La variation de cette altitude Z (en millimètres) en fonction de la position angulaire TETA (en degré) du palpeur 8 est représentée sur le graphique de la figure 6. Ce graphique met en particulier en exergue la hauteur importante des parties nasale et temporale de la monture 10. Connaissant les coordonnées du centre du plateau tournant 6 par rapport au châssis 5, le dispositif électronique et/ou informatique 100 peut alors éventuellement déterminer les coordonnées du doigt de palpage 8B dans un repère fixe attaché au châssis 5. Il peut ainsi mémoriser une image numérique des contours des deux drageoirs 10A des cercles de la monture dans un même référentiel.
Quoi qu'il en soit, l'ensemble des moteurs-codeurs 28, 31 permet au dispositif électronique et/ou informatique 100 de déterminer les coordonnées spatiales R, TETA, Z du point palpé par le palpeur 8 et par conséquent les coordonnées spatiales d'un ensemble de points caractérisant le contour du fond du drageoir lorsque le palpeur 8 a palpé avec précision l'ensemble du contour du drageoir 10A. Selon une caractéristique avantageuse de l'invention, le dispositif électronique et/ou informatique 100 relève en particulier les valeurs des coordonnées radiales R des points palpés pour déterminer, à l'aide d'un logiciel de dérivation adéquat, la vitesse radiale VR instantanée du palpeur 8 (correspondant à la composante transversale de la vitesse du palpeur 8). L'évolution de cette vitesse radiale VR (en centièmes de millimètres par milliseconde) en fonction de la position angulaire TETA du plateau tournant 6 (en degrés) est représentée sur le graphique de la figure 7 pour une vitesse de rotation VP du plateau tournant 6 constante et égale à sa vitesse nominale VO. Sont représentées en particulier les vitesses radiales VR du palpeur 8 notées VR1, VR2, VR3, VR4, VR5, VR6, VR7, VR8 relevées respectivement aux points P1, P2, P3, P4, P5, P6, P7, P8. Le dispositif électronique et/ou informatique 100 relève également les valeurs des altitudes Z des points palpés pour déterminer, à l'aide du logiciel de dérivation, la vitesse axiale VZ instantanée du palpeur 8 (correspondant à la composante axiale de la vitesse du palpeur 8). L'évolution de cette vitesse axiale (en centièmes de millimètres par milliseconde) en fonction de la position angulaire du plateau tournant 6 (en degrés) est représentée sur le graphique de la figure 8 pour une vitesse de rotation VP du plateau tournant 6 constante et égale à sa vitesse nominale VO. Sont représentées en particulier les vitesses axiales VZ du palpeur 8 notées VZ1, VZ2, VZ3, VZ4, VZ5, VZ6, VZ7, VZ8 relevées respectivement aux points P1, P2, P3, P4, P5, P6, P7, P8. Avantageusement, la vitesse de rotation VP du plateau tournant 6 est pilotée dynamiquement pour varier en cours de lecture en fonction de la vitesse axiale VZ et de la vitesse radiale VR du palpeur 8. On cornprend ici que la vitesse radiale VR du palpeur 8 et la vitesse variation de la coordonnée radiale R du point palpé en fonction de la position angulaire TETA du plateau tournant 6 sont deux grandeurs identiques. En effet, la position angulaire TETA du plateau tournant 6 étant une fonction du temps, la vitesse radiale VR est mathématiquement liée à la vitesse de variation de la coordonnée radiale R du point palpé en fonction de la position angulaire TETA du plateau tournant 6. De la même manière, la vitesse axiale VZ du palpeur 8 et la vitesse variation de l'altitude Z du point palpé en fonction de la position angulaire TETA du plateau tournant 6 sont deux grandeurs identiques. Il est par conséquent possible de piloter la vitesse de rotation VP du plateau tournant 6 en fonction de l'une de ces grandeurs. La vitesse radiale VR et la vitesse axiale VZ du palpeur 8 varient ici l'une et l'autre continûment chacune dans un domaine de vitesses respectivement compris entre -5 et 5 centièmes de millimètres par milliseconde et entre -7 et 7 centièmes de millimètres par milliseconde. Avantageusement, ces deux domaines de vitesses sont fractionnés en trois intervalles. Lorsque les vitesses radiale et axiale du palpeur 8 restent confinées dans un intervalle sans en changer, les moyens de pilotage 102 commande le plateau tournant 6 à une vitesse de rotation VP constante. En revanche, lorsque l'une ou l'autre des vitesses axiale VZ et radiale VR change d'intervalle, les moyens de pilotage 102 modifient la vitesse de rotation VP du plateau tournant 6. Plus précisément, le dispositif électronique et/ou informatique 100 est programmé pour que, la valeur de la position angulaire TETA du palpeur 8 10 augmentant, - si la vitesse radiale VR du palpeur 8 dépasse en valeur absolue la valeur de 3,3 centièmes de millimètres par milliseconde ou si sa vitesse axiale VZ dépasse la valeur de 4,6 centièmes de millimètres par milliseconde, alors les moyens de pilotage 102 diminuent la vitesse de rotation VP du plateau tournant 6 15 à une valeur correspondant au tiers de sa vitesse nominale VO ; - si en revanche, la vitesse radiale VR du palpeur 8 est inférieure en valeur absolue à la valeur de 1,7 centièmes de millimètres par milliseconde et si sa vitesse axiale VZ est inférieure en valeur absolue à la valeur de 2,3 centièmes de millimètres par milliseconde, alors les moyens de pilotage 102 stabilisent la 20 vitesse de rotation du plateau tournant 6 à sa vitesse nominale VO ; - sinon, les moyens de pilotage 102 stabilisent la vitesse de rotation VP du plateau tournant 6 à une vitesse correspondant à la moitié de sa vitesse nominale VO. Éventuellement, les valeurs mesurées des vitesses radiale VR et axiale 25 VZ du palpeur 8 peuvent être filtrées et lissées par un logiciel ad hoc intégré au dispositif électronique et/ou informatique 100 avant d'être comparées aux bornes des intervalles précités. Sur l'exemple de la monture 10 dont le contour est représenté sur la figure 5, on remarque tout d'abord sur le graphique de la figure 7 que la vitesse 30 radiale VR du palpeur 8 dépasse, en valeur absolue, 1,7 centièmes de millimètres par milliseconde dans un intervalle angulaire d'environ 135 degrés morcelé entre les points P1 et P4 et entre les points P6 et P7 du contour du drageoir 10A. On remarque par ailleurs sur le graphique de la figure 8 que la vitesse axiale VZ du palpeur 8 dépasse, en valeur absolue, 2,3 centièmes de millimètres par milliseconde dans un intervalle angulaire d'environ 90 degrés compris entre les points P1 et P3 du contour du drageoir 10A. Il est donc utile dans cet exemple de diminuer la vitesse de rotation du plateau tournant 6 qu'entre les points P1 et P4 et entre les points P6 et P7 du contour du drageoir 10A afin de diminuer les efforts de flexion auxquels est soumis le palpeur 8 de manière à accroître la précision de la lecture du contour défini par le drageoir 10A. II est ainsi possible de garder sur la majorité du contour du drageoir 10A une vitesse de rotation VP du plateau tournant 6 importante. La durée nécessaire à la lecture de l'ensemble du drageoir 10A reste donc faible alors que la précision de cette lecture est fortement accrue. On notera qu'en variante, il est possible de programmer le dispositif électronique et/ou informatique 100 de manière à ce que la vitesse de rotation VP du palpeur 8 ne soit pas limitée à trois vitesses programmées palier par palier, mais qu'elle puisse varier continûment selon une fonction préprogrammée associant à chaque couple de vitesse axiale VZ et radiale VZ mesuré, une vitesse de rotation VP du plateau tournant 6. Quoi qu'il en soit, lorsque la valeur de la position angulaire TETA du palpeur 8 atteint 360 degrés, les galets de guidage du plateau tournant 6 s'arrêtent. Le drageoir 10A du cercle droit de la monture 10 présente alors un contour de forme connue. Afin de palper le second cercle de la monture, le palpeur 8 descend selon l'axe Z' sous la monture 10. La platine se déplace alors transversalement selon l'axe de transfert D afin d'atteindre sa deuxième position dans laquelle le centre du plateau tournant 6 est positionné entre les plots 4 des deux pinces 3 enserrant le cercle gauche de la monture 10. Le palpeur 8 est alors placé automatiquement à la hauteur Z à l'intérieur du second cercle de la monture 10 à mesurer, contre le drageoir de ce second cercle, entre les deux plots 4 de fixation de la partie basse de ce cercle de la monture 10. Le palpage du drageoir est alors réalisé de la même manière que précédemment ruais dans le sens trigonométrique inverse.
La présente invention n'est nullement limitée au mode de réalisation décrit et représenté, mais l'homme du métier saura y apporter toute variante conforme à son esprit.

Claims (13)

REVENDICATIONS
1. Procédé de lecture du contour du drageoir (10A) d'un cercle de monture (10) de lunettes comprenant une étape de mise en contact d'un palpeur (8) contre le drageoir (10A) et une étape de palpage du drageoir (10A) par glissement ou roulement dudit palpeur (8) le long du drageoir (10A), la position (R, TETA, Z) du palpeur (8) étant déterminée et la vitesse du palpeur (8) comprenant des première, deuxième et troisième composantes (VP, VR, VZ), caractérisé en ce que la première composante (VP) de la vitesse du palpeur (8) est pilotée dynamiquement pour varier, continûment ou par palier, en cours de lecture en fonction au moins de l'une ou de l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8).
2. Procédé de lecture de contour selon la revendication précédente, dans lequel, le palpeur (8) étant pourvu de trois degrés de liberté (R, TETA, Z), les première, deuxième et troisième composantes (VP, VR, VZ) de la vitesse du palpeur (8) sont chacune associées à un des trois degrés de liberté (R, TETA, Z) du palpeur (8).
3. Procédé de lecture de contour selon l'une des revendications précédentes, dans lequel, le palpeur (8) tournant autour d'un axe de rotation (B) pour son glissement le long du contour complet du drageoir (10A) du cercle de la monture (10) de lunettes, la première composante (VP) de la vitesse du palpeur (8) est constituée par la vitesse de rotation (VP) du palpeur (8) autour dudit axe de rotation (B).
4. Procédé de lecture de contour selon la revendication précédente, dans lequel la deuxième composante de la vitesse du palpeur (8) constitue une composante transversale (VR) de la vitesse du palpeur (8) d'axe perpendiculaire à l'axe de rotation (B) du palpeur (8).
5. Procédé de lecture de contour selon l'une des deux revendications précédentes, dans lequel la troisième composante de la vitesse du palpeur (8) constitue une composante axiale (VZ) de la vitesse du palpeur (8) d'axe parallèle à l'axe de rotation (B) du palpeur (8).
6. Procédé de lecture de contour selon l'une des revendications précédentes, dans lequel la première composante (VP) de la vitesse du palpeur(8) diminue lorsque la deuxième et/ou la troisième composante (VR, VZ) de la vitesse du palpeur (8) augmente.
7. Procédé de lecture de contour selon l'une des revendications précédentes, dans lequel, la deuxième composante (VR) et la troisième composante (VZ) de la vitesse du palpeur (8) variant l'une et l'autre continûment chacune dans un domaine de vitesses fractionné en intervalles, les moyens de pilotage (102) modifient la première composante (VP) de la vitesse du palpeur (8) lorsque la deuxième et/ou la troisième composante (VR, VZ) de la vitesse du palpeur (8) change d'intervalle.
8. Appareil de lecture de contour (1) du drageoir (10A) d'un cercle de monture (10) de lunettes comportant des moyens de maintien (3, 4) de la monture (10), un palpeur (8), des moyens de détermination (101) de la position (R, TETA, Z) du palpeur (8) et des moyens de pilotage (102) d'une première composante (VP) de la vitesse du palpeur (8), caractérisé en ce que les moyens de détermination (101) sont adaptés à déterminer au moins l'une ou l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8) et les moyens de pilotage (102) sont aptes à piloter dynamiquement, continûment ou par palier, la première composante (VP) de la vitesse du palpeur (8) en fonction au moins de l'une ou l'autre des deuxième et troisième composantes (VR, VZ) de la vitesse du palpeur (8) déterminée par les moyens de détermination (101).
9. Appareil de lecture de contour (1) selon la revendication précédente, dans lequel, le palpeur (8) étant pourvu de trois degrés de liberté (TETA, R, Z), un premier des trois degrés de liberté (TETA) du palpeur (8) est constitué par son aptitude à pivoter autour d'un axe de rotation (B), un deuxième des trois degrés de liberté (R) du palpeur (8) est constitué par son aptitude à se mouvoir par rapport à l'axe de rotation (B) et un troisième des trois degrés de liberté (Z) du palpeur (8) est constitué par son aptitude à se translater selon un axe parallèle à l'axe de rotation (B).
10. Appareil de lecture de contour (1) selon la revendication précédente, dans lequel les moyens de pilotage (102) sont aptes à piloter la première composante (VP) de la vitesse du palpeur (8) selon le premier des trois degrés de liberté (TETA) du palpeur (8).
11. Appareil de lecture de contour (1) selon l'une des deux revendications précédentes, dans lequel les moyens de détermination (101) sont aptes àdéterminer la deuxième composante (VR) de la vitesse du palpeur (8) selon le deuxième des trois degrés de liberté (R) du palpeur (8).
12. Appareil de lecture de contour (1) selon l'une des trois revendications précédentes, dans lequel les moyens de détermination (101) sont aptes à déterminer la troisième composante (VZ) de la vitesse du palpeur (8) selon le troisième des trois degrés de liberté (Z) du palpeur (8).
13. Appareil de lecture de contour (1) selon l'une des revendications 8 à 12, qui comprend un plateau tournant (6) monté en rotation autour de l'axe de rotation (B) par rapport aux moyens de fixation (3,4) de la monture (10), ce plateau tournant (6) portant un sous-ensemble de lecture (15) qui comporte le palpeur (8) mobile d'une part selon une direction parallèle à l'axe de rotation (B) et d'autre part selon un plan transversal à l'axe de rotation (B), le sous-ensemble de lecture (15) comporte en outre un autre axe de rotation dénommé axe porteur (A) transversal à la surface du plateau tournant (6) et un bras porteur (18) qui, à l'une de ses extrémités, est monté tournant autour dudit axe porteur (A) et sur lequel est embarqué, à l'autre de ses extrémités, ledit palpeur (8).
FR0602361A 2006-03-17 2006-03-17 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant Expired - Fee Related FR2898690B1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
FR0602361A FR2898690B1 (fr) 2006-03-17 2006-03-17 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant
EP07731098A EP1996368B9 (fr) 2006-03-17 2007-03-06 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant
PCT/FR2007/000399 WO2007107645A1 (fr) 2006-03-17 2007-03-06 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0602361A FR2898690B1 (fr) 2006-03-17 2006-03-17 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant

Publications (2)

Publication Number Publication Date
FR2898690A1 true FR2898690A1 (fr) 2007-09-21
FR2898690B1 FR2898690B1 (fr) 2008-05-23

Family

ID=36649865

Family Applications (1)

Application Number Title Priority Date Filing Date
FR0602361A Expired - Fee Related FR2898690B1 (fr) 2006-03-17 2006-03-17 Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant

Country Status (3)

Country Link
EP (1) EP1996368B9 (fr)
FR (1) FR2898690B1 (fr)
WO (1) WO2007107645A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027968A1 (fr) * 2007-12-28 2009-02-25 Essilor International (Compagnie Generale D'optique) Procédé de détermination de paramètres de monturisation d'une lentille ophtalmique
EP2105253A1 (fr) * 2008-03-28 2009-09-30 Kabushiki Kaisha TOPCON Appareil de mesure de forme de monture de lunettes

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007015808A1 (de) * 2007-03-30 2008-10-02 Buchmann Deutschland Gmbh Verfahren zum Abtasten der Kontur von Brillenfassungsöffnungen und Verwendung der Vorrichtung zum Abtasten der Kontur von Brillenfassungsöffnungen für das Umfangsschleifen von Brillengläsern

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037008A2 (fr) * 1999-03-16 2000-09-20 National Optronics, Inc. Détecteur de forme pour une lentille, une monture de lentille et/ou un échantillon de lentille
EP1050372A1 (fr) * 1999-04-30 2000-11-08 Nidek Co., Ltd. Système d'usinage de verre de lunettes
US6325700B1 (en) * 1999-04-30 2001-12-04 Nidek Co., Ltd. Eyeglass-frame-shape measuring device and eyeglass-lens processing apparatus having the same
US6350190B1 (en) * 1999-04-30 2002-02-26 Nidek Co., Ltd. Template holder, target lens shape measuring device having the holder, and eyeglass lens processing apparatus having the device
US20020046000A1 (en) * 2000-07-19 2002-04-18 Kabushiki Kaisha Topcon Lens frame shape measuring apparatus
US20030105612A1 (en) * 2001-12-03 2003-06-05 Kabushiki Kaisha Topcon Apparatus for measuring shape of lens-frames
FR2870933A1 (fr) * 2004-05-28 2005-12-02 Essilor Int Appareil de lecture de contour comportant un capteur d'effort

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1037008A2 (fr) * 1999-03-16 2000-09-20 National Optronics, Inc. Détecteur de forme pour une lentille, une monture de lentille et/ou un échantillon de lentille
EP1050372A1 (fr) * 1999-04-30 2000-11-08 Nidek Co., Ltd. Système d'usinage de verre de lunettes
US6325700B1 (en) * 1999-04-30 2001-12-04 Nidek Co., Ltd. Eyeglass-frame-shape measuring device and eyeglass-lens processing apparatus having the same
US6350190B1 (en) * 1999-04-30 2002-02-26 Nidek Co., Ltd. Template holder, target lens shape measuring device having the holder, and eyeglass lens processing apparatus having the device
US20020046000A1 (en) * 2000-07-19 2002-04-18 Kabushiki Kaisha Topcon Lens frame shape measuring apparatus
US20030105612A1 (en) * 2001-12-03 2003-06-05 Kabushiki Kaisha Topcon Apparatus for measuring shape of lens-frames
FR2870933A1 (fr) * 2004-05-28 2005-12-02 Essilor Int Appareil de lecture de contour comportant un capteur d'effort

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2027968A1 (fr) * 2007-12-28 2009-02-25 Essilor International (Compagnie Generale D'optique) Procédé de détermination de paramètres de monturisation d'une lentille ophtalmique
WO2009065969A1 (fr) * 2007-12-28 2009-05-28 Essilor International (Compagnie Generale D'optique) Procédé de détermination de paramètres permettant d'ajuster une lentille ophtalmique à une monture
US9104045B2 (en) 2007-12-28 2015-08-11 ESSiLOR INTERNATIONAL (COMPAGNIE GENFRALE D'OPTIQUE) Method of determining parameters for fitting an ophthalmic lens to a frame
EP2105253A1 (fr) * 2008-03-28 2009-09-30 Kabushiki Kaisha TOPCON Appareil de mesure de forme de monture de lunettes
US7870676B2 (en) 2008-03-28 2011-01-18 Kabushiki Kaisha Topcon Eyeglass frame shape-measuring apparatus
CN101545769B (zh) * 2008-03-28 2012-03-21 株式会社拓普康 眼镜框形状测定装置

Also Published As

Publication number Publication date
EP1996368B1 (fr) 2012-06-27
EP1996368A1 (fr) 2008-12-03
WO2007107645A1 (fr) 2007-09-27
FR2898690B1 (fr) 2008-05-23
EP1996368B9 (fr) 2012-10-03

Similar Documents

Publication Publication Date Title
EP1952088B1 (fr) Procede de lecture de contour de drageoir de cercle de monture de lunettes
EP1919663B1 (fr) Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes
EP1751490B1 (fr) Appareil de lecture de contour comportant un capteur d'effort
EP2092268B1 (fr) Procedé de correction de la géometrie d'une courbe palpée
EP2786202B1 (fr) Procédé de préparation d'une lentille ophtalmique
FR2885063A1 (fr) Procede et dispositif de travail de la peripherie d'une lentille ophtalmique de lunettes
EP2210703B1 (fr) Dispositif d'usinage d'une lentille ophtalmique
EP1996368B9 (fr) Methode de pilotage de palpeur pour lecture de drageoir de monture de lunettes et appareil de lecture correspondant
EP2077927B1 (fr) Procédé de détourage d'une lentille ophtalmique
EP2268997B1 (fr) Appareil de lecture de la géometrie d'un cercle ou d'une arcade de monture de lunettes et procédé de lecture correspondant
EP2196845A1 (fr) Procédé de préparation d'une lentille ophtalmiique en vue de son montage sur une monture de lunettes cambrée
FR2894170A1 (fr) Methode d'etalonnage d'une meuleuse
EP3172011B1 (fr) Machine d'acquisition d'images de lentilles optiques et procédé de détourage de lentilles optiques
EP0991496B1 (fr) Procede et appareil de palpage de montures de lunettes, et machine de meulage correspondante
WO2007045734A1 (fr) Appareil de palpage d'une monture de lunettes et machine de meulage associee
FR2894504A1 (fr) Procede d'elaboration d'une consigne de detourage d'une lentille ophtalmique
EP2160270B1 (fr) Procédés de détection automatique du matériau d'une monture de lunettes, de lecture de forme d'une monture et de détourage des lentilles associées à une monture
FR2934903A1 (fr) Appareil de lecture de la geometrie d'un drageoir.
FR2932578A1 (fr) Appareil et procede manuels de lecture de contour de cercle de monture de lunettes et de gabarit de lentille ophtalmique.
FR2893523A1 (fr) Methode d'etalonnage d'une meuleuse et dispositif correspondant

Legal Events

Date Code Title Description
ST Notification of lapse

Effective date: 20141128