EP1704963B1 - Methods for manufacturing or measuring of rotationally symmetrical workpieces - Google Patents

Methods for manufacturing or measuring of rotationally symmetrical workpieces Download PDF

Info

Publication number
EP1704963B1
EP1704963B1 EP05006348A EP05006348A EP1704963B1 EP 1704963 B1 EP1704963 B1 EP 1704963B1 EP 05006348 A EP05006348 A EP 05006348A EP 05006348 A EP05006348 A EP 05006348A EP 1704963 B1 EP1704963 B1 EP 1704963B1
Authority
EP
European Patent Office
Prior art keywords
workpiece
axis
tool
parallel
procedure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP05006348A
Other languages
German (de)
French (fr)
Other versions
EP1704963A1 (en
Inventor
Sven Kiontke
Alexander Zschäbitz
Thomas Kurschel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asphericon GmbH
Original Assignee
Asphericon GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asphericon GmbH filed Critical Asphericon GmbH
Priority to AT05006348T priority Critical patent/ATE383223T1/en
Priority to EP05006348A priority patent/EP1704963B1/en
Publication of EP1704963A1 publication Critical patent/EP1704963A1/en
Application granted granted Critical
Publication of EP1704963B1 publication Critical patent/EP1704963B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B13/00Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
    • B24B13/01Specific tools, e.g. bowl-like; Production, dressing or fastening of these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D5/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D7/00Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting otherwise than only by their periphery, e.g. by the front face; Bushings or mountings therefor
    • B24D7/18Wheels of special form

Definitions

  • the invention relates to a method for processing a rotationally symmetrical workpiece, in particular for machining a workpiece with optically active surfaces, the axis of symmetry aligned parallel to the z-axis and which is movable parallel to the z-axis, with a rotating, rotationally symmetrical grinding or polishing tool
  • Alignment axis is aligned parallel to the y-axis and which is moved parallel to the x-axis, thereby touching the surface of the workpiece with a machined surface, wherein the workpiece rotates about its axis of symmetry, and a method for tactile measuring such a workpiece.
  • the genera of the claims 1,3 and 13 corresponding methods are for example from DE-A-100 38 415 known.
  • the invention is preferably used for machining aspherical workpieces with optically active surfaces, in particular lenses or mirrors, which have a non-workable zone, for example a conical elevation in the middle of the workpiece.
  • the production of aspheres is done in two steps, first by grinding or turning to produce the mold and then by polishing to achieve the required surface finish.
  • the tool spindle When grinding, the tool spindle is aligned horizontally parallel to the y-axis at right angles to the workpiece spindle.
  • the workpiece is mounted on a designated as a mandrel holder and tensioned in the workpiece spindle. Both tool and workpiece are rotated by means of the spindles.
  • the workpiece can be up and down be moved parallel to the z-axis.
  • the tool can be moved forward and backward parallel to the y-axis to adjust it to the center of the workpiece, and left and right parallel to the x-axis to perform the operation.
  • the grinding tool is an initially cylindrical grinding wheel, the grinding surface being the jacket of the cylinder. On it diamonds are applied in a metal or plastic bond.
  • the grinding wheel is formed into a narrow spherical cutout with the highest or thickest point in the median plane of the wheel. For exact machining, it is absolutely necessary to always grind with the highest point of the grinding wheel. Due to wear, there is a risk that, instead of the highest point, a depression forms whose two edges touch the workpiece. In addition, the grinding can be affected by impact of the grinding wheel. To avoid these two sources of error, the grinding wheel is dressed after installation. For this purpose, a so-called dressing stone is glued and clamped on a mandrel instead of the workpiece to be ground.
  • the grinding wheel is located exactly vertically above the truing stone, the center of its spherical section, ie the virtual center of the associated ball, lies on the extension of the tool axis. Then, the grinding wheel is moved very slowly into the dressing stone along the z-axis, with both the dressing stone and the grinding wheel rotating. By appropriate choice of the hardness of the stone and the rotational speeds both the stone and the disc are removed. The result is a spherical cavity in the stone and a spherical segment shape of the grinding wheel. Due to the mechanical and geometric conditions, the highest point of the grinding wheel is located exactly in the center of rotation of the dressing stone.
  • the grinding takes place by the tool traveling in the x-direction over the diameter of the workpiece. While driving is by default the z-position of the workpiece generates the desired shape of the workpiece. The path is then divided into small line segments, for which the x-values for the tool and the z-values for the workpiece are transferred via a CNC program. The y-position of the tool is determined by dressing so that the center of the grinding wheel, ie its highest point, travels over the center of rotation of the workpiece, and remains constant during machining. As a result, the machining can be understood as a radial cut through the workpiece for the calculation, in which the grinding wheel is abstracted as a circle.
  • the x-axis is largely adjusted by the manufacturer of the grinding machine, so that at an x-value specified by the factory, the axis of the grinding wheel is above the axis of the workpiece. If this is not the case, there is a form error, from which one has to manually recognize and correct the misalignment. For this a specimen is usually processed.
  • the position of the z-axis must be determined by probing and only determines the thickness of the workpiece, which can generally be measured directly.
  • the position of the y-axis is similar to the x-axis largely adjusted by the manufacturer.
  • This known method is not suitable for machining workpieces in which a predetermined by the radius of the grinding wheel Area in the middle of the workpieces can not be edited, for example, due to non-removable structures in this central area.
  • tactile measurements with profilometers are used. To do this, a probe with a ruby ball or a diamond tip is pulled over the workpiece and the movement of the probe is converted into a height image. After subtracting the nominal shape, the error of the DUT is obtained.
  • the probe is usually a two-bar right angle, at its vertical, lower end is the ruby ball or diamond tip, and whose horizontal bar is suspended in a rocker. The tilt angle of the rocker is measured and the position of the measuring ball or tip and above it the shape of the workpiece is calculated.
  • a travel over the diameter of the workpiece in the x direction is thereby carried out.
  • the z position of the measuring system remains constant, it is only pulled in one direction.
  • the absolute position of the workpiece in the x-direction in a tactile measurement is unknown.
  • the measuring system is moved away with each measurement in order to be able to remove the workpiece, so that there is no constant position of the measuring system over several measurements.
  • One of the objectives of the measurement evaluation is therefore the determination of the workpiece position with respect to the x-axis and, in particular for rotationally symmetrical workpieces, the determination of the center point.
  • One possibility is to approximate a system of equations using the least squares method.
  • the invention has for its object to provide methods with which a simple, fast and accurate machining and / or measurement of rotationally symmetrical workpieces is possible.
  • the grinding or polishing tool in a first method, is moved with a constant y value in exactly one plane which is parallel to the x-z plane and which is spaced from the axis of rotation of the workpiece.
  • the tool is thus moved along a chord of the workpiece. For workpieces with central, non-processable zones, this also allows machining of surfaces in the vicinity of non-workable zones without touching them.
  • the tool is moved to its point of contact with the workpiece in exactly one plane, which is parallel to the yz plane and in which the axis of rotation of the workpiece lies, with a constant x-value.
  • the tool is thus moved radially over the workpiece. Due to the predetermined orientation of the tool, this allows for workpieces with central, non-workable zones, the processing of the surfaces in the vicinity of the non-editable zones, without touching them, because the overlap of tool and workpiece in the radial direction is minimized.
  • a tool is used whose machining surface is a rotationally symmetrical spherical surface section of a virtual sphere whose center lies on the axis of symmetry of the tool and which is asymmetrically shaped with respect to each mirror plane which is perpendicular to its axis of symmetry and therefore the virtual sphere center outside the median plane of the working surface lies.
  • a steep cross-section of the tool can be used so that always the working surface rests in parallel on the surface to be machined.
  • a tool which is a torus section, wherein the cut is made in a plane perpendicular to the axis of symmetry
  • the cross-section of the tool can also be used, with slight wear, so that the machined surface rests in parallel on the surface to be machined.
  • a point can be used with an optimum rise to the touch for the workpiece.
  • the control of the grinding or polishing machine is very simple.
  • a tool which is a cone or a truncated cone, which has the machined surface at the location of the largest radius of the conical surface on the jacket, it is also possible to machine the entire, mechanically machinable surface of the workpiece.
  • CNC makes it easy to control the machining process.
  • the measuring probe of a profilometer is moved to its point of contact with the workpiece in exactly one plane which is parallel to the xz plane and which is spaced from the axis of rotation of the workpiece, with a constant y value.
  • the probe is thus moved along a chord of the workpiece. This allows for workpieces with central, non-scanning zones to measure.
  • the center of a rotationally symmetrical body are split into two parts at potential center points, one part of which is mirrored and then the correlation is determined by the mirrored and the non-mirrored part and the point which is the largest is determined as the actual center Correlation value results, the center can be determined independently of the desired shape of the workpiece, with an analytical representation of the surface profile is not necessary. The method is therefore insensitive to strong deviations from the desired shape, as long as there is sufficiently strong symmetry.
  • FIG. 1 a shows the top view
  • FIG. 1 b the side view.
  • the coordinate system is drawn for each sub-figure.
  • the grinding tool 1 moves, as already known, in the direction of the x-axis, but is spaced from the center of the workpiece 2, around which the elevation 3 is located. The movement thus takes place along a chord of the workpiece.
  • FIG. 2 Another method is shown in FIG. 2 , again in plan view and side view with indication of the coordinate system.
  • the grinding tool 1 moves the surface of the workpiece 2, which has the elevation 3, in the y and z direction instead of in the x and z directions.
  • the x-position is chosen so that the workpiece and tool axes intersect during machining. As a result, the overlap of the tool 1 and workpiece 2 in the radial direction is minimized.
  • a grinding tool 1 is preferably used in which the grinding surface is asymmetrically shaped as a spherical surface portion and with respect to each mirror plane perpendicular to the axis of symmetry. Since the virtual sphere center point is therefore outside the center plane of the grinding surface, the highest point of the grinding wheel is closer to one of the two edges of the grinding wheel, which expediently for concave workpieces 2 that of the axis of rotation of the workpiece 2 facing edge and convex workpieces 2 that of the axis of rotation of the workpiece 2 facing away from the edge. As a result, the distance to be maintained by a raised center of the workpiece 2 is reduced and thus a larger part of the workpiece 2 can be achieved.
  • the increase of the workpiece 2 determines the necessary increase of the grinding tool 1. For example, if a mirror 2 to be produced has a radial rise of 10 ° to 30 °, the grinding wheel section must also have an increase of at least 10 ° to 30 °.
  • the exact position of the virtual center and also the necessary or allowed thickness of the disk body 1 always depends on the shape of the workpiece 2, more precisely on the required climbs as described above.
  • the surface curvature of the virtual sphere must be greater than the strongest curvature of the workpiece 2.
  • a cone or truncated cone with grinding surface on the mantle can be used at the large radius.
  • the orientation of the largest radius to or from the axis of rotation of the workpiece 2 is possible here, wherein preferably the first variant is used for concave and convex workpieces.
  • Another alternative form is the use of an extremely narrow disk similar to a cutting wheel in which only one edge is used for machining.
  • the large radius of a cone or truncated cone can be used.
  • processing methods according to the invention can be used analogously on machines with differently constructed coordinate systems.
  • polishing Similar to grinding, the same methods can also be used for polishing if the grinding tool is replaced by a polishing tool.
  • FIG. 3 schematically shows a method for measuring rotationally symmetrical workpieces 2.
  • a travel path via a chord of the workpiece is selected, ie the measuring system with measuring probe 4 is pulled parallel to the x-axis with a constant y value on a line spaced from the center of the workpiece 2 so that it does not touch Survey 3.
  • the approached x-position For each measurement point, the approached x-position must be converted to the corresponding radius in order to again obtain a section along the diameter, which is then virtual.
  • the grinding tools themselves and other rough bodies can be measured.
  • a uniformly thick layer is first applied to the grinding surface or other rough surfaces, in particular adhesive strips or films, on which the probe can be used.
  • a rather steep cross section of the disk is desirable where the highest point is as far as possible at the edge of the disc.
  • a concave workpiece on a chord or radially parallel to the y-axis should therefore, when the disk is in the y-direction behind the center of the workpiece is the highest point on the center-facing side of the disc.
  • the aim is that always the working surface rests in parallel on the surface to be machined. Therefore, the increase of the workpiece determines the necessary increase in the grinding tool. If, for example, a mirror to be generated has a radial rise of 10 ° to 30 °, the grinding wheel cross-section must also have an increase of at least 10 ° to 30 °.
  • a grinding tool 1 is used, as shown in FIG. 4 within a virtual ball shell 1.3, whose center lies in the middle of one of the two side surfaces 1.2 of the grinding tool 1. It is a grinding wheel which has been brought into the shape according to the invention.
  • the spindle, with which the tool 1 is rotated, may alternatively be located on both sides of the disc 1, depending on whether convex or concave workpieces or workpiece areas are to be processed.
  • the grinding surface 1.1 is a spherical segment, which forms the edge of the grinding tool and represents a section of the virtual ball 1.3.
  • the virtual center of the sphere 1.3 lies outside the median plane of the disc with respect to its thickness, so that the disc is asymmetrically shaped. The center may even be outside of the disk body.
  • the exact position of the virtual center and the necessary or allowed thickness of the disk body depends on the shape of the workpiece, more precisely on the required climbs as described above. Just as with conventional grinding, the surface curvature of the virtual sphere 1.3 must also be greater than the strongest curvature of the workpiece in the case of concave surfaces.
  • a polishing tool of the same shape For polishing away from the axis parallel to the x-axis through a workpiece, a polishing tool of the same shape can be used analogously.
  • FIG. 5 the production of the shape of a grinding tool is shown schematically.
  • the grinding wheel 1 is positioned transversely to the axis of symmetry of the axis of rotation of the Abrichtsteins 5 in the direction of the axis of symmetry of the grinding wheel 1 with respect to its center or its center plane, thus spaced in the coordinate system of a grinding machine in the y direction of the axis of rotation of the dressing stone 5.
  • FIG. 6 illustrates the result of this procedure.
  • the Abrichtstein receives as in conventional dressing a spherical section-shaped trough, but the grinding wheel is replaced by the shape of a non-centric ball section.
  • the grinding surface 1.1 thus receives the shape of a spherical surface segment.
  • the distance between the center of the disc 1 and the axis of rotation of the dressing stone 5 can be selected so far that the grinding wheel 1 does not touch the axis of rotation of the dressing stone 5 at all.
  • the Abrichtstein then has, as shown in Figure 7 , in the middle of a untouched area, the steepest slope on the grinding surface 1.1 is steeper here than in the example from FIG. 6.
  • the necessary area of the ball section is calculated on the basis of the desired inclinations and depending on the travel of the tool, and taking into account the condition that the virtual center of the virtual ball 1.3 lies on the extension of the axis of rotation of the disc 1, the disc is parallel to the y -Axis, thus along the axis of rotation of the disc 1, shifted as the virtual sphere center was calculated from the center of the grinding wheel.
  • grinding tool is made.
  • FIG. 8 shows another possible procedure.
  • two identical grinding wheels 1 arranged together, preferably pressed together. They are centered in the dressing stone 5 driven.
  • the method illustrated in FIG. 10 serves to determine the center point or the axis of symmetry of rotationally symmetrical workpieces.
  • the measurement data of the profile 7 are successively divided into two parts at all potential center or symmetry axis positions 8 and mirrored one or both parts at the respective position, in the example by the position 10.
  • these mirrored parts 11 with the original parts 7 determines the correlation, ie the scalar product of both divided by the product of the norm of the respective parts calculated. This value is greatest when the cutting position 10 coincides with the actual center point 9.
  • the curve 12 shows the course of the correlation as a function of the selected axis.
  • Figure 11 illustrates a method of determining the cutting edge shape of a turning plate 13.
  • a sample 14 is rotated in which the continuous shape of the workpiece is replaced by a piecewise linear approximation. Within a cone piece 15, only a certain point of the cutting edge is engaged, depending on the slope of the cone 15.
  • a flat reference surface 16 is rotated against the sample 14. The sample 14 is then measured, and by comparing the positions of the cones 15 with the reference surface 16 or the conical pieces 15 with each other, the exact position of the working point of the cutting edge can be determined as a base of the cutting edge shape.
  • the shape of the cutting edge can then be determined by interpolation and the CNC program can be adapted accordingly.
  • a mean cutting radius can be determined from the determined interpolation points.

Abstract

The method involves treating a workpiece with optically effective surfaces, whose symmetry axis is parallel to an aligned Z-axis and parallel to the moveable Z-axis. A rotary, rotationally symmetric sharpener (1) is provided, its rotation axle parallel to the Y axis and aligned and parallel to the X axis. The workpiece (2) rotates around its symmetry axis. The tool is on one level, which is parallel to the X-Z-level and is separated by a distance of the rotation axle of the workpiece, with constant Y-value moving. An independent claim is included for a grinding or polishing tool.

Description

Die Erfindung betrifft ein Verfahren zum Bearbeiten eines rotationssymmetrischen Werkstückes, insbesondere zur Bearbeitung eines Werkstückes mit optisch wirksamen Flächen, dessen Symmetrieachse parallel zur z-Achse ausgerichtet und das parallel zur z-Achse bewegbar ist, mit einem rotierenden, rotationssymmetrischen Schleif- oder Polierwerkzeug, dessen Rotationsachse parallel zur y-Achse ausgerichtet ist und das parallel zur x-Achse bewegt wird und dabei die Oberfläche des Werkstückes mit einer bearbeitenden Fläche berührt, wobei das Werkstück um seine Symmetrieachse rotiert, sowie ein Verfahren zum taktilen Messen eines derartigen Werkstücks. Den gattungen des Ansprüche 1,3 und 13 entsprechende Verfahren sind z.B aus der DE-A-100 38 415 bekannt.The invention relates to a method for processing a rotationally symmetrical workpiece, in particular for machining a workpiece with optically active surfaces, the axis of symmetry aligned parallel to the z-axis and which is movable parallel to the z-axis, with a rotating, rotationally symmetrical grinding or polishing tool Alignment axis is aligned parallel to the y-axis and which is moved parallel to the x-axis, thereby touching the surface of the workpiece with a machined surface, wherein the workpiece rotates about its axis of symmetry, and a method for tactile measuring such a workpiece. The genera of the claims 1,3 and 13 corresponding methods are for example from DE-A-100 38 415 known.

Die Erfindung wird vorzugsweise eingesetzt zur Bearbeitung von asphärischen Werkstücken mit optisch wirksamen Flächen, insbesondere von Linsen oder Spiegeln, die eine nicht-bearbeitbare Zone aufweisen, beispielsweise eine konische Erhebung in der Mitte des Werkstückes.The invention is preferably used for machining aspherical workpieces with optically active surfaces, in particular lenses or mirrors, which have a non-workable zone, for example a conical elevation in the middle of the workpiece.

Die Produktion von Asphären erfolgt in zwei Schritten, zunächst durch Schleifen oder Drehen zum Erzeugen der Form und anschließend durch Polieren zum Erzielen der erforderlichen Oberflächengüte.The production of aspheres is done in two steps, first by grinding or turning to produce the mold and then by polishing to achieve the required surface finish.

Im Stand der Technik erfolgen beide Arbeitsschritte mittels Schleif-, Polier-oder Drehmaschinen, die per CNC angesteuert werden.In the prior art, both steps are carried out by means of grinding, polishing or lathes, which are controlled by CNC.

Beim Schleifen ist die Werkzeugspindel waagerecht parallel zur y-Achse im rechten Winkel zur Werkstückspindel ausgerichtet. Das Werkstück wird auf eine als Dorn bezeichnete Halterung befestigt und diese in die Werkstückspindel gespannt. Sowohl Werkzeug als auch Werkstück werden mittels der Spindeln gedreht. Das Werkstück kann nach oben und unten parallel zur z-Achse verfahren werden. Das Werkzeug kann einerseits nach vorne und hinten parallel zur y-Achse bewegt werden, um es auf die Mitte des Werkstücks zu justieren, und andererseits nach links und rechts parallel zur x-Achse, um den Arbeitsvorgang durchzuführen.When grinding, the tool spindle is aligned horizontally parallel to the y-axis at right angles to the workpiece spindle. The workpiece is mounted on a designated as a mandrel holder and tensioned in the workpiece spindle. Both tool and workpiece are rotated by means of the spindles. The workpiece can be up and down be moved parallel to the z-axis. The tool can be moved forward and backward parallel to the y-axis to adjust it to the center of the workpiece, and left and right parallel to the x-axis to perform the operation.

Das Schleif-Werkzeug ist eine zunächst zylindrische Schleifscheibe, wobei die Schleiffläche der Mantel des Zylinders ist. Auf ihm sind Diamanten in einer Metall- oder Kunststoffbindung aufgebracht. Die Schleifscheibe wird zu einem schmalen Kugelausschnitt geformt, wobei sich der höchste beziehungsweise dickste Punkt in der Mittelebene der Scheibe befindet. Für eine exakte Bearbeitung ist es unbedingt notwendig, immer mit dem höchsten Punkt der Schleifscheibe zu schleifen. Durch Abnutzung besteht die Gefahr, dass sich anstelle des höchsten Punktes eine Mulde bildet, deren beide Ränder das Werkstück berühren. Zudem kann das Schleifen durch Schlag der Schleifscheibe beeinträchtigt werden. Um diese beiden Fehlerquellen zu vermeiden, wird die Schleifscheibe nach dem Einbau abgerichtet. Dazu wird anstelle des zu schleifenden Werkstückes ein sogenannter Abrichtstein auf einen Dorn geklebt und eingespannt. Die Schleifscheibe befindet sich genau senkrecht über dem Abrichtstein, der Mittelpunkt ihres Kugelabschnittes, also der virtuelle Mittelpunkt der zugehörigen Kugel, liegt auf der Verlängerung der Werkzeugachse. Dann wird die Schleifscheibe entlang der z-Achse sehr langsam in den Abrichtstein hineingefahren, wobei sowohl Abrichtstein als auch Schleifscheibe rotieren. Durch passende Wahl der Härte des Steines und der Rotationsgeschwindigkeiten werden dabei sowohl der Stein als auch die Scheibe abgetragen. Das Ergebnis ist eine kugelförmige Mulde im Stein und eine Kugelsegmentform der Schleifscheibe. Aufgrund der mechanischen und geometrischen Gegebenheiten befindet sich der höchste Punkt der Schleifscheibe genau im Rotationsmittelpunkt des Abrichtsteins.The grinding tool is an initially cylindrical grinding wheel, the grinding surface being the jacket of the cylinder. On it diamonds are applied in a metal or plastic bond. The grinding wheel is formed into a narrow spherical cutout with the highest or thickest point in the median plane of the wheel. For exact machining, it is absolutely necessary to always grind with the highest point of the grinding wheel. Due to wear, there is a risk that, instead of the highest point, a depression forms whose two edges touch the workpiece. In addition, the grinding can be affected by impact of the grinding wheel. To avoid these two sources of error, the grinding wheel is dressed after installation. For this purpose, a so-called dressing stone is glued and clamped on a mandrel instead of the workpiece to be ground. The grinding wheel is located exactly vertically above the truing stone, the center of its spherical section, ie the virtual center of the associated ball, lies on the extension of the tool axis. Then, the grinding wheel is moved very slowly into the dressing stone along the z-axis, with both the dressing stone and the grinding wheel rotating. By appropriate choice of the hardness of the stone and the rotational speeds both the stone and the disc are removed. The result is a spherical cavity in the stone and a spherical segment shape of the grinding wheel. Due to the mechanical and geometric conditions, the highest point of the grinding wheel is located exactly in the center of rotation of the dressing stone.

Das Schleifen erfolgt, indem das Werkzeug in x-Richtung über den Durchmesser des Werkstücks fährt. Während der Fahrt wird durch Vorgabe der z-Position des Werkstücks die gewünschte Form des Werkstücks erzeugt. Der Weg wird dazu in kleine Liniensegmente eingeteilt, für die per CNC-Programm die x-Werte für das Werkzeug und die z-Werte für das Werkstück übergeben werden. Die y-Position des Werkzeugs wird durch das Abrichten so bestimmt, dass die Mitte der Schleifscheibe, also ihr höchster Punkt, über den Rotationsmittelpunkt des Werkstücks fährt, und bleibt während der Bearbeitung konstant. Dadurch kann für die Berechnung die Bearbeitung als radialer Schnitt durch das Werkstück aufgefasst werden, bei dem die Schleifscheibe als Kreis abstrahiert wird.The grinding takes place by the tool traveling in the x-direction over the diameter of the workpiece. While driving is by default the z-position of the workpiece generates the desired shape of the workpiece. The path is then divided into small line segments, for which the x-values for the tool and the z-values for the workpiece are transferred via a CNC program. The y-position of the tool is determined by dressing so that the center of the grinding wheel, ie its highest point, travels over the center of rotation of the workpiece, and remains constant during machining. As a result, the machining can be understood as a radial cut through the workpiece for the calculation, in which the grinding wheel is abstracted as a circle.

Für die Bearbeitung ist es wichtig, dass die Position aller drei Achsen exakt definiert ist. Die x-Achse wird vom Hersteller der Schleifmaschine weitestgehend justiert, sodass bei einem vom Werk vorgegebenen x-Wert die Achse der Schleifscheibe über der Achse des Werkstücks steht. Ist dies nicht der Fall, ergibt sich ein Formfehler, aus dem man die Fehlstellung manuell erkennen und korrigieren muss. Dazu wird in der Regel eine Probestück bearbeitet. Die Position der z-Achse muss durch Antasten bestimmt werden und bestimmt lediglich die Dicke des Werkstücks, die im Allgemeinen direkt nachgemessen werden kann. Die Position der y-Achse ist ähnlich der x-Achse vom Hersteller weitestgehend justiert. Da die Schleifscheibe aber in y-Richtung aufgesteckt und festgeschraubt ist, ergibt sich stets eine mechanische Toleranz. Nur das Abnehmen und Wiederaufschrauben bewirkt eine Änderung der y-Position. Falls der höchste Punkt des Werkzeuges nicht genau durch den Mittelpunkt des Werkstückes geht, berührt ein anderer, nicht genau bekannter Punkt das Werkstück, woraus ein weiterer Formfehler des Werkstückes resultiert. Durch erneutes, kurzes Abrichten wird die Fehlstellung hinsichtlich der y-Achse korrigiert.For machining, it is important that the position of all three axes is exactly defined. The x-axis is largely adjusted by the manufacturer of the grinding machine, so that at an x-value specified by the factory, the axis of the grinding wheel is above the axis of the workpiece. If this is not the case, there is a form error, from which one has to manually recognize and correct the misalignment. For this a specimen is usually processed. The position of the z-axis must be determined by probing and only determines the thickness of the workpiece, which can generally be measured directly. The position of the y-axis is similar to the x-axis largely adjusted by the manufacturer. However, since the grinding wheel is plugged in and tightened in the y-direction, there is always a mechanical tolerance. Only removing and re-screwing will change the y-position. If the highest point of the tool does not go exactly through the center of the workpiece, another, not exactly known point touches the workpiece, resulting in a further shape error of the workpiece. By renewed, short dressing the misalignment is corrected with respect to the y-axis.

Dieses bekannte Verfahren ist nicht zur Bearbeitung von Werkstücken geeignet, bei denen ein durch den Radius der Schleifscheibe vorgegebener Bereich in der Mitte der Werkstücke nicht bearbeitet werden kann, beispielsweise aufgrund nicht abnehmbarer Aufbauten in diesem zentralen Bereich.This known method is not suitable for machining workpieces in which a predetermined by the radius of the grinding wheel Area in the middle of the workpieces can not be edited, for example, due to non-removable structures in this central area.

Beim CNC-Drehen wird auf den Drehmeißel eine kleine Platte, die Wendeplatte, aufgeschraubt, welche die eigentliche Schneide enthält. Um die Standzeit der Platte zu erhöhen, werden deren Kanten abgerundet. Der von oben betrachtete Radius zwischen der parallel zur Rotationsachse des Werkstückes und der senkrecht dazu verlaufenden Kante wird Schneidenradius genannt. Dies ist der Bereich der Wendeplatte, der direkt im Eingriff steht. Für eine genaue Bearbeitung ist es wichtig, den Schneidenradius beziehungsweise die Abweichung von der Idealform genau zu kennen. Insbesondere beim Drehen von Kegeln oder komplexeren Formen wie Sphären oder Asphären muss beachtet werden, dass der Meißel aufgrund dieses Radius weiter zugestellt werden muss als es bei einer unabgerundeten Schneidspitze der Fall wäre. Moderne CNC-Drehmaschinen erlauben die Eingabe des Schneidenradius und passen das CNC-Programm entsprechend an. Es wird dabei angenommen, dass der Radius exakt eingehalten wird, also keine Abweichung von der Idealform existiert.When turning the CNC, a small plate, the insert, is screwed onto the turning tool, which contains the actual cutting edge. To increase the service life of the plate, its edges are rounded off. The considered from above radius between the parallel to the axis of rotation of the workpiece and the perpendicular edge is called cutting radius. This is the area of the insert that is directly engaged. For accurate machining, it is important to know exactly the cutting radius or the deviation from the ideal shape. In particular, when turning cones or more complex shapes such as spheres or aspheres, it must be taken into account that the bit must be delivered further because of this radius than would be the case with an unrounded cutting tip. Modern CNC lathes allow you to enter the cutting radius and adjust the CNC program accordingly. It is assumed that the radius is exactly maintained, ie no deviation from the ideal form exists.

Dieses Vorgehen reduziert die mögliche Genauigkeit der Bearbeitung.This procedure reduces the possible accuracy of the machining.

Für das Vermessen von rotationssymmetrischen Körpern wird unter anderem taktiles Messen mit Profilometern verwendet. Dazu wird ein Messtaster mit einer Rubinkugel oder einer Diamantspitze über das Werkstück gezogen und die Bewegung des Tasters in ein Höhenbild umgerechnet. Nach Abzug der Sollform erhält man den Fehler des Messobjekts. Der Messtaster ist in der Regel ein aus zwei Stäben bestehender rechter Winkel, an dessen senkrechten, unteren Ende sich die Rubinkugel beziehungsweise Diamantspitze befindet, und dessen waagerechter Stab in einer Wippe aufgehängt ist. Der Kippwinkel der Wippe wird dabei gemessen und die Position der Messkugel oder -spitze und darüber die Form des Werkstückes berechnet. Bei rotationssymmetrischen Werkstücken wird dabei eine Fahrt über den Durchmesser des Werkstücks in x-Richtung durchgeführt. Die z-Position des Messsystems bleibt dabei konstant, es wird nur in eine Richtung gezogen.For the measurement of rotationally symmetrical bodies tactile measurements with profilometers are used. To do this, a probe with a ruby ball or a diamond tip is pulled over the workpiece and the movement of the probe is converted into a height image. After subtracting the nominal shape, the error of the DUT is obtained. The probe is usually a two-bar right angle, at its vertical, lower end is the ruby ball or diamond tip, and whose horizontal bar is suspended in a rocker. The tilt angle of the rocker is measured and the position of the measuring ball or tip and above it the shape of the workpiece is calculated. In the case of rotationally symmetrical workpieces, a travel over the diameter of the workpiece in the x direction is thereby carried out. The z position of the measuring system remains constant, it is only pulled in one direction.

Bei Werkstücken mit einer zentralen Erhebung oder einem Loch ist dieses Verfahren nicht durchführbar.For workpieces with a central elevation or a hole, this procedure is not feasible.

Prinzipbedingt ist die absolute Lage des Werkstückes in x-Richtung bei einer taktilen Messung unbekannt. Insbesondere wird bei jedem Messen das Messsystem weggefahren, um das Werkstück entnehmen zu können, sodass keine gleichbleibende Position des Messsystems über mehrere Messungen hinweg gegeben ist. Eines der Ziele der Messungsauswertung ist daher die Bestimmung der Werkstückposition bezüglich der x-Achse und insbesondere bei rotationssymmetrischen Werkstücken die Bestimmung des Mittelpunktes. Eine Möglichkeit besteht in der näherungsweisen Lösung eines Gleichungssystems mittels des Verfahrens der kleinsten Quadrate.Due to the principle, the absolute position of the workpiece in the x-direction in a tactile measurement is unknown. In particular, the measuring system is moved away with each measurement in order to be able to remove the workpiece, so that there is no constant position of the measuring system over several measurements. One of the objectives of the measurement evaluation is therefore the determination of the workpiece position with respect to the x-axis and, in particular for rotationally symmetrical workpieces, the determination of the center point. One possibility is to approximate a system of equations using the least squares method.

Dies setzt jedoch voraus, dass sich die Sollform des Werkstückes adäquat analytisch darstellen lässt. Speziell bei Asphären ist dies jedoch nicht möglich.However, this presupposes that the desired shape of the workpiece can be represented adequately analytically. However, this is not possible, especially with aspheres.

Der Erfindung liegt die Aufgabe zugrunde, Verfahren anzugeben, mit denen eine einfache, schnelle und genaue Bearbeitung und/oder Vermessung von rotationssymmetrischen Werkstücken möglich ist.The invention has for its object to provide methods with which a simple, fast and accurate machining and / or measurement of rotationally symmetrical workpieces is possible.

Erfindungsgemäß wird die Aufgabe mit Verfahren, welche die in Anspruch 1, 3 oder 13 angegebenen Merkmale enthalten, gelöst.According to the invention the object is achieved by methods which contain the features specified in claim 1, 3 or 13.

Vorteilhafte Ausgestaltungen sind in den jeweiligen Unteransprüchen angegeben.Advantageous embodiments are specified in the respective subclaims.

Erfindungsgemäß wird in einem ersten Verfahren das Schleif- oder Polierwerkzeug in genau einer Ebene, die parallel zur x-z-Ebene ist und die von der Rotationsachse des Werkstückes beabstandet ist, mit konstantem y-Wert bewegt. Das Werkzeug wird also entlang einer Sehne des Werkstückes bewegt. Dies ermöglicht bei Werkstücken mit zentralen, nichtbearbeitbaren Zonen die Bearbeitung auch der Flächen in der Nähe der nichtbearbeitbaren Zonen, ohne diese zu berühren.According to the invention, in a first method, the grinding or polishing tool is moved with a constant y value in exactly one plane which is parallel to the x-z plane and which is spaced from the axis of rotation of the workpiece. The tool is thus moved along a chord of the workpiece. For workpieces with central, non-processable zones, this also allows machining of surfaces in the vicinity of non-workable zones without touching them.

Dadurch, dass für jede x-Position des Werkzeugs ermittelt wird, an welcher y-Position die bearbeitende Fläche beim Hineinbewegen parallel zur z-Achse das Werkstück zuerst berührt, und die zu dieser x-y-Position gehörende z-Position angefahren wird, kann das Verfahren einfach und mit herkömmlichen Schleif- oder Poliermaschinen durchgeführt werden.The fact that for each x-position of the tool is determined at which y-position, the machined surface when moving parallel to the z-axis, the workpiece first touched, and the x-position belonging to this z-position is approached, the method easy and with conventional grinding or polishing machines are performed.

In einem zweiten Verfahren wird das Werkzeug auf seinen Berührungspunkt mit dem Werkstück bezogen in genau einer Ebene, die parallel zur y-z-Ebene ist und in der die Rotationsachse des Werkstückes liegt, mit konstantem x-Wert bewegt. Das Werkzeug wird also radial über das Werkstück bewegt. Durch die vorgegebene Orientierung des Werkzeugs ermöglicht dies bei Werkstücken mit zentralen, nichtbearbeitbaren Zonen die Bearbeitung auch der Flächen in der Nähe der nichtbearbeitbaren Zonen, ohne diese zu berühren, da die Überlappung von Werkzeug und Werkstück in radialer Richtung minimiert wird.In a second method, the tool is moved to its point of contact with the workpiece in exactly one plane, which is parallel to the yz plane and in which the axis of rotation of the workpiece lies, with a constant x-value. The tool is thus moved radially over the workpiece. Due to the predetermined orientation of the tool, this allows for workpieces with central, non-workable zones, the processing of the surfaces in the vicinity of the non-editable zones, without touching them, because the overlap of tool and workpiece in the radial direction is minimized.

Vorteilhafterweize wird ein Werkzeug verwendet, dessen bearbeitende Fläche ein rotationssymmetrischer Kugelflächenabschnitt einer virtuellen Kugel ist, deren Mittelpunkt auf der Symmetrieachse des Werkzeugs liegt und die bezüglich jeder Spiegelebene, die senkrecht zu seiner Symmetrieachse liegt, asymmetrisch geformt ist und daher der virtuelle Kugelmittelpunkt außerhalb der Mittelebene der bearbeitenden Fläche liegt. So kann bei geringem Verschleiß, Anpassbarkeit an die jeweilige Form und optimaler Bearbeitungsfläche ein steiler Querschnitt des Werkzeugs dazu genutzt werden, dass stets die bearbeitende Fläche parallel auf der zu bearbeitenden Fläche aufliegt.Advantageously, a tool is used whose machining surface is a rotationally symmetrical spherical surface section of a virtual sphere whose center lies on the axis of symmetry of the tool and which is asymmetrically shaped with respect to each mirror plane which is perpendicular to its axis of symmetry and therefore the virtual sphere center outside the median plane of the working surface lies. Thus, with little wear, adaptability to the particular shape and optimum working surface, a steep cross-section of the tool can be used so that always the working surface rests in parallel on the surface to be machined.

Wird ein Werkzeug verwendet, das ein Torusabschnitt ist, wobei der Schnitt in einer Ebene senkrecht zur Symmetrieachse erfolgt ist, kann bei ebenfalls geringem Verschleiß der Querschnitt des Werkzeugs dazu genutzt werden, dass die bearbeitende Fläche parallel auf der zu bearbeitenden Fläche aufliegt.If a tool is used, which is a torus section, wherein the cut is made in a plane perpendicular to the axis of symmetry, the cross-section of the tool can also be used, with slight wear, so that the machined surface rests in parallel on the surface to be machined.

Dadurch, dass das Werkzeug für konkave Bereiche des Werkstücks mit der Seite des größten Anstiegs der bearbeitenden Fläche von der Rotationsachse des Werkstücks weg orientiert wird und für konvexe Bereiche des Werkstücks mit der Seite des größten Anstiegs der bearbeitenden Fläche zur Rotationsachse des Werkstücks hin orientiert wird, können auch Flächen im Randbereich mit minimal nichtbearbeitbaren Rest bearbeitet werden.By orienting the tool for concave portions of the workpiece with the largest increase side of the machining surface away from the rotational axis of the workpiece and for convex portions of the workpiece with the largest increase side of the machining surface toward the rotational axis of the workpiece; It is also possible to edit surfaces in the marginal area with minimally unworkable rest.

Dadurch, dass für jeden Punkt auf einem Schnitt parallel zur y-Achse durch die Rotationsachse des Werkstücks der Anstieg der Werkstückoberfläche ermittelt wird, für diesen Punkt die Stelle des Werkzeugs ermittelt wird, an der die bearbeitende Fläche den gleichen Anstieg aufweist und das Werkzeug so positioniert wird, dass der Punkt und die Stelle aufeinanderfallen, ist eine exakte Bearbeitung des Werkstücks gewährleistet.Characterized in that for each point on a section parallel to the y-axis through the axis of rotation of the workpiece, the increase of the workpiece surface is determined, for this point, the location of the tool is determined, where the machined surface has the same slope and the tool so is positioned so that the point and the place coincide, an exact machining of the workpiece is guaranteed.

Wenn das Werkzeug das Werkstück steuerungsabhängig auch abseits der Mittelebene der bearbeitenden Fläche berührt, kann jeweils ein Punkt mit für das Werkstück optimalem Anstieg zur Berührung verwendet werden.If the tool also touches the workpiece away from the center plane of the working surface, depending on the control, a point can be used with an optimum rise to the touch for the workpiece.

Besteht das Werkzeug aus einer dünnen Scheibe, die an der Schmalseite die bearbeitende Fläche aufweist, ist die Steuerung der Schleif- oder Poliermaschine sehr einfach.If the tool consists of a thin disk with the working surface on the narrow side, the control of the grinding or polishing machine is very simple.

Wird ein Werkzeug verwendet, das ein Kegel oder ein Kegelstumpf ist, der an der Stelle des größten Radius des Kegelmantels auf dem Mantel die bearbeitende Fläche aufweist, ist ebenfalls die Bearbeitung der gesamten, mechanisch bearbeitbaren Fläche des Werkstücks möglich.If a tool is used, which is a cone or a truncated cone, which has the machined surface at the location of the largest radius of the conical surface on the jacket, it is also possible to machine the entire, mechanically machinable surface of the workpiece.

Dadurch, dass das Werkzeug mit der Seite des größten Radius des Kegelmantels zur Rotationsachse des Werkstücks hin orientiert wird, können Flächen nahe der Werkstückmitte mit nichtbearbeitbaren Rest bearbeitet werden.By orienting the tool with the side of the largest radius of the cone sheath toward the axis of rotation of the workpiece, surfaces near the center of the workpiece can be machined with non-machinable remainder.

Durch CNC ist eine einfache Steuerung des Bearbeitungsvorganges möglich.CNC makes it easy to control the machining process.

Im erfindungsgemäßen Messverfahren wird der Messtaster eines Profilometers auf seinen Berührungspunkt mit dem Werkstück bezogen in genau einer Ebene, die parallel zur x-z-Ebene ist und die von der Rotationsachse des Werkstückes beabstandet ist, mit konstantem y-Wert bewegt. Der Messtaster wird also entlang einer Sehne des Werkstückes bewegt. Dies ermöglicht bei Werkstücken mit zentralen, nichtabtastbaren Zonen das Messen.In the measuring method according to the invention, the measuring probe of a profilometer is moved to its point of contact with the workpiece in exactly one plane which is parallel to the xz plane and which is spaced from the axis of rotation of the workpiece, with a constant y value. The probe is thus moved along a chord of the workpiece. This allows for workpieces with central, non-scanning zones to measure.

Dadurch, dass für jeden Messpunkt die angefahrene x-Position auf den zugehörigen Radius des Werkstücks umgerechnet wird, kann ein virtueller Schnitt durch den Durchmesser ermittelt werden.By converting the approached x position to the associated radius of the workpiece for each measuring point, a virtual section through the diameter can be determined.

Werden die zur Bestimmung des Mittelpunkts eines rotationssymmetrischen Körpers ermittelten Daten an potentiellen Mittelpunktstellen in zwei Teile zerlegt, wovon der eine Teil gespiegelt wird und anschließend von dem gespiegelten und dem ungespiegelten Teil die Korrelation bestimmt wird und diejenige Stelle als tatsächlicher Mittelpunkt bestimmt wird, die den größten Korrelationswert ergibt, kann der Mittelpunkt unabhängig von der Sollform des Werkstückes ermittelt werden, wobei eine analytische Darstellung des Oberflächenverlaufes nicht notwendig ist. Das Verfahren ist daher unempfindlich gegenüber starken Abweichungen von der Sollform, solange hinreichend starke Symmetrie vorliegt.If the data determined for determining the center of a rotationally symmetrical body are split into two parts at potential center points, one part of which is mirrored and then the correlation is determined by the mirrored and the non-mirrored part and the point which is the largest is determined as the actual center Correlation value results, the center can be determined independently of the desired shape of the workpiece, with an analytical representation of the surface profile is not necessary. The method is therefore insensitive to strong deviations from the desired shape, as long as there is sufficiently strong symmetry.

Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert.The invention is explained in more detail below with reference to an embodiment.

Dazu zeigen

Figur 1
eine schematische Darstellung des Bearbeitungsverfahrens, bei dem das Schleifwerkzeug entlang einer Sehne parallel zur x-Achse bewegt wird
Figur 2
eine schematische Darstellung des Bearbeitungsverfahrens, bei dem das Schleifwerkzeug radial parallel zur y-Achse bewegt wird
Figur 3
eine schematische Darstellung des Vermessungsverfahrens
Figur 4
die perspektivische Ansicht eines Schleifwerkzeugs,
Figur 5
das Herstellen eines Schleifwerkzeugs,
Figur 6
einen Schnitt durch das fertige Werkzeug,
Figur 7
einen Schnitt durch ein weiteres Beispiel für ein fertiges Werkzeug,
Figur 8
ein alternatives Verfahren zur Herstellung eines Werkzeugs,
Figur 9
ein nach dem in Figur 8 gezeigten Verfahren hergestelltes Werkzeug
Figur 10
eine schematische Darstellung des Verfahrens zur Bestimmung des Werkstückmittelpunktes
und
Figur 11
eine schematische Darstellung des Verfahrens zur Vermessung von Drehmeißeln.
Show this
FIG. 1
a schematic representation of the machining process in which the grinding tool is moved along a chord parallel to the x-axis
FIG. 2
a schematic representation of the machining process in which the grinding tool is moved radially parallel to the y-axis
FIG. 3
a schematic representation of the surveying process
FIG. 4
the perspective view of a grinding tool,
FIG. 5
the production of a grinding tool,
FIG. 6
a cut through the finished tool,
FIG. 7
a section through another example of a finished tool,
FIG. 8
an alternative method of making a tool,
FIG. 9
a tool manufactured according to the method shown in FIG. 8
FIG. 10
a schematic representation of the method for determining the workpiece center
and
FIG. 11
a schematic representation of the method for measuring turning tools.

Bei dem in Figur 1 schematisch dargestellten Verfahren zeigt Fig. 1 a) die Draufsicht, und Fig. 1 b) die Seitenansicht. Zu jeder Teilfigur ist das Koordinatensystem eingezeichnet. Das Schleifwerkzeug 1 fährt, wie bereits bekannt, in Richtung der x-Achse, ist jedoch vom Mittelpunkt des Werkstücks 2, um den sich die Erhebung 3 befindet, beabstandet. Die Bewegung findet also entlang einer Sehne des Werkstückes statt.In the illustrated schematically in Figure 1. The process Fig. 1 a) shows the top view, and FIG. 1 b) the side view. The coordinate system is drawn for each sub-figure. The grinding tool 1 moves, as already known, in the direction of the x-axis, but is spaced from the center of the workpiece 2, around which the elevation 3 is located. The movement thus takes place along a chord of the workpiece.

Ein weiteres Verfahren zeigt Figur 2, wiederum in Draufsicht und Seitenansicht mit Angabe des Koordinatensystems. Das Schleifwerkzeug 1 fährt die Oberfläche des Werkstückes 2, das die Erhebung 3 aufweist, in y- und z-Richtung anstatt in x- und z-Richtung ab. Die x-Position wird dabei so gewählt, dass sich während der Bearbeitung die Werkstück- und Werkzeugachsen schneiden. Dadurch wird die Überlappung von Werkzeug 1 und Werkstück 2 in radialer Richtung minimiert.Another method is shown in FIG. 2 , again in plan view and side view with indication of the coordinate system. The grinding tool 1 moves the surface of the workpiece 2, which has the elevation 3, in the y and z direction instead of in the x and z directions. The x-position is chosen so that the workpiece and tool axes intersect during machining. As a result, the overlap of the tool 1 and workpiece 2 in the radial direction is minimized.

Die bekannten, herkömmlichen Schleifscheiben können zwar prinzipiell mit diesen beiden alternativen Verfahren verwendet werden, weisen jedoch den großen Nachteil auf, dass sie aufgrund ihrer relativ flachen Form sehr weit zum Mittelpunkt des Werkstückes 2 hin reichen. Die Bearbeitung ist also nur teilweise außerhalb eines durch die halbe Dicke der Schleifscheibe vorgegebenen Bereichs möglich.Although the known, conventional grinding wheels can be used in principle with these two alternative methods, but have the great disadvantage that they reach very far to the center of the workpiece 2 because of their relatively flat shape. The machining is therefore only partially possible outside a predetermined by half the thickness of the grinding wheel area.

Daher wird vorzugsweise ein Schleifwerkzeug 1 eingesetzt, bei dem die Schleiffläche als ein Kugelflächenabschnitt und bezüglich jeder Spiegelebene, die senkrecht zur Symmetrieachse liegt, asymmetrisch geformt ist. Da der virtuelle Kugelmittelpunkt daher außerhalb der Mittelebene der Schleiffläche liegt, befindet sich der höchste Punkt der Schleifscheibe näher an einem der beiden Ränder der Schleifscheibe, wobei dies zweckmäßigerweise bei konkaven Werkstücken 2 derjenige der Rotationsachse des Werkstücks 2 zugewandte Rand und bei konvexen Werkstücken 2 derjenige von der Rotationsachse des Werkstücks 2 abgewandte Rand ist. Dadurch wird der von einem erhabenen Zentrum des Werkstücks 2 mindestens einzuhaltende Abstand verringert und es kann somit ein größerer Teil des Werkstücks 2 erreicht werden.Therefore, a grinding tool 1 is preferably used in which the grinding surface is asymmetrically shaped as a spherical surface portion and with respect to each mirror plane perpendicular to the axis of symmetry. Since the virtual sphere center point is therefore outside the center plane of the grinding surface, the highest point of the grinding wheel is closer to one of the two edges of the grinding wheel, which expediently for concave workpieces 2 that of the axis of rotation of the workpiece 2 facing edge and convex workpieces 2 that of the axis of rotation of the workpiece 2 facing away from the edge. As a result, the distance to be maintained by a raised center of the workpiece 2 is reduced and thus a larger part of the workpiece 2 can be achieved.

Beim Schleifen eines konkaven Werkstücks 2 auf einer Sehne oder radial parallel zur γ-Achse sollte sich also, wenn die Scheibe 1 sich in γ-Richtung betrachtet hinter dem Mittelpunkt des Werkstücks 2 befindet, der höchste Punkt auf der dem Mittelpunkt zugewandten Seite der Scheibe 1 befinden. Ziel ist es, dass stets die bearbeitende Fläche parallel auf der zu bearbeitenden Fläche aufliegt. Daher bestimmt der Anstieg des Werkstücks 2 den notwendigen Anstieg des Schleifwerkzeugs 1. Wenn beispielsweise ein zu erzeugender Spiegel 2 einen radialen Anstieg von 10° bis 30° besitzt, muss auch der Schleifscheibenquerschnitt einen Anstieg von mindestens 10° bis 30° aufweisen. Die exakte Position des virtuellen Mittelpunktes und auch die notwendige beziehungsweise erlaubte Dicke des Scheibenkörpers 1 richtet sich stets nach der Form des Werkstücks 2, genauer gesagt nach den geforderten Anstiegen wie oben beschrieben. Genau wie beim herkömmlichen Schleifen muss zudem bei konkaven Flächen die Oberflächenkrümmung der virtuellen Kugel größer als die stärkste Krümmung des Werkstücks 2 sein.When grinding a concave workpiece 2 on a chord or radially parallel to the γ-axis should therefore, when the disc 1 is viewed in the γ-direction behind the center of the workpiece 2, the highest point on the center side facing the disc. 1 are located. The aim is that always the working surface rests in parallel on the surface to be machined. Therefore, the increase of the workpiece 2 determines the necessary increase of the grinding tool 1. For example, if a mirror 2 to be produced has a radial rise of 10 ° to 30 °, the grinding wheel section must also have an increase of at least 10 ° to 30 °. The exact position of the virtual center and also the necessary or allowed thickness of the disk body 1 always depends on the shape of the workpiece 2, more precisely on the required climbs as described above. In addition, as with conventional grinding, in concave surfaces, the surface curvature of the virtual sphere must be greater than the strongest curvature of the workpiece 2.

Ähnliche Verhältnisse ergeben sich bei der Verwendung von torusförmigen Schleifwerkzeugen 1, wobei wiederum der Torusmittelpunkt verschoben sein muss, um die gewünschten Anstiege zu erreichen.Similar conditions arise when using toroidal grinding tools 1, wherein in turn the torus center must be moved in order to achieve the desired increases.

Alternativ kann auch ein Kegel oder Kegelstumpf mit Schleiffläche auf dem Mantel am großen Radius eingesetzt werden. Prinzipiell ist hier die Orientierung des größten Radius zur Rotationsachse des Werkstückes 2 hin oder davon weg möglich, wobei vorzugsweise die erste Variante bei konkaven und konvexen Werkstücken verwendet wird.Alternatively, a cone or truncated cone with grinding surface on the mantle can be used at the large radius. In principle, the orientation of the largest radius to or from the axis of rotation of the workpiece 2 is possible here, wherein preferably the first variant is used for concave and convex workpieces.

Eine weitere alternative Form ist die Verwendung einer äußerst schmalen Scheibe ähnlich einer Trennscheibe, bei welcher nur eine Kante zur Bearbeitung herangezogen wird. In gleicher Art und Weise kann der große Radius eines Kegels oder Kegelstumpfes verwendet werden.Another alternative form is the use of an extremely narrow disk similar to a cutting wheel in which only one edge is used for machining. In the same way, the large radius of a cone or truncated cone can be used.

Zur Steuerung wird im Falle einer Trennscheibe deren Querschnitt als Punkt abstrahiert. Daraus resultiert eine einfache Berechnung des CNC-Programmes. Für jeden Punkt des Werkstücks auf dem Radius in y-Richtung beziehungsweise auf der Sehne muss die Scheibe direkt senkrecht darüber positioniert werden.For control purposes, in the case of a cutting disk, its cross section is abstracted as a dot. This results in a simple calculation of the CNC program. For each point of the workpiece on the radius in the y-direction or on the chord, the disk must be positioned directly vertically above it.

Komplizierter ist die Steuerung bei Nutzung eines Kugelflächenabschnitts als Schleiffläche. Im Falle der Bearbeitung parallel zur y-Achse muss für jeden Punkt auf dem radialen Schnitt des Werkstückes 2 der Anstieg berechnet werden, der Punkt auf dem Schleifwerkzeug 1 mit demselben Anstieg ermittelt werden und das Schleifwerkzeug so positioniert werden, dass diese beiden Punkte aufeinanderfallen. Beim Schleifen auf einer Sehne fährt zwar das Schleifwerkzeug 1 parallel zur x-Achse eine Sehne mit konstantem y-Wert ab, jedoch wandert dabei der Berührungspunkt in y-Richtung. Für jede x-Position des Werkzeugs 1 muss deshalb bestimmt werden, an welcher y-Koordinate die Schleiffläche beim Hineinbewegen des Werkstücks in z-Richtung dieses zuerst berührt wird. Im CNC-Programm muss dann die zugehörige z-Position an dieser x-Position angefahren werden.More complicated is the control when using a spherical surface section as a grinding surface. In the case of machining parallel to the y-axis, for each point on the radial section of the workpiece 2, the increase must be calculated, the point on the grinding tool 1 must be determined with the same slope, and the grinding tool positioned so that these two points coincide. When grinding on a chord, although the grinding tool 1 travels parallel to the x-axis, a chord with a constant y-value, but moves the point of contact in the y-direction. For each x-position of the tool 1, therefore, it must be determined at which y-coordinate the grinding surface first moves when moving the workpiece in the z-direction is touched. In the CNC program, the associated z position must then be approached at this x position.

Selbstverständlich können die erfindungsgemäßen Bearbeitungsverfahren analog auf Maschinen mit unterschiedlich aufgebauten Koordinatensystemen eingesetzt werden.Of course, the processing methods according to the invention can be used analogously on machines with differently constructed coordinate systems.

Ebenso sind sie in gleicher Weise auch für Werkstücke aus Metall oder anderen Materialien wie Halbleiter einsetzbar.Likewise, they are equally applicable to workpieces made of metal or other materials such as semiconductors.

Analog zum Schleifen können dieselben Verfahren auch zum Polieren eingesetzt werden, wenn das Schleifwerkzeug sinngemäß durch ein Polierwerkzeug ersetzt wird.Similar to grinding, the same methods can also be used for polishing if the grinding tool is replaced by a polishing tool.

Figur 3 zeigt schematisch ein Verfahren zur Vermessung rotationssymmetrischer Werkstücke 2. Es wird ein Fahrweg über eine Sehne des Werkstücks gewählt, das Messsystem mit Messtaster 4 wird also auf einer vom Mittelpunkt des Werkstücks 2 beabstandeten Linie parallel zur x-Achse mit konstantem y-Wert gezogen, sodass es nicht die Erhebung 3 berührt. FIG. 3 schematically shows a method for measuring rotationally symmetrical workpieces 2. A travel path via a chord of the workpiece is selected, ie the measuring system with measuring probe 4 is pulled parallel to the x-axis with a constant y value on a line spaced from the center of the workpiece 2 so that it does not touch Survey 3.

Für jeden Messpunkt muss die angefahrene x-Position auf den zugehörigen Radius umgerechnet werden, um wieder einen Schnitt entlang des Durchmessers zu erhalten, der dann virtuell ist.For each measurement point, the approached x-position must be converted to the corresponding radius in order to again obtain a section along the diameter, which is then virtual.

Mit taktilem Messen können auch die Schleifwerkzeuge selbst und andere raue Körper vermessen werden. Um eine Beschädigung des Messtasters zu vermeiden, wird auf die Schleiffläche oder andere raue Flächen zunächst eine einheitlich dicke Schicht aufgebracht, insbesondere Klebestreifen oder -folien, auf der der Messtaster eingesetzt werden kann.With tactile measurement, the grinding tools themselves and other rough bodies can be measured. In order to avoid damage to the probe, a uniformly thick layer is first applied to the grinding surface or other rough surfaces, in particular adhesive strips or films, on which the probe can be used.

Für das Schleifen abseits des zur x-Achse parallelen Durchschnitts durch ein Werkstück ist anstelle einer herkömmlichen Schleifscheibe, bei der der höchste Punkt genau in der Mittelebene quer zur Symmetrieachse der Scheibe liegt, ein eher steiler Querschnitt der Scheibe wünschenswert, bei dem der höchste Punkt sich weitestmöglich am Rand der Scheibe befindet. Beim Schleifen eines konkaven Werkstücks auf einer Sehne oder radial parallel zur y-Achse sollte sich also, wenn die Scheibe sich in y-Richtung betrachtet hinter dem Mittelpunkt des Werkstücks befindet, der höchste Punkt auf der dem Mittelpunkt zugewandten Seite der Scheibe befinden. Ziel ist es, dass stets die bearbeitende Fläche parallel auf der zu bearbeitenden Fläche aufliegt. Daher bestimmt der Anstieg des Werkstücks den notwendigen Anstieg des Schleifwerkzeugs. Wenn beispielsweise ein zu erzeugender Spiegel einen radialen Anstieg von 10° bis 30° besitzt, muss auch der Schleifscheibenquerschnitt einen Anstieg von mindestens 10° bis 30° aufweisen.For grinding away from the average axis parallel to the x-axis through a workpiece, rather than a conventional grinding wheel where the highest point is exactly in the midplane transverse to the axis of symmetry of the disk, a rather steep cross section of the disk is desirable where the highest point is as far as possible at the edge of the disc. When grinding a concave workpiece on a chord or radially parallel to the y-axis should therefore, when the disk is in the y-direction behind the center of the workpiece is the highest point on the center-facing side of the disc. The aim is that always the working surface rests in parallel on the surface to be machined. Therefore, the increase of the workpiece determines the necessary increase in the grinding tool. If, for example, a mirror to be generated has a radial rise of 10 ° to 30 °, the grinding wheel cross-section must also have an increase of at least 10 ° to 30 °.

Dazu wird beispielsweise ein Schleifwerkzeug 1 verwendet wie in Figur 4 innerhalb einer virtuellen Kugelhülle 1.3 dargestellt, deren Mittelpunkt in der Mitte einer der beiden Seitenflächen 1.2 des Schleifwerkzeuges 1 liegt. Es handelt sich um eine Schleifscheibe, die in die erfindungsgemäße Form gebracht wurde. Die Spindel, mit der das Werkzeug 1 gedreht wird, kann sich dabei alternativ auf beiden Seiten der Scheibe 1 befinden, je nach dem, ob konvexe oder konkave Werkstücke oder Werkstückbereiche bearbeitet werden sollen.For this purpose, for example, a grinding tool 1 is used, as shown in FIG. 4 within a virtual ball shell 1.3, whose center lies in the middle of one of the two side surfaces 1.2 of the grinding tool 1. It is a grinding wheel which has been brought into the shape according to the invention. The spindle, with which the tool 1 is rotated, may alternatively be located on both sides of the disc 1, depending on whether convex or concave workpieces or workpiece areas are to be processed.

In diesem Fall ist die Schleiffläche 1.1 ein Kugelflächensegment, das den Rand des Schleifwerkzeuges bildet und einen Ausschnitt aus der virtuellen Kugel 1.3 darstellt. Der virtuelle Mittelpunkt der Kugel 1.3 liegt außerhalb der Mittelebene der Scheibe bezüglich ihrer Dicke, sodass die Scheibe asymmetrisch geformt ist. Der Mittelpunkt kann sogar außerhalb des Scheibenkörpers liegen.In this case, the grinding surface 1.1 is a spherical segment, which forms the edge of the grinding tool and represents a section of the virtual ball 1.3. The virtual center of the sphere 1.3 lies outside the median plane of the disc with respect to its thickness, so that the disc is asymmetrically shaped. The center may even be outside of the disk body.

Die exakte Position des virtuellen Mittelpunktes sowie die notwendige beziehungsweise erlaubte Dicke des Scheibenkörpers richtet sich nach der Form des Werkstücks, genauer gesagt nach den geforderten Anstiegen wie oben beschrieben. Genau wie beim herkömmlichen Schleifen muss zudem bei konkaven Flächen die Oberflächenkrümmung der virtuellen Kugel 1.3 größer als die stärkste Krümmung des Werkstücks sein.The exact position of the virtual center and the necessary or allowed thickness of the disk body depends on the shape of the workpiece, more precisely on the required climbs as described above. Just as with conventional grinding, the surface curvature of the virtual sphere 1.3 must also be greater than the strongest curvature of the workpiece in the case of concave surfaces.

Für das Polieren abseits des zur x-Achse parallelen Durchschnitts durch ein Werkstück kann analog ein Polierwerkzeug derselben Form eingesetzt werden.For polishing away from the axis parallel to the x-axis through a workpiece, a polishing tool of the same shape can be used analogously.

In Figur 5 ist die Herstellung der Form eines Schleifwerkzeuges schematisch abgebildet. Die zylindrische Schleifscheibe 1, die auf dem Zylindermantel die Schleiffläche 1.1 aufweist, rotiert um ihre Symmetrieachse und wird in den Abrichtstein 5 hineingefahren. Die Schleifscheibe 1 wird dabei bezüglich ihres Mittelpunktes oder auch ihrer Mittelebene quer zur Symmetrieachse von der Rotationsachse des Abrichtsteins 5 in Richtung der Symmetrieachse der Schleifscheibe 1 beabstandet positioniert, im Koordinatensystem einer Schleifmaschine also in y-Richtung von der Rotationsachse des Abrichtsteins 5 beabstandet.In Figure 5 , the production of the shape of a grinding tool is shown schematically. The cylindrical grinding wheel 1, which has the grinding surface 1.1 on the cylinder surface, rotates about its axis of symmetry and is moved into the dressing stone 5. The grinding wheel 1 is positioned transversely to the axis of symmetry of the axis of rotation of the Abrichtsteins 5 in the direction of the axis of symmetry of the grinding wheel 1 with respect to its center or its center plane, thus spaced in the coordinate system of a grinding machine in the y direction of the axis of rotation of the dressing stone 5.

In Figur 6 wird das Ergebnis dieser Vorgehensweise verdeutlicht. Der Abrichtstein erhält wie beim herkömmlichen Abrichten eine kugelabschnittsförmige Mulde, die Schleifscheibe erhält jedoch die Form eines nichtzentrischen Kugelabschnittes. Die Schleiffläche 1.1 erhält somit die Form eines Kugelflächensegmentes. FIG. 6 illustrates the result of this procedure. The Abrichtstein receives as in conventional dressing a spherical section-shaped trough, but the grinding wheel is replaced by the shape of a non-centric ball section. The grinding surface 1.1 thus receives the shape of a spherical surface segment.

Der Abstand zwischen dem Mittelpunkt der Scheibe 1 und der Rotationsachse des Abrichtsteins 5 kann bei Bedarf so weit gewählt werden, dass die Schleifscheibe 1 die Rotationsachse des Abrichtsteins 5 gar nicht berührt. Der Abrichtstein weist dann, wie in Figur 7 dargestellt, in der Mitte einen unberührten Bereich auf, der steilste Anstieg auf der Schleiffläche 1.1 ist hier steiler als in dem Beispiel aus Figur 6.If necessary, the distance between the center of the disc 1 and the axis of rotation of the dressing stone 5 can be selected so far that the grinding wheel 1 does not touch the axis of rotation of the dressing stone 5 at all. The Abrichtstein then has, as shown in Figure 7 , in the middle of a untouched area, the steepest slope on the grinding surface 1.1 is steeper here than in the example from FIG. 6.

Der notwendige Bereich des Kugelabschnittes wird auf der Basis der gewünschten Anstiege und abhängig vom Fahrweg des Werkzeuges berechnet und unter Beachtung der Bedingung, dass der virtuelle Mittelpunkt der virtuellen Kugel 1.3 auf der Verlängerung der Rotationsachse der Scheibe 1 liegt, die Scheibe um soviel parallel zur y-Achse, also entlang der Rotationsachse der Scheibe 1, verschoben, wie der virtuelle Kugelmittelpunkt vom Schleifscheibenmittelpunkt entfernt berechnet wurde.The necessary area of the ball section is calculated on the basis of the desired inclinations and depending on the travel of the tool, and taking into account the condition that the virtual center of the virtual ball 1.3 lies on the extension of the axis of rotation of the disc 1, the disc is parallel to the y -Axis, thus along the axis of rotation of the disc 1, shifted as the virtual sphere center was calculated from the center of the grinding wheel.

Aus der zylindrischen Schleifscheibe wird so das kugelabschnittsförmige, Schleifwerkzeug hergestellt.From the cylindrical grinding wheel so the spherical section, grinding tool is made.

In Figur 8 ist eine andere, mögliche Vorgehensweise dargestellt. Hier sind zwei identische Schleifscheiben 1 aneinander angeordnet, vorzugsweise aneinandergepresst. Sie werden zentriert in den Abrichtstein 5 hineingefahren. FIG. 8 shows another possible procedure. Here are two identical grinding wheels 1 arranged together, preferably pressed together. They are centered in the dressing stone 5 driven.

Wie in Figur 9 angedeutet, entsteht wiederum eine Mulde im Abrichtstein, während die so hergestellten Schleifwerkzeuge 1 asymmetrische Schleifflächen 1.1 bezüglich jeder Ebene senkrecht zur Rotations- und Symmetrieachse des Werkzeuges 1 aufweisen.As indicated in FIG. 9 , again a depression is formed in the dressing stone, while the grinding tools 1 thus produced have asymmetrical grinding surfaces 1.1 with respect to each plane perpendicular to the axis of rotation and symmetry of the tool 1.

Zur Bestimmung des Mittelpunkts beziehungsweise der Symmetrieachse von rotationssymmetrischen Werkstücken dient das in Figur 10 dargestellte Verfahren. Die Messdaten des Profils 7 werden nacheinander an allen potentiellen Mittelpunkt- bzw. Symmetrieachsenpositionen 8 in zwei Teile zerlegt und einer oder beide Teile an der jeweiligen Position gespiegelt, im Beispiel um die Position 10. Dann wird von diesen gespiegelten Teilen 11 mit den ursprünglichen Teilen 7 die Korrelation bestimmt, also das Skalarprodukt beider geteilt durch das Produkt der Norm der jeweiligen Teile berechnet. Dieser Wert ist am größten, wenn die Schnittposition 10 mit dem tatsächlichen Mittelpunkt 9 übereinstimmt. Im Beispiel zeigt die Kurve 12 den Verlauf der Korrelation in Abhängigkeit der ausgewählten Achse.The method illustrated in FIG. 10 serves to determine the center point or the axis of symmetry of rotationally symmetrical workpieces. The measurement data of the profile 7 are successively divided into two parts at all potential center or symmetry axis positions 8 and mirrored one or both parts at the respective position, in the example by the position 10. Then, these mirrored parts 11 with the original parts 7 determines the correlation, ie the scalar product of both divided by the product of the norm of the respective parts calculated. This value is greatest when the cutting position 10 coincides with the actual center point 9. In the example, the curve 12 shows the course of the correlation as a function of the selected axis.

Figur 11 erläutert ein Verfahren zur Bestimmung der Schneidenform einer Wendeplatte 13. Es wird ein Probestück 14 gedreht, bei dem die kontinuierliche Form des Werkstücks durch eine stückweise lineare Approximation ersetzt wird. Aus beispielsweise einer Asphäre wird also eine Aneinanderreihung von Kegelstücken 15. Innerhalb eines Kegelstückes 15 ist nur ein bestimmter Punkt der Schneide im Eingriff, abhängig von der Schräge des Kegels 15. Zudem wird im gleichen Schritt eine plane Referenzfläche 16 an das Probestück 14 gedreht. Das Probestück 14 wird anschließend vermessen, und durch Vergleich der Positionen der Kegelstücke 15 mit der Referenzfläche 16 oder der Kegelstücke 15 untereinander kann die genaue Position des bearbeitenden Punktes der Schneide als Stützpunkt der Schneidenform bestimmt werden. Figure 11 illustrates a method of determining the cutting edge shape of a turning plate 13. A sample 14 is rotated in which the continuous shape of the workpiece is replaced by a piecewise linear approximation. Within a cone piece 15, only a certain point of the cutting edge is engaged, depending on the slope of the cone 15. In addition, in the same step, a flat reference surface 16 is rotated against the sample 14. The sample 14 is then measured, and by comparing the positions of the cones 15 with the reference surface 16 or the conical pieces 15 with each other, the exact position of the working point of the cutting edge can be determined as a base of the cutting edge shape.

Aus diesen Stützpunkten, einer pro Kegelstück, kann dann per Interpolation die Form der Schneide bestimmt und das CNC-Programm entsprechend angepasst werden. Alternativ kann aus den ermittelten Stützpunkten ein mittlerer Schneidenradius bestimmt werden.From these interpolation points, one per conical piece, the shape of the cutting edge can then be determined by interpolation and the CNC program can be adapted accordingly. Alternatively, a mean cutting radius can be determined from the determined interpolation points.

BEZUGSZEICHENLISTELIST OF REFERENCE NUMBERS

11
Schleifwerkzeug
1.1 Schleiffläche
1.2 Seitenfläche
1.3 Virtuelle Kugel
grinding tool
1.1 grinding surface
1.2 side surface
1.3 Virtual Ball
22
Werkstückworkpiece
33
Erhebungsurvey
44
Messtasterprobe
55
Abrichtsteintruing
66
Muldetrough
77
Gemessenes ProfilMeasured profile
88th
Mögliche SymmetrieachsenPossible symmetry axes
99
Tatsächliche SymmetrieachseActual axis of symmetry
1010
Ausgewählte AchseSelected axis
1111
Gespiegeltes ProfilMirrored profile
1212
Korrelationsfunktioncorrelation function
1313
Wendeplatteinsert
1414
Probestückspecimen
1515
Kegelsegmentecone segments
1616
Planflächeplane surface

Claims (14)

  1. Procedure for machining a rotationally symmetric workpiece (2), especially for machining a workpiece with optically effective areas, the symmetry axis of which is aligned in parallel to the z axis and which is movable in parallel to the z axis with a rotating rotationally symmetric grinding or polishing tool (1), the axis of rotation of which is aligned in parallel to the y axis and which is moved in parallel to the x axis, touching the surface of the workpiece (2) with a machining area (1.1) while the workpiece (2) rotates around its symmetry axis, characterized in that the tool (1) is moved with a constant y value precisely in one plane which is parallel to the x-z plane and which is at a distance to the axis of rotation of the workpiece (2).
  2. Procedure as claimed in claim 1, characterized in that, for every x position of the tool (1), it is determined at which y position the machining area (1.1) touches the workpiece (2) first when moving in in parallel to the z axis, and in that the z position belonging to this x-y position is approached.
  3. Procedure for machining a rotationally symmetric workpiece (2), especially for machining a workpiece with optically effective areas, the symmetry axis of which is aligned in parallel to the z axis and which is movable in parallel to the z axis, with a rotating rotationally symmetric grinding or polishing tool (1), the axis of rotation of which is aligned in parallel to the y axis and is touching the surface of the workpiece (2) with a machining area (1.1) while the workpiece (2) rotates around its symmetry axis, characterized in that the tool (1) is moved with a constant x value with reference to its contact point with the workpiece (2) precisely in one plane which is parallel to the y-z plane and which is situated in the axis of rotation of the workpiece (2).
  4. Procedure as claimed in claims 1, 2 or 3, characterized in that the workpiece (2) is machined using the tool only outside of a symmetric area which is centred around the axis of rotation of the workpiece (2).
  5. Procedure as claimed in any claim 1 through 4, characterized in that a tool (1) is used, the machining area (1.1) of which is a rotationally symmetric spherical surface section of a virtual sphere (1.3) the virtual centre point of which lies on the symmetry axis of the tool (1), is formed asymmetrically with reference to every mirror plane which lies perpendicularly to its symmetry axis, the virtual sphere centre thus being located outside the centre plane of the machining area (1.1).
  6. Procedure as claimed in any claim 1 through 4, characterized in that a tool (1) is used which has the form of a torus section where the section has been made in a plane perpendicular to the symmetry axis.
  7. Procedure as claimed in claim 5 or 6, characterized in that the tool (1) for concave areas of the workpiece (2) is oriented with the side of the biggest rise of the machining area (1.1) away from the axis of rotation of the workpiece (2), and, for convex parts of the workpiece (2), is oriented with the side of the biggest rise of the machining area (1.1) toward the axis of rotation of the workpiece (2).
  8. Procedure as claimed in claims 5, 6 or 7, characterized in that, for every point on a section parallel to the y axis through the axis of rotation of the workpiece (2), the rise of the workpiece surface is determined, the position of the tool (1) at which the machining area (1.1) has the same rise is determined for this point, and in that the tool (1) is positioned such that the point and the position coincide.
  9. Procedure as claimed in any claim 5 through 8, characterized in that the tool (1), independently of control, touches the workpiece (2) also away from the centre plane of the machining area (1.1).
  10. Procedure as claimed in any claim 1 through 4, characterized in that a tool (1) is used in the form of a thin disk which has the machining area (1.1) at its narrow side.
  11. Procedure as claimed in any claim 1 through 4, characterized in that a tool (1) is used in the form of a cone or of a truncated cone which has the machining area (1. 1) at the position of the biggest radius on the cone's lateral surface.
  12. Procedure as claimed in claim 11, characterized in that the tool (1) is oriented toward the axis of rotation of the workpiece (2) with the side of the biggest radius of the cone's lateral surface.
  13. Procedure for the tactile measurement of a rotationally symmetric workpiece (2), the symmetry axis of which is aligned in parallel to the z axis, having a measuring stylus (4) that is moved in parallel to the x axis, sensing the surface of the workpiece (2) and measuring the surface's z values at measuring points in the process, especially for determining a sectional profile and/or for determining the centre point of the workpiece (2), characterized in that the measuring stylus (4) is moved with a constant y value with reference to its contact point with the workpiece (2) precisely in a plane which is parallel to the x-z plane and which is at a distance to the axis of rotation of the workpiece (2).
  14. Procedure as claimed in claim 13, characterized in that, for every measuring point, the approached x position is converted to the appertaining radius of the workpiece (2).
EP05006348A 2005-03-23 2005-03-23 Methods for manufacturing or measuring of rotationally symmetrical workpieces Not-in-force EP1704963B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AT05006348T ATE383223T1 (en) 2005-03-23 2005-03-23 METHOD FOR MACHINING AND MEASURING ROTATIONALLY SYMMETRIC WORKPIECES
EP05006348A EP1704963B1 (en) 2005-03-23 2005-03-23 Methods for manufacturing or measuring of rotationally symmetrical workpieces

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP05006348A EP1704963B1 (en) 2005-03-23 2005-03-23 Methods for manufacturing or measuring of rotationally symmetrical workpieces

Publications (2)

Publication Number Publication Date
EP1704963A1 EP1704963A1 (en) 2006-09-27
EP1704963B1 true EP1704963B1 (en) 2008-01-09

Family

ID=34934448

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05006348A Not-in-force EP1704963B1 (en) 2005-03-23 2005-03-23 Methods for manufacturing or measuring of rotationally symmetrical workpieces

Country Status (2)

Country Link
EP (1) EP1704963B1 (en)
AT (1) ATE383223T1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101323094B (en) * 2007-06-12 2011-01-19 丰达精密有限公司 Device and method for manufacturing knife tool
EP2495072A1 (en) 2011-03-01 2012-09-05 Schneider GmbH & Co. KG Method and device for processing an optical lens

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4038783A (en) * 1976-09-03 1977-08-02 Leon Rosenthal Method and apparatus for generating optic lenses
FR2681546B1 (en) * 1991-09-20 1995-12-08 Essilor Int MULTI-AXIS DIGITAL CONTROL MACHINING METHOD AND MACHINE.
DE10038415A1 (en) * 2000-08-07 2002-02-28 Opto Tech Optikmaschinen Gmbh Method for correcting geometry of optical lens or mirrors, involves correcting pre-fabricated work pieces after inspecting their surface geometry
TW550375B (en) * 2001-09-07 2003-09-01 Olympus Optical Co Apparatus for measuring a surface profile

Also Published As

Publication number Publication date
ATE383223T1 (en) 2008-01-15
EP1704963A1 (en) 2006-09-27

Similar Documents

Publication Publication Date Title
DE60203154T2 (en) Device for processing spectacle lenses
EP2338640B1 (en) Machine for grinding optical workpieces, in particular plastic eyeglass lenses
EP2007548B1 (en) Method for grinding a machine part, and grinding machine for carrying out said method
EP2190626B1 (en) Method and device for machining workpieces
EP1597020B1 (en) Cylindrical grinding method for producing hard metal tools and cylindrical grinding machine for grinding cylindrical starting bodies during the production of hard metal tools
EP3116683B1 (en) Method and device for finishing large crankshafts
DE10144644B4 (en) Method and device for grinding centric bearing points of crankshafts
DE102008061444A1 (en) Measuring diameters in lathes
EP2080590A1 (en) Device and method to trim a processing disk using a rotating processing tool and tool device with such a device
EP3230008B1 (en) Measuring steady rest for supporting and measuring central workpiece regions, grinding machine with such a measuring steady rest, and method for supporting and measuring central workpiece regions
DE102007050482B4 (en) Method and device for finish machining
DE19804885C2 (en) Superfinishing device
DE2718339A1 (en) DEVICE AND METHOD FOR GRINDING WHEEL DRESSING
DE3820225C1 (en)
EP1704963B1 (en) Methods for manufacturing or measuring of rotationally symmetrical workpieces
EP2440370B1 (en) Method for machining flat workpieces
DE102017117705A1 (en) Dressing device and method
CH684250A5 (en) A method for numerically controlled machining of a workpiece on a grinding machine.
EP2691823B1 (en) Method for measuring a wave
DE102004028544B4 (en) Method for processing and measuring rotationally symmetrical workpieces and grinding and polishing tool
DE102018124305A1 (en) machine tool
EP3083137B1 (en) Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding
DE102015009481A1 (en) Method and device for fine machining of pre-machined bearing seats of the main bearings and crank bearings of crankshafts
DE4419909B4 (en) Device for controlling the geometric and dynamic accuracy of an NC-controlled working head
EP1273392B1 (en) Method and apparatus for automatic compensation of inaccuracies on grinding machines

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20061202

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080509

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080420

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

BERE Be: lapsed

Owner name: ASPHERICON G.M.B.H.

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080609

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

EN Fr: translation not filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080409

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

26N No opposition filed

Effective date: 20081010

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080710

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080410

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20180326

Year of fee payment: 14

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190331