EP1993709A1 - Katalysator für die abgasreinigung bestehend aus einer anzahl von einzelkatalysatoren - Google Patents

Katalysator für die abgasreinigung bestehend aus einer anzahl von einzelkatalysatoren

Info

Publication number
EP1993709A1
EP1993709A1 EP07703095A EP07703095A EP1993709A1 EP 1993709 A1 EP1993709 A1 EP 1993709A1 EP 07703095 A EP07703095 A EP 07703095A EP 07703095 A EP07703095 A EP 07703095A EP 1993709 A1 EP1993709 A1 EP 1993709A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
reduction
oxidation
reducing agent
reduction catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07703095A
Other languages
English (en)
French (fr)
Inventor
Lothar Hofmann
Jörg Münch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Johnson Matthey Catalysts Germany GmbH
Original Assignee
Argillon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=38110621&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1993709(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Argillon GmbH filed Critical Argillon GmbH
Publication of EP1993709A1 publication Critical patent/EP1993709A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9431Processes characterised by a specific device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/648Vanadium, niobium or tantalum or polonium
    • B01J23/6482Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/64Platinum group metals with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/652Chromium, molybdenum or tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/105General auxiliary catalysts, e.g. upstream or downstream of the main catalyst
    • F01N3/106Auxiliary oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20723Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20769Molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20776Tungsten
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the invention relates to a catalyst for purifying oxygen-containing exhaust gases of an incinerator, in particular an internal combustion engine operated with excess air, comprising a reduction catalyst for the selective catalytic reduction of nitrogen oxides contained in the exhaust gas by means of a reducing agent and an oxidation catalyst downstream of the reduction catalyst for the oxidation of the reducing agent wherein the oxidation catalyst is applied to the reduction catalyst via a downstream region which is 1-19% of the total catalyst volume.
  • Such a catalyst is known from EP 1 264 628 A1 and is used to purify the oxygen-containing exhaust gases of a combustion plant by means of selective catalytic reduction of nitrogen oxides, without the reductant used being released into the environment.
  • the reduction catalyst hereby reduces by means of a reducing agent, such as e.g. Ammonia, in the presence of oxygen nitrogen oxides to molecular nitrogen and water.
  • a reducing agent such as e.g. Ammonia
  • This method of selective catalytic reduction is also known by the abbreviation SCR method.
  • a reductant-donating substance e.g. Urea, which liberates ammonia in the exhaust gas added.
  • the delivery of the added reducing agent to the environment must be kept as low as possible, for example, to avoid odor nuisance. For this reason, in the applied SCR method, a substoichiometric metering of the reducing agent takes place with respect to the actual or the expected nitrogen oxide content of the exhaust gas. Although this reliably prevents a reduction agent emission, the reduction catalyst does not have the maximum possible, but a smaller amount of nitrogen oxides eliminated. As a consequence, the reduction catalyst must be designed to be sufficiently large and the control of the reducing agent metering work exactly to achieve a significant reduction of nitrogen oxides, in particular during transient engine operation, as is usual in a motor vehicle.
  • a catalyst of the type mentioned circumvents this problem by the downstream of the reduction catalyst an oxidation catalyst for the oxidation of the reducing agent is applied.
  • this oxidation catalyst in the presence of oxygen, the reducing agent, in particular ammonia, into harmless compounds, in particular molecular nitrogen and water, oxidized.
  • the reduction catalyst produced in one piece according to EP 0 410 440 B1 is coated downstream with the oxidation catalyst, the coated area making up 20-50% of the total catalyst volume.
  • the upstream reduction catalyst can now be used effectively.
  • the reducing agent can be metered in stoichiometrically or superstoichiometrically in order to achieve maximum degradation of the nitrogen oxides.
  • such a catalyst has undesirable side reactions. So again nitrogen oxides can be formed. Also, for example, ammonia can be converted to nitrous oxide or ammonium nitrate in the presence of excess air. Optionally, hydrocarbons present in the exhaust may react to harmful nitro compounds.
  • the oxidation catalyst is applied to a honeycomb-shaped reduction catalyst over a downstream length of 1 to 20% of the total length.
  • the object of the invention is to provide a catalyst of the type mentioned above, which allows avoiding a reducing agent slip and undesirable side reactions as high as possible degree of conversion of nitrogen oxides, and is as versatile as possible.
  • This object is achieved according to the invention for a catalyst according to the preamble of claim 1 in that the reduction catalyst is composed of a number of individual catalysts, wherein the oxidation catalyst is applied to the last individual catalyst (s) on the outflow side.
  • such a catalyst already allows a stoichiometric or superstoichiometric metered addition of the reducing agent, so that the reduction catalyst converts a maximum possible amount of nitrogen oxides, without causing a reduction agent slip.
  • a volume of 1% provided with the oxidation catalyst is sufficient. If a volume of the entire catalyst of more than 19% is provided with the oxidation catalyst, then the mentioned undesired side reactions occur increasingly.
  • nitrogen oxides are formed again on the oxidation catalyst in the interaction of nitrogen, oxygen and unreacted reducing agent. A volume of oxidation catalyst which exceeds 19% thus does not serve to degrade the reducing agent, but undesirable reactions are then catalysed at free adsorption sites.
  • the specified catalyst can be produced inexpensively, since no two separate catalysts for reduction or for oxidation must be made.
  • For the preparation of the reduction catalyst is prepared in a conventional manner. Subsequently, the composition of the catalytically active surface is changed downstream of this reduction catalyst to create the oxidation catalytic converter. This can be done, for example, by re-coating or by introducing compounds or elements catalyzing the oxidation of the reducing agent. Alternatively, it would also be conceivable to replace the existing catalytically active surface in terms of reduction.
  • the catalyst is included in the - A -
  • the reduction catalytic converter is composed of a number of individual catalytic converters, wherein the oxidation catalytic converter is applied to the last single catalytic converter or catalytic converters on the outflow side.
  • the desired length of the reduction catalyst can be set in a modular manner via the number of individual catalysts.
  • the desired downstream of the entire catalyst volume outflow area, which acts as an oxidation catalyst, may extend over several of the individual catalysts downstream.
  • the reduction catalyst or catalysts may be formed as a supported catalyst having an SCR-active coating, and then the oxidation catalyst is applied.
  • the catalytically active coating is applied to a usually plate-shaped carrier material. The coated carrier plates are then stacked to form the catalyst, wherein for the flowing exhaust gas flow channels are formed by introduced into the substrate corrugations and / or waves.
  • the reduction catalyst is formed as an SCR active Vollextrudat, whereupon the oxidation catalyst is applied.
  • the bulk extrudate consists of a ceramic mass which is produced and extruded as a slurry of metal oxides, in particular titanium dioxide. The shaped body thus produced is then dried and calcined to ceramic.
  • the bulk extrudate comprises a series of continuous pores through which the exhaust gas flows and contacts the surface of the catalyst.
  • the catalytically active material which may in particular have the same composition as the mass of the bulk extrudate, is applied to the support material in the supported catalyst. This can be done by applying or dipping the substrate. A layer of an aluminum oxide can also be applied between the SCR-active material and the carrier material.
  • a zeolite as material containing the catalytically active further components.
  • the oxidation catalyst is applied to the reduction catalyst as an impregnation or impregnation.
  • the later acting as an oxidation catalyst part of the reduction catalyst is immersed, for example, in a solution containing an oxidation catalyzing substances or their reactive precursors. These substances precipitate on the open surface of the catalytically active material of the reduction catalyst or penetrate into the volume of the material.
  • the impregnated material of the reduction catalyst is then converted to the catalytically active material of the oxidation catalyst.
  • the catalytically active material of the reduction catalyst which is used both as Besen ichtung for the support material of the plate catalyst and as a material of the bulk extrudate, advantageously comprises predominantly titanium dioxide and as additives vanadium, molybdenum, tungsten and / or their oxides.
  • titanium dioxide is used in the anatase structure. Such a titanium dioxide may be prepared, for example, by flame hydrolysis or by precipitation.
  • the catalytically active material of the oxidation catalyst preferably also comprises predominantly titanium dioxide and, as additives, platinum, rhodium and / or palladium.
  • the noble metals can be introduced by impregnation of the catalytically active material of the reduction catalyst with an aqueous solution of hexachloroplatinic acid, palladium chloride and / or rhodium chloride.
  • a ⁇ -aluminum oxide with additions of cerium oxide and zirconium oxide can be applied to the catalytically active material of the reduction catalyst as the oxidation coating.
  • the noble metals are then introduced into the alumina.
  • a cordierite ie, a magnesium-aluminum silicate
  • the ⁇ -aluminum oxide can also be applied as a coating on the plate catalyst and be impregnated with the corresponding substances to form the catalytically active material of the reduction catalyst.
  • FIG. 1 schematically shows a reduction catalyst with downstream oxidation catalyst
  • FIG. 2 shows a multi-part reduction catalytic converter with a downstream oxidation catalyst, used for the exhaust gas treatment of an internal combustion engine.
  • the catalyst 1 shows schematically a catalyst 1 designed as a vol-extruded honeycomb body, as it could be used as the last single catalyst downstream.
  • the catalyst 1 comprises a reduction catalyst 2 and a downstream oxidation catalyst 3.
  • the material used for the honeycomb body of the catalyst 1 is a titanium dioxide ceramic which comprises catalytically active additives vanadium and molybdenum and tungsten compounds.
  • the downstream applied oxidation catalyst 3 is prepared by impregnation of the reduction catalyst 2 with platinum.
  • the illustrated catalyst 1 is flowed through by the exhaust gas of an incinerator 5 in the illustrated arrow direction.
  • the exhaust gas 5 contains on the inlet side nitrogen oxides and oxygen and as additionally introduced reducing agent ammonia.
  • ammonia is added slightly more than stoichiometrically.
  • At the reduction catalyst 2 are in the exhaust 5 contained nitrogen oxides with ammonia in the presence of oxygen to form molecular nitrogen and water. Excess ammonia then flows through the downstream deposited oxidation catalyst 3. There, ammonia is oxidized with oxygen to molecular nitrogen and water. An ammonia slip into the environment is certainly avoided.
  • the volume fraction of the oxidation catalyst 3 in the total volume of the catalyst 1 is 18%. This ensures that the residual ammonia is oxidized to nitrogen, with undesirable side reactions, such as the formation of nitrous oxide or of new nitrogen oxides are avoided.
  • an emission control system 6 for a diesel engine 8 is shown as an internal combustion engine.
  • the diesel engine 8 works more than stoichiometrically, so that the resulting exhaust gas 6 contains oxygen.
  • the exhaust gas 6 flows via an exhaust manifold 10 into an exhaust pipe 12, is then passed through a catalytic converter 1, and cleans out via the exhaust 14 into the environment.
  • the arranged in the exhaust pipe 12 catalyst 1 is composed of a total of four individual modules. Each of these individual modules is formed as a bulk extrudate of titanium dioxide ceramic and SCR-active by additions of vanadium pentoxide, tungsten trioxide and molybdenum trioxide.
  • the three individual catalytic converters 15 arranged on the inflow side are manufactured entirely as reduction catalysts.
  • the last single catalyst 16 on the outflow side is manufactured as a reduction catalyst whose last third is active by impregnating the SCR-active material with platinum and palladium as the oxidation catalyst.
  • the volume fraction of the oxidation catalyst 3 to the total catalyst volume is 10%.
  • the exhaust gas 5 is supplied before reaching the catalyst 1 as a reducing agent ammonia.
  • an aqueous urea solution is stored in a reservoir 18, which is fed via a feed line 19 to the exhaust pipe 12.
  • Control valve 20 is adapted to be metered amount of aqueous urea solution of the nitrogen oxide concentration generated by the diesel engine 8.
  • a control unit accesses an implemented characteristic curve which predicts a nitrogen oxide concentration on the basis of current engine codes.
  • urea is pyrolyzed or hydrolyzed in ammonia.
  • ammonia added in approximately stoichiometric amounts in accordance with the nitrogen oxide concentration is reacted with the nitrogen oxides to form molecular nitrogen and water at the reduction catalyst 2 formed from the individual catalysts 15 and 16. Due to a low catalyst temperature or due to adsorption or desorption effects excess ammonia is then oxidized to the oxidation catalyst 3.
  • the purified by nitrogen oxides under optimal utilization of the reduction catalyst 2 exhaust gas 5 finally flows through the exhaust 14 into the environment.
  • the 10% by volume of the catalyst 1, which is used as the oxidation catalyst 2 is sufficient to safely prevent ammonia slip. Undesirable side reactions due to oxidative processes are certainly avoided due to the short oxidation range.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Abstract

Es wird ein Katalysator (1) zur Reinigung von sauerstoffhaltigen Abgasen (5) einer Verbrennungsanlage, insbesondere eines mit Luftüberschuss betriebenen Verbrennungsmotors umfassend einen Reduktionskatalysator (2) zur selektiven katalytischen Reduktion von im Abgas (5) enthaltenen Stickoxide mittels eines Reduktionsmittels und einen dem Reduktionskatalysator (2) abströmseitig aufgebrachten Oxidationskatalysator (3) zur Oxidation des Reduktionsmittels, angegeben. Dabei ist vorgesehen, dass der Oxidationskatalysator (3) dem Reduktionskatalysator (2) über einen abströmseitigen Bereich aufgebracht ist, der 1-19% des gesamten Katalysatorvolumens beträgt. Dabei setzt sich der Reduktionskatalysator (2) aus einer Anzahl von Einzelkatalysatoren (15,16) zusammen, wobei der Oxidationskatalysator (3) dem oder den abströmseitig letzten Einzelkatalysator/-en aufgebracht ist. Mit dem Katalysator (1) wird bei vielfältigem Einsatz ein hoher Umsetzungsgrad von Stickoxiden unter Vermeidung eines Reduktionsmittelschlupfes und unerwünschter Nebenreaktionen erzielt.

Description

Beschreibung
KATALYSATOR FÜR DIE ABGASREINIGUNG BESTEHEND AUS EINER ANZAHL VON
EINZELKATALYSATOREN
Die Erfindung betrifft einen Katalysator zur Reinigung von sauerstoffhaltigen Abgasen einer Verbrennungsanlage, insbesondere eines mit Luftüberschuss betriebenen Verbrennungsmotors, umfassend einen Reduktionskatalysator zur selektiven katalyti- schen Reduktion von im Abgas enthaltenen Stickoxiden mittels eines Reduktionsmittels und einen dem Reduktionskatalysator abströmseitig aufgebrachten Oxidationskataly- sator zur Oxidation des Reduktionsmittels, wobei der Oxidationskatalysator dem Reduktionskatalysator über einen abströmseitigen Bereich aufgebracht ist, der 1 - 19% des gesamten Katalysatorvoluments beträgt.
Ein derartiger Katalysator ist aus der EP 1 264 628 A1 bekannt und wird eingesetzt, um die sauerstoffhaltigen Abgase einer Verbrennungsanlage mittels selektiver katalytischer Reduktion von Stickoxiden zu reinigen, ohne dass hierbei das eingesetzte Reduktionsmittel an die Umwelt abgegeben wird. Der Reduktionskatalysator reduziert hierbei mittels eines Reduktionsmittels, wie z.B. Ammoniak, unter Anwesenheit von Sauerstoff Stickoxide zu molekularem Stickstoff und Wasser. Dieses Verfahren der selektiven ka- talytischen Reduktion ist auch unter der Kurzbezeichnung SCR-Verfahren bekannt. Als Quelle des Reduktionsmittels wird gegebenenfalls eine das Reduktionsmittel spendende Substanz, wie z.B. Harnstoff, welcher im Abgas Ammoniak freisetzt, zugegeben.
Weiter ist aus der EP 0410440 B1 ein ähnlicher Katalysator bekannt, wobei der mit dem Oxidationskatalysator versehene abströmseitige Bereich des Reduktionskatalysators 20 - 50% des Gesamtvolumens beträgt.
Die Abgabe des zugesetzten Reduktionsmittels an die Umwelt muss beispielsweise zur Vermeidung einer Geruchsbelästigung möglichst gering gehalten werden. Aus diesem Grund erfolgt in den angewendeten SCR-Verfahren eine bezüglich des tatsächlichen oder des zu erwartenden Stickoxidgehalts des Abgases unterstöchiometrische Dosierung des Reduktionsmittels. Hierdurch wird zwar eine Reduktionsmittelemission sicher verhindert, jedoch wird an dem Reduktionskatalysator nicht die maximal mögliche, son- dern eine kleinere Menge an Stickoxiden beseitigt. Als Folge muss der Reduktionskatalysator hinreichend groß ausgelegt sein und die Steuerung der Reduktionsmitteldosierung exakt arbeiten, um insbesondere während eines transienten Motorbetriebes, wie er in einem Kraftfahrzeug üblich ist, eine signifikante Stickoxidminderung zu erreichen.
Ein Katalysator der eingangs genannten Art umgeht diese Problematik, indem dem Reduktionskatalysator abströmseitig ein Oxidationskatalysator zur Oxidation des Reduktionsmittels aufgebracht ist. An diesem Oxidationskatalysator wird in Anwesenheit von Sauerstoff das Reduktionsmittel, insbesondere Ammoniak, in unschädliche Verbindun- gen, insbesondere molekularer Stickstoff und Wasser, oxidiert.
Hierzu ist der einstückig hergestellte Reduktionskatalysator gemäß der EP 0 410 440 B1 abströmseitig mit dem Oxidationskatalysator beschichtet, wobei der beschichtete Bereich 20 - 50% des gesamten Katalysatorvolumens ausmacht. Der ein- strömseitig gelegene Reduktionskatalysator kann nun effektiv genutzt werden. Insbesondere kann das Reduktionsmittel stöchiometrisch bzw. überstöchiometrisch zudosiert werden, um einen maximalen Abbau der Stickoxide zu erzielen.
Nachteiligerweise weist ein derartiger Katalysator unerwünschte Nebenreaktionen auf. So können erneut Stickoxide gebildet werden. Auch kann beispielsweise Ammoniak bei vorhandenem Luftüberschuss zu Lachgas oder Ammoniumnitrat umgesetzt werden. Gegebenenfalls können im Abgas vorhandene Kohlenwasserstoffe zu schädlichen Nitroverbindungen reagieren. Gemäß der EP 1 264 628 A1 ist der Oxidationskatalysator auf einem wabenförmigen Reduktionskatalysator über eine abströmseitige Länge von 1 - 20% der Gesamtlänge aufgebracht.
Aufgabe der Erfindung ist es, einen Katalysator der eingangs genannten Art anzugeben, der unter Vermeidung eines Reduktionsmittelschlupfes und unerwünschter Nebenreaktionen einen möglichst hohen Umsetzungsgrad für Stickoxide ermöglicht, und der möglichst vielseitig einsetzbar ist. Diese Aufgabe wird für einen Katalysator gemäß dem Oberbegriff von Anspruch 1 erfindungsgemäß dadurch gelöst, dass der Reduktionskatalysator aus einer Anzahl von Einzelkatalysatoren zusammengesetzt ist, wobei der Oxidationskatalysator dem oder den abströmseitig letzten Einzelkatalysator/-en aufgebracht isiJJmfangreiche Untersu- chungen haben ergeben, dass mit einem Reduktionskatalysator, auf den abströmseitig ein Oxidationskatalysator aufgebracht ist, unerwünschte Nebenreaktionen sicher vermieden werden und ein hoher Umsetzungsgrad der Stickoxide erzielt werden kann, wenn der Oxidationskatalysator abströmseitig über einen Bereich aufgebracht ist, der 1 - 19% des gesamten Katalysatorvolumens beträgt.
Ein derartiger Katalysator erlaubt überraschenderweise bereits eine stöchiometrische oder überstöchiometrische Zudosierung des Reduktionsmittels, so dass der Reduktionskatalysator eine maximal mögliche Menge an Stickoxiden umsetzt, ohne dass es zu einem Reduktionsmittelschlupf kommt. Dabei genügt bei kleinen Stickoxidkonzentratio- nen und stöchiometrischer Zudosierung des Reduktionsmittels bereits ein mit dem Oxidationskatalysator versehenes Volumen von 1%. Wird ein Volumen des gesamten Katalysators von mehr als 19% mit dem Oxidationskatalysator versehen, so treten verstärkt die erwähnten unerwünschten Nebenreaktionen auf. Insbesondere werden am Oxidationskatalysator in dem Zusammenspiel aus Stickstoff, Sauerstoff und unver- brauchtem Reduktionsmittel erneut Stickoxide gebildet. Ein über 19 % hinausgehendes Volumen an Oxidationskatalysator dient somit nicht zum Abbau von Reduktionsmittel, sondern es werden dann an freien Adsorptionsplätzen unerwünschte Reaktionen katalysiert.
Der angegebene Katalysator lässt sich kostengünstig herstellen, da keine zwei getrennten Katalysatoren für die Reduktion bzw. für die Oxidation gefertigt werden müssen. Zur Herstellung wird der Reduktionskatalysator in an sich bekannter Weise gefertigt. Anschließend wird auf diesen Reduktionskatalysator zur Schaffung des Oxi- dationskatalysators abströmseitig die Zusammensetzung der katalytisch aktiven Ober- fläche geändert. Dies kann z.B. durch Neubeschichten oder durch das Einbringen von die Oxidation des Reduktionsmittels katalysierenden Verbindungen oder Elementen geschehen. Alternativ wäre auch das Ersetzen der bereits vorhandenen hinsichtlich der Reduktion katalytisch aktiven Oberfläche vorstellbar. Der Katalysator wird in den Ab- - A -
gaskanal einer Verbrennungsanlage und insbesondere in den Abgaskanal eines Verbrennungsmotors eingesetzt. Um verschiedenen räumlichen Gegebenheiten und Abgaszusammensetzungen flexibel begegnen zu können, ist der Reduktionskatalysator aus einer Anzahl von Einzelkatalysatoren zusammengesetzt, wobei der Oxidationska- talysator dem oder den abströmseitig letzten Einzelkatalysator/-en aufgebracht ist. Hierbei kann modulartig die gewünschte Länge des Reduktionskatalysators über die Anzahl der Einzelkatalysatoren eingestellt werden. Der hinsichtlich des gesamten Katalysatorvolumens gewünschte abströmseitige Bereich, der als Oxidationskatalysator wirkt, kann sich dabei über mehrere der Einzelkatalysatoren abströmseitig erstrecken. Bei einem kleinen Volumenbereich oder bei relativ langen Einzelkatalysatoren ist lediglich der in Strömungsrichtung des Abgases betrachtet letzte Einzelkatalysator entsprechend mit dem Oxidationskatalysator versehen. Die modulartige Ausgestaltung des Katalysators im Ganzen bietet einen Kostenvorteil, da hierdurch die Typenvielfalt der herzustellenden Katalysatoren deutlich reduziert ist. Weiterhin wird durch die kürzeren Einzelmodule eine geringere thermische Belastung der Monolithe erzielt.
Der Reduktionskatalysator oder die Einzelkatalysatoren als solche können als ein Trägerkatalysator mit einer SCR-aktiven Beschichtung ausgebildet sein, worauf dann der Oxidationskatalysator aufgebracht ist. In dieser Ausgestaltungsvariante wird die kataly- tisch aktive Beschichtung auf ein in der Regel plattenförmiges Trägermaterial aufgebracht. Die beschichteten Trägerplatten werden dann zur Ausbildung des Katalysators gestapelt, wobei für das durchströmende Abgas Strömungskanäle durch in das Trägermaterial eingebrachte Sicken und/oder Wellen gebildet werden.
In einer anderen vorteilhaften Ausgestaltung ist der Reduktionskatalysator als ein SCR- aktives Vollextrudat ausgebildet, worauf der Oxidationskatalysator aufgebracht ist. Das Vollextrudat besteht hierbei aus einer keramischen Masse, die als eine Aufschlämmung von Metalloxiden, insbesondere Titandioxid, hergestellt und extrudiert wird. Der so hergestellte Formkörper wird anschließend getrocknet und zur Keramik kalziniert. Das Vollextrudat umfasst eine Reihe von durchgängigen Poren, durch welche das Abgas strömt und mit der Oberfläche des Katalysators in Berührung kommt. Während demnach das Vollextrudat aus einer keramischen Masse gefertigt ist, die insgesamt SCR-aktiv ist, ist das katalytisch aktive Material, welches insbesondere die gleiche Zusammensetzung wie die Masse des Vollextrudats aufweisen kann, bei dem Trägerkatalysator auf das Trägermaterial aufgebracht. Dies kann durch Auftragen oder Eintauchen des Trägermaterials geschehen. Zwischen dem SCR-aktiven Material und dem Trägermaterial kann auch eine Schicht aus einem Aluminiumoxid aufgetragen sein. Alternativ zu einer Titandioxid-Keramik kann auch ein Zeolith als die katalytisch aktiven weiteren Komponenten beinhaltendes Material eingesetzt sein.
In einer vorteilhaften Ausgestaltung der Erfindung ist der Oxidationskatalysator dem Reduktionskatalysator als eine Tränkung oder Imprägnierung aufgebracht. Hierbei wird der später als Oxidationskatalysator wirkende Teil des Reduktionskatalysators beispielsweise in eine Lösung eingetaucht, die eine Oxidation katalysierende Substanzen bzw. deren reaktive Vorläufer enthält. Diese Substanzen schlagen sich dabei auf der offenen Oberfläche des katalytisch aktiven Materials des Reduktionskatalysators nieder bzw. dringen in das Volumen des Materials ein. Durch eine gegebenenfalls erforderliche Nachbehandlung, wie eine Temperaturbehandlung in entsprechender Atmosphäre, wird dann das imprägnierte Material des Reduktionskatalysators zu dem katalytisch aktiven Material des Oxidationskatalysators umgebildet.
Das katalytisch aktive Material des Reduktionskatalysators, welches sowohl als Besen ichtung für das Trägermaterial des Plattenkatalysators als auch als Material des Vollextrudats Verwendung findet, umfasst vorteilhafterweise überwiegend Titandioxid sowie als Zusätze Vanadium, Molybdän, Wolfram und/oder deren Oxide. Hinsichtlich einer großen katalytisch aktiven Oberfläche wird dabei Titandioxid in der Anatas- Struktur verwendet. Ein derartiges Titandioxid kann beispielsweise flammhydrolytisch oder durch Fällung hergestellt sein.
Das katalytisch aktive Material des Oxidationskatalysators umfasst vorzugsweise e- benfalls überwiegend Titandioxid sowie als Zusätze Platin, Rhodium und/oder Palladium. Die Edelmetalle können durch Imprägnierung des katalytisch aktiven Materials des Reduktionskatalysators mit einer wässrigen Lösung von Hexachloroplatinsäure, Palladiumchlorid und/oder Rhodiumchlorid eingebracht werden. Alternativ kann auf das katalytisch aktive Material des Reduktionskatalysators als Oxi- dationsbeschichtung ein γ-Aluminiumoxid mit Zusätzen von Ceroxid und Zirkonoxid aufgebracht werden. Die Edelmetalle werden dann in das Aluminiumoxid eingebracht, Als Aluminiumoxid kann auch ein Cordierit, d.h. ein Magnesium-Aluminium-Silikat, eingesetzt werden. Im Übrigen kann das γ-Aluminiumoxid auch als Beschichtung auf dem Plattenkatalysator aufgebracht sein und zur Ausbildung des katalytisch aktiven Materials des Reduktionskatalysators mit den entsprechenden Substanzen imprägniert werden.
Ausführungsbeispiele der Erfindung werden anhand einer Zeichnung näher erläutert. Dabei zeigen:
Fig. 1 schematisch einen Reduktionskatalysator mit abströmseitigem Oxi- dationskatalysator und
Fig. 2 einen mehrteiligen Reduktionskatalysator mit abströmseitigem Oxi- dationskatalysator, eingesetzt zur Abgasbehandlung eines Verbrennungsmotors.
Fig. 1 zeigt schematisch einen als vollextrudierten Wabenkörper ausgebildeten Katalysator 1 , wie er als abströmseitig letzter Einzelkatalysator zum Einsatz kommen könnte. Der Katalysator 1 umfasst einen Reduktionskatalysator 2 und abströmseitig einen Oxi- dationskatalysator 3. Als Material für den Wabenkörper des Katalysators 1 ist eine Titandioxid-Keramik verwendet, die als katalytisch aktive Zusätze Vanadium sowie Mo- lybdän und Wolframverbindungen umfasst. Der abströmseitig aufgebrachte Oxidations- katalysator 3 ist durch Imprägnierung des Reduktionskatalysators 2 mit Platin hergestellt.
Der dargestellte Katalysator 1 wird vom Abgas einer Verbrennungsanlage 5 in der dar- gestellten Pfeilrichtung durchströmt. Das Abgas 5 enthält einströmseitig Stickoxide sowie Sauerstoff und als zusätzlich eingebrachtes Reduktionsmittel Ammoniak. Zum Erzielen einer effektiven Verringerung der Stickoxide im Abgas 5 ist Ammoniak leicht überstöchiometrisch zudosiert. An dem Reduktionskatalysator 2 werden die im Abgas 5 enthaltenen Stickoxide mit Ammoniak in Anwesenheit von Sauerstoff zu molekularem Stickstoff und Wasser umgesetzt. Überschüssiges Ammoniak strömt anschließend über den abströmseitig aufgebrachten Oxidationskatalysator 3. Dort wird Ammoniak mit Sauerstoff zu molekularem Stickstoff und Wasser oxidiert. Ein Ammoniakschlupf in die Umgebung ist sicher vermieden.
Der Volumenanteil des Oxidationskatalysators 3 an dem Gesamtvolumen des Katalysators 1 beträgt 18%. Hierdurch ist sichergestellt, dass das restliche Ammoniak zu Stickstoff oxidiert wird, wobei unerwünschte Neben reaktionen, wie beispielsweise die Bildung von Lachgas oder von erneuten Stickoxiden vermieden sind.
In Fig. 2 ist eine Abgasreinigungsanlage 6 für einen Dieselmotor 8 als Verbrennungsmotor dargestellt. Der Dieselmotor 8 arbeitet überstöchiometrisch, so dass das entstehende Abgas 6 Sauerstoff enthält.
Zur Reinigung strömt das Abgas 6 über einen Auspuffkrümmer 10 in ein Abgasrohr 12, wird anschließend über einen Katalysator 1 geleitet und tritt gereinigt über den Auspuff 14 in die Umgebung aus.
Der im Abgasrohr 12 angeordnete Katalysator 1 setzt sich aus insgesamt vier Einzelmodulen zusammen. Jedes dieser Einzelmodule ist als ein Vollextrudat aus einer Titandioxid-Keramik gebildet und durch Zusätze an Vanadinpentoxid, Wolframtrioxid und Molybdäntrioxid SCR-aktiv. Die einströmseitig angeordneten drei Einzelkatalysatoren 15 sind gänzlich als Reduktionskatalysatoren gefertigt. Der abströmseitig letzte Ein- zelkatalysator 16 ist als ein Reduktionskatalysator gefertigt, dessen letztes Drittel durch Imprägnieren des SCR-aktiven Materials mit Platin und Palladium als Oxidationskatalysator aktiv ist. Der Volumenanteil des Oxidationskatalysators 3 zum gesamten Katalysatorvolumen beträgt 10%.
Zur Entfernung der im Abgas 5 enthaltenen Stickoxide wird dem Abgas 5 vor Erreichen des Katalysators 1 als Reduktionsmittel Ammoniak zugeführt. Hierzu ist in einem Vorratsbehälter 18 eine wässrige Harnstofflösung bevorratet, die über eine Zuführleitung 19 dem Abgasrohr 12 zugeleitet wird. Über ein in der Zuführleitung 19 angeordnetes Steuerventil 20 wird die zuzudosierende Menge an wässriger Harnstofflösung der vom Dieselmotor 8 erzeugten Stickoxidkonzentration angepasst. Hierzu greift eine nicht dargestellte Steuereinheit auf eine implementierte Kennlinie zurück, die ausgehend von aktuellen Motorkennzahlen eine Stickoxidkonzentration vorhersagt.
Die zugeleitete wässrige Harnstofflösung wird schließlich im Abgasrohr 12 mittels einer Zerstäuberdüse 21 fein zerstäubt. Durch die im Abgas 5 herrschende Temperatur wird hierbei Harnstoff in Ammoniak pyrolysiert oder hydrolysiert.
Das entsprechend der Stickoxidkonzentration in etwa stöchiometrisch zudosierte Ammoniak wird an dem Reduktionskatalysator 2, gebildet aus den Einzelkatalysatoren 15 und 16, mit den Stickoxiden zu molekularem Stickstoff und Wasser umgesetzt. Aufgrund einer niedrigen Katalysatortemperatur oder aufgrund von Adsorptions- bzw. De- sorptionseffekten überschüssiges Ammoniak wird anschließend an dem Oxidationskatalysator 3 oxidiert.
Das von Stickoxiden unter optimaler Ausnutzung des Reduktionskatalysators 2 gereinigte Abgas 5 strömt schließlich über den Auspuff 14 in die Umgebung. Der 10%ige Volumenanteil des Katalysators 1 , der als Oxidationskatalysator 2 eingesetzt ist, genügt, um einen Ammoniakschlupf sicher zu verhindern. Unerwünschte Nebenreaktionen durch oxidative Prozesse sind aufgrund des kurzen Oxidationsbereiches sicher vermieden.
Bezugszeichenliste
Katalysator
Reduktionskatalysator
Oxidationskatalysator
Abgas
Abgasreinigungsanlage
Dieselmotor
Auspuffkrümmer
Abgasrohr
Auspuff
Einzelkatalysator
Einzelkatalysator
Vorratsbehälter
Zuführleitung
Steuerventil
Zerstäuberdüse

Claims

Ansprüche
1. Katalysator (1 ) zur Reinigung von sauerstoffhaltigen Abgasen einer Verbrennungsanlage, insbesondere eines mit Luftüberschuss betriebenen Verbren- nungsmotors, umfassend einen Reduktionskatalysator (2) zur selektiven katalyti- schen Reduktion von im Abgas (5) enthaltenen Stickoxiden mittels eines Reduktionsmittels und einen dem Reduktionskatalysator (2) abströmseitig aufgebrachten Oxidationskatalysator (3) zur Oxidation des Reduktionsmittels, wobei der O- xidationskatalysator (3) dem Reduktionskatalysator (2) über einen abströmseiti- gen Bereich aufgebracht ist, der 1 bis 19 % des gesamten Katalysatorvolumens beträgt, dadurch gekennzeichnet, dass der Reduktionskatalysator (2) aus einer Anzahl von Einzelkatalysatoren (15,16) zusammengesetzt ist, wobei der Oxidationskatalysator (3) dem oder den abströmseitig letzten EinzelkatalysatorΛen (15,16) aufgebracht ist.
2. Katalysator (1) nach Anspruch 1 , dadurch gekennzeichnet, dass der Reduktionskatalysator (2) als ein Trägerkatalysator mit einer SCR- aktiven Beschichtung ausgebildet ist, worauf der Oxidationskatalysator (3) aufgebracht ist.
3. Katalysator (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Reduktionskatalysator (2) als ein SCR-aktives Vollextrudat ausgebildet ist, worauf der Oxidationskatalysator (3) aufgebracht ist.
4. Katalysator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Oxidationskatalysator (3) dem Reduktionskatalysator (2) als eine Beschichtung, insbesondere unter Verwendung eines Cordierits, aufgebracht ist.
5. Katalysator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Oxidationskatalysator (3) dem Reduktionskatalysator (2) als eine Trän- s kung oder Imprägnierung aufgebracht ist.
6. Katalysator (1) nach einem der vorhergehenden Ansprüche dadurch gekennzeichnet, dass das katalytisch aktive Material des Reduktionskatalysators (2) überwiegend o Titandioxid sowie als Zusätze Vanadium, Molybdän, Wolframtrioxid und/oder deren Oxide umfasst.
7. Katalysator (1) nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das katalytisch aktive Material des Oxidationskatalysators (3) überwiegend
Titandioxid sowie als Zusätze Platin, Rhodium und/oder Palladium umfasst.
EP07703095A 2006-03-11 2007-01-29 Katalysator für die abgasreinigung bestehend aus einer anzahl von einzelkatalysatoren Withdrawn EP1993709A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006011411A DE102006011411B3 (de) 2006-03-11 2006-03-11 Katalysator
PCT/EP2007/000735 WO2007104382A1 (de) 2006-03-11 2007-01-29 Katalysator für die abgasreinigung bestehend aus einer anzahl von einzelkatalysatoren

Publications (1)

Publication Number Publication Date
EP1993709A1 true EP1993709A1 (de) 2008-11-26

Family

ID=38110621

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703095A Withdrawn EP1993709A1 (de) 2006-03-11 2007-01-29 Katalysator für die abgasreinigung bestehend aus einer anzahl von einzelkatalysatoren

Country Status (3)

Country Link
EP (1) EP1993709A1 (de)
DE (2) DE102006011411B3 (de)
WO (1) WO2007104382A1 (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2493987B (en) * 2011-08-26 2014-03-19 Jc Bamford Excavators Ltd An engine system
EP2607641A1 (de) 2011-12-19 2013-06-26 Mtu Friedrichshafen Gmbh Mischeinrichtung zum Einbringen eines Reduktionsmittels in einen Abgasstrom mit schaufelförmigen Mitteln
EP2792864A1 (de) 2013-04-17 2014-10-22 ROTH-TECHNIK AUSTRIA Gesellschaft m.b.H. Abgasbehandlungseinrichtung für einen Abgasstrom einer Brennkraftmaschine
AR099507A1 (es) * 2014-02-28 2016-07-27 Haldor Topsoe As Método para la limpieza de gas de escape de un motor de encendido por compresión
US10273850B2 (en) 2014-02-28 2019-04-30 Scania Cv Ab Method and system for controlling nitrogen oxide emissions from a combustion engine
SE539803C2 (en) 2015-06-05 2017-12-05 Scania Cv Ab A method and a system for determining a composition of a gas mix in a vehicle
EP3341596B1 (de) 2015-08-27 2021-07-28 Scania CV AB Verfahren und abgasbehandlungssystem zur behandlung eines abgasstroms
SE539130C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Förfarande och avgasbehandlingssystem för behandling av en avgasström
SE539134C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Avgasbehandlingssystem och förfarande för behandling av en avgasström
SE539131C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Förfarande och avgasbehandlingssystem för behandling av en avgasström
SE539133C2 (sv) 2015-08-27 2017-04-11 Scania Cv Ab Avgasbehandlingssystem och förfarande för behandling av en avgasström
SE539129C2 (en) 2015-08-27 2017-04-11 Scania Cv Ab Process and system for processing a single stream combustion exhaust stream
DE102016004333A1 (de) 2016-04-13 2017-10-19 Roth Technik Austria Gesellschaft Mit Beschränkter Haftung Abgasnachbehandlungsvorrichtung mit Katalysator und Mischvorrichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5120695A (en) * 1989-07-28 1992-06-09 Degusaa Aktiengesellschaft (Degussa Ag) Catalyst for purifying exhaust gases from internal combustion engines and gas turbines operated at above the stoichiometric ratio
EP1264628A1 (de) * 2001-06-09 2002-12-11 OMG AG & Co. KG Redox-Katalysator für die selektive katalytische Reduktion der im Abgas von Dieselmotoren enthaltenen Stickoxide mittels Ammoniak sowie Verfahren zu seiner Herstellung
US7481983B2 (en) * 2004-08-23 2009-01-27 Basf Catalysts Llc Zone coated catalyst to simultaneously reduce NOx and unreacted ammonia

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007104382A1 *

Also Published As

Publication number Publication date
DE102006011411B3 (de) 2007-11-29
WO2007104382A1 (de) 2007-09-20
DE202006020151U1 (de) 2007-11-29

Similar Documents

Publication Publication Date Title
DE102006011411B3 (de) Katalysator
DE102015112465B4 (de) System und verfahren zum behandeln von abgas
EP1882832B1 (de) Anordnung zur Verminderung von Stickoxiden in Abgasen
EP2498898B1 (de) Verbesserter dieseloxidationskatalysator
EP1985819B1 (de) Abgasnachbehandlungssystem
EP1876331B1 (de) Anordnung zur Verminderung von Stickoxiden in Abgasen
CA2659740C (en) Compositions and methods for treating exhaust gases
DE112014000588T5 (de) Ammoniak Oxidationskatalysator
DE102015107647A1 (de) Katalytischer Gegenstand zum Behandeln vom Abgas
DE102018107548A1 (de) Eng gekoppeltes system von scr mit turbo und asc/doc
DE102008009672B4 (de) SCR-Katalysator mit Kohlenwasserstoffspeicherfunktion, dessen Verwendung und Abgasreinigungssystem und dessen Verwendung
EP2106285A1 (de) Verfahren zur selektiven katalytischen reduktion von stikoxiden in abgasen von fahrzeugen
DE102014110811A1 (de) Ammoniak-Slip-Katalysator
DE102006031650B4 (de) Anordnung zur Verminderung von Stickoxiden in Abgasen
WO2010051983A1 (de) Partikelminderung mit kombiniertem scr- und nh3- schlupf - katalysator
EP2861327B1 (de) Verfahren zur verhinderung der kontamination eines scr-katalysators mit platin
DE10022842A1 (de) Strukturierter Katalysator für die selektive Reduktion von Stickoxiden mittels Ammoniak unter Verwendung einer zu Ammoniak hydrolysierbaren Verbindung
EP2112339A1 (de) Verfahren und Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors
DE102011012799A1 (de) Katalysator zur Entfernung von Stickoxiden aus dem Abgas von Dieselmotoren
EP1259308B1 (de) Verfahren und abgasreinigungsanlage zur katalytischen reduktion von stickoxiden im abgas einer verbrennungsanlage
EP1931864A1 (de) Verfahren und vorrichtung zur reduktion des stickoxidanteils im abgas einer verbrennungskraftmaschine
DE102015104348A1 (de) Katalysator zum behandeln von abgas
DE102006031661B4 (de) Anordnung zur Verminderung von Stickoxiden in Abgasen
EP2656904A1 (de) Dieseloxidationskatalysator
DE202006021192U1 (de) Katalysator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20081008

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL SE

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1123006

Country of ref document: HK

17Q First examination report despatched

Effective date: 20110314

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110725

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1123006

Country of ref document: HK