EP1986972A2 - Additive building material mixtures comprising microparticles with apolar shells - Google Patents

Additive building material mixtures comprising microparticles with apolar shells

Info

Publication number
EP1986972A2
EP1986972A2 EP07704247A EP07704247A EP1986972A2 EP 1986972 A2 EP1986972 A2 EP 1986972A2 EP 07704247 A EP07704247 A EP 07704247A EP 07704247 A EP07704247 A EP 07704247A EP 1986972 A2 EP1986972 A2 EP 1986972A2
Authority
EP
European Patent Office
Prior art keywords
microparticles
polymeric
voided
building material
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07704247A
Other languages
German (de)
French (fr)
Inventor
Jan Hendrik Schattka
Holger Kautz
Gerd LÖHDEN
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Construction Research and Technology GmbH
Roehm GmbH Darmstadt
Original Assignee
Evonik Roehm GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Evonik Roehm GmbH filed Critical Evonik Roehm GmbH
Publication of EP1986972A2 publication Critical patent/EP1986972A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B16/00Use of organic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of organic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B16/04Macromolecular compounds
    • C04B16/08Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons
    • C04B16/085Macromolecular compounds porous, e.g. expanded polystyrene beads or microballoons expanded in situ, i.e. during or after mixing the mortar, concrete or artificial stone ingredients
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2641Polyacrylates; Polymethacrylates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B24/00Use of organic materials as active ingredients for mortars, concrete or artificial stone, e.g. plasticisers
    • C04B24/24Macromolecular compounds
    • C04B24/26Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B24/2664Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of ethylenically unsaturated dicarboxylic acid polymers, e.g. maleic anhydride copolymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0049Water-swellable polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2103/00Function or property of ingredients for mortars, concrete or artificial stone
    • C04B2103/0045Polymers chosen for their physico-chemical characteristics
    • C04B2103/0058Core-shell polymers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/29Frost-thaw resistance

Definitions

  • the present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures to improve their Frostg. Freeze-thaw resistance.
  • the structure of a cement-bound concrete is traversed by capillary pores (radius: 2 ⁇ m - 2 mm) or gel pores (radius: 2 - 50 nm). Pore water contained therein differs in its state form depending on the pore diameter.
  • a prerequisite for an improved resistance of the concrete during frost and thaw changes is that the distance of each point in the cement stone from the next artificial air pore does not exceed a certain value. This distance is also referred to as the "distance factor” or “powers spacing factor” [TCPowers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board” 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical "Power spacing factor" of 500 ⁇ m leads to damage to the concrete during frost and thaw cycles. Therefore, in order to achieve this with limited air pore content, the diameter of the artificially introduced air pores must be less than 200-300 ⁇ m [K.Snyder, K. Natesaiyer & K.Hover, The Static and Statistical Properties of Entrained Air voids in concrete: A mathematical basis for air void Systems characterization) "Materials Science of Concrete” VI (2001) 129-214].
  • an artificial air pore system depends largely on the composition and grain size of the aggregates, the type and amount of cement, the concrete consistency, the mixer used, the mixing time, the temperature, but also on the type and amount of the air entraining agent. Under consideration of the appropriate manufacturing rules, their effects can indeed be mastered, however, there may be a large number of undesired impairments, which ultimately leads to the desired air content in the concrete can be exceeded or fallen below and thus adversely affected the strength or frost resistance of the concrete ,
  • Such artificial air pores can not be metered directly, but by the addition of so-called air-entraining agents, the air introduced by mixing is stabilized [L. Du & K.J. Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research” 35 (2005) 1463-71].
  • Conventional air entraining agents are mostly of a surfactant-like structure and break the air introduced by the mixing into small air bubbles with a diameter as small as possible of 300 ⁇ m and stabilize them in the moist concrete structure. One distinguishes between two types.
  • These hydrophobic salts reduce the surface tension of the water and accumulate at the interface between cement grain, air and water. They stabilize the microbubbles and are therefore found in the hardening concrete on the surfaces of these air pores again.
  • the other type e.g. Sodium lauryl sulfate (SDS) or Natriumdodecylphenylsulfonat - on the other hand forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble. By preferentially accumulating at the air-water interface, they also reduce the surface tension, thus stabilizing the microbubbles, and are preferably found on the surfaces of these air voids in the hardened concrete.
  • SDS Sodium lauryl sulfate
  • Natriumdodecylphenylsulfonat forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble.
  • microparticles described therein are characterized in particular by the fact that they have a cavity which is smaller than 200 microns (diameter) and this hollow core consists of air (or a gaseous substance). This also includes porous microparticles of the 100 ⁇ m scale, which can have a multiple of smaller cavities and / or pores.
  • the present invention was therefore based on the object to provide a means for improving the frost or freeze-thaw resistance for hydraulically setting building material mixtures, which unfolds its full effectiveness even at relatively low dosages.
  • the object has been achieved by the use of polymeric microparticles having a cavity in hydraulically setting building material mixtures, characterized in that the shell of the microparticles is composed of more than 99% by weight of monomers with a water solubility of less than 10 -1 mol / l.
  • the shell consists of more than 99% by weight of monomers having a water solubility of less than 10 -1 mol / l.
  • the shell preferably consists of more than 99.5% by weight of such monomers.
  • the shell consists exclusively of such monomers.
  • the effect of the non-polar shell according to the invention is apparently related to the nonpolar surface, it is sufficient if more than 99 wt% of monomers with a water solubility of less than 10 -1 mol / l are sufficient for a multi-shell structure of the microparticle to pass. Also in this case, a monomer composition of 99.5% of these monomers is preferable, and the exclusive use of these monomers in the outermost shell is particularly preferable.
  • the shell optionally the outer shell, consists of styrene.
  • the shell optionally the outer shell, consists of styrene and / or n-hexyl (meth) acrylate and / or n-butyl (meth) acrylate and / or i-butyl (meth) acrylate and / or propyl (meth) acrylate and / or ethyl methacrylate and / or ethylhexyl (meth) acrylate.
  • the notation (meth) acrylate here means both methacrylate, such as methyl methacrylate, ethyl methacrylate, etc., as well as acrylate, such as methyl acrylate, ethyl acrylate, etc., as well as mixtures of both.
  • microparticles according to the invention can preferably be prepared by emulsion polymerization and preferably have an average particle size of 100 to 5000 nm; particularly preferred is an average particle size of 200 to 2000 nm. Most preferred are average particle sizes of 250 to 1000 nm.
  • the mean particle size is determined, for example, by counting a statistically significant amount of particles on the basis of transmission electron micrographs.
  • the microparticles When prepared by emulsion polymerization, the microparticles are obtained in the form of an aqueous dispersion. Accordingly, the addition of the microparticles to the building material mixture preferably also takes place in this form.
  • the cavities of the microparticles are water-filled. Their effect to increase the frost and freeze-thaw resistance in the building material mixture unfold the particles by the water during and after hardening of the building material mixture - at least partially - lose, after which there are correspondingly gas or air-filled hollow spheres.
  • the microparticles used consist of polymer particles which have a core (A) and at least one Shell (B), wherein the core / shell polymer particles were swollen with the aid of a base.
  • the core (A) of the particle contains one or more ethylenically unsaturated carboxylic acid (derivative) monomers which allow swelling of the core; these monomers are preferably selected from the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid and mixtures thereof. Acrylic acid and methacrylic acid are particularly preferred.
  • the - possibly outermost - shell B contains the present invention, said monomers.
  • microparticles are built up as multi-shelled or as gradient latices, no particular restrictions apply to the monomers used between core and outermost shell.
  • the polymer content of the microparticles used can be from 2 to 98% by weight (weight of polymer based on the total weight of the water-filled particle).
  • polymer contents of 2 to 60 wt .-% particularly preferred are polymer contents of 2 to 40 wt .-%. It is within the scope of the present invention readily possible to add the water-filled microparticles directly as a solid of the building material mixture.
  • the microparticles are - as described above - coagulated and isolated by conventional methods (eg filtration, centrifuging, sedimentation and decanting) from the aqueous dispersion and the particles are then dried
  • the water-filled microparticles are added to the building material mixture in a preferred amount of 0.01 to 5% by volume, in particular 0.1 to 0.5% by volume.
  • the building material mixture for example.
  • the usual hydraulically setting binder such as cement, lime, gypsum or anhydrite.

Abstract

The invention relates to the use of polymeric microparticles with apolar shells in hydraulically setting building material mixtures, for improving their freeze resistance and/or freeze-thaw resistance.

Description

Additive Baustoffmischungen mit Mikropartikeln mit unpolaren Schalen Additive building material mixtures with microparticles with nonpolar shells
Die vorliegende Erfindung betrifft die Verwendung von polymeren Mikropartikeln in hydraulisch abbindenden Baustoffgemischen zur Verbesserung deren Frostbzw. Frost-Tauwechsel-Beständigkeit.The present invention relates to the use of polymeric microparticles in hydraulically setting building material mixtures to improve their Frostbzw. Freeze-thaw resistance.
Für den Widerstand des Betons gegen Frost und Frost-Tauwechsel bei gleichzeitiger Einwirkung von Taumitteln sind die Dichtigkeit seines Gefüges, eine bestimmte Festigkeit der Matrix und das Vorhandensein eines bestimmten Porengefüges maßgebend. Das Gefüge eines zementgebundenen Betons wird von Kapillarporen (Radius: 2 μm - 2mm) bzw. Gelporen (Radius: 2 - 50 nm) durchzogen. Darin enthaltenes Porenwasser unterscheidet sich in seiner Zustandsform in Abhängigkeit vom Porendurchmesser. Während Wasser in den Kapillarporen seine gewöhnlichen Eigenschaften beibehält, klassifiziert man in den Gelporen nach kondensiertem Wasser (Mesoporen: 50 nm) und adsorptiv gebundenem Oberflächenwasser (Mikroporen: 2 nm), deren Gefrierpunkte beispielsweise weit unter -500C liegen kann [M.J.Setzer, Interaction of water with hardened cement paste, "Ceramic Transactions" 16 (1991 ) 415-39]. Das hat zur Folge, dass selbst bei tiefen Abkühlungen des Betons ein Teil des Porenwassers ungefroren bleibt (metastabiles Wasser). Bei gleicher Temperatur ist aber der Dampfdruck über Eis geringer als der über Wasser. Da Eis und metastabiles Wasser gleichzeitig nebeneinander vorliegen, entsteht ein Dampfdruckgefälle, das zu einer Diffusion des noch flüssigen Wassers zum Eis und zu dessen Eisbildung führt, wodurch eine Entwässerung der kleineren bzw. eine Eisansammlung in den größeren Poren stattfindet. Diese Wasserumverteilung infolge Abkühlung findet in jedem porigen System statt und ist maßgeblich von der Art der Porenverteilung abhängig. Die künstliche Einführung von mikrofeinen Luftporen im Beton erzeugt also in erster Linie sogenannte Entspannungsräume für expandierendes Eis und Eiswasser. In diesen Poren kann gefrierendes Porenwasser expandieren bzw. internen Druck und Spannungen von Eis und Eiswasser auffangen, ohne dass es zu Mikrorissbildungen und damit zu Frostschäden am Beton kommt. Die prinzipielle Wirkungsweise solcher Luftporensysteme ist im Zusammenhang mit dem Mechanismus der Frostschädigung von Beton in einer Vielzahl von Übersichten beschrieben worden [Schulson, Erland M. (1998) Ice damage to concrete. CRREL Special Report 98-6; S.Chatterji, Freezing of air-entrained cement-based materials and specific actions of air-entraining agents, "Cement & Concrete Composites" 25 (2003) 759-65; G.W.Scherer, J.Chen & J.Valenza, Methods for protecting concrete from freeze damage, US-Patent 6,485,560 B1 (2002); M.Pigeon, B.Zuber & J. Marchand, Freeze/thaw resistance, "Advanced Concrete Technology" 2 (2003) 11/1-11/17; B. Erlin & B. Mather, A new process by which cyclic freezing can damage concrete - the Erlin/Mather effect, "Cement & Concrete Research" 35 (2005) 1407-11].For the resistance of the concrete against frost and freezing-thawing with the simultaneous action of de-icing agents, the tightness of its structure, a certain strength of the matrix and the presence of a certain pore structure are decisive. The structure of a cement-bound concrete is traversed by capillary pores (radius: 2 μm - 2 mm) or gel pores (radius: 2 - 50 nm). Pore water contained therein differs in its state form depending on the pore diameter. While water retains in the capillary its usual properties, is classified into the gel pores by condensed water (mesopores: 50 nm) and adsorptively bound surface water (micropores: 2 nm), the freezing point may be, for example, far below -50 0 C [MJSetzer, Interaction of water with hardened cement paste, "Ceramic Transactions" 16 (1991) 415-39]. As a result, even with deep cooling of the concrete, part of the pore water remains unfrozen (metastable water). At the same temperature, however, the vapor pressure over ice is lower than that above water. Since ice and metastable water are present side by side at the same time, creates a vapor pressure gradient, which leads to a diffusion of the still liquid water to the ice and its ice formation, whereby a drainage of the smaller or an ice accumulation takes place in the larger pores. This redistribution of water due to cooling takes place in every porous system and is significantly dependent on the type of pore distribution. The artificial introduction of microfine air pores in concrete thus creates primarily so-called relaxation rooms for expanding ice and ice water. In these pores, freezing pore water can expand or absorb internal pressure and tensions of ice and ice water, without causing microcracking and thus frost damage to the concrete. The principal mode of action of such air-entrainment systems has been described in a large number of reviews in connection with the mechanism of frost damage to concrete [Schulson, Erland M. (1998) Ice damage to concrete. CRREL Special Report 98-6; S.Chatterji, Freezing of air-entrained cement-based materials and specific actions of air-entraining agents, "Cement & Concrete Composites" 25 (2003) 759-65; GW Scherer, J.Chen & J. Valenza, Methods for protecting concrete from freeze damage, US Pat. No. 6,485,560 B1 (2002); M. Pigeon, B.Zuber & J. Marchand, Freeze / Thaw Resistance, "Advanced Concrete Technology" 2 (2003) 11 / 1-11 / 17; Erlin & B. Mather, A new process by which cyclic freezing can damage concrete - the Erlin / Mather effect, "Cement & Concrete Research" 35 (2005) 1407-11].
Voraussetzung für eine verbesserte Beständigkeit des Betons bei Frost- und Tauwechsel ist, dass der Abstand jedes Punktes im Zementstein von der nächsten künstlichen Luftpore einen bestimmten Wert nicht überschreitet. Dieser Abstand wird auch als Abstandsfaktor oder "Powers spacing factor" bezeichnet [T.C.Powers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board" 29 (1949) 184-202]. Laborprüfungen haben dabei gezeigt, dass ein Überschreiten des kritischen "Power spacing factor" von 500 μm zu einer Schädigung des Betons bei Frostund Tauwechsel führt. Um dies bei beschränktem Luftporengehalt zu erreichen, muss der Durchmesser der künstlich eingeführten Luftporen daher kleiner 200 - 300 μm sein [K.Snyder, K.Natesaiyer & K.Hover, The stereological and Statistical properties of entrained air voids in concrete: A mathematical basis for air void Systems characterization) "Materials Science of Concrete" VI (2001 ) 129-214].A prerequisite for an improved resistance of the concrete during frost and thaw changes is that the distance of each point in the cement stone from the next artificial air pore does not exceed a certain value. This distance is also referred to as the "distance factor" or "powers spacing factor" [TCPowers, The air requirement of frost-resistant concrete, "Proceedings of the Highway Research Board" 29 (1949) 184-202]. Laboratory tests have shown that exceeding the critical "Power spacing factor" of 500 μm leads to damage to the concrete during frost and thaw cycles. Therefore, in order to achieve this with limited air pore content, the diameter of the artificially introduced air pores must be less than 200-300 μm [K.Snyder, K. Natesaiyer & K.Hover, The Static and Statistical Properties of Entrained Air voids in concrete: A mathematical basis for air void Systems characterization) "Materials Science of Concrete" VI (2001) 129-214].
Die Bildung eines künstlichen Luftporensystems hängt maßgeblich von der Zusammensetzung und der Kornformität der Zuschläge, der Art und Menge des Zements, der Betonkonsistenz, dem verwendeten Mischer, der Mischzeit, der Temperatur, aber auch von der Art und Menge des Luftporenbildners ab. Unter Berücksichtigung entsprechender Herstellungsregeln lassen sich deren Einflüsse zwar beherrschen, jedoch kann es zu einer Vielzahl von ungewünschten Beeinträchtigungen kommen, was letztendlich dazu führt, dass der gewünschte Luftgehalt im Beton über- oder unterschritten werden kann und somit die Festigkeit oder den Frostwiderstand des Betons negativ beeinflusst.The formation of an artificial air pore system depends largely on the composition and grain size of the aggregates, the type and amount of cement, the concrete consistency, the mixer used, the mixing time, the temperature, but also on the type and amount of the air entraining agent. Under consideration of the appropriate manufacturing rules, their effects can indeed be mastered, however, there may be a large number of undesired impairments, which ultimately leads to the desired air content in the concrete can be exceeded or fallen below and thus adversely affected the strength or frost resistance of the concrete ,
Solche künstlichen Luftporen lassen sich nicht direkt dosieren, sondern durch die Zugabe von sogenannten Luftporenbildnern wird die durch das Mischen eingetragene Luft stabilisiert [L. Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71]. Herkömmliche Luftporenbildner sind zumeist tensidartiger Struktur und brechen die durch das Mischen eingeführte Luft zu kleinen Luftbläschen mit einem Durchmesser möglichst kleiner 300 μm und stabilisieren diese im feuchten Betongefüge. Man unterscheidet dabei zwischen zwei Typen.Such artificial air pores can not be metered directly, but by the addition of so-called air-entraining agents, the air introduced by mixing is stabilized [L. Du & K.J. Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71]. Conventional air entraining agents are mostly of a surfactant-like structure and break the air introduced by the mixing into small air bubbles with a diameter as small as possible of 300 μm and stabilize them in the moist concrete structure. One distinguishes between two types.
Der eine Typ - z.B. Natriumoleat, das Natriumsalz der Abietinsäure oder Vinsolharz, einem Extrakt aus Kiefernwurzeln - reagiert mit dem Calciumhydroxid der Porenlösung im Zementleim und fällt als unlösliches Calciumsalz aus. Diese hydrophoben Salze reduzieren die Oberflächenspannung des Wassers und sammeln sich an der Grenzfläche zwischen Zementkorn, Luft und Wasser. Sie stabilisieren die Mikrobläschen und finden sich daher im aushärtenden Beton an den Oberflächen dieser Luftporen wieder.One type - eg sodium oleate, the sodium salt of abietic acid or vinsol resin, an extract of pine roots - reacts with the calcium hydroxide of the pore solution in the cement paste and precipitates as insoluble calcium salt. These hydrophobic salts reduce the surface tension of the water and accumulate at the interface between cement grain, air and water. They stabilize the microbubbles and are therefore found in the hardening concrete on the surfaces of these air pores again.
Der andere Typ - z.B. Natrium-Iaurylsulfat (SDS) oder Natriumdodecylphenylsulfonat - bildet dagegen mit Calciumhydroxid lösliche Calciumsalze, die aber ein anormales Lösungsverhalten zeigen. Unter einer gewissen kritischen Temperatur zeigen diese Tenside eine sehr geringe Löslichkeit, oberhalb dieser Temperatur sind sie sehr gut löslich. Durch eine bevorzugtes Ansammeln an der Luft-Wasser-Grenzschicht verringern sie ebenfalls die Oberflächenspannung, stabilisieren somit die Mikrobläschen und sind bevorzugt an der Oberflächen dieser Luftporen im ausgehärteten Beton wiederzufinden.The other type - e.g. Sodium lauryl sulfate (SDS) or Natriumdodecylphenylsulfonat - on the other hand forms with calcium hydroxide soluble calcium salts, but show an abnormal solution behavior. Below a certain critical temperature these surfactants show a very low solubility, above this temperature they are very soluble. By preferentially accumulating at the air-water interface, they also reduce the surface tension, thus stabilizing the microbubbles, and are preferably found on the surfaces of these air voids in the hardened concrete.
Bei der Verwendung dieser Luftporenbildner nach dem Stand der Technik treten eine Vielzahl von Probleme auf [L. Du & K.J.Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71. Beispielsweise können längere Mischzeiten, unterschiedliche Mischerdrehzahlen, veränderte Dosierabläufe bei den Transportbetonen dazu führen, dass die stabilisierte Luft (in den Luftporen) wieder ausgetrieben wird.The use of these prior art air entraining agents presents a variety of problems [L. Du & K.J. Folliard, Mechanism of air entrainment in concrete "Cement & Concrete Research" 35 (2005) 1463-71. For example, longer mixing times, different mixer speeds, changing metering sequences in the case of ready-mixed concrete can lead to the stabilized air being expelled again (in the air pores).
Die Beförderung von Betonen mit verlängerten Transportzeiten, schlechter Temperierung und unterschiedlichen Pump- und Fördereinrichtungen, sowie das Einbringen dieser Betone einhergehend mit veränderter Nachbearbeitung, Ruckelverhalten und Temperaturbedingungen kann einen zuvor eingestellten Luftporengehalt signifikant verändern. Das kann im schlimmsten Fall bedeuten, dass ein Beton die erforderlichen Grenzwerte einer bestimmten Expositionsklasse nicht mehr erfüllt und somit unbrauchbar geworden ist [EN 206-1 (2000), Concrete - Part 1 : Secification, Performance, production and conformity]. Der Gehalt an feinen Stoffen im Beton (z.B. Zement mit unterschiedlichem Alkaligehalt, Zusatzstoffe wie Flugasche, Silikastaub, oder Farbzusätze) beeinträchtigt die Luftporenbildung ebenfalls. Auch können Wechselwirkungen mit entschäumend wirkenden Fließmitteln auftreten, die somit Luftporen austreiben, aber auch zusätzlich unkontrolliert einführen können.The transport of concretes with extended transport times, poor temperature control and different pumping and conveying devices, as well as the introduction of these concretes along with modified post-processing, jerking behavior and temperature conditions can significantly change a previously set air pore content. In the worst case, this may mean that a concrete no longer fulfills the required limit values of a specific exposure class and has therefore become unusable [EN 206-1 (2000), Concrete - Part 1: Secification, Performance, Production and Conformity]. The content of fine substances in the concrete (eg cement with different alkali content, additives such as fly ash, silica fume, or color additives) also affects the air entrainment. Also, interactions with defoaming agents can occur, which thus expel air voids, but also can introduce uncontrolled.
All diese die Herstellung von frostbeständigen Beton erschwerenden Einflüsse lassen sich vermeiden, wenn das erforderliche Luftporensystem nicht durch o.g. Luftporenbildner mit tensidartiger Struktur erzeugt wird, sondern der Luftgehalt durch das Zumischen bzw. feste Dosieren von polymeren Mikropartikeln (Mikrohohlkugeln) herrührt [H.Sommer, A new method of making concrete resistant to frost and de-icing salts, "Betonwerk & Fertigteiltechnik" 9 (1978) 476-84]. Da die Mikropartikel zumeist Partikelgrößen kleiner 100 μm aufweisen, lassen sie sich im Betongefüge auch feiner und gleichmäßiger als künstlich eingeführte Luftporen verteilen. Dadurch reichen bereits geringe Mengen für einen ausreichenden Widerstand des Betons gegen Frost- und Tauwechsel aus.All of these influences, which make aggravating the production of frost-resistant concrete, can be avoided if the required air pore system is not prevented by o.g. Air entraining agent is produced with surfactant-like structure, but the air content by admixing or solid metering of polymeric microparticles (hollow microspheres) stems [H.Sommer, A new method of making concrete resistant to frost and de-icing salts, "Concrete Plant & Precast Technology" 9 (1978) 476-84]. Since the microparticles usually have particle sizes smaller than 100 μm, they can also be distributed finer and more uniformly than artificially introduced air pores in the concrete structure. As a result, even small amounts are sufficient for a sufficient resistance of the concrete against freezing and thawing.
Die Verwendung von solchen polymeren Mikropartikeln zur Verbesserung der Frost- und Frost-Tauwechsel-Beständigkeit von Beton ist entsprechend dem Stand der Technik bereits bekannt [vgl. DE 2229094 A1 , US 4,057,526 B1 , US 4,082,562 B1 , DE 3026719 A1]. Die darin beschriebenen Mikropartikel zeichnen sich vor allem dadurch aus, dass sie einen Hohlraum besitzen, der kleiner 200 μm (Durchmesser) ist und dieser hohle Kern aus Luft (oder einer gasförmigen Substanz) besteht. Das schließt ebenfalls poröse Mikropartikel der 100 μm Skala ein, die ein Vielfaches an kleineren Hohlräumen und/oder Poren besitzen können. Bei der Verwendung von hohlen Mikropartikeln zur künstlichen Luftporenbildung im Beton erwiesen sich zwei Faktoren nachteilig für die Durchsetzung dieser Technologie auf dem Markt aus. Es ist nur mit relativ hohen Dosierungen eine zufrieden stellende Resistenz des Betons gegenüber Frost- und Tauwechseln zu erzielen. Der vorliegenden Erfindung lag daher die Aufgabe zu Grunde, ein Mittel zur Verbesserung der Frost- bzw. Frost-Tauwechsel-Beständigkeit für hydraulisch abbindende Baustoffmischungen bereitzustellen, welche auch bei relativ geringen Dosierungen seine volle Wirksamkeit entfaltet.The use of such polymeric microparticles to improve the frost and freeze-thaw resistance of concrete is already known according to the prior art [cf. DE 2229094 A1, US Pat. No. 4,057,526 B1, US Pat. No. 4,082,562 B1, DE 3026719 A1]. The microparticles described therein are characterized in particular by the fact that they have a cavity which is smaller than 200 microns (diameter) and this hollow core consists of air (or a gaseous substance). This also includes porous microparticles of the 100 μm scale, which can have a multiple of smaller cavities and / or pores. When using hollow microparticles for artificial air entrainment in concrete, two factors proved detrimental to the enforcement of this technology in the marketplace. It is only with relatively high dosages to achieve a satisfactory resistance of the concrete to frost and thaw cycles. The present invention was therefore based on the object to provide a means for improving the frost or freeze-thaw resistance for hydraulically setting building material mixtures, which unfolds its full effectiveness even at relatively low dosages.
Die Aufgabe wurde gelöst durch die Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass die Schale der Mikropartikel zu über 99 Gew% aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l aufgebaut ist.The object has been achieved by the use of polymeric microparticles having a cavity in hydraulically setting building material mixtures, characterized in that the shell of the microparticles is composed of more than 99% by weight of monomers with a water solubility of less than 10 -1 mol / l.
Sofern nichts anderes angegeben ist sind in dieser Schrift stets die Löslichkeiten in Wasser bei 200C gemeint.Unless otherwise indicated in this document always the solubilities in water at 20 0 C meant.
Durch die überwiegende Verwendung der sehr schlecht wasserlöslichen Monomere erhält man Mikropartikel mit einer sehr unpolare Oberfläche.The predominant use of very poorly water-soluble monomers gives microparticles with a very non-polar surface.
Überraschend wurde gefunden, dass durch die Verwendung solcher Mikropartikel eine außerordentlich gute Wirksamkeit bei der Erhöhung der Beständigkeit gegen Frost bzw. Frost/Tau-Wechsel erreicht werden kann. Die Wirkung ist deutlich besser, als wenn Partikel mit polarerer Oberfläche verwendet werden. Als Erklärung, für diesen unerwarteten Effekt - ohne daß diese Theorie den Bereich der Erfindung einschränken soll - wird angenommen, daß solche Mikropartikel mit unpolarer Oberfläche eine schlechtere Anbindung an die Baustoffmischung aufweisen. Dadurch kann es an der Grenzfläche zwischen Mikropartikeln und Baustoffmatrix zur Bildung von Kappillarporen kommen, die zur Erhöhung der Frost- bzw. Frost/Tau-Wechsel-Beständigkeit beitragen.Surprisingly, it has been found that by using such microparticles an extraordinarily good effectiveness in increasing the resistance to frost or frost / thaw changes can be achieved. The effect is significantly better than using particles with a more polar surface. As an explanation, for this unexpected effect - without this theory being intended to limit the scope of the invention - it is believed that such microparticles with nonpolar surface have a poorer attachment to the building material mixture. This can lead to the formation of capillary pores at the interface between microparticles and building material matrix, which contribute to increasing the frost or frost / thaw alternation resistance.
Die Schale besteht erfindungsgemäß zu über 99 Gew% aus aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l. Bevorzugt besteht die Schale zu über 99,5 Gew% aus solchen Monomeren. Besonders bevorzugt besteht die Schale ausschließlich aus solchen Monomeren.According to the invention, the shell consists of more than 99% by weight of monomers having a water solubility of less than 10 -1 mol / l. The shell preferably consists of more than 99.5% by weight of such monomers. Particularly preferably, the shell consists exclusively of such monomers.
Da die erfindungsgemäße Wirkung der unpolaren Schale offenbar mit der unpolaren Oberfläche zusammenhängt, ist es ausreichend, wenn bei einem mehrschaligen Aufbau des Mikropartikels die äußerste Schale der Bedingung genügt, zu über 99 Gew% aus aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l zu bestehen. Auch in diesem Fall ist eine Monomerzusammensetzung mit 99,5% dieser Monomere bevorzugt, und die ausschließliche Verwendung dieser Monomere in der äußersten Schale ist besonders bevorzugt.Since the effect of the non-polar shell according to the invention is apparently related to the nonpolar surface, it is sufficient if more than 99 wt% of monomers with a water solubility of less than 10 -1 mol / l are sufficient for a multi-shell structure of the microparticle to pass. Also in this case, a monomer composition of 99.5% of these monomers is preferable, and the exclusive use of these monomers in the outermost shell is particularly preferable.
Bevorzugt besteht die Schale, gegebenenfalls die äußere Schale, aus Styrol.Preferably, the shell, optionally the outer shell, consists of styrene.
In einer weiteren bevorzugten Ausführungsform der Erfindung besteht die Schale, gegebenenfalls die äußere Schale, aus Styrol und/oder n- Hexyl(meth)acrylat und/oder n-Butyl(meth)acrylat und/oder i-Butyl(meth)acrylat und/oder Propyl(meth)acrylat und/oder Ethylmethacrylat und/oder Ethylhexyl(meth)acrylat. Die Schreibweise (Meth)acrylat bedeutet hier sowohl Methacrylat, wie z.B. Methylmethacrylat, Ethylmethacrylat usw., als auch Acrylat, wie z.B. Methylacrylat, Ethylacrylat usw., sowie Mischungen aus beiden.In a further preferred embodiment of the invention, the shell, optionally the outer shell, consists of styrene and / or n-hexyl (meth) acrylate and / or n-butyl (meth) acrylate and / or i-butyl (meth) acrylate and / or propyl (meth) acrylate and / or ethyl methacrylate and / or ethylhexyl (meth) acrylate. The notation (meth) acrylate here means both methacrylate, such as methyl methacrylate, ethyl methacrylate, etc., as well as acrylate, such as methyl acrylate, ethyl acrylate, etc., as well as mixtures of both.
Die erfindungsgemäßen Mikropartikel können vorzugsweise durch Emulsionspolymerisation hergestellt werden und weisen vorzugsweise eine mittlere Teilchengröße von 100 bis 5000 nm auf; besonders bevorzugt ist eine mittlere Teilchengröße von 200 bis 2000 nm. Am meisten bevorzugt sind mittlere Teilchengrößen von 250 bis 1000 nm.The microparticles according to the invention can preferably be prepared by emulsion polymerization and preferably have an average particle size of 100 to 5000 nm; particularly preferred is an average particle size of 200 to 2000 nm. Most preferred are average particle sizes of 250 to 1000 nm.
Die Bestimmung der mittleren Teilchengröße erfolgt zum Beispiel durch Auszählung einer statistisch signifikanten Menge an Partikeln anhand von transmissionselektronenmikroskopischen Aufnahmen.The mean particle size is determined, for example, by counting a statistically significant amount of particles on the basis of transmission electron micrographs.
Bei der Herstellung durch Emulsionspolymerisation werden die Mikropartikel in Form einer wäßrigen Dispersion erhalten. Entsprechend erfolgt der Zusatz der Mikropartikel zur Baustoffmischung vorzugsweise ebenfalls in dieser Form.When prepared by emulsion polymerization, the microparticles are obtained in the form of an aqueous dispersion. Accordingly, the addition of the microparticles to the building material mixture preferably also takes place in this form.
Bei der Herstellung und in der Dispersion sind die Hohlräume der Mikropartikel wassergefüllt. Ihre Wirkung zur Erhöhung der Frost- und Frost-Tauwechsel- Beständigkeit in der Baustoffmischung entfalten die Partikel, indem das Wasser beim und nach dem Erhärten der Baustoffmischung - zumindest teilweise - verlieren, wonach entsprechend gas- bzw. luftgefüllte Hohlkugeln vorliegen.During production and in the dispersion, the cavities of the microparticles are water-filled. Their effect to increase the frost and freeze-thaw resistance in the building material mixture unfold the particles by the water during and after hardening of the building material mixture - at least partially - lose, after which there are correspondingly gas or air-filled hollow spheres.
Gemäß einer bevorzugten Ausführungsform bestehen die eingesetzten Mikropartikel aus Polymerteilchen, die einen Kern (A) und mindestens eine Schale (B) besitzen, wobei die Kern/Schale-Polymerteilchen mit Hilfe einer Base gequollen wurden.According to a preferred embodiment, the microparticles used consist of polymer particles which have a core (A) and at least one Shell (B), wherein the core / shell polymer particles were swollen with the aid of a base.
Der Kern (A) des Partikels enthält eine oder mehrere ethylenisch ungesättigte Carbonsäure-(Derivat-)Monomere die eine Quellung des Kerns ermöglichen; diese Monomere sind vorzugsweise ausgewählt aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure und deren Mischungen. Acrylsäure und Methacrlysäure sind besonders bevorzugt.The core (A) of the particle contains one or more ethylenically unsaturated carboxylic acid (derivative) monomers which allow swelling of the core; these monomers are preferably selected from the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid and mixtures thereof. Acrylic acid and methacrylic acid are particularly preferred.
Die - gegebenenfalls äußerste - Schale B enthält die erfindungsgemäß die genannten Monomere.The - possibly outermost - shell B contains the present invention, said monomers.
Werden die Mikropartikel als mehrschalige oder als Gradientenlatices aufgebaut, so gelten für die zwischen Kern und äußerster Schale verwendeten Monomere keine besonderen Beschränkungen.If the microparticles are built up as multi-shelled or as gradient latices, no particular restrictions apply to the monomers used between core and outermost shell.
Die Herstellung dieser polymeren Mikropartikel durch Emulsionspolymerisation sowie deren Quellung mit Hilfe von Basen wie z. B. Alkali- oder Alkalihydroxide sowie Ammoniak oder einem Amin werden ebenfalls in den europäischen Patentschriften EP 22 633 B1 , EP 735 29 B1 sowie EP 188 325 B1 beschrieben.The preparation of these polymeric microparticles by emulsion polymerization and their swelling using bases such. As alkali or alkali metal hydroxides and ammonia or an amine are also described in European patents EP 22 633 B1, EP 735 29 B1 and EP 188 325 B1.
Der Polymergehalt der eingesetzten Mikropartikel kann in Abhängigkeit vom Durchmesser und dem Wassergehalt bei 2 bis 98 Gew.-% (Gewicht Polymer bezogen auf das Gesamtgewicht des wassergefüllten Partikels) liegen.Depending on the diameter and the water content, the polymer content of the microparticles used can be from 2 to 98% by weight (weight of polymer based on the total weight of the water-filled particle).
Bevorzugt sind Polymergehalte von 2 bis 60 Gew.-%, besonders bevorzugt sind Polymergehalte von 2 bis 40 Gew.-%. Es ist im Rahmen der vorliegenden Erfindung ohne weiteres möglich, die wassergefüllten Mikropartikel direkt als Feststoff der Baustoffmischung zuzugeben. Dazu werden die Mikropartikel - wie zuvor beschrieben - koaguliert und durch übliche Methoden (z. B. Filtration, Zentrifugieren, Sedimentieren und Dekantieren) aus der wässrigen Dispersion isoliert und die Partikel anschließend getrocknetPreferred are polymer contents of 2 to 60 wt .-%, particularly preferred are polymer contents of 2 to 40 wt .-%. It is within the scope of the present invention readily possible to add the water-filled microparticles directly as a solid of the building material mixture. For this purpose, the microparticles are - as described above - coagulated and isolated by conventional methods (eg filtration, centrifuging, sedimentation and decanting) from the aqueous dispersion and the particles are then dried
Die wassergefüllten Mikropartikel werden der Baustoffmischung in einer bevorzugten Menge von 0,01 bis 5 Vol%, insbesondere 0,1 bis 0,5 Vol%, zugegeben. Die Baustoffmischung bspw. in Form von Beton oder Mörtel kann hierbei die üblichen hydraulisch abbindenden Bindemittel wie z. B. Zement, Kalk, Gips oder Anhydrit enthalten.The water-filled microparticles are added to the building material mixture in a preferred amount of 0.01 to 5% by volume, in particular 0.1 to 0.5% by volume. The building material mixture, for example. In the form of concrete or mortar can in this case the usual hydraulically setting binder such. As cement, lime, gypsum or anhydrite.
Ein wesentlicher Vorteil durch die Verwendung der wassergefüllten Mikropartikel besteht darin, dass nur ein außerordentlich geringer Lufteintrag in den Beton erfolgt. Dadurch sind deutlich verbesserte Druckfestigkeiten des Betons zu erzielen. Diese liegen etwa 25-50% über den Druckfestigkeiten von Beton, der mit herkömmlicher Luftporenbildung erhalten wurde. Somit können Festigkeitsklassen erreicht werden, die sonst nur durch einen wesentlich niedrigeren Wasser/Zement-Wert (W/Z-Wert) einstellbar sind. Geringe W/Z- Werte schränken aber wiederum die Verarbeitbarkeit des Betons unter Umständen deutlich ein.An essential advantage of using the water-filled microparticles is that only an extremely small air is introduced into the concrete. As a result, significantly improved compressive strengths of the concrete can be achieved. These are about 25-50% above the compressive strengths of concrete obtained with conventional air entrainment. Thus, strength classes can be achieved, which are otherwise adjustable only by a much lower water / cement value (W / Z value). However, low W / Z values may in turn significantly limit the processability of the concrete.
Außerdem können höhere Druckfestigkeiten zur Folge haben, dass der für die Festigkeitsentwicklung erforderliche Gehalt an Zement im Beton verringert werden könnte und somit der Preis pro m3 Beton signifikant reduziert wird. In addition, higher compressive strengths may mean that the space required for the development of strength content could be reduced to cement in concrete and thus the price is per m 3 of concrete significantly reduced.

Claims

PATENTANSPRÜCHE
1. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen, dadurch gekennzeichnet, dass die Schale der Mikropartikel zu über 99 Gew% aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l aufgebaut ist.1. Use of polymeric microparticles having a cavity in hydraulically setting building material mixtures, characterized in that the shell of the microparticles to over 99% by weight of monomers having a water solubility less than 10 ~ 1 mol / l is constructed.
2. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln in hydraulisch abbindenden Baustoffmischungen nach Anspruch 1 , dadurch gekennzeichnet, dass die Schale der Mikropartikel ausschließlich aus Monomeren mit einer Wasserlöslichkeit kleiner 10~1 mol/l aufgebaut ist.2. Use of polymeric, voided microparticles in hydraulically setting building material mixtures according to claim 1, characterized in that the shell of the microparticles is composed exclusively of monomers having a water solubility less than 10 ~ 1 mol / l.
3. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die äußere Schale Styrol enthält.3. The use of polymeric, voided microparticles according to claim 1, characterized in that the outer shell contains styrene.
4. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die äußere Schale Styrol und/oder n-Hexyl(meth)acrylat und/oder n-Butyl(meth)acrylat und/oder i-Butyl(meth)acrylat und/oder Propyl(meth)acrylat und/oder Ethylmethacrylat und/oder Ethylhexyl(meth)acrylat enthält. 4. Use of polymeric, voided microparticles according to claim 1, characterized in that the outer shell of styrene and / or n-hexyl (meth) acrylate and / or n-butyl (meth) acrylate and / or i-butyl (meth ) contains acrylate and / or propyl (meth) acrylate and / or ethyl methacrylate and / or ethylhexyl (meth) acrylate.
5. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikeln nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel aus Polymerteilchen bestehen, die einen mit Hilfe einer wässrigen Base gequollenen Polymerkern (A), der eine oder mehrere ungesättigte Carbonsäure-(Derivat-)Monomers enthält, sowie eine Polymerhülle (B), die überwiegend aus nicht-ionischen, ethylenisch ungesättigten Monomeren besteht, enthalten.Use of polymeric voided microparticles according to claim 1, characterized in that the microparticles consist of polymer particles containing a polymer nucleus (A) swollen by means of an aqueous base containing one or more unsaturated carboxylic acid (derivative) monomers , and a polymer shell (B), which consists predominantly of non-ionic, ethylenically unsaturated monomers.
6. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 5, dadurch gekennzeichnet, dass die ungesättigten Carbonsäure-(Derivat-)Monomere gewählt sind aus der Gruppe Acrylsäure, Methacrylsäure, Maleinsäure, Maleinsäureanhydrid, Fumarsäure, Itaconsäure und Crotonsäure.6. Use of polymeric, voided microparticles according to claim 5, characterized in that the unsaturated carboxylic acid (derivative) monomers are selected from the group of acrylic acid, methacrylic acid, maleic acid, maleic anhydride, fumaric acid, itaconic acid and crotonic acid.
7. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel einen Polymergehalt von 2 bis 98 Gew.-% aufweisen.7. Use of polymeric, voided microparticles according to claim 1, characterized in that the microparticles have a polymer content of 2 to 98 wt .-%.
8. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 100 bis 5000 nm aufweisen.8. Use of polymeric, voided microparticles according to claim 1, characterized in that the microparticles have an average particle size of 100 to 5000 nm.
9. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 8, dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 200 bis 2000 nm aufweisen. 9. Use of polymeric, voided microparticles according to claim 8, characterized in that the microparticles have an average particle size of 200 to 2000 nm.
10. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 9, dadurch gekennzeichnet, dass die Mikropartikel eine mittlere Teilchengröße von 250 bis 1000 nm aufweisen10. Use of polymeric, voided microparticles according to claim 9, characterized in that the microparticles have an average particle size of 250 to 1000 nm
11. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.01 bis 5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.11. Use of polymeric, voided microparticles according to claim 1, characterized in that the microparticles in an amount of 0.01 to 5 vol .-%, based on the building material mixture, are used.
12. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 11 , dadurch gekennzeichnet, dass die Mikropartikel in einer Menge von 0.1 bis 0,5 Vol.-%, bezogen auf die Baustoffmischung, eingesetzt werden.12. Use of polymeric, voided microparticles according to claim 11, characterized in that the microparticles in an amount of 0.1 to 0.5 vol .-%, based on the building material mixture, are used.
13. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass die Baustoffmischungen aus einem Bindemittel, ausgewählt aus der Gruppe Zement, Kalk, Gips und Anhydrit, bestehen.13. Use of polymeric, voided microparticles according to claim 1, characterized in that the building material mixtures consist of a binder selected from the group consisting of cement, lime, gypsum and anhydrite.
14. Verwendung von polymeren, einen Hohlraum aufweisenden Mikropartikel nach Anspruch 1 , dadurch gekennzeichnet, dass es sich bei den Baustoffmischungen um Beton oder Mörtel handelt. 14. Use of polymeric microparticles having a cavity according to claim 1, characterized in that the building material mixtures are concrete or mortar.
EP07704247A 2006-02-23 2007-01-30 Additive building material mixtures comprising microparticles with apolar shells Withdrawn EP1986972A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006008967A DE102006008967A1 (en) 2006-02-23 2006-02-23 Additive building material mixtures with microparticles with nonpolar shells
PCT/EP2007/050895 WO2007096231A2 (en) 2006-02-23 2007-01-30 Additive building material mixtures comprising microparticles with apolar shells

Publications (1)

Publication Number Publication Date
EP1986972A2 true EP1986972A2 (en) 2008-11-05

Family

ID=38319875

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07704247A Withdrawn EP1986972A2 (en) 2006-02-23 2007-01-30 Additive building material mixtures comprising microparticles with apolar shells

Country Status (10)

Country Link
US (1) US20070193478A1 (en)
EP (1) EP1986972A2 (en)
JP (1) JP2009527445A (en)
KR (1) KR20080110996A (en)
CN (1) CN101024560A (en)
BR (1) BRPI0708240A2 (en)
CA (1) CA2643455A1 (en)
DE (1) DE102006008967A1 (en)
RU (1) RU2008137542A (en)
WO (1) WO2007096231A2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2437045C (en) * 2001-02-07 2010-09-14 Guenter Schmitt Hot sealing compound for aluminum foils applied to polypropylene and polystyrene
DE10350786A1 (en) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mixtures for the production of reactive hot melt adhesives and reactive hot melt adhesives obtainable therefrom
DE102004035937A1 (en) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisols with reduced water absorption
DE102005042389A1 (en) * 2005-06-17 2006-12-28 Röhm Gmbh Heat sealing compound for aluminum and polyethylene terephthalate films against polypropylene-polyvinyl chloride and polystyrene containers
DE102005045458A1 (en) * 2005-09-22 2007-03-29 Röhm Gmbh Process for the preparation of (meth) acrylate-based ABA triblock copolymers
DE102005046681A1 (en) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Use of polymeric microparticles in building material mixtures
DE102005052130A1 (en) * 2005-10-28 2007-05-03 Röhm Gmbh Sprayable acoustics
US8915997B2 (en) 2013-05-16 2014-12-23 Navs, Llc Durable concrete and method for producing the same
KR20160087194A (en) 2015-01-13 2016-07-21 정재삼 Mask pack

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL7505525A (en) * 1975-05-12 1976-11-16 Akzo Nv PROCESS FOR THE PREPARATION OF A FROST-RESISTANT CONCRETE.
CA1180474A (en) * 1979-06-26 1985-01-02 Alexander Kowalski Sequential heteropolymer dispersion and a particulate material obtainable therefrom useful in coating compositions as a thickening and/or opacifying agent
US4594363A (en) * 1985-01-11 1986-06-10 Rohm And Haas Company Production of core-sheath polymer particles containing voids, resulting product and use
EP0725092A3 (en) * 1995-02-06 1997-08-27 Chemie Linz Gmbh Redispersible, core-shell polymer powder, its preparation and use
US6498209B1 (en) * 1998-03-31 2002-12-24 Roehm Gmbh & Co. Kg Poly(meth)acrylate plastisols
DE19826412C2 (en) * 1998-06-16 2002-10-10 Roehm Gmbh Odor-reduced, cold-curing (meth) acrylate reaction resin for floor coatings, floor coatings containing this reaction resin and process for producing such floor coatings
DE19833062A1 (en) * 1998-07-22 2000-02-03 Elotex Ag Sempach Station Redispersible powder and its aqueous dispersion, process for its preparation and use
DE19928352A1 (en) * 1999-06-21 2000-12-28 Roehm Gmbh Plastisol use for mould articles, comprises (meth)acrylate (co)polymer(s) with bimodal or multi-modal prim. particle distribution prepared from methyl methacrylate, (meth) acrylate, vinyl monomer and adhesion aiding monomers
DE10227898A1 (en) * 2002-06-21 2004-01-15 Röhm GmbH & Co. KG Process for the preparation of spray-dried poly (meth) acrylate polymers, their use as polymer component for plastisols and plastisols prepared therewith
DE10350786A1 (en) * 2003-10-29 2005-06-02 Röhm GmbH & Co. KG Mixtures for the production of reactive hot melt adhesives and reactive hot melt adhesives obtainable therefrom
EP1758832A2 (en) * 2004-06-15 2007-03-07 Construction Research & Technology GmbH Providing freezing and thawing resistance to cementitious compositions
DE102004035937A1 (en) * 2004-07-23 2006-02-16 Röhm GmbH & Co. KG Plastisols with reduced water absorption
DE102005042389A1 (en) * 2005-06-17 2006-12-28 Röhm Gmbh Heat sealing compound for aluminum and polyethylene terephthalate films against polypropylene-polyvinyl chloride and polystyrene containers
DE102005046681A1 (en) * 2005-09-29 2007-04-05 Construction Research & Technology Gmbh Use of polymeric microparticles in building material mixtures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007096231A2 *

Also Published As

Publication number Publication date
RU2008137542A (en) 2010-03-27
CN101024560A (en) 2007-08-29
KR20080110996A (en) 2008-12-22
WO2007096231A3 (en) 2008-02-14
BRPI0708240A2 (en) 2011-05-24
US20070193478A1 (en) 2007-08-23
DE102006008967A1 (en) 2007-08-30
JP2009527445A (en) 2009-07-30
CA2643455A1 (en) 2007-08-30
WO2007096231A2 (en) 2007-08-30

Similar Documents

Publication Publication Date Title
WO2007099005A1 (en) Additive building material mixtures comprising microparticles swollen therein
WO2007096238A2 (en) Additive building material mixtures comprising microparticles of different sizes
WO2007096235A1 (en) Additive building material mixtures comprising spray-dried microparticles
EP1986974A1 (en) Additive building material mixtures comprising microparticles, whose shells are porous and hydrophilic
EP1928801A1 (en) Use of polymer microparticles in building material mixtures
EP1986972A2 (en) Additive building material mixtures comprising microparticles with apolar shells
WO2007096234A2 (en) Additive building material mixtures comprising non-ionic emulsifiers
EP1986977A2 (en) Additive building material mixtures comprising sterically or electrostatically repelling monomers in the shells of the microparticles
WO2007099004A1 (en) Additive building material mixtures comprising ionically swollen microparticles
EP2021299A2 (en) Additive building material mixtures comprising microparticles with extremely thin shells
EP1991510A2 (en) Additive building material mixtures comprising swellable polymer structures
WO2007099009A1 (en) Polymeric microparticles as additive for building material mixtures
WO2007096232A2 (en) Additive building material mixtures comprising ionic emulsifiers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080521

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EVONIK ROEHM GMBH

Owner name: CONSTRUCTION RESEARCH & TECHNOLOGY GMBH

17Q First examination report despatched

Effective date: 20100119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110802