EP1986972A2 - Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen - Google Patents

Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen

Info

Publication number
EP1986972A2
EP1986972A2 EP07704247A EP07704247A EP1986972A2 EP 1986972 A2 EP1986972 A2 EP 1986972A2 EP 07704247 A EP07704247 A EP 07704247A EP 07704247 A EP07704247 A EP 07704247A EP 1986972 A2 EP1986972 A2 EP 1986972A2
Authority
EP
European Patent Office
Prior art keywords
microparticles
polymeric
voided
building material
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07704247A
Other languages
English (en)
French (fr)
Inventor
Jan Hendrik Schattka
Holger Kautz
Gerd LÖHDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Research and Technology GmbH
Roehm GmbH Darmstadt
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Publication of EP1986972A2 publication Critical patent/EP1986972A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/085Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons expanded in situ, i.e. during or after mixing the mortar, concrete or artificial stone ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0049Water-swellable polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0058Core-shell polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Definitions

  • the present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures to improve their Frostg. Freeze-thaw resistance.
  • the structure of a cement-bound concrete is traversed by capillary pores (radius: 2 ⁇ m - 2 mm) or gel pores (radius: 2 - 50 nm). Pore water contained therein differs in its state form depending on the pore diameter.
  • a prerequisite for an improved resistance of the concrete during frost and thaw changes is that the distance of each point in the cement stone from the next artificial air pore does not exceed a certain value. This distance is also referred to as the "distance factor” or “powers spacing factor” [TCPowers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board” 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical "Power spacing factor" of 500 ⁇ m leads to damage to the concrete during frost and thaw cycles. Therefore, in order to achieve this with limited air pore content, the diameter of the artificially introduced air pores must be less than 200-300 ⁇ m [K.Snyder, K. Natesaiyer & K.Hover, The Static and Statistical Properties of Entrained Air voids in concrete: A mathematical basis for air void Systems characterization) "Materials Science of Concrete” VI (2001) 129-214].
  • an artificial air pore system depends largely on the composition and grain size of the aggregates, the type and amount of cement, the concrete consistency, the mixer used, the mixing time, the temperature, but also on the type and amount of the air entraining agent. Under consideration of the appropriate manufacturing rules, their effects can indeed be mastered, however, there may be a large number of undesired impairments, which ultimately leads to the desired air content in the concrete can be exceeded or fallen below and thus adversely affected the strength or frost resistance of the concrete ,
  • Such artificial air pores can not be metered directly, but by the addition of so-called air-entraining agents, the air introduced by mixing is stabilized [L. Du & K.J. Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research” 35 (2005) 1463-71].
  • Conventional air entraining agents are mostly of a surfactant-like structure and break the air introduced by the mixing into small air bubbles with a diameter as small as possible of 300 ⁇ m and stabilize them in the moist concrete structure. One distinguishes between two types.
  • These hydrophobic salts reduce the surface tension of the water and accumulate at the interface between cement grain, air and water. They stabilize the microbubbles and are therefore found in the hardening concrete on the surfaces of these air pores again.
  • the other type e.g. Sodium lauryl sulfate (SDS) or Natriumdodecylphenylsulfonat - on the other hand forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble. By preferentially accumulating at the air-water interface, they also reduce the surface tension, thus stabilizing the microbubbles, and are preferably found on the surfaces of these air voids in the hardened concrete.
  • SDS Sodium lauryl sulfate
  • Natriumdodecylphenylsulfonat forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble.
  • microparticles described therein are characterized in particular by the fact that they have a cavity which is smaller than 200 microns (diameter) and this hollow core consists of air (or a gaseous substance). This also includes porous microparticles of the 100 ⁇ m scale, which can have a multiple of smaller cavities and / or pores.
  • the present invention was therefore based on the object to provide a means for improving the frost or freeze-thaw resistance for hydraulically setting building material mixtures, which unfolds its full effectiveness even at relatively low dosages.
  • the object has been achieved by the use of polymeric microparticles having a cavity in hydraulically setting building material mixtures, characterized in that the shell of the microparticles is composed of more than 99% by weight of monomers with a water solubility of less than 10 -1 mol / l.
  • the shell consists of more than 99% by weight of monomers having a water solubility of less than 10 -1 mol / l.
  • the shell preferably consists of more than 99.5% by weight of such monomers.
  • the shell consists exclusively of such monomers.
  • the effect of the non-polar shell according to the invention is apparently related to the nonpolar surface, it is sufficient if more than 99 wt% of monomers with a water solubility of less than 10 -1 mol / l are sufficient for a multi-shell structure of the microparticle to pass. Also in this case, a monomer composition of 99.5% of these monomers is preferable, and the exclusive use of these monomers in the outermost shell is particularly preferable.
  • the shell optionally the outer shell, consists of styrene.
  • the shell optionally the outer shell, consists of styrene and / or n-hexyl (meth) acrylate and / or n-butyl (meth) acrylate and / or i-butyl (meth) acrylate and / or propyl (meth) acrylate and / or ethyl methacrylate and / or ethylhexyl (meth) acrylate.
  • the notation (meth) acrylate here means both methacrylate, such as methyl methacrylate, ethyl methacrylate, etc., as well as acrylate, such as methyl acrylate, ethyl acrylate, etc., as well as mixtures of both.
  • microparticles according to the invention can preferably be prepared by emulsion polymerization and preferably have an average particle size of 100 to 5000 nm; particularly preferred is an average particle size of 200 to 2000 nm. Most preferred are average particle sizes of 250 to 1000 nm.
  • the mean particle size is determined, for example, by counting a statistically significant amount of particles on the basis of transmission electron micrographs.
  • the microparticles When prepared by emulsion polymerization, the microparticles are obtained in the form of an aqueous dispersion. Accordingly, the addition of the microparticles to the building material mixture preferably also takes place in this form.
  • the cavities of the microparticles are water-filled. Their effect to increase the frost and freeze-thaw resistance in the building material mixture unfold the particles by the water during and after hardening of the building material mixture - at least partially - lose, after which there are correspondingly gas or air-filled hollow spheres.
  • the microparticles used consist of polymer particles which have a core (A) and at least one Shell (B), wherein the core / shell polymer particles were swollen with the aid of a base.
  • the core (A) of the particle contains one or more ethylenically unsaturated carboxylic acid (derivative) monomers which allow swelling of the core; these monomers are preferably selected from the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid and mixtures thereof. Acrylic acid and methacrylic acid are particularly preferred.
  • the - possibly outermost - shell B contains the present invention, said monomers.
  • microparticles are built up as multi-shelled or as gradient latices, no particular restrictions apply to the monomers used between core and outermost shell.
  • the polymer content of the microparticles used can be from 2 to 98% by weight (weight of polymer based on the total weight of the water-filled particle).
  • polymer contents of 2 to 60 wt .-% particularly preferred are polymer contents of 2 to 40 wt .-%. It is within the scope of the present invention readily possible to add the water-filled microparticles directly as a solid of the building material mixture.
  • the microparticles are - as described above - coagulated and isolated by conventional methods (eg filtration, centrifuging, sedimentation and decanting) from the aqueous dispersion and the particles are then dried
  • the water-filled microparticles are added to the building material mixture in a preferred amount of 0.01 to 5% by volume, in particular 0.1 to 0.5% by volume.
  • the building material mixture for example.
  • the usual hydraulically setting binder such as cement, lime, gypsum or anhydrite.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln mit unpolaren Schalen in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frost- bzw. Frost-Tauwechsel-Beständigkeit.

Description

Additive Baustoffmischungen mit Mikropartikeln mit unpolaren Schalen
Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frostbzw. Frost-Tauwechsel-Beständigkeit.
Für den Widerstand des Betons gegen Frost und Frost-Tauwechsel bei gleichzeitiger Einwirkung von Taumitteln sind die Dichtigkeit seines Gefüges, eine bestimmte Festigkeit der Matrix und das Vorhandensein eines bestimmten Porengefüges maßgebend. Das Gefüge eines zementgebundenen Betons wird von Kapillarporen (Radius: 2 μm - 2mm) bzw. Gelporen (Radius: 2 - 50 nm) durchzogen. Darin enthaltenes Porenwasser unterscheidet sich in seiner Zustandsform in Abhängigkeit vom Porendurchmesser. Während Wasser in den Kapillarporen seine gewöhnlichen Eigenschaften beibehält, klassifiziert man in den Gelporen nach kondensiertem Wasser (Mesoporen: 50 nm) und adsorptiv gebundenem Oberflächenwasser (Mikroporen: 2 nm), deren Gefrierpunkte beispielsweise weit unter -500C liegen kann [M.J.Setzer, Interaction of water with hardened cement paste, "Ceramic Transactions" 16 (1991 ) 415-39]. Das hat zur Folge, dass selbst bei tiefen Abkühlungen des Betons ein Teil des Porenwassers ungefroren bleibt (metastabiles Wasser). Bei gleicher Temperatur ist aber der Dampfdruck über Eis geringer als der über Wasser. Da Eis und metastabiles Wasser gleichzeitig nebeneinander vorliegen, entsteht ein Dampfdruckgefälle, das zu einer Diffusion des noch flüssigen Wassers zum Eis und zu dessen Eisbildung führt, wodurch eine Entwässerung der kleineren bzw. eine Eisansammlung in den größeren Poren stattfindet. Diese Wasserumverteilung infolge Abkühlung findet in jedem porigen System statt und ist maßgeblich von der Art der Porenverteilung abhängig. Die künstliche Einführung von mikrofeinen Luftporen im Beton erzeugt also in erster Linie sogenannte Entspannungsräume für expandierendes Eis und Eiswasser. In diesen Poren kann gefrierendes Porenwasser expandieren bzw. internen Druck und Spannungen von Eis und Eiswasser auffangen, ohne dass es zu Mikrorissbildungen und damit zu Frostschäden am Beton kommt. Die prinzipielle Wirkungsweise solcher Luftporensysteme ist im Zusammenhang mit dem Mechanismus der Frostschädigung von Beton in einer Vielzahl von Übersichten beschrieben worden [Schulson, Erland M. (1998) Ice damage to concrete. CRREL Special Report 98-6; S.Chatterji, Freezing of air-entrained cement-based materials and specific actions of air-entraining agents, "Cement & Concrete Composites" 25 (2003) 759-65; G.W.Scherer, J.Chen & J.Valenza, Methods for protecting concrete from freeze damage, US-Patent 6,485,560 B1 (2002); M.Pigeon, B.Zuber & J. Marchand, Freeze/thaw resistance, "Advanced Concrete Technology" 2 (2003) 11/1-11/17; B. Erlin & B. Mather, A new process by which cyclic freezing can damage concrete - the Erlin/Mather effect, "Cement & Concrete Research" 35 (2005) 1407-11].
Voraussetzung für eine verbesserte Beständigkeit des Betons bei Frost- und Tauwechsel ist, dass der Abstand jedes Punktes im Zementstein von der nächsten künstlichen Luftpore einen bestimmten Wert nicht überschreitet. Dieser Abstand wird auch als Abstandsfaktor oder "Powers spacing factor" bezeichnet [T.C.Powers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board" 29 (1949) 184-202]. Laborprüfungen haben dabei gezeigt, dass ein Überschreiten des kritischen "Power spacing factor" von 500 μm zu einer Schädigung des Betons bei Frostund Tauwechsel führt. Um dies bei beschränktem Luftporengehalt zu erreichen, muss der Durchmesser der künstlich eingeführten Luftporen daher kleiner 200 - 300 μm sein [K.Snyder, K.Natesaiyer & K.Hover, The stereological and Statistical properties of entrained air voids in concrete: A mathematical basis for air void Systems characterization) "Materials Science of Concrete" VI (2001 ) 129-214].
Die Bildung eines künstlichen Luftporensystems hängt maßgeblich von der Zusammensetzung und der Kornformität der Zuschläge, der Art und Menge des Zements, der Betonkonsistenz, dem verwendeten Mischer, der Mischzeit, der Temperatur, aber auch von der Art und Menge des Luftporenbildners ab. Unter Berücksichtigung entsprechender Herstellungsregeln lassen sich deren Einflüsse zwar beherrschen, jedoch kann es zu einer Vielzahl von ungewünschten Beeinträchtigungen kommen, was letztendlich dazu führt, dass der gewünschte Luftgehalt im Beton über- oder unterschritten werden kann und somit die Festigkeit oder den Frostwiderstand des Betons negativ beeinflusst.
Solche künstlichen Luftporen lassen sich nicht direkt dosieren, sondern durch die Zugabe von sogenannten Luftporenbildnern wird die durch das Mischen eingetragene Luft stabilisiert [L. Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71]. Herkömmliche Luftporenbildner sind zumeist tensidartiger Struktur und brechen die durch das Mischen eingeführte Luft zu kleinen Luftbläschen mit einem Durchmesser möglichst kleiner 300 μm und stabilisieren diese im feuchten Betongefüge. Man unterscheidet dabei zwischen zwei Typen.
Der eine Typ - z.B. Natriumoleat, das Natriumsalz der Abietinsäure oder Vinsolharz, einem Extrakt aus Kiefernwurzeln - reagiert mit dem Calciumhydroxid der Porenlösung im Zementleim und fällt als unlösliches Calciumsalz aus. Diese hydrophoben Salze reduzieren die Oberflächenspannung des Wassers und sammeln sich an der Grenzfläche zwischen Zementkorn, Luft und Wasser. Sie stabilisieren die Mikrobläschen und finden sich daher im aushärtenden Beton an den Oberflächen dieser Luftporen wieder.
Der andere Typ - z.B. Natrium-Iaurylsulfat (SDS) oder Natriumdodecylphenylsulfonat - bildet dagegen mit Calciumhydroxid lösliche Calciumsalze, die aber ein anormales Lösungsverhalten zeigen. Unter einer gewissen kritischen Temperatur zeigen diese Tenside eine sehr geringe Löslichkeit, oberhalb dieser Temperatur sind sie sehr gut löslich. Durch eine bevorzugtes Ansammeln an der Luft-Wasser-Grenzschicht verringern sie ebenfalls die Oberflächenspannung, stabilisieren somit die Mikrobläschen und sind bevorzugt an der Oberflächen dieser Luftporen im ausgehärteten Beton wiederzufinden.
Bei der Verwendung dieser Luftporenbildner nach dem Stand der Technik treten eine Vielzahl von Probleme auf [L. Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71. Beispielsweise können längere Mischzeiten, unterschiedliche Mischerdrehzahlen, veränderte Dosierabläufe bei den Transportbetonen dazu führen, dass die stabilisierte Luft (in den Luftporen) wieder ausgetrieben wird.
Die Beförderung von Betonen mit verlängerten Transportzeiten, schlechter Temperierung und unterschiedlichen Pump- und Fördereinrichtungen, sowie das Einbringen dieser Betone einhergehend mit veränderter Nachbearbeitung, Ruckelverhalten und Temperaturbedingungen kann einen zuvor eingestellten Luftporengehalt signifikant verändern. Das kann im schlimmsten Fall bedeuten, dass ein Beton die erforderlichen Grenzwerte einer bestimmten Expositionsklasse nicht mehr erfüllt und somit unbrauchbar geworden ist [EN 206-1 (2000), Concrete - Part 1 : Secification, Performance, production and conformity]. Der Gehalt an feinen Stoffen im Beton (z.B. Zement mit unterschiedlichem Alkaligehalt, Zusatzstoffe wie Flugasche, Silikastaub, oder Farbzusätze) beeinträchtigt die Luftporenbildung ebenfalls. Auch können Wechselwirkungen mit entschäumend wirkenden Fließmitteln auftreten, die somit Luftporen austreiben, aber auch zusätzlich unkontrolliert einführen können.
All diese die Herstellung von frostbeständigen Beton erschwerenden Einflüsse lassen sich vermeiden, wenn das erforderliche Luftporensystem nicht durch o.g. Luftporenbildner mit tensidartiger Struktur erzeugt wird, sondern der Luftgehalt durch das Zumischen bzw. feste Dosieren von polymeren Mikropartikeln (Mikrohohlkugeln) herrührt [H.Sommer, A new method of making concrete resistant to frost and de-icing salts, "Betonwerk & Fertigteiltechnik" 9 (1978) 476-84]. Da die Mikropartikel zumeist Partikelgrößen kleiner 100 μm aufweisen, lassen sie sich im Betongefüge auch feiner und gleichmäßiger als künstlich eingeführte Luftporen verteilen. Dadurch reichen bereits geringe Mengen für einen ausreichenden Widerstand des Betons gegen Frost- und Tauwechsel aus.
Die Verwendung von solchen polymeren Mikropartikeln zur Verbesserung der Frost- und Frost-Tauwechsel-Beständigkeit von Beton ist entsprechend dem Stand der Technik bereits bekannt [vgl. DE 2229094 A1 , US 4,057,526 B1 , US 4,082,562 B1 , DE 3026719 A1]. Die darin beschriebenen Mikropartikel zeichnen sich vor allem dadurch aus, dass sie einen Hohlraum besitzen, der kleiner 200 μm (Durchmesser) ist und dieser hohle Kern aus Luft (oder einer gasförmigen Substanz) besteht. Das schließt ebenfalls poröse Mikropartikel der 100 μm Skala ein, die ein Vielfaches an kleineren Hohlräumen und/oder Poren besitzen können. Bei der Verwendung von hohlen Mikropartikeln zur künstlichen Luftporenbildung im Beton erwiesen sich zwei Faktoren nachteilig für die Durchsetzung dieser Technologie auf dem Markt aus. Es ist nur mit relativ hohen Dosierungen eine zufrieden stellende Resistenz des Betons gegenüber Frost- und Tauwechseln zu erzielen. Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, ein Mittel zur Verbesserung der Frost- bzw. Frost-Tauwechsel-Beständigkeit für hydraulisch abbindende Baustoffmischungen bereitzustellen, welche auch bei relativ geringen Dosierungen seine volle Wirksamkeit entfaltet.
Die Aufgabe wurde gelöst durch die Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass die Schale der Mikropartikel zu über 99 Gew% aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l aufgebaut ist.
Sofern nichts anderes angegeben ist sind in dieser Schrift stets die Löslichkeiten in Wasser bei 200C gemeint.
Durch die überwiegende Verwendung der sehr schlecht wasserlöslichen Monomere erhält man Mikropartikel mit einer sehr unpolare Oberfläche.
Überraschend wurde gefunden, dass durch die Verwendung solcher Mikropartikel eine außerordentlich gute Wirksamkeit bei der Erhöhung der Beständigkeit gegen Frost bzw. Frost/Tau-Wechsel erreicht werden kann. Die Wirkung ist deutlich besser, als wenn Partikel mit polarerer Oberfläche verwendet werden. Als Erklärung, für diesen unerwarteten Effekt - ohne daß diese Theorie den Bereich der Erfindung einschränken soll - wird angenommen, daß solche Mikropartikel mit unpolarer Oberfläche eine schlechtere Anbindung an die Baustoffmischung aufweisen. Dadurch kann es an der Grenzfläche zwischen Mikropartikeln und Baustoffmatrix zur Bildung von Kappillarporen kommen, die zur Erhöhung der Frost- bzw. Frost/Tau-Wechsel-Beständigkeit beitragen.
Die Schale besteht erfindungsgemäß zu über 99 Gew% aus aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l. Bevorzugt besteht die Schale zu über 99,5 Gew% aus solchen Monomeren. Besonders bevorzugt besteht die Schale ausschließlich aus solchen Monomeren.
Da die erfindungsgemäße Wirkung der unpolaren Schale offenbar mit der unpolaren Oberfläche zusammenhängt, ist es ausreichend, wenn bei einem mehrschaligen Aufbau des Mikropartikels die äußerste Schale der Bedingung genügt, zu über 99 Gew% aus aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l zu bestehen. Auch in diesem Fall ist eine Monomerzusammensetzung mit 99,5% dieser Monomere bevorzugt, und die ausschließliche Verwendung dieser Monomere in der äußersten Schale ist besonders bevorzugt.
Bevorzugt besteht die Schale, gegebenenfalls die äußere Schale, aus Styrol.
In einer weiteren bevorzugten Ausführungsform der Erfindung besteht die Schale, gegebenenfalls die äußere Schale, aus Styrol und/oder n- Hexyl(meth)acrylat und/oder n-Butyl(meth)acrylat und/oder i-Butyl(meth)acrylat und/oder Propyl(meth)acrylat und/oder Ethylmethacrylat und/oder Ethylhexyl(meth)acrylat. Die Schreibweise (Meth)acrylat bedeutet hier sowohl Methacrylat, wie z.B. Methylmethacrylat, Ethylmethacrylat usw., als auch Acrylat, wie z.B. Methylacrylat, Ethylacrylat usw., sowie Mischungen aus beiden.
Die erfindungsgemäßen Mikropartikel können vorzugsweise durch Emulsionspolymerisation hergestellt werden und weisen vorzugsweise eine mittlere Teilchengröße von 100 bis 5000 nm auf; besonders bevorzugt ist eine mittlere Teilchengröße von 200 bis 2000 nm. Am meisten bevorzugt sind mittlere Teilchengrößen von 250 bis 1000 nm.
Die Bestimmung der mittleren Teilchengröße erfolgt zum Beispiel durch Auszählung einer statistisch signifikanten Menge an Partikeln anhand von transmissionselektronenmikroskopischen Aufnahmen.
Bei der Herstellung durch Emulsionspolymerisation werden die Mikropartikel in Form einer wäßrigen Dispersion erhalten. Entsprechend erfolgt der Zusatz der Mikropartikel zur Baustoffmischung vorzugsweise ebenfalls in dieser Form.
Bei der Herstellung und in der Dispersion sind die Hohlräume der Mikropartikel wassergefüllt. Ihre Wirkung zur Erhöhung der Frost- und Frost-Tauwechsel- Beständigkeit in der Baustoffmischung entfalten die Partikel, indem das Wasser beim und nach dem Erhärten der Baustoffmischung - zumindest teilweise - verlieren, wonach entsprechend gas- bzw. luftgefüllte Hohlkugeln vorliegen.
Gemäß einer bevorzugten Ausführungsform bestehen die eingesetzten Mikropartikel aus Polymerteilchen, die einen Kern (A) und mindestens eine Schale (B) besitzen, wobei die Kern/Schale-Polymerteilchen mit Hilfe einer Base gequollen wurden.
Der Kern (A) des Partikels enthält eine oder mehrere ethylenisch ungesättigte Carbonsäure-(Derivat-)Monomere die eine Quellung des Kerns ermöglichen; diese Monomere sind vorzugsweise ausgewählt aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure und deren Mischungen. Acrylsäure und Methacrlysäure sind besonders bevorzugt.
Die - gegebenenfalls äußerste - Schale B enthält die erfindungsgemäß die genannten Monomere.
Werden die Mikropartikel als mehrschalige oder als Gradientenlatices aufgebaut, so gelten für die zwischen Kern und äußerster Schale verwendeten Monomere keine besonderen Beschränkungen.
Die Herstellung dieser polymeren Mikropartikel durch Emulsionspolymerisation sowie deren Quellung mit Hilfe von Basen wie z. B. Alkali- oder Alkalihydroxide sowie Ammoniak oder einem Amin werden ebenfalls in den europäischen Patentschriften EP 22 633 B1 , EP 735 29 B1 sowie EP 188 325 B1 beschrieben.
Der Polymergehalt der eingesetzten Mikropartikel kann in Abhängigkeit vom Durchmesser und dem Wassergehalt bei 2 bis 98 Gew.-% (Gewicht Polymer bezogen auf das Gesamtgewicht des wassergefüllten Partikels) liegen.
Bevorzugt sind Polymergehalte von 2 bis 60 Gew.-%, besonders bevorzugt sind Polymergehalte von 2 bis 40 Gew.-%. Es ist im Rahmen der vorliegenden Erfindung ohne weiteres möglich, die wassergefüllten Mikropartikel direkt als Feststoff der Baustoffmischung zuzugeben. Dazu werden die Mikropartikel - wie zuvor beschrieben - koaguliert und durch übliche Methoden (z. B. Filtration, Zentrifugieren, Sedimentieren und Dekantieren) aus der wässrigen Dispersion isoliert und die Partikel anschließend getrocknet
Die wassergefüllten Mikropartikel werden der Baustoffmischung in einer bevorzugten Menge von 0,01 bis 5 Vol%, insbesondere 0,1 bis 0,5 Vol%, zugegeben. Die Baustoffmischung bspw. in Form von Beton oder Mörtel kann hierbei die üblichen hydraulisch abbindenden Bindemittel wie z. B. Zement, Kalk, Gips oder Anhydrit enthalten.
Ein wesentlicher Vorteil durch die Verwendung der wassergefüllten Mikropartikel besteht darin, dass nur ein außerordentlich geringer Lufteintrag in den Beton erfolgt. Dadurch sind deutlich verbesserte Druckfestigkeiten des Betons zu erzielen. Diese liegen etwa 25-50% über den Druckfestigkeiten von Beton, der mit herkömmlicher Luftporenbildung erhalten wurde. Somit können Festigkeitsklassen erreicht werden, die sonst nur durch einen wesentlich niedrigeren Wasser/Zement-Wert (W/Z-Wert) einstellbar sind. Geringe W/Z- Werte schränken aber wiederum die Verarbeitbarkeit des Betons unter Umständen deutlich ein.
Außerdem können höhere Druckfestigkeiten zur Folge haben, dass der für die Festigkeitsentwicklung erforderliche Gehalt an Zement im Beton verringert werden könnte und somit der Preis pro m3 Beton signifikant reduziert wird.

Claims

PATENTANSPRÜCHE
1. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass die Schale der Mikropartikel zu über 99 Gew% aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l aufgebaut ist.
2. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen nach Anspruch 1 , dadurch gekennzeichnet, dass die Schale der Mikropartikel ausschließlich aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l aufgebaut ist.
3. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die äußere Schale Styrol enthält.
4. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die äußere Schale Styrol und/oder n-Hexyl(meth)acrylat und/oder n-Butyl(meth)acrylat und/oder i-Butyl(meth)acrylat und/oder Propyl(meth)acrylat und/oder Ethylmethacrylat und/oder Ethylhexyl(meth)acrylat enthält.
5. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel aus Polymerteilchen bestehen, die einen mit Hilfe einer wässrigen Base gequollenen Polymerkern (A), der eine oder mehrere ungesättigte Carbonsäure-(Derivat-)Monomers enthält, sowie eine Polymerhülle (B), die überwiegend aus nicht-ionischen, ethylenisch ungesättigten Monomeren besteht, enthalten.
6. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 5, dadurch gekennzeichnet, dass die ungesättigten Carbonsäure-(Derivat-)Monomere gewählt sind aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure.
7. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel einen Polymergehalt von 2 bis 98 Gew.-% aufweisen.
8. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 100 bis 5000 nm aufweisen.
9. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 8, dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 200 bis 2000 nm aufweisen.
10. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 9, dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 250 bis 1000 nm aufweisen
11. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.01 bis 5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.
12. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 11 , dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.1 bis 0,5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.
13. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Baustoffmischungen aus einem Bindemittel, ausgewählt aus der Gruppe Zement, Kalk, Gips und Anhydrit, bestehen.
14. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Baustoffmischungen um Beton oder Mörtel handelt.
EP07704247A 2006-02-23 2007-01-30 Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen Withdrawn EP1986972A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008967A DE102006008967A1 (de) 2006-02-23 2006-02-23 Additive Baustoffmischungen mit Mikropartikeln mit unpolaren Schalen
PCT/EP2007/050895 WO2007096231A2 (de) 2006-02-23 2007-01-30 Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen

Publications (1)

Publication Number Publication Date
EP1986972A2 true EP1986972A2 (de) 2008-11-05

Family

ID=38319875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704247A Withdrawn EP1986972A2 (de) 2006-02-23 2007-01-30 Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen

Country Status (10)

Country Link
US (1) US20070193478A1 (de)
EP (1) EP1986972A2 (de)
JP (1) JP2009527445A (de)
KR (1) KR20080110996A (de)
CN (1) CN101024560A (de)
BR (1) BRPI0708240A2 (de)
CA (1) CA2643455A1 (de)
DE (1) DE102006008967A1 (de)
RU (1) RU2008137542A (de)
WO (1) WO2007096231A2 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1366128B1 (de) * 2001-02-07 2009-11-25 Evonik Röhm GmbH Heissversiegelungsmassen
DE10350786A1 (de) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mischungen zur Herstellung von Reaktivschmelzklebstoffen sowie daraus erhältliche Reaktivschmelzklebstoffe
DE102004035937A1 (de) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisole mit verringerter Wasseraufnahme
DE102005042389A1 (de) * 2005-06-17 2006-12-28 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102005045458A1 (de) * 2005-09-22 2007-03-29 Röhm Gmbh Verfahren zur Herstellung von ABA-Triblockcopolymeren auf (Meth)acrylatbasis
DE102005046681A1 (de) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Verwendung von polymeren Mikropartikeln in Baustoffmischungen
DE102005052130A1 (de) * 2005-10-28 2007-05-03 Röhm Gmbh Spritzbare Akustikmassen
US8915997B2 (en) 2013-05-16 2014-12-23 Navs, Llc Durable concrete and method for producing the same
KR20160087194A (ko) 2015-01-13 2016-07-21 정재삼 마스크 팩

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7505525A (nl) * 1975-05-12 1976-11-16 Akzo Nv Werkwijze voor de bereiding van een vorstbesten- dig beton.
CA1180474A (en) * 1979-06-26 1985-01-02 Alexander Kowalski Sequential heteropolymer dispersion and a particulate material obtainable therefrom useful in coating compositions as a thickening and/or opacifying agent
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
EP0725092A3 (de) * 1995-02-06 1997-08-27 Chemie Linz Gmbh Redispergierbare, pulverförmige Kern-Mantel-Polymere, deren Herstellung und Verwendung
US6498209B1 (en) * 1998-03-31 2002-12-24 Roehm Gmbh & Co. Kg Poly(meth)acrylate plastisols
DE19826412C2 (de) * 1998-06-16 2002-10-10 Roehm Gmbh Geruchsvermindertes, kalthärtendes (Meth)acrylat-Reaktionsharz für Bodenbeschichtungen, dieses Reaktionsharz aufweisende Bodenbeschichtungen sowie Verfahren zur Herstellung solcher Bodenbeschichtungen
DE19833062A1 (de) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispergierbares Pulver und dessen wäßrige Dispersion, Verfahren zur Herstellung sowie Verwendung
DE19928352A1 (de) * 1999-06-21 2000-12-28 Roehm Gmbh Verbesserte Poly(meth)acrylatptastisole und Verfahren zu ihrer Herstellung
DE10227898A1 (de) * 2002-06-21 2004-01-15 Röhm GmbH & Co. KG Verfahren zur Herstellung sprühgetrockneter Poly(meth)acrylatpolymere, ihre Verwendung als Polymerkomponente für Plastisole und damit hergestellte Plastisole
DE10350786A1 (de) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mischungen zur Herstellung von Reaktivschmelzklebstoffen sowie daraus erhältliche Reaktivschmelzklebstoffe
CN1968908B (zh) * 2004-06-15 2010-11-10 建筑研究及技术有限责任公司 抗冻-融损伤水泥湿浇铸组合物及其制备方法
DE102004035937A1 (de) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisole mit verringerter Wasseraufnahme
DE102005042389A1 (de) * 2005-06-17 2006-12-28 Röhm Gmbh Heißversiegelungsmasse für Aluminium- und Polyethylenterephthalatfolien gegen Polypropylen-Polyvinylchlorid- und Polystyrolbehälter
DE102005046681A1 (de) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Verwendung von polymeren Mikropartikeln in Baustoffmischungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007096231A2 *

Also Published As

Publication number Publication date
KR20080110996A (ko) 2008-12-22
BRPI0708240A2 (pt) 2011-05-24
CA2643455A1 (en) 2007-08-30
CN101024560A (zh) 2007-08-29
JP2009527445A (ja) 2009-07-30
US20070193478A1 (en) 2007-08-23
RU2008137542A (ru) 2010-03-27
DE102006008967A1 (de) 2007-08-30
WO2007096231A3 (de) 2008-02-14
WO2007096231A2 (de) 2007-08-30

Similar Documents

Publication Publication Date Title
EP1986973A2 (de) Additive baustoffmischungen mit mikropartikeln verschiedener grösse
EP1989157A1 (de) Additive baustoffmischungen mit mikropartikeln die in der baustoffmischung gequollen werden
EP1986974A1 (de) Additive baustoffmischungen mit mikropartikeln, deren schalen porös und/oder hydrophil sind
EP1986976A1 (de) Additive baustoffmischungen mit sprühgetrockneten mikropartikeln
EP1928801A1 (de) Verwendung von polymeren mikropartikeln in baustoffmischungen
EP1986972A2 (de) Additive baustoffmischungen mit mikropartikeln mit unpolaren schalen
EP1986975A2 (de) Additive baustoffmischungen mit nichtionischen emulgatoren
EP1986977A2 (de) Additive baustoffmischungen mit sterisch oder elektrostatisch abstossenden monomeren in der schale der mikropartikel
EP2021299A2 (de) Additive baustoffmischungen mit mikropartikeln mit sehr dünnen schalen
EP1991510A2 (de) Additive baustoffmischungen mit quellbaren polymergebilden
WO2007099004A1 (de) Additive baustoffmischungen mit ionisch gequollenen mikropartikeln
WO2007096232A2 (de) Additive baustoffmischungen mit ionischen emulgatoren
DE102006009840A1 (de) Additive Baustoffmischungen mit Mikrovollpartikeln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

Owner name: CONSTRUCTION RESEARCH & TECHNOLOGY GMBH

17Q First examination report despatched

Effective date: 20100119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110802