EP1977860B1 - Device and method for manufacturing optical elements - Google Patents

Device and method for manufacturing optical elements Download PDF

Info

Publication number
EP1977860B1
EP1977860B1 EP08102962A EP08102962A EP1977860B1 EP 1977860 B1 EP1977860 B1 EP 1977860B1 EP 08102962 A EP08102962 A EP 08102962A EP 08102962 A EP08102962 A EP 08102962A EP 1977860 B1 EP1977860 B1 EP 1977860B1
Authority
EP
European Patent Office
Prior art keywords
blank
liquid jet
profile
removal
incidence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08102962A
Other languages
German (de)
French (fr)
Other versions
EP1977860A1 (en
Inventor
Oliver FÄHNLE
Wilhelmus Messelink
Mark Meeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fisba Optik AG
Original Assignee
Fisba Optik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fisba Optik AG filed Critical Fisba Optik AG
Publication of EP1977860A1 publication Critical patent/EP1977860A1/en
Application granted granted Critical
Publication of EP1977860B1 publication Critical patent/EP1977860B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/04Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for treating only selected parts of a surface, e.g. for carving stone or glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives

Definitions

  • the invention relates to a method for producing optical elements according to the features of the preamble of the independent claims.
  • fluid jet polishing For polishing, correcting or processing of optical elements, it is known to remove material with an abrasive liquid jet. With this technology called fluid jet polishing, it is possible to shape and polish optical surfaces of glass bodies, for example.
  • the fluid jet polishing technique is for example from OW Fähnle / H. van Brug / HJ Frankena in "Fluid Jet Polishing of Optical Surfaces", Applied Optics 37 (28), 6771-6773, 1998 , described.
  • mini- and micro-lenses are here and hereinafter understood lenses having a diameter of 0.1 to 5 mm. It is therefore an object of the present invention to avoid the disadvantages of the known, in particular therefore to provide a method and a device by means of which aspheric mini and microlenses can be produced with high precision in a simple manner.
  • the device according to the invention and the method according to the invention should moreover permit the production of such lenses in a flexible manner.
  • WO 02-49804 shows a method according to the preamble of claim 1.
  • the method according to claim 1 is used for producing optical elements.
  • this aspheric mini and microlenses are to be produced.
  • a blank is provided.
  • the blank is made of a transparent material, typically of glass.
  • the blank is processed with an abrasive liquid jet. This will remove material from the blank.
  • the liquid jet has a jet diameter which is greater than the dimension of the blank in a plane perpendicular to the direction of the liquid jet.
  • the blank typically has a size of 0.1 to 5 mm.
  • the method according to the invention also works with larger diameters, provided that an abrasive jet with a sufficiently large diameter is made available. It has been found that in this case a specific, inhomogeneous removal profile is produced on the surface of the blank. This profile is dependent inter alia on the different angles of incidence of the beam at the different points of the blank, in particular a spherical blank. If such a larger jet of liquid is used, the typically spherical surface of the blank is eroded irregularly, typically aspherized.
  • the liquid jet is so under at least two different Incident angles led against the blank that a predetermined Abtragprofil is generated.
  • a blank is processed, which is at least in the region of the surface to be machined spherical or cylindrical.
  • the desired profile or the desired asphericity can be achieved particularly simply due to the difference between the desired shape and the blank shape.
  • the inventive method is carried out according to the known principle of fluid jet polishing.
  • water is typically used as the liquid in which as abrasive material CeO 2 or SiC or other commercially available grinding or polishing agents are mixed.
  • the blanks typically have dimensions of a few tenths of a millimeter.
  • the liquid jet has a beam diameter of about 1-6 mm.
  • the jet is conveyed at a delivery pressure of 5 to 20 bar and impinges at a speed of 40 to 80 m / s on the surface of the blank.
  • the jet and the blank are moved relative to one another such that the jet is rotated about the center of the at least partially spherical blank. In this way, it is possible to predict with particular accuracy predetermined removal profiles relative to a spherical blank.
  • the blank is particularly preferably brought into a predetermined shape by a desired Abtragprofil is formed as the difference between the shape of the blank and the desired shape as a combination of a plurality of Basisabtragprofilen.
  • Each base removal profile corresponds to the machining of the blank at a predetermined angle of incidence of the liquid jet. From a plurality of such basic ablation profiles, therefore, the desired ablation profile can be produced as a linear combination.
  • This combination of the ablation profiles represents the spatial deviation of the desired optical element, in particular the aspherical lens from the blank, in particular from the base sphere.
  • the removal profile of the blank is then compiled as a linear combination of the basic removal profiles.
  • the desired removal rate can be easily generated from a linear combination of the simulated base profiles. Therefore it is also readily possible to determine and select basic profiles with particularly suitable angles of incidence. It is therefore not necessary to assume fixed angular positions with fixed distances. Thus, optimized angles can be selected so that the asphere can also be produced with minimal residence times.
  • the device for carrying out the method according to the invention has a holding arrangement for at least one blank.
  • the device is also provided with a jet device for delivering an abrasive liquid jet.
  • the jet device is designed to deliver a jet of liquid having a jet diameter which is greater than the dimension of the blank in a plane perpendicular to the direction of the liquid jet.
  • the jet device for discharging the abrasive liquid jet and the holding device are movable relative to each other such that the liquid jet impinges on the blank at different angles of incidence.
  • the holding arrangement is movable with the blank. This type of reciprocal movement is particularly simple, since it is sufficient to move the holding device so that the blank moves around its center. However, it is basically also conceivable to move only the blasting device or the blasting device and the holding arrangement for the blank.
  • the control of the movements is a bit more complex. However, it can be easily realized with a CNC control.
  • the holding device for receiving a blank having a size of 0.1 - 5 mm is formed.
  • the blasting device is typically designed to produce a liquid jet having a delivery pressure of 5 to 20 bar and an impact velocity of the liquid jet onto the blank of 40 to 80 m / s.
  • the device is also preferably provided with a computer arrangement, by means of which the relative position between the direction of the liquid jet and the position of the holding device of the blank is adjustable. That way Automatically create a desired removal profile automatically.
  • the calculating means may be designed to determine a combination of predefined basic removal profiles for generating a desired ablation profile.
  • a plurality of basic removal profiles are advantageously stored in the device according to the invention and assigned to individual angles of incidence.
  • the apparatus comprises a computer and also a computer program product containing a plurality of predefined basic removal profiles associated with different angles of incidence of an abrasive liquid jet under predetermined conditions such as glass type, size of the blank, properties of the beam.
  • the computer program performs the above described A method of manufacturing optical elements in the device described above when the program is run on the computer.
  • FIG. 1 schematically show the basic principle of the present invention.
  • a blank 20 in the form of a partial sphere is mounted in a holding arrangement 11.
  • the blank 20 is a glass blank with a radius of 0.45 mm, that is, a diameter D of 0.9 mm.
  • an abrasive liquid jet 32 material is removed from the surface 22 of the blank 20.
  • the abrasive liquid jet 32 is discharged from a nozzle 31.
  • the liquid jet 32 is directed in a direction R which is approximately perpendicular to the surface of the holder 11.
  • the angle between the perpendicular and the direction R of the liquid jet is 0 °.
  • the abrasive liquid jet 32 has a beam diameter d, which is about 1.5 mm.
  • the beam diameter d is thus greater than the diameter D of the blank in a plane E perpendicular to the direction R of the liquid jet.
  • the rate is greater in a second surface area 22c, in which the liquid jet impinges on the surface at an angle between 0 ° and 90 °. This results in an ablation dependent on the surface area of the blank and, as a result, a specific removal profile.
  • the blank 20 is pivoted relative to the nozzle 3 and its center Z, so that an angle ⁇ of approximately 10 ° results between the direction R of the liquid jet 32 and the perpendicular L.
  • the removal rate in the surface area 22f is greatest, while the removal rate in the areas 22e and 22d is nearly zero.
  • FIG. 3 shows different removal profiles at six different angles of incidence ⁇ of the liquid jet 32.
  • FIG. 3 shows only half the profile (ie the removal profile from a center plane of the blank up to an angle of 50 ° with respect to the center plane.)
  • the X-axis from 0 to 50 ° corresponds to the measuring range of an interferometer, by means of which the removal profiles were measured
  • the Y-axis shows the relative normalized material removal perpendicular to the spherical surface starting from a spherical blank 20.
  • FIG. 3 shows, depending on the angular position of the liquid jet 32 different removal profiles.
  • a combination of these individual basic removal profiles can be predicted mathematically to generate a predefined removal profile.
  • This removal profile corresponds to the difference between the shape of the blank 20 and the desired, aspherical shape of the optical component to be produced, in particular a lens.
  • FIG. 4 schematically shows an apparatus 10 for carrying out the present invention.
  • the device 10 consists essentially of a holding arrangement 11 for holding the blank 20.
  • the relative movement between the blank 20 and the nozzle 31 must be very close to the center of the blank.
  • the blank is held so that it projects at least half out of the holding assembly 11 and can be acted upon by the liquid jet.
  • the liquid jet 32 can be discharged through the nozzle 31 as part of a jet device 30.
  • the nozzle 31 is movably mounted with a nozzle holder 33, so that the liquid jet 32 is pivotable about the center Z of the blank 20.
  • a blank was held movably in three translation axes in the X, Y and Z directions.
  • the rotational movements were generated by the nozzle 31.
  • the individual movements were controlled by a high-precision CNC machine.
  • other arrangements are conceivable in which, for example, only the holding assembly 11 would be pivoted to hold the blank 20.
  • the nozzle 31 is connected in a manner known per se via a fluid connection 35 to an apparatus 36 for producing an abrasive liquid jet.
  • This is typically a volumetric pump.
  • the device 10 has a computer arrangement 34.
  • different basic removal profiles are stored.
  • the basic removal profiles correspond to the removal profile for a certain angle of incidence ⁇ of the liquid jet 32 to the blank 20.
  • Per predetermined operating conditions material and size of the blank, type of liquid jet
  • a desired removal profile can be calculated as a difference between the shape of the blank and the shape of the desired aspheric component by a linear combination of different base removal profiles.
  • the computer assembly 34 accordingly controls the position of the nozzle 31 via a CNC machine.
  • the nozzle 32 can be pivoted in the holder 33 by an angle ⁇ relative to the center Z of the blank 20 (shown in dashed lines).
  • angle ⁇ relative to the center Z of the blank 20
  • predetermined angular positions at a distance of 5 ° or 10 ° are conceivable.
  • the determination of profiles in the various angular positions can be done on the basis of simulations, starting from a real base profile. A real measurement in certain angular positions is therefore not necessary in this case.
  • the removal profile corresponds to the difference to a partially spherical blank 20.
  • the rear side 23 of the blank is ground flat, preferably before the blank is positioned in the holding arrangement.
  • the optical calculation of the lens ie, the difference between the spherical shape of the blank and the aspherical shape of the lens 21 is shown in FIG FIG. 6 shown.
  • the difference corresponds to the target removal profile.
  • Abtragonne provided in the range between 0 and a maximum of 12 microns. This results in the aspheric form.
  • FIG. 7 schematically a comparison between a desired Abtragprofil (desired profile) and a linear combination of Basisabtragprofilen shown, which form an approximation of the desired profile.
  • the removal rate is normalized (maximum removal corresponds to -1).
  • FIG. 8 an alternative embodiment is shown. Instead of in FIG. 3
  • the measured base profiles shown are based on the example according to FIG. 8 on simulated basic profiles, which are calculated from a measurement for an angle of incidence of 0 °.
  • the differences between the simulated and the measured base profiles are sufficiently small that a corresponding lens could also be produced on the basis of such simulated profiles.
  • the advantage here is that so that any profiles can be calculated for different angles of incidence.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)
  • Turning (AREA)

Abstract

The method involves providing blanks (20), and processing blanks with abrasive fluid jet (32) for carrying materials of blanks. The fluid jet exhibits a radiation diameter, which is larger than the dimension of the blanks in a plane perpendicular to the direction of the fluid jet. The fluid jet is aligned under two different incident angles on the blanks for processing of the blanks in such a manner that a desired stripping profile is reached. An abrasive material such as cerium oxide and silicon carbide, is attached to the fluid jet. Independent claims are also included for the following: (1) a device for manufacturing optical elements e.g. aspherical mini and micro lenses (2) a computer program product, in which a base cutting profile is stored.

Description

Die Erfindung betrifft ein Verfahren zum Herstellen von optischen Elementen gemäss den Merkmalen des Oberbegriffs der unabhängigen Patenansprüche.The invention relates to a method for producing optical elements according to the features of the preamble of the independent claims.

Zum Auspolieren, Korrigieren oder Bearbeiten von optischen Elementen ist es bekannt, mit einem abrasiven Flüssigkeitsstrahl Material abzutragen. Bei dieser Fluid Jet Polishing genannten Technologie ist es möglich, optische Oberflächen beispielsweise von Glaskörpern zu formen und zu polieren. Die Fluid Jet Polishing Technik ist beispielsweise von O. W. Fähnle/H. van Brug/H. J. Frankena in "Fluid Jet Polishing of optical surfaces", Applied Optics 37(28), 6771-6773, 1998 , beschrieben.For polishing, correcting or processing of optical elements, it is known to remove material with an abrasive liquid jet. With this technology called fluid jet polishing, it is possible to shape and polish optical surfaces of glass bodies, for example. The fluid jet polishing technique is for example from OW Fähnle / H. van Brug / HJ Frankena in "Fluid Jet Polishing of Optical Surfaces", Applied Optics 37 (28), 6771-6773, 1998 , described.

Für optische Anwendungen wie beispielsweise DVD Systeme oder für Laseroptiken zur Einkopplung in Lichtleitfasern werden asphärische Linsen mit sehr kleinen Dimensionen benötigt.For optical applications such as DVD systems or for laser optics for coupling into optical fibers aspherical lenses are required with very small dimensions.

Mit heute bekannten Herstellmethoden ist es schwierig, solche kleinen Mini- oder Mikrolinsen mit ausreichender Präzision herzustellen. Unter Mini- und Mikrolinsen werden hier und im Folgenden Linsen verstanden, welche einen Durchmesser von 0.1 bis 5 mm aufweisen. Es ist deshalb eine Aufgabe der vorliegenden Erfindung, die Nachteile des Bekannten zu vermeiden, insbesondere also ein Verfahren und eine Vorrichtung zu schaffen, mittels welchen sich asphärische Mini- und Mikrolinsen mit hoher Präzision auf einfache Art und Weise herstellen lassen. Die erfindungsgemässe Vorrichtung und das erfindungsgemässe Verfahren sollen ausserdem auf flexible Weise die Herstellung von solchen Linsen erlauben.With manufacturing methods known today, it is difficult to produce such small mini or microlenses with sufficient precision. By mini- and micro-lenses are here and hereinafter understood lenses having a diameter of 0.1 to 5 mm. It is therefore an object of the present invention to avoid the disadvantages of the known, in particular therefore to provide a method and a device by means of which aspheric mini and microlenses can be produced with high precision in a simple manner. The device according to the invention and the method according to the invention should moreover permit the production of such lenses in a flexible manner.

Erfindungsgemäss werden diese Aufgaben mit einem Verfahren nach Anspruch 1 gelöst. WO 02-49804 zeigt ein Verfahren nach dem Oberbegriff von Anspruch 1.According to the invention, these objects are achieved by a method solved according to claim 1. WO 02-49804 shows a method according to the preamble of claim 1.

Das Verfahren nach Anspruch 1 dient zum Herstellen von optischen Elementen. Insbesondere sollen damit asphärische Mini- und Mikrolinsen herstellt werden. Es ist aber auch denkbar, andere optische Elemente mit kleinen Dimensionen erfindungsgemäss herzustellen.The method according to claim 1 is used for producing optical elements. In particular, this aspheric mini and microlenses are to be produced. However, it is also conceivable to produce other optical elements with small dimensions according to the invention.

In einem ersten Schritt des Verfahrens wird ein Rohling bereitgestellt. Der Rohling besteht aus einem transparenten Material, typischerweise aus Glas. Der Rohling wird mit einem abrasiven Flüssigkeitsstrahl bearbeitet. Dadurch wird Material vom Rohling abgetragen.In a first step of the method, a blank is provided. The blank is made of a transparent material, typically of glass. The blank is processed with an abrasive liquid jet. This will remove material from the blank.

Erfindungsgemäss weist der Flüssigkeitsstrahl einen Strahldurchmesser auf, der grösser ist als die Dimension des Rohlings in einer Ebene senkrecht zur Richtung des Flüssigkeitsstrahls. Der Rohling weist typischerweise eine Grösse von 0.1 bis 5 mm auf. Grundsätzlich funktioniert das erfindungsgemässe Verfahren auch bei grösseren Durchmessern, sofern ein Abrasivstrahl mit ausreichend grossem Durchmesser zur Verfügung gestellt wird. Es hat sich gezeigt, dass in diesem Fall ein bestimmtes, inhomogenes Abtragprofil auf der Oberfläche des Rohlings erzeugt wird. Dieses Profil ist unter anderem abhängig von den unterschiedlichen Einfallswinkeln des Strahls an den verschiedenen Stellen des Rohlings, insbesondere eines kugelförmigen Rohlings. Wenn ein derart grösserer Flüssigkeitsstrahl verwendet wird, wird die typischerweise kugelförmige Oberfläche des Rohlings unregelmässig abgetragen, typischerweise asphärisiert.According to the invention, the liquid jet has a jet diameter which is greater than the dimension of the blank in a plane perpendicular to the direction of the liquid jet. The blank typically has a size of 0.1 to 5 mm. In principle, the method according to the invention also works with larger diameters, provided that an abrasive jet with a sufficiently large diameter is made available. It has been found that in this case a specific, inhomogeneous removal profile is produced on the surface of the blank. This profile is dependent inter alia on the different angles of incidence of the beam at the different points of the blank, in particular a spherical blank. If such a larger jet of liquid is used, the typically spherical surface of the blank is eroded irregularly, typically aspherized.

Für die Bearbeitung des Rohlings wird gemäss der Erfindung der Flüssigkeitsstrahl derart unter mindestens zwei unterschiedlichen Einfallswinkeln gegen den Rohling geführt, dass ein vorbestimmtes Abtragprofil erzeugt wird.For the processing of the blank according to the invention, the liquid jet is so under at least two different Incident angles led against the blank that a predetermined Abtragprofil is generated.

Erfindungsgemäß wird ein Rohling bearbeitet, der zumindest im Bereich der zu bearbeitenden Oberfläche kugelförmig oder zylinderförmig ausgebildet ist. Ausgehend von der Kugelform des Rohlings lässt sich das gewünschte Profil bzw. die gewünschte Asphärität besonders einfach aufgrund der Differenz der gewünschten Form zur Rohlingform erzielen.According to the invention a blank is processed, which is at least in the region of the surface to be machined spherical or cylindrical. Starting from the spherical shape of the blank, the desired profile or the desired asphericity can be achieved particularly simply due to the difference between the desired shape and the blank shape.

Das erfindungsgemässe Verfahren erfolgt nach dem an sich bekannten Prinzip des Fluid Jet Polishing. Dabei wird typischerweise als Flüssigkeit Wasser verwendet, in die als Abrasivmaterial CeO2 oder SiC oder andere handelsübliche Schleif- oder Poliermittel beigemischt sind.The inventive method is carried out according to the known principle of fluid jet polishing. In this case, water is typically used as the liquid in which as abrasive material CeO 2 or SiC or other commercially available grinding or polishing agents are mixed.

Die Rohlinge weisen typischerweise Dimensionen von einigen Zehntel Millimetern auf. Erfindungsgemäss weist der Flüssigkeitsstrahl einen Strahldurchmesser von ca. 1 - 6 mm auf. Typischerweise wird der Strahl mit einem Förderdruck von 5 bis 20 bar gefördert und trifft mit einer Geschwindigkeit von 40 bis 80 m/s auf der Oberfläche des Rohlings auf.The blanks typically have dimensions of a few tenths of a millimeter. According to the invention, the liquid jet has a beam diameter of about 1-6 mm. Typically, the jet is conveyed at a delivery pressure of 5 to 20 bar and impinges at a speed of 40 to 80 m / s on the surface of the blank.

Besonders bevorzugt werden der Strahl und der Rohling in Bezug zueinander derart bewegt, dass der Strahl um den Mittelpunkt des zumindest teilweise kugelförmigen Rohlings gedreht wird. Auf diese Weise lassen sich besonders genau vorbestimmte Abtragprofile bezogen auf einen kugelförmigen Rohling vorhersagen.More preferably, the jet and the blank are moved relative to one another such that the jet is rotated about the center of the at least partially spherical blank. In this way, it is possible to predict with particular accuracy predetermined removal profiles relative to a spherical blank.

Der Rohling wird dabei besonders bevorzugt in eine vorbestimmte Form gebracht, indem ein gewünschtes Abtragprofil als Differenz zwischen der Form des Rohlings und der gewünschten Form als Kombination einer Mehrzahl von Basisabtragprofilen gebildet wird. Dabei entspricht jedes Basis-Abtragprofil der Bearbeitung des Rohlings unter einem vorbestimmten Einfallswinkel des Flüssigkeitsstrahls. Aus einer Mehrzahl von solchen Basis-Abtragungsprofilen lässt sich daher das gewünschte Abtragungsprofil als lineare Kombination herstellen. Diese Kombination der Abtragungsprofile stellt die räumliche Abweichung des gewünschten optischen Elements, insbesondere der asphärischen Linse von dem Rohling, insbesondere von der Basiskugel dar. Durch die Bestimmung der Abtragungsrate bzw. des Abtragungsprofils bei verschiedenen Einfallswinkeln, beispielsweise um 10° voneinander getrennt, kann ein Satz von Basis-Abtragprofilen ermittelt werden. Das Abtragprofil des Rohlings wird dann als lineare Kombination der Basis-Abtragprofile zusammengestellt. Ausserdem ist es bevorzugt möglich, ausgehend von einem bekannten Abtragprofil bei einem Winkel von 0° die weiteren Basisprofile für einen beliebigen Auftreffwinkel zu simulieren. Dies ermöglicht es, mit einem einzigen gespeicherten Abtragsprofil (für einen Auftreffwinkel von 0°) die weiteren Basisprofile zu simulieren, ohne Messungen durchführen zu müssen. Die gewünschte Abtragrate kann einfach aus einer linearen Kombination der simulierten Basisprofile erzeugt werden. Deshalb ist es auch ohne weiteres möglich, Basisprofile mit besonders geeigneten Auftreffwinkeln zu bestimmen und auszuwählen. Es muss daher nicht von festen Winkelpositionen mit fixen Abständen ausgegangen werden. Damit können optimierte Winkel ausgewählt werden, so dass die Asphäre auch mit minimalen Verweilzeiten hergestellt werden kann.The blank is particularly preferably brought into a predetermined shape by a desired Abtragprofil is formed as the difference between the shape of the blank and the desired shape as a combination of a plurality of Basisabtragprofilen. Each base removal profile corresponds to the machining of the blank at a predetermined angle of incidence of the liquid jet. From a plurality of such basic ablation profiles, therefore, the desired ablation profile can be produced as a linear combination. This combination of the ablation profiles represents the spatial deviation of the desired optical element, in particular the aspherical lens from the blank, in particular from the base sphere. By determining the removal rate or the ablation profile at different angles of incidence, for example separated by 10 °, a set determined by basic removal profiles. The removal profile of the blank is then compiled as a linear combination of the basic removal profiles. Moreover, it is preferably possible, starting from a known Abtragprofil at an angle of 0 ° to simulate the other basic profiles for any angle of incidence. This makes it possible to simulate the other basic profiles with a single stored removal profile (for an impact angle of 0 °) without having to carry out measurements. The desired removal rate can be easily generated from a linear combination of the simulated base profiles. Therefore it is also readily possible to determine and select basic profiles with particularly suitable angles of incidence. It is therefore not necessary to assume fixed angular positions with fixed distances. Thus, optimized angles can be selected so that the asphere can also be produced with minimal residence times.

Die Vorrichtung zur Durchführung das erfindungsgemäßen Verfahrens weist eine Halteanordnung für wenigstens einen Rohling auf. Die Vorrichtung ist ausserdem mit einer Strahlvorrichtung zur Abgabe eines abrasiven Flüssigkeitsstrahls versehen. Die Strahlvorrichtung ist zur Abgabe eines Flüssigkeitsstrahls ausgebildet, der einen Strahldurchmesser aufweist, der grösser ist als die Dimension des Rohlings in einer Ebene senkrecht zur Richtung des Flüssigkeitsstrahls. Die Strahlvorrichtung zur Abgabe des abrasiven Flüssigkeitsstrahls und die Haltevorrichtung sind bezogen zueinander derart bewegbar, dass der Flüssigkeitsstrahl unter unterschiedlichen Einfallswinkeln auf den Rohling auftrifft. Bevorzugt ist die Halteanordnung mit dem Rohling bewegbar. Diese Art der gegenseitigen Bewegung ist besonders einfach, da es ausreicht, die Haltevorrichtung so zu bewegen, dass sich der Rohling um seinen Mittelpunkt bewegt. Es ist aber grundsätzlich auch denkbar, nur die Strahlvorrichtung oder die Strahlvorrichtung und die Halteanordnung für den Rohling zu bewegen. Die Steuerung der Bewegungen ist dabei zwar etwas komplexer. Sie kann mit einer CNC-Steuerung jedoch ohne weiteres realisiert werden.The device for carrying out the method according to the invention has a holding arrangement for at least one blank. The device is also provided with a jet device for delivering an abrasive liquid jet. The jet device is designed to deliver a jet of liquid having a jet diameter which is greater than the dimension of the blank in a plane perpendicular to the direction of the liquid jet. The jet device for discharging the abrasive liquid jet and the holding device are movable relative to each other such that the liquid jet impinges on the blank at different angles of incidence. Preferably, the holding arrangement is movable with the blank. This type of reciprocal movement is particularly simple, since it is sufficient to move the holding device so that the blank moves around its center. However, it is basically also conceivable to move only the blasting device or the blasting device and the holding arrangement for the blank. The control of the movements is a bit more complex. However, it can be easily realized with a CNC control.

Bevorzugt ist die Haltevorrichtung zur Aufnahme eines Rohlings mit einer Grösse von 0.1 - 5 mm ausgebildet.Preferably, the holding device for receiving a blank having a size of 0.1 - 5 mm is formed.

Die Strahlvorrichtung ist typischerweise zum Erzeugen eines Flüssigkeitsstrahls mit einem Förderdruck von 5 bis 20 bar und mit einer Auftreffgeschwindigkeit des Flüssigkeitsstrahls auf den Rohling von 40 bis 80 m/s ausgebildet.The blasting device is typically designed to produce a liquid jet having a delivery pressure of 5 to 20 bar and an impact velocity of the liquid jet onto the blank of 40 to 80 m / s.

Die Vorrichtung ist ausserdem bevorzugt mit einer Rechneranordnung versehen, mittels welcher die Relativposition zwischen der Richtung des Flüssigkeitsstrahls und der Position der Haltevorrichtung des Rohlings einstellbar ist. Auf diese Weise lässt sich besonders einfach automatisiert ein gewünschtes Abtragprofil erstellen.The device is also preferably provided with a computer arrangement, by means of which the relative position between the direction of the liquid jet and the position of the holding device of the blank is adjustable. That way Automatically create a desired removal profile automatically.

Insbesondere können die Rechenmittel zum Bestimmen einer Kombination von vordefinierten Basis-Abtragprofilen zum Erzeugen eines gewünschten Abtragungsprofils ausgebildet sein. Dazu sind vorteilhaft eine Mehrzahl von Basis-Abtragprofilen in der erfindungsgemässen Vorrichtung gespeichert und einzelnen Einfallswinkeln zugeordnet.In particular, the calculating means may be designed to determine a combination of predefined basic removal profiles for generating a desired ablation profile. For this purpose, a plurality of basic removal profiles are advantageously stored in the device according to the invention and assigned to individual angles of incidence.

Vorteilhaft weist die Vorrichtung einem Computer und ausserdem ein Computerprogrammprodukt auf, welches eine Mehrzahl von vordefinierten Basis-Abtragprofilen enthält, welche unterschiedlichen Einfallswinkeln eines abrasiven Flüssigkeitsstrahls unter vorbestimmten Bedingungen wie Glassorte, Grösse des Rohlings, Eigenschaften des Strahls zugeordnet sind.Das Computerprogramm führt das vorstehend beschriebene Verfahren zum Herstellen von optischen Elementen in der vorbeschriebenen Vorrichtung aus, wenn das Programm auf dem Computer läuft.Advantageously, the apparatus comprises a computer and also a computer program product containing a plurality of predefined basic removal profiles associated with different angles of incidence of an abrasive liquid jet under predetermined conditions such as glass type, size of the blank, properties of the beam. The computer program performs the above described A method of manufacturing optical elements in the device described above when the program is run on the computer.

Die Erfindung wird im Folgenden anhand der Zeichnungen und in Ausführungsbeispielen näher erläutert. Es zeigen:

Figur 1:
schematische Darstellung der Erzeugung eines bestimmten Abtragprofils bei einem ersten Einfallswinkel
Figur 2:
schematische Darstellung der Erzeugung eines Abtragsprofils bei einem zweiten Einfallswinkel
Figur 3:
Diagramm der Messung von verschiedenen Abtragprofilen bei unterschiedlichen Einfallswinkeln
Figur 4:
schematische Darstellung einer erfindungsgemässen Vorrichtung
Figur 5:
schematische Darstellung eines Rohlings und einer Linse
Figur 6:
Darstellung der Optikrechnung einer Linse
Figur 7:
Vergleich eines Sollabtragprofils mit einer linearen Kombination von Basisprofilen und
Figur 8:
Diagramm von durch Simulation erzeugten Abtragprofilen unter verschiedenen Winkeln
The invention is explained in more detail below with reference to the drawings and in exemplary embodiments. Show it:
FIG. 1:
schematic representation of the generation of a specific removal profile at a first angle of incidence
FIG. 2:
schematic representation of the generation of a Abtragsprofils at a second angle of incidence
FIG. 3:
Diagram of the measurement of different removal profiles at different angles of incidence
FIG. 4:
schematic representation of an inventive device
FIG. 5:
schematic representation of a blank and a lens
FIG. 6:
Presentation of the optical calculation of a lens
FIG. 7:
Comparison of a target removal profile with a linear combination of base profiles and
FIG. 8:
Diagram of simulation profiles generated at different angles

Figuren 1 und 2 zeigen schematisch das Grundprinzip der vorliegenden Erfindung. Ein Rohling 20 in der Form einer Teilkugel ist in einer Halteanordnung 11 gelagert. Der Rohling 20 ist ein Glasrohling mit einem Radius von 0.45 mm, das heisst einem Durchmesser D von 0.9 mm. Mittels eines abrasiven Flüssigkeitsstrahls 32 wird Material von der Oberfläche 22 des Rohlings 20 abgetragen. Der abrasive Flüssigkeitsstrahl 32 wird von einer Düse 31 abgegeben. In Figur 1 ist der Flüssigkeitsstrahl 32 in eine Richtung R gerichtet, die etwa senkrecht zur Oberfläche der Halterung 11 steht. Der Winkel zwischen der Lotrechten und der Richtung R des Flüssigkeitsstrahls beträgt 0°. Der abrasive Flüssigkeitsstrahl 32 weist einen Strahldurchmesser d auf, der ca. 1.5 mm beträgt. Der Strahldurchmesser d ist also grösser als der Durchmesser D des Rohlings in einer Ebene E senkrecht zur Richtung R des Flüssigkeitsstrahls. Daraus ergeben sich unterschiedliche Abtragraten an unterschiedlichen Oberflächenbereichen des Rohlings 20. Beispielsweise ist insbesondere die Abtragung in ersten Oberflächenbereichen 22a und 22b, in denen der Flüssigkeitsstrahl 32 senkrecht oder parallel auf den Rohling 20 auftrifft, gering. Die Rate ist grösser in einem zweiten Oberflächenbereich 22c, in dem der Flüssigkeitsstrahl unter einem Winkel zwischen 0° und 90° auf die Oberfläche auftrifft. Dadurch ergibt sich eine von dem Oberflächenbereich des Rohlings abhängige Abtragung und dadurch ein bestimmtes Abtragprofil. Figures 1 and 2 schematically show the basic principle of the present invention. A blank 20 in the form of a partial sphere is mounted in a holding arrangement 11. The blank 20 is a glass blank with a radius of 0.45 mm, that is, a diameter D of 0.9 mm. By means of an abrasive liquid jet 32, material is removed from the surface 22 of the blank 20. The abrasive liquid jet 32 is discharged from a nozzle 31. In FIG. 1 the liquid jet 32 is directed in a direction R which is approximately perpendicular to the surface of the holder 11. The angle between the perpendicular and the direction R of the liquid jet is 0 °. The abrasive liquid jet 32 has a beam diameter d, which is about 1.5 mm. The beam diameter d is thus greater than the diameter D of the blank in a plane E perpendicular to the direction R of the liquid jet. This results in different removal rates at different surface areas of the blank 20. For example, the removal in particular in first surface areas 22a and 22b, in which the liquid jet 32 perpendicular or parallel to the blank 20th hits, low. The rate is greater in a second surface area 22c, in which the liquid jet impinges on the surface at an angle between 0 ° and 90 °. This results in an ablation dependent on the surface area of the blank and, as a result, a specific removal profile.

In Figur 2 ist der Rohling 20 bezogen auf die Düse 3 und sein Zentrum Z verschwenkt, so dass sich zwischen der Richtung R des Flüssigkeitsstrahls 32 und der Lotrechten L ein Winkel α von ca. 10° ergibt. In der Situation gemäss Figur 2 ist die Abtragrate im Oberflächenbereich 22f am grössten, während die Abtragrate in den Bereichen 22e und 22d nahezu Null ist. Bei der Bearbeitung des Rohlings 20 mit einer Position der Düse 31 gemäss Figur 2 ergibt sich daher ein unterschiedliches Abtragungsprofil am Rohling 20.In FIG. 2 the blank 20 is pivoted relative to the nozzle 3 and its center Z, so that an angle α of approximately 10 ° results between the direction R of the liquid jet 32 and the perpendicular L. In the situation according to FIG. 2 For example, the removal rate in the surface area 22f is greatest, while the removal rate in the areas 22e and 22d is nearly zero. In the processing of the blank 20 with a position of the nozzle 31 according to FIG. 2 Therefore, there is a different removal profile on the blank 20.

Durch weitere Variationen der Position der Düse 31 lässt sich eine Vielzahl von verschiedenen Abtragungsprofilen erzeugen. Figur 3 zeigt verschiedene Abtragprofile unter sechs verschiedenen Einfallswinkeln α des Flüssigkeitsstrahls 32. Figur 3 zeigt jeweils nur das halbe Profil (d. h. das Abtragungsprofil von einer Mittenebene des Rohlings bis zu einem Winkel von 50° bezogen auf die Mittenebene. Die X-Achse von 0 bis 50° entspricht dem Messbereich eines Interferometers, mittels welchem die Abtragungsprofile gemessen wurden. Entlang der Y-Achse ist der relative normalisierte Materialabtrag senkrecht zur Kugelfläche ausgehend von einem kugelförmigen Rohling 20 dargestellt.By further varying the position of the nozzle 31, a variety of different ablation profiles can be produced. FIG. 3 shows different removal profiles at six different angles of incidence α of the liquid jet 32. FIG. 3 shows only half the profile (ie the removal profile from a center plane of the blank up to an angle of 50 ° with respect to the center plane.) The X-axis from 0 to 50 ° corresponds to the measuring range of an interferometer, by means of which the removal profiles were measured The Y-axis shows the relative normalized material removal perpendicular to the spherical surface starting from a spherical blank 20.

Wie Figur 3 zeigt, ergeben sich je nach Winkellage des Flüssigkeitsstrahls 32 unterschiedliche Abtragprofile. Eine Kombination aus diesen einzelnen Basis-Abtragprofilen lässt sich zur Erzeugung eines vordefinierten Abtragprofils rechnerisch vorherbestimmen. Dieses Abtragprofil entspricht der Differenz zwischen der Form des Rohlings 20 und der gewünschten, asphärischen Form der herzustellenden optischen Komponente, insbesondere einer Linse.As FIG. 3 shows, depending on the angular position of the liquid jet 32 different removal profiles. A combination of these individual basic removal profiles can be predicted mathematically to generate a predefined removal profile. This removal profile corresponds to the difference between the shape of the blank 20 and the desired, aspherical shape of the optical component to be produced, in particular a lens.

Figur 4 zeigt schematisch eine Vorrichtung 10 zur Durchführung der vorliegenden Erfindung. Die Vorrichtung 10 besteht im Wesentlichen aus einer Halteanordnung 11 zum Halten des Rohlings 20. Beim Betrieb muss insbesondere auf die Zentrierung des Rohlings geachtet werden. Die Relativbewegung zwischen dem Rohling 20 und der Düse 31 muss sehr genau um den Mittelpunkt des Rohlings erfolgen. Dazu ist der Rohling so gehalten, dass er wenigstens zur Hälfte aus der Halteanordnung 11 vorsteht und vom Flüssigkeitsstrahl beaufschlagt werden kann.
Der Flüssigkeitsstrahl 32 ist durch die Düse 31 als Teil einer Strahlvorrichtung 30 abgebbar. Die Düse 31 ist mit einer Düsenhalterung 33 bewegbar gelagert, so dass der Flüssigkeitsstrahl 32 um das Zentrum Z des Rohlings 20 schwenkbar ist. Gemäss einem Ausführungsbeispiel wurde ein Rohling in drei Translationsachsen in X-, Y- und Z-Richtung bewegbar gehalten. Die Rotationsbewegungen wurden durch die Düse 31 erzeugt. Die Steuerung der einzelnen Bewegungen erfolgte durch eine hochpräzise CNC-Maschine. Selbstverständlich sind aber auch andere Anordnungen denkbar, bei denen beispielsweise ausschliesslich die Halteanordnung 11 zum Halten des Rohlings 20 verschwenkt würde.
FIG. 4 schematically shows an apparatus 10 for carrying out the present invention. The device 10 consists essentially of a holding arrangement 11 for holding the blank 20. During operation, particular care must be taken to center the blank. The relative movement between the blank 20 and the nozzle 31 must be very close to the center of the blank. For this purpose, the blank is held so that it projects at least half out of the holding assembly 11 and can be acted upon by the liquid jet.
The liquid jet 32 can be discharged through the nozzle 31 as part of a jet device 30. The nozzle 31 is movably mounted with a nozzle holder 33, so that the liquid jet 32 is pivotable about the center Z of the blank 20. According to one embodiment, a blank was held movably in three translation axes in the X, Y and Z directions. The rotational movements were generated by the nozzle 31. The individual movements were controlled by a high-precision CNC machine. Of course, other arrangements are conceivable in which, for example, only the holding assembly 11 would be pivoted to hold the blank 20.

Die Düse 31 ist in an sich bekannter Art und Weise über eine Flüssigkeitsverbindung 35 mit einer Vorrichtung 36 zur Erzeugung eines abrasiven Flüssigkeitsstrahls verbunden. Dabei handelt es sich typischerweise um eine volumetrische Pumpe.The nozzle 31 is connected in a manner known per se via a fluid connection 35 to an apparatus 36 for producing an abrasive liquid jet. This is typically a volumetric pump.

Ausserdem weist die Vorrichtung 10 eine Rechneranordnung 34 auf. In der Rechneranordnung 34 sind verschiedene Basis-Abtragprofile gespeichert. Die Basis-Abtragprofile entsprechen jeweils dem Abtragprofil für einen bestimmten Einfallswinkel α des Flüssigkeitsstrahls 32 auf den Rohling 20. Pro vorbestimmte Betriebsbedingungen (Material und Grösse des Rohlings, Art des Flüssigkeitsstrahls) ist jeweils für mehrere verschiedene Winkel je ein Abtragprofil gespeichert. Mittels der Rechneranordnung 34 lässt sich durch lineare Kombination von verschiedenen Basis-Abtragprofilen ein gewünschtes Abtragprofil als Differenz zwischen der Form des Rohlings und der Form der gewünschten asphärischen Komponente errechnen. Die Rechneranordnung 34 steuert entsprechend die Position der Düse 31 via eine CNC-Maschine.In addition, the device 10 has a computer arrangement 34. In the computer arrangement 34 different basic removal profiles are stored. The basic removal profiles correspond to the removal profile for a certain angle of incidence α of the liquid jet 32 to the blank 20. Per predetermined operating conditions (material and size of the blank, type of liquid jet) is stored for each of several different angles depending on a removal profile. By means of the computer arrangement 34, a desired removal profile can be calculated as a difference between the shape of the blank and the shape of the desired aspheric component by a linear combination of different base removal profiles. The computer assembly 34 accordingly controls the position of the nozzle 31 via a CNC machine.

Die Düse 32 kann in der Halterung 33 um einen Winkel α bezogen auf das Zentrum Z des Rohlings 20 verschwenkt werden (gestrichelt dargestellt). Typischerweise sind vorbestimmte Winkelpositionen im Abstand von 5° oder 10° denkbar. Alternativ ist es auch denkbar, Winkelpositionen in unregelmässigen Abständen zu verwenden, welche den Herstellvorgang optimieren, insbesondere Verweilzeiten pro Winkelbereich minimieren. Die Bestimmung von Profilen in den diversen Winkelpositionen kann dabei aufgrund von Simulationen ausgehend von einem realen Basisprofil erfolgen. Eine reale Messung in bestimmten Winkelpositionen ist daher in diesem Fall nicht notwendig.The nozzle 32 can be pivoted in the holder 33 by an angle α relative to the center Z of the blank 20 (shown in dashed lines). Typically, predetermined angular positions at a distance of 5 ° or 10 ° are conceivable. Alternatively, it is also conceivable to use angular positions at irregular intervals, which optimize the production process, in particular minimize residence times per angular range. The determination of profiles in the various angular positions can be done on the basis of simulations, starting from a real base profile. A real measurement in certain angular positions is therefore not necessary in this case.

Das Abtragprofil entspricht der Differenz zu einem teilweise kugelförmigen Rohling 20. Die Rückseite 23 des Rohlings wird plan geschliffen, vorzugsweise bevor der Rohling in die Halteanordnung positioniert wird.The removal profile corresponds to the difference to a partially spherical blank 20. The rear side 23 of the blank is ground flat, preferably before the blank is positioned in the holding arrangement.

Die Optikrechnung der Linse, d. h. die Differenz zwischen der sphärischen Form des Rohlings und der asphärischen Form der Linse 21 ist in Figur 6 dargestellt. Die Differenz entspricht dem Sollabtragprofil. In Abhängigkeit der Winkelposition (0° = Mitte der Linse, ca. 58° = äusserer Rand der Linse) werden unterschiedliche Abtragungen im Bereich zwischen 0 und maximal 12 µm vorgesehen. Dadurch ergibt sich die asphärische Form.The optical calculation of the lens, ie, the difference between the spherical shape of the blank and the aspherical shape of the lens 21 is shown in FIG FIG. 6 shown. The difference corresponds to the target removal profile. Depending on the angular position (0 ° = center of the lens, about 58 ° = outer edge of the lens) will be different Abtragungen provided in the range between 0 and a maximum of 12 microns. This results in the aspheric form.

In Figur 7 ist schematisch ein Vergleich zwischen einem gewünschten Abtragprofil (desired profile) und einer linearen Kombination von Basisabtragprofilen gezeigt, welche eine Näherung für das gewünschte Profil bilden. Die Abtragrate ist normalisiert (maximaler Abtrag entspricht -1).In FIG. 7 schematically a comparison between a desired Abtragprofil (desired profile) and a linear combination of Basisabtragprofilen shown, which form an approximation of the desired profile. The removal rate is normalized (maximum removal corresponds to -1).

Mit bekannten Abtragprofilen (konkret Abtragprofile für 0°, 10°, 20°, 30°, 40° und 50° des Einfallswinkels des Strahls auf den Rohling) wurde eine lineare Kombination bestimmt, mit welcher das Sollprofil möglichst gut angenähert werden kann. Diese lineare Kombination ist in Fig. 7 im Vergleich zum Sollprofil dargestellt. Typischerweise wurde zum Erzielen des in Figur 7 dargestellten Profils aus einer linearen Kombination eine Bearbeitung wie folgt errechnet: Verweilzeit / normalisiert auf Gesamtzeit Basisprofil verwenden 0 0°-Profil nein 0 10°-Profil nein 0.0851 20°-Profil ja 0.1501 30°-Profil ja 0 40°-Profil nein 0.7647 50°-Profil ja With known Abtragprofilen (concrete Abtragprofile for 0 °, 10 °, 20 °, 30 °, 40 ° and 50 ° of the angle of incidence of the beam on the blank) a linear combination was determined with which the target profile can be approximated as well as possible. This linear combination is in Fig. 7 shown in comparison to the target profile. Typically, to achieve the in FIG. 7 represented profile from a linear combination, an operation is calculated as follows: Dwell time / normalized to total time basic profile use 0 0 ° profile No 0 10 ° profile No 0.0851 20 ° profile Yes 0.1501 30 ° profile Yes 0 40 ° profile No 0.7647 50 ° profile Yes

Im konkreten (errechneten) Beispiel werden also Abtragungen mit einem Einfallswinkel von 20°, 30° und 50° vorgeschlagen. Die Verweilzeit der Abtragung des Profils, welches durch Einstrahlwinkel von 50° erzeugt wird, beträgt 76%. Die Bearbeitungszeit für Abtragungen mit einem Einfallswinkel von 20° bzw. 30° betragen 8.5% bzw. 15%. Das gezeigte Ausführungsbeispiel erfolgte durch Simulation in Theorie. Entsprechend könnte das Profil in Praxis hergestellt werden.In the concrete (calculated) example, erosion with an angle of incidence of 20 °, 30 ° and 50 ° are proposed. The residence time of the removal of the profile, which is generated by the angle of incidence of 50 °, is 76%. The machining time for erosions with an angle of incidence of 20 ° or 30 ° is 8.5% and 15%, respectively. The embodiment shown was made through simulation in theory. Accordingly, the profile could be made in practice.

In Figur 8 ist ein alternatives Ausführungsbeispiel gezeigt. Anstelle der in Figur 3 dargestellten gemessenen Basisprofile beruht das Beispiel gemäss Figur 8 auf simulierten Basisprofilen, welche ausgehend von einer Messung für einen Einfallswinkel von 0° errechnet werden. Die Unterschiede zwischen den simulierten und den gemessenen Basisprofilen sind ausreichend gering, so dass eine entsprechende Linse auch auf der Grundlage von solch simulierten Profilen herstellbar wäre. Vorteilhaft dabei ist, dass damit auch beliebige Profile für unterschiedliche Einfallswinkel berechnet werden können.In FIG. 8 an alternative embodiment is shown. Instead of in FIG. 3 The measured base profiles shown are based on the example according to FIG FIG. 8 on simulated basic profiles, which are calculated from a measurement for an angle of incidence of 0 °. The differences between the simulated and the measured base profiles are sufficiently small that a corresponding lens could also be produced on the basis of such simulated profiles. The advantage here is that so that any profiles can be calculated for different angles of incidence.

Claims (12)

  1. Method for producing optical elements (21), in particular aspherical mini and micro lenses, including the steps
    - providing at least one blank (20)
    - machining the blank (20) with an abrasive liquid jet (32) in order to remove material from the blank (20),
    characterized
    in that the liquid jet (32) has a jet diameter (d) which is greater than the dimension (D) of the blank (20) in a plane (E) perpendicular to the direction (R) of the liquid jet (32) and
    in that, for the machining of the blank (20), the liquid jet (32) is aimed at the blank (20) at at least two different angles of incidence (α) in such a way that a desired removal profile is achieved.
  2. Method according to Claim 1, characterized in that a blank (20) is used which is at least partly spherical in the region of the surface to be machined.
  3. Method according to either of Claims 1 or 2, characterized in that the liquid of the liquid jet is water.
  4. Method according to one of Claims 1 to 3, characterized in that CeO2 or SiC is added to the liquid jet (32) as abrasive material.
  5. Method according to one of Claims 1 to 4, characterized in that the liquid jet (32) has a jet diameter (d) of 1 - 6 mm.
  6. Method according to one of Claims 1 to 5, characterized in that the blank has a diameter of 1 to 5 mm.
  7. Method according to one of Claims 1 to 6, characterized in that the abrasive liquid jet (32) is delivered with a delivery pressure of 5 to 20 bar in a delivery arrangement (35).
  8. Method according to one of Claims 1 to 7, characterized in that the liquid jet (32) strikes the surface (22) of the blank (20) that is to be machined with a velocity of 40 to 80 m/s.
  9. Method according to one of Claims 1 to 8, characterized in that the machining of the blank (20) at various angles of the liquid jet (32) is carried out by a holding arrangement (11) for the blank (20) being pivoted about the centre (Z) of the at least partly spherical blank (20).
  10. Method according to one of Claims 1 to 9, characterized in that the blank (20) is machined by material being removed from the blank (20) in accordance with a removal profile, the removal profile being formed as a combination of a plurality of basic removal profiles and each basic removal profile corresponding to the machining of the blank (20) at a predetermined angle of incidence (α) of the liquid jet (32) on the blank (20).
  11. Method according to Claim 10, characterized in that a first basic profile is a measured basic profile for the machining of the blank (20) at a first angle of incidence, and in that further basic removal profiles for further predetermined angles of incidence are calculated by means of simulation on the basis of the first basic profile.
  12. Method according to Claim 11, characterized in that a linear combination of the basic profiles, which produces the desired removal rate, with corresponding predetermined angles of incidence (α) of the basic profiles is selected in such a way that it is possible to produce an asphere with minimal residence times per angle of incidence.
EP08102962A 2007-04-04 2008-03-27 Device and method for manufacturing optical elements Not-in-force EP1977860B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CH5412007 2007-04-04

Publications (2)

Publication Number Publication Date
EP1977860A1 EP1977860A1 (en) 2008-10-08
EP1977860B1 true EP1977860B1 (en) 2010-12-15

Family

ID=38666986

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08102962A Not-in-force EP1977860B1 (en) 2007-04-04 2008-03-27 Device and method for manufacturing optical elements

Country Status (3)

Country Link
US (1) US7987015B2 (en)
EP (1) EP1977860B1 (en)
AT (1) ATE491547T1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008052870B4 (en) * 2008-10-23 2010-09-02 Leica Biosystems Nussloch Gmbh Method for operating a microtome and microtome with a control device
JP6411821B2 (en) * 2014-09-09 2018-10-24 オリンパス株式会社 Lens manufacturing apparatus and lens manufacturing method

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928154A (en) * 1973-04-12 1975-12-23 Trw Inc Electrochemical radius generation
US4383572A (en) * 1981-12-07 1983-05-17 The Air Preheater Company, Inc. Fire detection cleaning arrangement
JPH0384545A (en) * 1989-08-29 1991-04-10 Fuji Photo Film Co Ltd Silver halide color photographic sensitive material and color image forming method
US5948202A (en) * 1994-02-03 1999-09-07 Corning Incorporated Method for removing a protective coating from optical fibers and making a photonic device
US7416611B2 (en) * 1997-05-09 2008-08-26 Semitool, Inc. Process and apparatus for treating a workpiece with gases
NL1007589C1 (en) * 1997-11-20 1999-05-25 Tno Method and device for machining a workpiece.
US5971835A (en) * 1998-03-25 1999-10-26 Qed Technologies, Inc. System for abrasive jet shaping and polishing of a surface using magnetorheological fluid
US6273785B1 (en) * 1998-09-02 2001-08-14 Xerox Corporation Non-contact support for cyclindrical machining
KR100730365B1 (en) * 1999-08-18 2007-06-19 코닌클리케 필립스 일렉트로닉스 엔.브이. Method of obtaining a pattern of concave spaces or apertures in a plate, and a brittle-like material and a pdp and a micro-electromechanical system, and a plasma-addressed liquid crystal display
JP4268303B2 (en) * 2000-02-01 2009-05-27 キヤノンアネルバ株式会社 Inline type substrate processing equipment
WO2002049804A1 (en) * 2000-12-21 2002-06-27 Qed Technologies, Inc. Jet-induced finishing of a substrate surface
DE10113599A1 (en) * 2001-03-20 2002-10-02 Fisba Optik Ag St Gallen Device for the abrasive processing of surfaces of optical elements
JP3896265B2 (en) * 2001-09-11 2007-03-22 オリンパス株式会社 Positioning jig and spray polishing apparatus using positioning jig
WO2005081301A1 (en) * 2004-02-25 2005-09-01 Ebara Corporation Polishing apparatus and substrate processing apparatus
WO2006057720A1 (en) * 2004-11-29 2006-06-01 Rajeev Bajaj Method and apparatus for improved chemical mechanical planarization pad with pressure control and process monitor
US8187056B2 (en) * 2006-12-14 2012-05-29 Flow International Corporation Process and apparatus for surface-finishing

Also Published As

Publication number Publication date
EP1977860A1 (en) 2008-10-08
US7987015B2 (en) 2011-07-26
US20080248729A1 (en) 2008-10-09
ATE491547T1 (en) 2011-01-15

Similar Documents

Publication Publication Date Title
EP2190626B1 (en) Method and device for machining workpieces
DE102009048590B4 (en) Device for blocking optical workpieces, in particular spectacle lenses
DE102012010635B4 (en) Process for 3D structuring and shaping of surfaces made of hard, brittle and optical materials
DE60129644T2 (en) METHOD FOR PRODUCING A SURFACE OF AN OPHTHALMIC LENS AND DEVICE FOR CARRYING OUT SAID METHOD
DE102016102768A1 (en) Method for processing edges of glass elements and glass element processed according to the method
EP1138516B1 (en) Method for forming an internal engraved image in a flat body and apparatus for performing the method
WO2017060251A1 (en) Method and device for the filamentation of workpieces not having a plane-parallel shape and workpiece produced by filamentation
EP1864753A1 (en) Machine for machining optical workpieces, especially plastic spectacle lenses
EP1409199B1 (en) Use of a device for the abrasive machining of surfaces of elements and in particular optical elements or workpieces
DE69109055T2 (en) Process for automatically processing the edges of glass panes and device for carrying out the process.
EP1977860B1 (en) Device and method for manufacturing optical elements
DE69811392T2 (en) METHOD AND DEVICE FOR MACHINING A WORKPIECE
DE10057068A1 (en) Feeling feedback system
DE112019006190T5 (en) Method and apparatus for cutting a structure from brittle materials
DE102009000321A1 (en) Three-dimensional processing of workpiece by laser processing tool, comprises measuring three-dimensional actual-workpiece-contour, and determining contour excesses with target-workpiece-contour based on comparison of the actual contour
EP2601005B1 (en) Method of shaping remelting of workpieces with a high-energy beam
DE102011102166A1 (en) Method for homogenizing the laser beam profile in processes using a liquid jet laser and corresponding device
EP3729485A1 (en) Method and a device for producing a desired rotationally symmetric surface profile
DE102014207001A1 (en) Method and device for improving the material quality in generative manufacturing processes
DE102015110712A1 (en) Machine for making balls, ball and method of making a ball
EP1704963B1 (en) Methods for manufacturing or measuring of rotationally symmetrical workpieces
EP3138122A1 (en) Method and device for evening out a substrate stack
DE102004028544B4 (en) Method for processing and measuring rotationally symmetrical workpieces and grinding and polishing tool
DE102016221734A1 (en) Method for fine alignment of robot tools
DE102016108076A1 (en) Material removal process

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20081201

17Q First examination report despatched

Effective date: 20090112

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MEEDER, MARK

Inventor name: MESSELINK, WILHELMUS

Inventor name: FAEHNLE, OLIVER

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: HEPP WENGER RYFFEL AG

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 502008002014

Country of ref document: DE

Date of ref document: 20110127

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110315

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110315

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110326

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110415

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

BERE Be: lapsed

Owner name: FISBA OPTIK A.G.

Effective date: 20110331

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

26N No opposition filed

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008002014

Country of ref document: DE

Effective date: 20110916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 491547

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130327

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160322

Year of fee payment: 9

Ref country code: NL

Payment date: 20160310

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160223

Year of fee payment: 9

Ref country code: GB

Payment date: 20160323

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160531

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008002014

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170327

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170327

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331