EP3083137B1 - Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding - Google Patents

Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding Download PDF

Info

Publication number
EP3083137B1
EP3083137B1 EP14820837.4A EP14820837A EP3083137B1 EP 3083137 B1 EP3083137 B1 EP 3083137B1 EP 14820837 A EP14820837 A EP 14820837A EP 3083137 B1 EP3083137 B1 EP 3083137B1
Authority
EP
European Patent Office
Prior art keywords
grinding
workpiece
measurement
axis
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14820837.4A
Other languages
German (de)
French (fr)
Other versions
EP3083137A2 (en
Inventor
Erwin Junker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erwin Junker Grinding Technology AS
Original Assignee
Erwin Junker Grinding Technology AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erwin Junker Grinding Technology AS filed Critical Erwin Junker Grinding Technology AS
Publication of EP3083137A2 publication Critical patent/EP3083137A2/en
Application granted granted Critical
Publication of EP3083137B1 publication Critical patent/EP3083137B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/02Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent
    • B24B49/04Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation according to the instantaneous size and required size of the workpiece acted upon, the measuring or gauging being continuous or intermittent involving measurement of the workpiece at the place of grinding during grinding operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B5/00Machines or devices designed for grinding surfaces of revolution on work, including those which also grind adjacent plane surfaces; Accessories therefor
    • B24B5/36Single-purpose machines or devices
    • B24B5/42Single-purpose machines or devices for grinding crankshafts or crankpins

Definitions

  • the invention relates to a method for measuring and generating an outer contour of at least one region of a workpiece by grinding and a grinding machine for carrying out the method.
  • In-process measurements for the continuous measurement of workpiece areas directly during processing, ie in particular during grinding, with a corresponding adaptive control of the grinding process as a function of the current measured workpiece dimensions are known.
  • the companies Marposs SpA or JENOPTIK Industrial Metrology Germany GmbH are used.
  • the measuring device known for measuring inside diameters of bores as well as outside diameters has a movable probe in the form of a spherical element, wherein an additional element is provided, which transmits deflections to the spherical element.
  • the workpiece is measured with respect to its diameter in a contact region on the outer or on the inner surface, which lies substantially in a plane perpendicular to the longitudinal direction of the component to be measured.
  • the spherical member is in contact with a stopper surface on which it is movable in oblique direction, wherein the stopper surface is concave in cross-section, which serves as a seat for the spherical member and this leads in the oblique direction.
  • the measuring plane of the respective diameter to be measured is defined as the reference position.
  • DE 33 36 072 C2 described a sensing device for measuring linear dimensions, which has also been registered by the company Marposs SpA.
  • the measurement is carried out with the known probes for external dimensions as well as for internal dimensions in a plane perpendicular to the longitudinal axis of the finished finished to be measured Workpiece portion.
  • a measurement of shape deviations such as roundness error is not described.
  • in-process measuring technology is used to measure the larger dimensions of machined workpiece areas including the continuous measurement of these dimensions for adaptive control of the grinding process depending on the measured workpiece parameters as well as the optional use of these measuring devices Control of the roundness described, the latter being measured at the end of the machining process (see there the measuring systems DF500 or DF700, page 15).
  • this known measuring system is also described to work for the determination of outer diameters with two measuring heads in the sense of an in-process measurement.
  • shape dimensions are also made after completion of grinding or a grinding process step, but not used for adaptive control.
  • the measurements in particular the diameter of the workpiece areas to be ground, preferably always take place in the center of the grinding wheel, which also corresponds approximately to the center of the bearing point to be ground or the workpiece area.
  • the location of the measurement at a particular location is called a measurement track, i. in the case described, the measuring track is in the axial direction, seen in the grinding wheel width, in the center of the grinding wheel. If, for example, lubrication holes in the grinding area or the use of steady rests during grinding is provided, the measuring track is also arranged eccentrically, i. it is measured off-center.
  • the object of the present invention is therefore to provide a method and a grinding machine by means of which by means of an in-process measurement both the dimensions and the shape of a workpiece to be ground during grinding detected and the desired shape based on these measured values can be corrected adaptively.
  • the method is used to measure an outer nominal contour of at least one area of a workpiece, in particular a crankshaft, in terms of dimensions and shape and also to produce dimensions and shape by longitudinal or plunge grinding by means of a grinding wheel on a grinding center with CNC control.
  • an actual contour is first measured on the workpiece or workpiece area.
  • the measured values of the dimensions and the shape, in at least two spaced-apart, extending transversely to the longitudinal extent of the respective workpiece area, located in the grinding wheel engagement area measurement levels are detected by a measuring device.
  • the at least two measurement planes are generated by a relative movement between the workpiece area and the measuring device in the Z-axis direction relative to the movement of the grinding wheel in the direction of its Z-axis.
  • the measuring device is movable in the axial direction of the longitudinal extent of the workpiece area to be ground on this, with a fixed grinding wheel, but on the other hand it is also possible that the measuring device is fixed and the workpiece is moved relative to the measuring device.
  • the grinding wheel itself can be moved in the Z-axis direction along the workpiece area to be ground; However, it is also possible to use a grinding wheel with a width that the entire workpiece area to be ground can be ground in the sense of a plunge grinding without moving the grinding wheel in its Z-axis direction.
  • the measured values of the dimensions and the shape of the ground workpiece area at the at least two measurement levels are transmitted to the CNC controller.
  • Adaptive grinding is to be understood here as meaning that both the dimensions and the shape of the workpiece area to be ground are measured permanently or at intervals and entered into the control device in the sense of an in-process measurement, wherein the control device is designed such that it opens Based on these measurements both in terms of dimensions and in terms of shape such as roundness of the workpiece section to be ground is adaptively deliverable. This ensures that the quality of the workpiece area to be ground in terms of dimensions and also shape, in particular roundness, is significantly better than that which can be produced with the known grinding and measuring methods.
  • the measuring track is adjusted in the axial direction over the grinding wheel width during grinding, so that the entire outer contour can be detected during grinding and the corresponding measured values can be entered into the control device for the delivery of the grinding wheel, so that also the Form deviations can be permanently corrected, ie be automatically compensated.
  • the method according to the invention is also applicable, above all, to pendulum lifting grinding, which is used for grinding, in particular, the crank bearings of a crankshaft.
  • the grinding of the rod bearings is now for the first time in an in-process measurement with respect to the diameter as well as the shape of the bearing as well as in terms of shape tolerances as well as the shape, for example, cylindricity, conicity or deviations thereof or a spherical or concave shape of the respective journal, and measured through the bearing width feasible.
  • an adaptive grinding realized on the basis of the measured values determined in several measuring tracks is also used during grinding of the stroke bearings.
  • the measuring device moves in the Z-axis direction relative to the grinding workpiece, so the measuring device with respect to the width of the grinding wheel, i. in relation to the geometric longitudinal axis of the workpiece to be ground, move automatically.
  • the number of measurement tracks or measurement planes to be measured on the workpiece to be ground depends on the required accuracy and also on the desired shape of the outer contour to be measured.
  • the deviation of the shape is measured by two measurement planes farthest on the workpiece area, and more preferably, the measurement planes are continuously adjusted over the entire measuring range.
  • the measurement planes are continuously adjusted over the entire measuring range.
  • the measuring device is stationary on the wheelhead relative to this in the X direction and arranged movable relative to this in the Z direction and the wheelhead movable in the Z-axis direction, so that here also the respective desired measurement levels or measurement tracks individually and stepless each can be adjusted according to accuracy and to be ground target outer contour.
  • the movement of the measuring device by means of an electric drive, which is preferably controlled freely programmable.
  • an electric drive which is preferably controlled freely programmable.
  • the measuring device and thus the flexibility of the method according to the invention obtains a high degree of freedom and forms the basis for the application to a wide variety of external target contours to be ground.
  • the measuring device is moved hydraulically or pneumatically in the Z direction.
  • the use of a hydraulic or pneumatic drive device for the movement of the measuring device or the use of a freely programmable electric drive depends on the particular application and on the envisaged budget for the machine on which the inventive method is realized.
  • the measured values in the at least two measuring planes are detected only after finish grinding and for the measured contour of the workpiece to be evaluated in its entirety, and then the results for grinding the next workpiece optionally with a correction for the contour incorporated in the control by means of CNC control of the grinding wheel are taken into account.
  • this deviation is generated by pivoting the grinding wheel in a horizontal plane about a CNC-controlled axis.
  • the horizontal plane runs horizontally to the central axis of the workpiece.
  • the desired shape of the workpiece area is usually ground by a grinding program entered into the CNC control, wherein as a result of the measurement of the outer target shape of the workpiece area an adaptive adjustment of the grinding program is made, which means that corrections or correction functions are entered into the grinding program be so that during grinding otherwise resulting or overlapping errors can be further reduced.
  • the desired shape of the workpiece region is ground by means of a grinding wheel previously dressed in accordance with the desired shape to be achieved with a dressing wheel and grinding the workpiece region in a corrected manner by re-dressing the grinding wheel.
  • the method according to the invention can also be applied to a dressing wheel, so that the corresponding accuracies in terms of dimensions and shape can be achieved on the workpiece area to be ground also by a regular high-precision dressing of the grinding wheel in a manner which in terms of accuracy with respect to known are significantly improved or increased.
  • the cylindricity, conicity or a crowned or concave shape of a bearing, in particular a crankshaft over the bearing width already on the grinding machine during grinding can not only be measured exactly, but also directly by selective adaptive influence and correction via the grinding program also be corrected.
  • crankshafts have large dimensions, which is often the case with crankshafts for truck engines or stationary diesel engine units.
  • the demands on the cycle time are included the production of crankshafts not critical to the extent critical for smaller components.
  • increased measurements in just according to the invention several measurement planes are performed, which although the processing times slightly increased, but this contributes to the considerable increase in the quality of the finished component.
  • the price of this particular large crankshaft is already relatively high after prefabrication and is several hundred or several thousand euros.
  • the method according to the invention becomes even more effective, the more expensive and complex the production of the blank in the processing steps before grinding. This is especially true for the production of special crankshafts with small batch sizes.
  • a grinding machine according to the invention, on which the method according to one of claims 1 to 12 is carried out.
  • This grinding machine according to the invention has a measuring device, by means of which dimensions and shape such as diameter and or roundness of workpiece areas of a rotating around a center workpiece, in particular a crankshaft, are measured and generated with a central longitudinal axis.
  • This grinding machine has a mounted in a wheelhead grinding wheel, which grinds during grinding with simultaneous feed movement in the direction of its X-axis.
  • the X-axis is understood to mean the movement of the grinding wheel at right angles, relative to the longitudinal extension of the workpiece region to be ground.
  • the grinding machine according to the invention belonging measuring device is arranged on the wheelhead and designed such that a sensor to the workpiece area for installation is pivoted, wherein the measuring device or the actual measurement exporting probe or the probe element arranged transversely to the longitudinal axis of the workpiece area measuring planes, which in the direction of Workpiece longitudinal center axis can be arranged according to the movement of the measuring device or the probe in this direction for the purpose of measuring at any position.
  • the measuring device is fixedly arranged, whereas a workpiece spine spanning the workpiece is movable in the Z-direction.
  • the measuring device or its sensor is in the form of two arranged in the manner of a prism measuring surfaces. During measurement, these measuring surfaces touch the workpiece area on the contact area at a defined distance from each other.
  • the measuring surfaces are arranged on the legs of the prism, on each leg of the prism a measuring surface is provided.
  • the actual probe element for measuring is arranged in the middle part of the prism between the measuring surfaces.
  • the measuring device is moved by means of a hydraulic, pneumatic or electric drive to the contact area.
  • this is a CNC-controlled measuring device, which is arranged on the wheelhead, so that a defined investment position and thus highly accurate measurement can be realized.
  • the grinding wheel used for grinding the workpiece area preferably has a width which corresponds approximately to the length of the workpiece area.
  • the grinding wheel grinds in its delivery the workpiece area to be ground quasi by means of plunge grinding, without the grinding of the respective shaft portion would require a feed movement of the grinding wheel in the direction of its Z-axis.
  • the grinding wheel is formed with a width which is smaller than the axial length of the workpiece area to be ground, the grinding wheel in such a case along its axis of rotation over the axial longitudinal direction the grinding of the workpiece area performs a longitudinal grinding and thus is moved during grinding along its Z-axis.
  • the grinding machine has a measuring device designed in such a way that a conical, crowned or concave shape of the workpiece region can be determined by means of the measuring planes of the respective workpiece region, in particular cranked journal, on which a measured, and based on the measured values can be generated.
  • FIG. 1 an arrangement is shown in a schematic representation, which shows the pendulum lifting of a stroke bearing pin 2 by means of a pendulum lifting a perform grinding wheel 5.
  • a grinding headstock 4 carries at its upper area with respect to the grinding wheel 5 a measuring device 1, which consists of a in abutment position on the measured to be measured crankpins 2 of the crankshaft 3 measuring arm corresponding to the solid lines in a retracted position, in which is not measured, in dashed lines is movable.
  • the grinding wheel 5 with its axis of rotation 13 can be controlled via a CNC-controlled X-axis controlled on the stroke bearing pin to be ground.
  • the rotational axis 13 of the grinding wheel is also referred to as C-axis and is also CNC-controlled.
  • the necessary for the realization of the movement in the X-axis direction elements and the workpiece headstock with its C-axis, which is not shown here separately, are constructed in a conventional manner on a machine bed, also not shown.
  • the grinding takes place in the interpolating grinding process via respective adjustments of the CNC-controlled X and C axes.
  • FIG. 1 shown einschwenkbare measuring system 1 is arranged with its drive on the wheel spindle 4 and has an articulated arm, at the front end of a measuring head 7 is arranged.
  • the articulated arm of the measuring device 1 of the measuring head 7 can be adjusted to the outer contour of the illustrated pin bearing pin 2 for measuring its dimensions.
  • the crankshaft 3 also rotates around its center 6, and the pendulum lifting grinding wheel 5 follows the eccentric movement of the crankpin 2 and remains in constant grinding engagement with it throughout the grinding operation.
  • the measuring device 1 shown abuts against the contact area 9 with the measuring sensor 7 and can thus measure the actual diameter of the stroke bearing journal 2 by means of the feeler element 15. If it is not desired to measure, as is the case, for example, when a new crankshaft is loaded into or unloaded from the grinder, the measuring device with its articulated arm and probe is in a retracted position, indicated by dashed lines in the figure.
  • the measuring device 1 is arranged stationarily on the wheelhead with respect to its X-axis, so that during a movement of the grinding wheel 5 with the wheelhead 4 along the X-direction, the measuring device 1 also mitausstoryt this movement.
  • FIG. 2 is an enlarged partial view of the engagement of the grinding wheel 5 at the grinding wheel engagement region 8 shown on the to be grounded crankpin 2, whose longitudinal axis is denoted by 14.
  • the measuring device 1 is applied with its measuring head 7 and its measuring surfaces 11 arranged thereon on the abutment region 9 of the crank journal 2.
  • the measuring surfaces 11 form a prism, which applies to different diameter to be ground.
  • the actual measuring device is arranged, which is a linear measuring device and according to the diameter to be measured or the contour to be measured of the to be ground lifting bearing pin 2 in the direction of the double arrow shown is movable.
  • the delivery of the grinding wheel 5 to the stroke bearing journal 2 is shown by the indicated X-axis.
  • the prism-shaped measuring fork rests on the workpiece in a prism-shaped support by a predetermined bearing force with the two measuring surfaces 11 defined by support pins on the component to be measured, ie on its surface.
  • the support pins are made of carbide or diamond coated material.
  • the actual measuring device which is arranged between the two support pins approximately in the middle of the V-shaped prism, is a probe, by means of which the measurement of the bearing point is made.
  • FIG. 3 is a partial front view of the wheel spindle 4 during grinding of a crank pin 2 a crankshaft 3 shown.
  • the crankshaft 3 is indicated by two truncated main bearings, two crank webs and a crank bearing 2 arranged between the two crank webs.
  • the rotational movement of the crankshaft 3 is realized by the CNC-controlled C axis.
  • the grinding wheel 5 with a width B is engaged with the pin bearing pin 2 and is shown during its grinding.
  • the measuring device 1 is shown on the side of the stroke bearing journal 2 that is circumferentially offset from the engagement region 8 of the grinding wheel 5, which measuring device is set against the stroke bearing journal 2 with its measuring surfaces 11 for the purpose of measuring.
  • the measuring device 1 is mounted on the wheelhead 4 by means of a feed carriage and performs the same feed movements of the X-axis of the grinding wheel 5, which is mounted on a grinding spindle.
  • the measuring device 1 can be moved in the Z direction by means of a CNC-controlled separate ZM axis into a plurality of measuring planes on the stroke bearing journal 2 to be measured (indicated by the double arrow above the measuring device 1).
  • the movement of the measuring device 1 in the Z-axis direction is realized by the illustrated stand-alone CNC ZM axis.
  • the grinding wheel 5 is delivered via its X-axis, which is also CNC-controlled, to be driven to the crankpin 2.
  • the Z-axis of the wheelhead 4 may be located either below the X-axis, in which case preferably a cross slide design (not shown) is provided, or below the grinding table, in which case the grinding table with associated grinding table structures such as the workhead and tailstock (not shown) is moved.
  • the crankshaft 3 it is important that between the workpiece, i. the crankshaft 3, and the grinding wheel 5 is provided a relative movement in the direction of the Z-axis or ZM-axis.
  • measurements are made in different measuring planes with the measuring device 1, so that the component to be measured can be measured accurately in several planes along its axis and also the complete outer nominal contour 10 can be measured, which is the case in measuring devices and systems according to the prior art so far not the case.
  • FIG. 3 is thus apparent that the measuring device 1 axially parallel to the axis of rotation 13 of the grinding wheel 5 during grinding, ie during the grinding cycle can be automatically moved to any number of spaced measuring planes which are perpendicular to the longitudinal axis 14 of the pin bearing pin 2.
  • the direction for this movement is indicated by the designation "ZM".
  • the measuring device 1 Since the CNC-controlled ZM-axis is independent of the CNC-controlled Z-axis, the measuring device 1 in the direction of the ZM-axis, the measuring plane on the straight ground pin bearing pin 2 parallel to the axial direction of the grinding wheel 5 on the pin bearing pin 2 automatically during the Adjust grinding. It is thus possible with the measuring device 1 according to the invention, that carried out during grinding the measurements at the respective straight ground bearing, ie during the continuous grinding process, ie in an in-process measuring method, in terms of cylinder shape, taper, crown or concavity and the deliveries the grinding wheel 5 are also corrected by the grinding program during grinding.
  • FIG. 4 is shown in a partial sectional view of a rail guide of the measuring device 1 along its ZM axis.
  • the ZM axis is arranged perpendicular to the plane of the drawing.
  • X is indicated that the X-axis takes place via the movement of the wheelhead 4, because the measuring device 1 is fixedly mounted on this wheel spindle 4, thus mitauslitet the movements of the wheelhead 4 along the X-axis.
  • the base plate of the measuring device 1 is mounted on a guide by means of guide rails 12 on the wheelhead 4.
  • a guide is shown, which consists of two guide rails 12 and is constructed in each case with backlash-biased ball or Rollenumlauf dichn.
  • a final drive by means of a ball screw is shown in a simplified representation.
  • FIG. 5 shows a sectional view through the measuring device 1 along the in FIG. 4
  • the cutting plane is located below an unmarked adjusting plate which receives the first pivot bearing of the pivoting arm of the measuring device 1.
  • FIG. 5 the two guide rails 12 are shown with the associated ball or Rollnumlauf dichn in plan view.
  • the ball or roller circulating shoes are firmly connected to the adjusting plate by a screw connection.
  • In the middle between the guide rails 12 of the adjusting drive is shown, which in this case is a drive via a ball screw, not shown, which is mounted separately and is driven via a coupling with a CNC-controlled servo motor.
  • Such a configuration of the displacement or movement of the measuring device 1 in its ZM-axis direction is stable and rigid enough, in conjunction with the CNC control, a highly accurate positioning of the measuring device 1 in any desired, depending on the surface shape of the ground journal tap planes arranged in a defined Automatically guarantee number during the grinding process.
  • FIG. 6 a crank journal 2 of a two cheeks indicated crankshaft 3, which is ground by means of a grinding wheel 5 with a width B.
  • the width B of the grinding wheel 5 is so large that the length L of the stroke bearing pin 2 to be ground can be ground in the way of plunge grinding.
  • the mutually parallel longitudinal axes 14 of the pin bearing journal 2 and the axis of rotation 13 of the grinding wheel 5 are shown.
  • the arrangement of three measuring planes of the measuring device, not shown, is shown schematically, wherein the average measuring plane between the two marked by the double arrow ZM outer Measuring levels, which limit the measuring range, is arranged.
  • the illustrated stroke bearing has on both sides of the actual stroke bearing journal 2 undercuts.
  • a plunge grinding for generating the outer nominal contour 10 of the pin bearing journal 2 can also be effected in the way of plunge grinding in such a case, if instead of the reliefs transition radii are provided on both sides of the plan.
  • FIG. 7 shows a partially illustrated stroke bearing with a crankpins 2 between two partially illustrated cheeks of a crankshaft 3.
  • the crankpins 2 with a crankpins L length is sanded by means of a grinding wheel 5 at the grinding wheel engagement area 8.
  • the width B of the grinding wheel 5 is less than the stroke bearing journal length L, so that the grinding wheel 5 along its rotation axis 13, which runs parallel to the longitudinal axis 14 of the crank journal 2, by way of longitudinal grinding, the outer target contour 10 of the pin bearing pin 2 generates.
  • six different measurement planes running in the axial direction of the longitudinal axis 14 of the crankpin 2 are shown, two of which are identified by means of the double arrow indicated by the ZM.
  • the grinding wheel 5 is thereby by longitudinal grinding from its left position, in FIG. 7 is shown, moved to its maximum right position, in which the grinding wheel 5 is shown in dashed lines.
  • a width B of the grinding wheel 5 as drawn it is also possible, with a width B of the grinding wheel 5 as drawn, to produce the outer nominal contour 10 of the pin bearing journal 2 by two recess grinding operations, instead of the described longitudinal grinding. If sanding is carried out with at least two recess grinding operations, the bearing point must be ground by two or more puncture prongs, one after the other and next to each other.
  • the different measuring levels can be arranged over the entire width of the stroke bearing and steplessly approached. The number of measurement planes in which a measuring operation is carried out during grinding depends on the accuracy of the external target shape 10 to be achieved as well as on the shape thereof.
  • FIG. 8 is a lift bearing with a crankpin 2 between two partially illustrated cheeks of a crankshaft 3 shown, which has a Hubzapfenenberg L.
  • the dashed lines are intended to illustrate what is to be understood by taper of a journal in the context of this application.
  • the taper on the crankpins 2 is ground by a specially profiled or obliquely arranged grinding wheel, wherein, depending on the width of the grinding wheel or length of the journal bearing by means of plunge grinding or longitudinal grinding or Doppeleinstechschleifens the outer contour of the journal can be generated.
  • the shape of a crank pin 2 may also be spherical or concave. This is in FIG. 9 shown, wherein the solid lines represent the spherical shape of the crank pin 2 and the dashed form represents a concave shape.
  • the stroke bearing journal 2 has in its transitions to the cheeks of the crankshaft 3 undercuts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Machine Tool Sensing Apparatuses (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Messen und Erzeugen einer Außen-Kontur zumindest eines Bereichs eines Werkstückes durch Schleifen sowie eine Schleifmaschine zur Durchführung des Verfahrens.
In-Prozess-Messungen für das kontinuierliche Messen von Werkstücksbereichen direkt während der Bearbeitung, d.h. insbesondere auch während des Schleifens, bei einer entsprechenden adaptiven Steuerung des Schleifprozesses in Abhängigkeit von den aktuellen gemessenen Werkstücksabmessungen sind bekannt. Insbesondere bei der Schleifbearbeitung von Wellenteilen und dabei insbesondere von Lagerstellen an Kurbelwellen werden Messvorrichtungen beispielsweise der Firmen Marposs S.p.A. oder auch JENOPTIK Industrial Metrology Germany GmbH eingesetzt. Aus der WO 01/66306 A1 , die den nächstliegenden Stand der Technik zum Gegenstand der Ansprüche 1 und 13 darstellt, ist ein Verfahren zum Messen und Erzeugen einer Außen-Sollkontur (r(p)) zumindest eines Bereichs eines Werkstückes, insbesondere einer Kurbelwelle bekannt, wobei hinsichtlich Abmessungen und Form durch Längs-Schleifen oder Einstechschleifen mittels einer Schleifscheibe auf einem Schleifzentrum mit CNC-Steuerung für deren relative zur Längserstreckung eines zu schleifenden Werkstückbereiches rechtwinklig gerichtete X-Achse, bei welchem eine tatsächliche Kontur am Werkstück gemessen wird; die Messwerte an die CNC-Steuerung übertragen werden und die CNC-Steuerung derart gesteuert wird, dass gegebenenfalls vorhandene Abweichungen von der Sollkontur korrigiert werden und die Sollkontur des jeweiligen Werkstückbereiches auf Basis der für die jeweiligen Messebenen eines Werkstückbereichs erfassten Messwerte adaptiv geschliffen wird.
The invention relates to a method for measuring and generating an outer contour of at least one region of a workpiece by grinding and a grinding machine for carrying out the method.
In-process measurements for the continuous measurement of workpiece areas directly during processing, ie in particular during grinding, with a corresponding adaptive control of the grinding process as a function of the current measured workpiece dimensions are known. In particular, in the grinding of shaft parts and in particular bearing points on crankshafts measuring devices, for example, the companies Marposs SpA or JENOPTIK Industrial Metrology Germany GmbH are used. From the WO 01/66306 A1 , Which represents the closest prior art to the subject matter of claims 1 and 13, a method for measuring and generating an outer target contour (r (p)) of at least a portion of a workpiece, in particular a crankshaft known, wherein in terms of dimensions and shape Longitudinal grinding or plunge grinding by means of a grinding wheel on a grinding center with CNC control for their relative to the longitudinal extent of a workpiece area to be grounded at right angles directed X-axis, in which an actual contour is measured on the workpiece; the measured values are transmitted to the CNC control and the CNC control is controlled in such a way that any deviations from the desired contour are corrected and the nominal contour of the respective workpiece area is adaptively ground on the basis of the measured values acquired for the respective measurement planes of a workpiece area.

So ist aus DE 694 13 041 T2 ein Messaufnehmer der Firma Marposs S.p.A. zur Kontrolle von linearen Größen bekannt. Das zum Messen von Innendurchmessern von Bohrungen wie auch von Außendurchmessern bekannte Messgerät weist einen beweglichen Fühler in Form eines kugelförmigen Elementes auf, wobei ein zusätzliches Element vorgesehen ist, das Auslenkungen an das kugelförmige Element überträgt. Dabei wird das Werkstück bezüglich seines Durchmessers in einem Kontaktbereich an der Außen- oder an der Innenfläche vermessen, welche im Wesentlichen in einer Ebene rechtwinklig zur Längsrichtung des zu messenden Bauteils liegt. Bei dem bekannten Messgerät ist das kugelförmige Element in Kontakt mit einer Anschlagfläche, auf welcher es in Schrägrichtung bewegbar ist, wobei die Anschlagfläche im Querschnitt konkav ausgebildet ist, was als Sitz für das kugelförmige Element dient und dieses in der Schrägrichtung führt. Die Messebene des jeweiligen zu messenden Durchmessers wird als Bezugslage definiert.
Des Weiteren ist in DE 33 36 072 C2 eine Tasteinrichtung zum Messen linearer Dimensionen beschrieben, welche ebenfalls von der Firma Marposs S.p.A. angemeldet worden ist. Auch hier erfolgt die Messung mit den bekannten Tastköpfen für Außenabmessungen wie auch für Innenabmessungen in einer Ebene senkrecht zur Längsachse des zu vermessenden fertigbearbeiteten Werkstückabschnittes. Eine Vermessung von Formabweichungen wie beispielsweise Rundheitsfehler ist nicht beschrieben.
That's how it is DE 694 13 041 T2 a sensor from Marposs SpA known for the control of linear sizes. The measuring device known for measuring inside diameters of bores as well as outside diameters has a movable probe in the form of a spherical element, wherein an additional element is provided, which transmits deflections to the spherical element. In this case, the workpiece is measured with respect to its diameter in a contact region on the outer or on the inner surface, which lies substantially in a plane perpendicular to the longitudinal direction of the component to be measured. In the known measuring device, the spherical member is in contact with a stopper surface on which it is movable in oblique direction, wherein the stopper surface is concave in cross-section, which serves as a seat for the spherical member and this leads in the oblique direction. The measuring plane of the respective diameter to be measured is defined as the reference position.
Furthermore, in DE 33 36 072 C2 described a sensing device for measuring linear dimensions, which has also been registered by the company Marposs SpA. Here too the measurement is carried out with the known probes for external dimensions as well as for internal dimensions in a plane perpendicular to the longitudinal axis of the finished finished to be measured Workpiece portion. A measurement of shape deviations such as roundness error is not described.

In dem Prospekt MOVOLINE In-Prozess-Messtechnik der Firma Jenoptik ist In-Prozess-Messtechnik zur Vermessung der größeren Abmessungen bearbeiteter Werkstückbereiche einschließlich der kontinuierlichen Messung dieser Abmessungen zur adaptiven Steuerung des Schleifprozesses in Abhängigkeit von den gemessenen Werkstückparametern sowie auch der optionale Einsatz dieser Messvorrichtungen zur Kontrolle der Rundheit beschrieben, wobei letztere am Ende des Bearbeitsprozesses gemessen wird (siehe dort die Messsysteme DF500 bzw. DF700, Seite 15). Bei diesem bekannten Messsystem ist ebenfalls beschrieben, zur Bestimmung von Außendurchmessern mit zwei Messköpfen im Sinne einer In-Prozess-Messung zu arbeiten. Die Formabmessungen werden jedoch auch hier nach Beendigung des Schleifens oder eines Schleifprozessschrittes vorgenommen, nicht jedoch zur adaptiven Steuerung verwendet.In the brochure MOVOLINE In-process measuring technology from Jenoptik, in-process measuring technology is used to measure the larger dimensions of machined workpiece areas including the continuous measurement of these dimensions for adaptive control of the grinding process depending on the measured workpiece parameters as well as the optional use of these measuring devices Control of the roundness described, the latter being measured at the end of the machining process (see there the measuring systems DF500 or DF700, page 15). In this known measuring system is also described to work for the determination of outer diameters with two measuring heads in the sense of an in-process measurement. However, the shape dimensions are also made after completion of grinding or a grinding process step, but not used for adaptive control.

Für die insbesondere in der Schleifindustrie ständig steigenden Anforderungen an die Genauigkeit beispielsweise bei der Fertigung von Kurbelwellen einschließlich deren Lager ist es nicht mehr nur erforderlich, höchst genau auf die Erzielung der erforderlichen Sollabmessungen in möglichst kleinem Toleranzbereich zu achten, es ist vielmehr erforderlich, Formabweichungen beispielsweise der Rundheit des zu schleifenden Werkstückbereichs, insbesondere einer Lagerstelle einer zentrischen Lagerung einer Kurbelwelle, zu minimieren. Diese Forderung besteht vor allem bei der Herstellung von hochgenauen Wellenabschnitten.For the particular in the grinding industry constantly increasing demands on the accuracy, for example in the production of crankshafts including their bearings, it is no longer necessary to pay very close attention to the achievement of the required nominal dimensions in the smallest possible tolerance range, but it is necessary form deviations, for example To minimize the roundness of the workpiece area to be ground, in particular a bearing point of a centric bearing of a crankshaft. This requirement exists above all in the production of high-precision shaft sections.

Bei den zuvor beschriebenen bekannten technischen Ausführungen besteht das Problem, dass die Messungen insbesondere der Durchmesser der zu schleifenden Werkstückbereiche vorzugsweise stets in der Mitte der Schleifscheibe stattfinden, was etwa auch der Mitte der zu schleifenden Lagerstelle bzw. des Werkstückbereiches entspricht. Der Ort der Messung an einer bestimmten Stelle wird als Messspur bezeichnet, d.h. in dem beschriebenen Fall befindet sich die Messspur in axialer Richtung, über die Schleifscheibenbreite gesehen, in der Mitte der Schleifscheibe. Wenn beispielsweise Schmierbohrungen im Schleifbereich oder der Einsatz von Lünetten beim Schleifen vorgesehen ist, wird die Messspur auch außermittig angeordnet, d.h. es wird außermittig gemessen.In the known technical embodiments described above, there is the problem that the measurements, in particular the diameter of the workpiece areas to be ground, preferably always take place in the center of the grinding wheel, which also corresponds approximately to the center of the bearing point to be ground or the workpiece area. The location of the measurement at a particular location is called a measurement track, i. in the case described, the measuring track is in the axial direction, seen in the grinding wheel width, in the center of the grinding wheel. If, for example, lubrication holes in the grinding area or the use of steady rests during grinding is provided, the measuring track is also arranged eccentrically, i. it is measured off-center.

Wenn bei den bekannten Systemen ein Vermessen der Rundheit bzw. der Rundheitsfehler nach dem Schleifen durchgeführt wird, so kann jedenfalls auf das aktuelle Werkstück kein Einfluss mehr genommen werden. Die bekannten beschriebenen Messsysteme liefern keine ausreichend genauen Messergebnisse, auf deren Basis man höchstgenaue Schleifergebnisse erzielen könnte, wenn ein zu schleifender Werkstückbereich von der Zylindrizität abweicht oder wenn bewusst dieser Bereich konisch oder ballig oder konkav zu schleifen ist, da die Erfassung der Messwerte nur in einer Messspur erfolgt.If, in the known systems, a measurement of the roundness or the roundness error is carried out after the grinding, then at least the current workpiece can no longer be influenced. The known measuring systems described do not provide sufficiently accurate measurement results on the basis of which one obtains highly accurate grinding results could, if a workpiece area to be ground deviates from the cylindricity or if this area is intentionally conical or convex or concave, since the acquisition of the measured values takes place only in one measuring track.

Die Aufgabe der vorliegenden Erfindung besteht daher darin, ein Verfahren und eine Schleifmaschine zu schaffen, mittels welcher im Wege einer In-Prozess-Messung sowohl die Abmessungen als auch die Form eines zu schleifenden Werkstückes während des Schleifens erfasst und die Sollform auf Basis dieser erfassten Messwerte adaptiv korrigiert werden kann.The object of the present invention is therefore to provide a method and a grinding machine by means of which by means of an in-process measurement both the dimensions and the shape of a workpiece to be ground during grinding detected and the desired shape based on these measured values can be corrected adaptively.

Diese Aufgabe wird durch ein Verfahren mit den Merkmalen gemäß Anspruch 1 sowie durch eine Schleifmaschine mit den Merkmalen gemäß Anspruch 13 gelöst. Zweckmäßige Weiterbildungen sind in den jeweiligen abhängigen Ansprüchen definiert.This object is achieved by a method having the features according to claim 1 and by a grinding machine having the features according to claim 13. Advantageous developments are defined in the respective dependent claims.

Erfindungsgemäß wird mit dem Verfahren eine Außen-Sollkontur zumindest eines Bereiches eines Werkstückes, insbesondere einer Kurbelwelle, hinsichtlich von Abmessungen und Form vermessen und ebenfalls hinsichtlich von Abmessungen und Form durch Längs- oder Einstechschleifen mittels einer Schleifscheibe auf einem Schleifzentrum mit CNC-Steuerung erzeugt. Dabei wird zunächst eine tatsächliche Kontur am Werkstück bzw. Werkstückbereich gemessen. Die Messwerte der Abmessungen und der Form, und zwar in zumindest zwei voneinander beabstandeten, sich quer zur Längserstreckung des jeweiligen Werkstückbereiches erstreckenden, im Schleifscheibeneingriffsbereich befindlichen Messebenen werden mittels einer Messeinrichtung erfasst. Die zumindest zwei Messebenen werden durch eine Relativbewegung zwischen dem Werkstückbereich und der Messeinrichtung in Z-Achsenrichtung relativ zu der Bewegung der Schleifscheibe in Richtung ihrer Z-Achse erzeugt. Das bedeutet, dass einerseits die Messeinrichtung in axialer Richtung der Längserstreckung des zu schleifenden Werkstückbereiches an diesem bewegbar ist, und zwar bei feststehender Schleifscheibe, dass es jedoch andererseits auch möglich ist, dass die Messeinrichtung feststeht und das Werkstück relativ zur Messeinrichtung bewegt wird. Die Schleifscheibe selbst kann dabei in Z-Achsrichtung längs des zu schleifenden Werkstückbereichs bewegt werden; es ist jedoch auch möglich, eine Schleifscheibe mit einer Breite einzusetzen, dass der gesamte zu schleifende Werkstückbereich im Sinne eines Einstechschleifens ohne Bewegung der Schleifscheibe in ihrer Z-Achsrichtung geschliffen werden kann. Die Messwerte der Abmessungen und der Form des geschliffenen Werkstückbereiches an den zumindest zwei Messebenen werden an die CNC-Steuerung übertragen. Die CNC-Steuerung wird auf Basis dieser Messwerte derart gesteuert, dass gegebenenfalls vorhandene Abweichungen von der Sollkontur, und zwar hinsichtlich Abmessung und Form, korrigiert werden und die Solkontur des jeweiligen Werkstückbereichs auf Basis der für die jeweiligen Messebenen eines Werkstückbereichs erfassten Messwerte adaptiv geschliffen wird. Unter adaptivem Schleifen soll hier verstanden werden, dass im Sinne einer In-Prozess-Messung sowohl die Abmessungen als auch die Form des zu schleifenden Werkstückbereichs permanent oder in Intervallen gemessen und in die Steuereinrichtung eingegeben werden, wobei die Steuereinrichtung derart ausgebildet ist, dass sie auf Basis dieser Messwerte sowohl hinsichtlich der Abmessungen als auch hinsichtlich der Form wie beispielsweise Rundheit des zu schleifenden Werkstückabschnittes adaptiv zustellbar ist. Damit wird gewährleistet, dass die Qualität des zu schleifenden Werkstückbereiches hinsichtlich Abmessungen und auch Form, insbesondere Rundheit, signifikant besser ist als die, welche mit den bekannten Schleif- und Messverfahren hergestellt werden können.According to the invention, the method is used to measure an outer nominal contour of at least one area of a workpiece, in particular a crankshaft, in terms of dimensions and shape and also to produce dimensions and shape by longitudinal or plunge grinding by means of a grinding wheel on a grinding center with CNC control. In the process, an actual contour is first measured on the workpiece or workpiece area. The measured values of the dimensions and the shape, in at least two spaced-apart, extending transversely to the longitudinal extent of the respective workpiece area, located in the grinding wheel engagement area measurement levels are detected by a measuring device. The at least two measurement planes are generated by a relative movement between the workpiece area and the measuring device in the Z-axis direction relative to the movement of the grinding wheel in the direction of its Z-axis. This means that on the one hand the measuring device is movable in the axial direction of the longitudinal extent of the workpiece area to be ground on this, with a fixed grinding wheel, but on the other hand it is also possible that the measuring device is fixed and the workpiece is moved relative to the measuring device. The grinding wheel itself can be moved in the Z-axis direction along the workpiece area to be ground; However, it is also possible to use a grinding wheel with a width that the entire workpiece area to be ground can be ground in the sense of a plunge grinding without moving the grinding wheel in its Z-axis direction. The measured values of the dimensions and the shape of the ground workpiece area at the at least two measurement levels are transmitted to the CNC controller. On the basis of these measured values, the CNC control is controlled in such a way that any deviations from the desired contour, namely with respect to dimension and shape, are corrected and the sol contour of the respective workpiece region is adaptively ground on the basis of the measured values acquired for the respective measurement planes of a workpiece region becomes. Adaptive grinding is to be understood here as meaning that both the dimensions and the shape of the workpiece area to be ground are measured permanently or at intervals and entered into the control device in the sense of an in-process measurement, wherein the control device is designed such that it opens Based on these measurements both in terms of dimensions and in terms of shape such as roundness of the workpiece section to be ground is adaptively deliverable. This ensures that the quality of the workpiece area to be ground in terms of dimensions and also shape, in particular roundness, is significantly better than that which can be produced with the known grinding and measuring methods.

Mit dem erfindungsgemäßen Verfahren wird also die Messspur während des Schleifens in axialer Richtung über die Schleifscheibenbreite verstellt, so dass die gesamte Außenkontur während des Schleifens erfasst und die dieser entsprechenden Messwerte in die Steuereinrichtung für die Zustellung der Schleifscheibe eingegeben werden können, so dass also auch die Formabweichungen permanent korrigiert werden können, d.h. automatisch kompensiert werden.With the method according to the invention, therefore, the measuring track is adjusted in the axial direction over the grinding wheel width during grinding, so that the entire outer contour can be detected during grinding and the corresponding measured values can be entered into the control device for the delivery of the grinding wheel, so that also the Form deviations can be permanently corrected, ie be automatically compensated.

Das erfindungsgemäße Verfahren ist vor allem auch beim Pendelhubschleifen anwendbar, welches zum Schleifen von insbesondere den Hublagern einer Kurbelwelle angewendet wird. Das Schleifen der Hublager ist nun erstmals im Rahmen einer In-Prozess-Messung hinsichtlich der Durchmesser wie auch der Form der Lager wie auch hinsichtlich von Formtoleranzen wie auch der Form beispielsweise Zylindrizität, Konizität oder Abweichungen davon oder eine ballige oder konkave Form des jeweiligen Lagerzapfens, und zwar gemessen über die Lagerbreite durchführbar. Zum Erzielen der höchst genauen Sollkontur wird auch beim Schleifen der Hublager ein auf Basis der ermittelten Messwerte in mehreren Messspuren realisiertes adaptives Schleifen angewendet.The method according to the invention is also applicable, above all, to pendulum lifting grinding, which is used for grinding, in particular, the crank bearings of a crankshaft. The grinding of the rod bearings is now for the first time in an in-process measurement with respect to the diameter as well as the shape of the bearing as well as in terms of shape tolerances as well as the shape, for example, cylindricity, conicity or deviations thereof or a spherical or concave shape of the respective journal, and measured through the bearing width feasible. To achieve the highly accurate nominal contour, an adaptive grinding realized on the basis of the measured values determined in several measuring tracks is also used during grinding of the stroke bearings.

Bei einer vorzugsweisen Ausgestaltung, bei welcher die Messeinrichtung sich in Z-Achsen-Richtung relativ zum schleifenden Werkstück bewegt, wird also die Messvorrichtung in Bezug auf die Breite der Schleifscheibe, d.h. in Bezug auf die geometrische Längsachse des zu schleifenden Werkstückes, automatisch verfahren. Die Anzahl der zu vermessenden Messspuren bzw. Messebenen am zu schleifenden Werkstück richtet sich nach der erforderlichen Genauigkeit und auch nach der Sollform der zu vermessenden Außenkontur.In a preferred embodiment, in which the measuring device moves in the Z-axis direction relative to the grinding workpiece, so the measuring device with respect to the width of the grinding wheel, i. in relation to the geometric longitudinal axis of the workpiece to be ground, move automatically. The number of measurement tracks or measurement planes to be measured on the workpiece to be ground depends on the required accuracy and also on the desired shape of the outer contour to be measured.

Vorzugsweise wird die Abweichung der Form wie Rundheit, Zylindrizität, Konizität, Balligkeit und/oder Konkavität durch zwei am Werkstückbereich am weitesten beabstandete Messebenen vermessen, und weiter vorzugsweise werden die Messebenen über den gesamten Messbereich stufenlos eingestellt. Dies hat den Vorteil, dass für jede beliebige Messaufgabe und für jede beliebige Sollkontur die Anzahl der zu messenden Messebenen bzw. deren Abstand zueinander beliebig festgelegt werden kann. Zur zuverlässigen Ermittlung der Balligkeit oder Konkavität an Wellenabschnitten werden zumindest Messungen in drei Messebenen vorgesehen.Preferably, the deviation of the shape, such as roundness, cylindricity, conicity, crowning and / or concavity, is measured by two measurement planes farthest on the workpiece area, and more preferably, the measurement planes are continuously adjusted over the entire measuring range. This has the advantage that for any measurement task and for each any desired contour, the number of measurement levels to be measured or their distance from each other can be set arbitrarily. For reliable determination of crowning or concavity at shaft sections at least measurements in three measurement planes are provided.

Weiter vorzugsweise ist die Messvorrichtung auf dem Schleifspindelstock relativ zu diesem in X-Richtung ortsfest und relativ zu diesem in Z-Richtung verfahrbar angeordnet und der Schleifspindelstock in Z-Achsrichtung verfahrbar, so dass auch hierbei die jeweils gewünschten Messebenen bzw. Messspuren individuell und stufenlos je nach Genauigkeit und zu schleifender Soll-Außenkontur eingestellt werden können.Further preferably, the measuring device is stationary on the wheelhead relative to this in the X direction and arranged movable relative to this in the Z direction and the wheelhead movable in the Z-axis direction, so that here also the respective desired measurement levels or measurement tracks individually and stepless each can be adjusted according to accuracy and to be ground target outer contour.

Vorzugsweise erfolgt die Bewegung der Messvorrichtung mittels eines elektrischen Antriebs, welcher vorzugsweise frei programmierbar gesteuert wird. Mit einer frei programmierbaren Steuerung erhält die Messvorrichtung und damit die Flexibilität des erfindungsgemäßen Verfahrens einen hohen Freiheitsgrad und bildet die Grundlage für die Anwendung an unterschiedlichsten zu schleifenden Außen-Sollkonturen.Preferably, the movement of the measuring device by means of an electric drive, which is preferably controlled freely programmable. With a freely programmable control, the measuring device and thus the flexibility of the method according to the invention obtains a high degree of freedom and forms the basis for the application to a wide variety of external target contours to be ground.

Vorzugsweise ist es jedoch auch möglich, dass die Messvorrichtung in Z-Richtung hydraulisch oder pneumatisch bewegt wird. Der Einsatz einer hydraulischen oder pneumatischen Antriebsvorrichtung für die Bewegung der Messvorrichtung oder des Einsatzes eines frei progammierbaren elektrischen Antriebes richtet sich nach dem jeweiligen Einsatzzweck und nach dem anzustrebenden Kostenrahmen für die Maschine, auf welcher das erfindungsgemäße Verfahren realisiert wird.Preferably, however, it is also possible that the measuring device is moved hydraulically or pneumatically in the Z direction. The use of a hydraulic or pneumatic drive device for the movement of the measuring device or the use of a freely programmable electric drive depends on the particular application and on the envisaged budget for the machine on which the inventive method is realized.

Vorzugsweise wird, wie es bei In-Prozess-Messungen der Fall ist, während des Schleifens gemessen. Vorzugsweise erfolgt dieses In-Prozess-Messen während des Schlichtschleifens. Es ist jedoch auch möglich, dass zum Zwecke des Messens der Schleifscheibenvorschub unterbrochen wird und nach erfolgtem Messen der Schleifprozess fortgeführt wird, wobei die Schleifscheibe so lange in ihrer Halteposition verbleibt, bis der Messvorgang abgeschlossen ist. Weiter ist es möglich, dass die Messwerte in den zumindest zwei Messebenen erst nach dem Fertigschleifen erfasst werden und die gemessene Kontur des Werkstückes insgesamt ausgewertet wird und die Ergebnisse beim Schleifen des nächsten Werkstückes dann gegebenenfalls mit einer in die Steuerung eingearbeiteten Korrektur für die Kontur mittels der CNC-Steuerung der Schleifscheibe berücksichtigt werden.Preferably, as is the case with in-process measurements, it is measured during grinding. Preferably, this in-process measurement is performed during finish grinding. However, it is also possible that for the purpose of measuring the grinding wheel feed is interrupted and continued after measuring the grinding process, wherein the grinding wheel remains in its holding position until the measuring process is completed. Furthermore, it is possible for the measured values in the at least two measuring planes to be detected only after finish grinding and for the measured contour of the workpiece to be evaluated in its entirety, and then the results for grinding the next workpiece optionally with a correction for the contour incorporated in the control by means of CNC control of the grinding wheel are taken into account.

Häufig ist es insbesondere für Lagerzapfen erforderlich, dass die Außen-Sollkontur leicht von einer idealen zylindrischen Form abweicht. In der Regel ist diese Formabweichung belastungstechnisch und schmierungstechnisch durch den Verwendungszweck des Bauteiles bestimmt.Often it is necessary in particular for bearing journals that the desired outer contour slightly deviates from an ideal cylindrical shape. As a rule, this form deviation is determined by the technical and lubrication technology by the intended use of the component.

Bei einer derartigen von der Zylindrizität relativ geringen Abweichung wird diese Abweichung durch Schwenken der Schleifscheibe in einer horizontalen Ebene um eine CNC-gesteuerte Achse erzeugt. Die horizontale Ebene verläuft dabei horizontal zur Mittelachse des Werkstückes. Mit dem erfindungsgemäßen Verfahren wird in einem solchen Fall in einer solchen Anzahl von Messebenen in axialer Längserstreckung des zu schleifenden Werkstückbereiches gemessen, dass die Außen-Sollform mit der geforderten hohen Genauigkeit ermittelt werden kann und dementsprechend die Schleifscheibe über ihre CNC-Steuerung zur Erzeugung dieser Außen-Sollform hinsichtlich ihrer Zustellung an den Werkstückbereich gesteuert wird. Die Sollform des Werkstückbereiches wird in der Regel durch ein in die CNC-Steuerung eingegebenes Schleifprogramm geschliffen, wobei im Ergebnis der Vermessung der Außen-Sollform des Werkstückbereiches ein adaptives Anpassen des Schleifprogrammes vorgenommen wird, was bedeutet, dass Korrekturen bzw. Korrekturfunktionen in das Schleifprogramm eingegeben werden, damit während des Schleifens ansonsten sich ergebende bzw. überlagernde Fehler weiter reduziert werden können.With such a relatively small deviation from cylindricity, this deviation is generated by pivoting the grinding wheel in a horizontal plane about a CNC-controlled axis. The horizontal plane runs horizontally to the central axis of the workpiece. With the method according to the invention, in such a case, in such a number of measurement planes in the axial longitudinal extent of the workpiece region to be ground, it is measured that the outer nominal shape can be determined with the required high accuracy and, accordingly, the grinding wheel via its CNC control for producing this outer -Sollform is controlled in terms of their delivery to the workpiece area. The desired shape of the workpiece area is usually ground by a grinding program entered into the CNC control, wherein as a result of the measurement of the outer target shape of the workpiece area an adaptive adjustment of the grinding program is made, which means that corrections or correction functions are entered into the grinding program be so that during grinding otherwise resulting or overlapping errors can be further reduced.

Vorzugsweise ist es auch möglich, die Sollform des zu schleifenden Werkstückbereiches mittels einer zuvor entsprechend der zu erzielenden Sollform mit einer Abrichtscheibe abgerichteten Schleifscheibe zu erzeugen und durch erneutes Abrichten der Schleifscheibe der Werkstückbereich in korrigierter Weise geschliffen wird. Das bedeutet, dass das erfindungsgemäße Verfahren auch bei einer Abrichtscheibe angewendet werden kann, so dass auch durch ein regelmäßiges hochpräzises Abrichten der Schleifscheibe die entsprechenden Genauigkeiten hinsichtlich Abmessungen und Form am zu schleifenden Werkstückbereich erzielt werden können in einer Weise, welche sich hinsichtlich der Genauigkeit gegenüber Bekanntem signifikant verbessern bzw. erhöht sind.Preferably, it is also possible to produce the desired shape of the workpiece region to be ground by means of a grinding wheel previously dressed in accordance with the desired shape to be achieved with a dressing wheel and grinding the workpiece region in a corrected manner by re-dressing the grinding wheel. This means that the method according to the invention can also be applied to a dressing wheel, so that the corresponding accuracies in terms of dimensions and shape can be achieved on the workpiece area to be ground also by a regular high-precision dressing of the grinding wheel in a manner which in terms of accuracy with respect to known are significantly improved or increased.

Mit diesem erfindungsgemäßen Verfahren kann somit die Zylindrizität, Konizität oder eine ballige oder konkave Form eines Lagers insbesondere einer Kurbelwelle über die Lagerbreite schon auf der Schleifmaschine während des Schleifens nicht nur exakt vermessen werden, sondern direkt auch durch gezielte adaptive Einflussnahme und Korrektur über das Schleifprogramm dann auch korrigiert werden. Bei den bekannten Verfahren war es nötig, dass die Kurbelwelle hierfür zunächst extern vermessen werden musste. Am fertiggeschliffenen Werkstück konnten diese Formabweichungen auch nicht mehr korrigiert werden, ohne dass die Lagerstelle dann beispielsweise zu klein geschliffen wurde, so dass die Kurbelwelle Ausschuss wurde.Thus, with this method according to the invention, the cylindricity, conicity or a crowned or concave shape of a bearing, in particular a crankshaft over the bearing width already on the grinding machine during grinding can not only be measured exactly, but also directly by selective adaptive influence and correction via the grinding program also be corrected. In the known methods, it was necessary that the crankshaft first had to be measured externally for this purpose. On the finish-ground workpiece these deviations in shape could not be corrected without the bearing was then ground, for example, too small, so that the crankshaft broke.

Dieser Nachteil wirkt umso stärker, wenn die Kurbelwellen große Abmessungen aufweisen, was häufig bei Kurbelwellen für LKW-Motoren oder stationäre Dieselmotoraggregate der Fall ist. Insbesondere beim Schleifen großer Kurbelwellen sind die Anforderungen an die Taktzeit bei der Herstellung der Kurbelwellen nicht in dem Maße kritisch wie bei kleineren Bauteilen. Dadurch können vermehrte Messungen in eben erfindungsgemäß mehreren Messebenen durchgeführt werden, was zwar die Bearbeitungszeiten geringfügig erhöht, was aber zur erheblichen Erhöhung der Qualität des fertigen Bauteils beiträgt. Immerhin ist der Preis dieser insbesondere großen Kurbelwellen bereits nach der Vorfertigung relativ hoch und beträgt mehrere hundert oder mehrere tausend Euro. Das erfindungsgemäße Verfahren kommt also umso stärker zum Tragen, je teurer und aufwändiger die Herstellung des Rohteils in den Bearbeitungsschritten vor dem Schleifen ist. In besonderem Maße trifft dies zu für die Anfertigung von Sonderkurbelwellen mit geringen Losgrößen.This disadvantage is even stronger when the crankshafts have large dimensions, which is often the case with crankshafts for truck engines or stationary diesel engine units. Especially when grinding large crankshafts, the demands on the cycle time are included the production of crankshafts not critical to the extent critical for smaller components. As a result, increased measurements in just according to the invention several measurement planes are performed, which although the processing times slightly increased, but this contributes to the considerable increase in the quality of the finished component. After all, the price of this particular large crankshaft is already relatively high after prefabrication and is several hundred or several thousand euros. Thus, the method according to the invention becomes even more effective, the more expensive and complex the production of the blank in the processing steps before grinding. This is especially true for the production of special crankshafts with small batch sizes.

Gemäß den vorzugsweisen Ausgestaltungen des erfindungsgemäßen Verfahrens können die hohen Qualitäten und engen Abmessungs- und Formtoleranzen zu schleifender Bauteile erhalten werden durch

  • Abrichten der Schleifscheibe hinsichtlich einer zu erzeugenden speziellen Zylinderform, Konizität, Balligkeit oder Konkavität;
  • dem Vorsehen einer CNC-gesteuerten B-Achse durch Schwenken der Schleifscheibe in horizontaler Ebene zur Mittelachse der Kurbelwellenlängsachse, insbesondere für die Erzielung einer Zylinderform bzw. Konizität;
  • durch Vorsehen einer so genannten CNC-gesteuerten "Mini-B-Achse" durch Schwenken der Schleifscheibe in horizontaler Ebene zur Mittelachse der Kurbelwellenlängsachse in geringen Schwenkwinkeln für eine geringe von der Zylinderform abweichende Konizität oder Balligkeit oder Konkavität (siehe dazu insbesondere die Anmeldung mit der Anmeldenummer WO 2012/126 840 A1 desselben Anmelders); und
  • dem speziellen, auf das erfindungsgemäße Verfahren des Messens in mehreren Messspuren bzw. Messebenen angepassten Schleifprogramm.
According to the preferred embodiments of the method according to the invention, the high qualities and narrow dimensional and shape tolerances can be obtained for grinding components
  • Dressing the grinding wheel with respect to a particular cylinder shape, taper, crown or concavity to be produced;
  • the provision of a CNC-controlled B-axis by pivoting the grinding wheel in the horizontal plane to the central axis of the crankshaft longitudinal axis, in particular for achieving a cylindrical shape or conicity;
  • by providing a so-called CNC-controlled "mini-B axis" by pivoting the grinding wheel in a horizontal plane to the central axis of the crankshaft longitudinal axis in small pivoting angles for a small deviating from the cylindrical shape conicity or concavity (see in particular the application with the application number WO 2012/126 840 A1 the same applicant); and
  • the special, adapted to the inventive method of measuring in several measuring tracks or measurement levels grinding program.

Gemäß einem weiteren Aspekt der vorliegenden Erfindung ist eine erfindungsgemäße Schleifmaschine vorgesehen, auf welcher das Verfahren nach einem der Ansprüche 1 bis 12 durchgeführt wird. Diese erfindungsgemäße Schleifmaschine weist eine Messvorrichtung auf, mittels welcher Abmessungen und Form wie Durchmesser und bzw. Rundheit von Werkstückbereichen eines um ein Zentrum umlaufenden Werkstückes, insbesondere einer Kurbelwelle, mit einer Mittellängsachse vermessen und erzeugt werden. Diese Schleifmaschine weist eine in einem Schleifspindelstock gelagerte Schleifscheibe auf, welche beim Schleifen unter gleichzeitiger Vorschubbewegung in Richtung ihrer X-Achse schleift. Unter X-Achse wird in üblicher Weise die Bewegung der Schleifscheibe vorzugsweise rechtwinklig, relativ zur Längserstreckung des zu schleifenden Werkstückbereiches verstanden. Die zur erfindungsgemäßen Schleifmaschine gehörende Messvorrichtung ist auf dem Schleifspindelstock angeordnet und derart ausgebildet, dass ein Messfühler an den Werkstückbereich zur Anlage einschwenkbar ist, wobei die Messvorrichtung bzw. der die eigentliche Messung ausführende Messfühler bzw. das Tastelement quer zur Längsachse des Werkstückbereiches angeordnete Messebenen bildet, welche in Richtung der Werkstücklängsmittelachse entsprechend der Bewegung der Messvorrichtung bzw. des Messfühlers in diese Richtung zum Zwecke des Messens an beliebigen Positionen angeordnet werden können. Natürlich ist es auch möglich, dass die Messvorrichtung fest angeordnet ist, wohingegen ein das Werkstück aufspannender Werkstückspindelstock in Z-Richtung bewegbar ist. Mittels einer derartigen erfindungsgemäßen Schleifmaschine ist es somit möglich, die geschliffenen Werkstückbereiche während des Schleifens zu vermessen, und zwar hinsichtlich ihrer Abmessungen wie auch ihrer Form, und gleichzeitig bei gegebenenfalls vorhandenen Abweichungen von der Sollkontur adaptiv, d.h. korrigierend auf die Zustellung der Schleifscheibe, d.h. ihre X-Achsen-Zustellung einzuwirken. Dadurch wird die Genauigkeit des geschliffenen Werkstückes signifikant erhöht.According to a further aspect of the present invention, a grinding machine according to the invention is provided, on which the method according to one of claims 1 to 12 is carried out. This grinding machine according to the invention has a measuring device, by means of which dimensions and shape such as diameter and or roundness of workpiece areas of a rotating around a center workpiece, in particular a crankshaft, are measured and generated with a central longitudinal axis. This grinding machine has a mounted in a wheelhead grinding wheel, which grinds during grinding with simultaneous feed movement in the direction of its X-axis. In the usual way, the X-axis is understood to mean the movement of the grinding wheel at right angles, relative to the longitudinal extension of the workpiece region to be ground. The grinding machine according to the invention belonging measuring device is arranged on the wheelhead and designed such that a sensor to the workpiece area for installation is pivoted, wherein the measuring device or the actual measurement exporting probe or the probe element arranged transversely to the longitudinal axis of the workpiece area measuring planes, which in the direction of Workpiece longitudinal center axis can be arranged according to the movement of the measuring device or the probe in this direction for the purpose of measuring at any position. Of course, it is also possible that the measuring device is fixedly arranged, whereas a workpiece spine spanning the workpiece is movable in the Z-direction. By means of such a grinding machine according to the invention it is thus possible to measure the ground workpiece areas during grinding, in terms of their dimensions as well as their shape, and at the same time optionally deviations from the target contour adaptive, ie correcting the delivery of the grinding wheel, ie their Act on X-axis delivery. As a result, the accuracy of the ground workpiece is significantly increased.

Vorzugsweise weist die Messvorrichtung bzw. ist ihr Messfühler in Form von zwei in der Art eines Prismas angeordneten Messflächen ausgebildet. Diese Messflächen berühren beim Messen jeweils den Werkstückbereich an dem Anlagebereich in einem definierten Abstand voneinander. Die Messflächen sind dabei an den Schenkeln des Prismas angeordnet, an jedem Schenkel des Prismas ist eine Messfläche vorgesehen. Das eigentliche Tastelement zum Messen ist im Mittelteil des Prismas zwischen den Messflächen angeordnet. Die Messvorrichtung wird mittels eines hydraulischen, pneumatischen oder elektrischen Antriebs an den Anlagebereich verschoben. Vorzugsweise handelt es sich dabei um eine CNC-gesteuerte Messvorrichtung, welche auf dem Schleifspindelstock angeordnet ist, so dass eine definierte Anlageposition und damit hochgenaue Messung realisierbar ist.Preferably, the measuring device or its sensor is in the form of two arranged in the manner of a prism measuring surfaces. During measurement, these measuring surfaces touch the workpiece area on the contact area at a defined distance from each other. The measuring surfaces are arranged on the legs of the prism, on each leg of the prism a measuring surface is provided. The actual probe element for measuring is arranged in the middle part of the prism between the measuring surfaces. The measuring device is moved by means of a hydraulic, pneumatic or electric drive to the contact area. Preferably, this is a CNC-controlled measuring device, which is arranged on the wheelhead, so that a defined investment position and thus highly accurate measurement can be realized.

Die zum Schleifen des Werkstückbereiches eingesetzte Schleifscheibe weist vorzugsweise eine Breite auf, welche etwa der Länge des Werkstückbereiches entspricht. Bei einer solchen Konstellation bzw. einer solchen breiten Schleifscheibe schleift die Schleifscheibe bei ihrer Zustellung den zu schleifenden Werkstückbereich quasi im Wege des Einstechschleifens, ohne dass zum Schleifen des jeweiligen Wellenabschnittes eine Vorschubbewegung der Schleifscheibe in Richtung ihrer Z-Achse erforderlich wäre.The grinding wheel used for grinding the workpiece area preferably has a width which corresponds approximately to the length of the workpiece area. In such a constellation or such a wide grinding wheel, the grinding wheel grinds in its delivery the workpiece area to be ground quasi by means of plunge grinding, without the grinding of the respective shaft portion would require a feed movement of the grinding wheel in the direction of its Z-axis.

Gemäß einem weiteren Ausführungsbeispiel ist die Schleifscheibe mit einer Breite ausgebildet, welche geringer ist als die axiale Länge des zu schleifenden Werkstückbereiches, wobei die Schleifscheibe in einem solchen Fall längs ihrer Rotationsachse über die axiale Längsrichtung des zu schleifenden Werkstückbereiches ein Längsschleifen ausführt und somit beim Schleifen längs ihrer Z-Achse bewegt wird.According to a further embodiment, the grinding wheel is formed with a width which is smaller than the axial length of the workpiece area to be ground, the grinding wheel in such a case along its axis of rotation over the axial longitudinal direction the grinding of the workpiece area performs a longitudinal grinding and thus is moved during grinding along its Z-axis.

Weiter vorzugsweise weist die Schleifmaschine eine derart ausgebildete Messvorrichtung auf, dass mittels der Messebenen des jeweiligen Werkstückbereiches, insbesondere Hublagerzapfens, an welchem gemessen wird, eine konische, ballige oder konkave Form des Werkstückbereiches ermittelbar und auf Basis der Messwerte erzeugbar ist.Further preferably, the grinding machine has a measuring device designed in such a way that a conical, crowned or concave shape of the workpiece region can be determined by means of the measuring planes of the respective workpiece region, in particular cranked journal, on which a measured, and based on the measured values can be generated.

Weitere Vorteile, Anwendungsmöglichkeiten und konkrete Ausführungsformen werden nun anhand der beigefügten Zeichnung detailliert erläutert. In der Zeichnung zeigen:

Figur 1:
eine prinzipielle Seitenansicht einer Anordnung zum Schleifen eines Hublagers beim Pendelhubschleifen mit einer Messvorrichtung zum Messen des Durchmessers eines Hublagerzapfens gemäß dem Stand der Technik;
Figur 2:
eine Teilansicht einer Anordnung gemäß Figur 1 an der Messstelle des Hublagerzapfens in vergrößerter Darstellung beim Schleifen und Messen an einem Lagerzapfen gemäß dem Stand der Technik;
Figur 3:
eine Teil-Vorderansicht auf den Schleifspindelstock beim Schleifen eines Hublagers einer Kurbelwelle mit einer Messvorrichtung gemäß der Erfindung;
Figur 4:
eine Teilschnittansicht mit einer Führungsschiene zur Verstellung der Messvorrichtung in Richtung einer ZM-Achse gemäß der Erfindung;
Figur 5:
eine Schnittdarstellung der erfindungsgemäßen Messvorrichtung entlang einer Schnittebene A gemäß Figur 4;
Figur 6:
eine Teilansicht einer Schleifscheibe im Eingriff an einer Lagerstelle einer Kurbelwelle mit prinzipieller Angabe zweier in Längsrichtung der Lagerstelle beabstandeter Messebenen gemäß der Erfindung;
Figur 7:
eine Teilansicht eines Lagerzapfens einer Kurbelwelle während des Schleifens mit einer Schleifscheibe mit einer geringeren Breite als die Länge des Zapfenbereiches und angegebenen unterschiedlichen, axial voneinander beabstandeten Messebenen;
Figur 8:
ein Hublagerzapfen einer Kurbelwelle mit angedeuteter konischer Sollkontur; und
Figur 9:
ein Hublagerzapfen mit einer balligen, konvexen sowie mit einer angedeuteten konkaven Außen-Sollkontur.
Further advantages, applications and specific embodiments will now be explained in detail with reference to the accompanying drawings. In the drawing show:
FIG. 1:
a schematic side view of an arrangement for grinding a stroke bearing in the pendulum stroke grinding with a measuring device for measuring the diameter of a stroke bearing pin according to the prior art;
FIG. 2:
a partial view of an arrangement according to FIG. 1 at the measuring point of the pin bearing pin in an enlarged view during grinding and measuring on a bearing pin according to the prior art;
FIG. 3:
a partial front view of the wheel spindle when grinding a crank bearing of a crankshaft with a measuring device according to the invention;
FIG. 4:
a partial sectional view with a guide rail for adjusting the measuring device in the direction of a ZM axis according to the invention;
FIG. 5:
a sectional view of the measuring device according to the invention along a sectional plane A according to FIG. 4 ;
FIG. 6:
a partial view of a grinding wheel in engagement with a bearing point of a crankshaft with a principle indication of two spaced apart in the longitudinal direction of the bearing measuring planes according to the invention;
FIG. 7:
a partial view of a journal of a crankshaft during grinding with a grinding wheel with a smaller width than the length of the pin portion and specified different axially spaced measuring planes;
FIG. 8:
a crankpin of a crankshaft with indicated conical target contour; and
FIG. 9:
a pintail with a convex, convex and with an indicated concave outer contour desired.

In Figur 1 ist in prinzipieller Darstellung eine Anordnung gezeigt, welche das Pendelhubschleifen eines Hublagerzapfens 2 mittels einer eine Pendelhubbewegung ausführenden Schleifscheibe 5 zeigt. Ein Schleifspindelstock 4 trägt an seinem bezüglich der Schleifscheibe 5 oberen Bereich eine Messvorrichtung 1, welche aus einer in Anlageposition an dem zu messenden Hublagerzapfen 2 der Kurbelwelle 3 angelegten Messarm entsprechend den durchgezogenen Linien in eine zurückgezogene Position, in welcher nicht gemessen wird, in gestrichelten Linien bewegbar ist. Die Schleifscheibe 5 mit ihrer Rotationsachse 13 ist über eine CNC-gesteuerte X-Achse gesteuert an den zu schleifenden Hublagerzapfen zustellbar. Die Rotationsachse 13 der Schleifscheibe wird auch als C-Achse bezeichnet und ist ebenfalls CNC-gesteuert. Die zur Realisierung der Bewegung in X-Achsrichtung erforderlichen Elemente sowie der Werkstückspindelstock mit seiner C-Achse, welcher hier nicht gesondert gezeichnet ist, sind in an sich bekannter Weise auf einem ebenfalls nicht gezeigten Maschinenbett aufgebaut. Das Schleifen erfolgt im interpolierenden Schleifverfahren über jeweilige Verstellungen der CNC-gesteuerten X- und C-Achsen.In FIG. 1 an arrangement is shown in a schematic representation, which shows the pendulum lifting of a stroke bearing pin 2 by means of a pendulum lifting a perform grinding wheel 5. A grinding headstock 4 carries at its upper area with respect to the grinding wheel 5 a measuring device 1, which consists of a in abutment position on the measured to be measured crankpins 2 of the crankshaft 3 measuring arm corresponding to the solid lines in a retracted position, in which is not measured, in dashed lines is movable. The grinding wheel 5 with its axis of rotation 13 can be controlled via a CNC-controlled X-axis controlled on the stroke bearing pin to be ground. The rotational axis 13 of the grinding wheel is also referred to as C-axis and is also CNC-controlled. The necessary for the realization of the movement in the X-axis direction elements and the workpiece headstock with its C-axis, which is not shown here separately, are constructed in a conventional manner on a machine bed, also not shown. The grinding takes place in the interpolating grinding process via respective adjustments of the CNC-controlled X and C axes.

Das in Figur 1 dargestellte einschwenkbare Messsystem 1 ist mit seinem Antrieb auf dem Schleifspindelstock 4 angeordnet und weist einen gegliederten Arm auf, an dessen vorderem Ende ein Messkopf 7 angeordnet ist. Mit dem gegliederten Arm der Messvorrichtung 1 ist der Messkopf 7 an die Außenkontur des dargestellten Hublagerzapfens 2 zur Messung seiner Abmessungen anstellbar. Während des Schleifens am Schleifscheibeneingriffsbereich 8 rotiert auch die Kurbelwelle 3 um ihr Zentrum 6, und die ein Pendelhubschleifen ausführende Schleifscheibe 5 folgt der exzentrischen Bewegung des Hublagerzapfens 2 und bleibt mit diesem in ständigem Schleifeingriff während des gesamten Schleifvorganges. Die gezeigte Messvorrichtung 1 liegt am Anlagebereich 9 mit dem Messfühler 7 an und kann so den aktuellen Durchmesser des Hublagerzapfens 2 mittels des Tastelements 15 messen. Wenn nicht gemessen werden soll, was beispielsweise der Fall ist, wenn eine neue Kurbelwelle in die Schleifmaschine geladen oder diese entladen wird, ist die Messvorrichtung mit ihrem gegliederten Arm und dem Messfühler in einer zurückgezogenen Position, welche in der Figur durch gestrichelte Linien dargestellt ist.This in FIG. 1 shown einschwenkbare measuring system 1 is arranged with its drive on the wheel spindle 4 and has an articulated arm, at the front end of a measuring head 7 is arranged. With the articulated arm of the measuring device 1 of the measuring head 7 can be adjusted to the outer contour of the illustrated pin bearing pin 2 for measuring its dimensions. During grinding at the grinding wheel engaging portion 8, the crankshaft 3 also rotates around its center 6, and the pendulum lifting grinding wheel 5 follows the eccentric movement of the crankpin 2 and remains in constant grinding engagement with it throughout the grinding operation. The measuring device 1 shown abuts against the contact area 9 with the measuring sensor 7 and can thus measure the actual diameter of the stroke bearing journal 2 by means of the feeler element 15. If it is not desired to measure, as is the case, for example, when a new crankshaft is loaded into or unloaded from the grinder, the measuring device with its articulated arm and probe is in a retracted position, indicated by dashed lines in the figure.

Die Messvorrichtung 1 ist auf dem Schleifspindelstock hinsichtlich von dessen X-Achse ortsfest angeordnet, so dass bei einer Bewegung der Schleifscheibe 5 mit dem Schleifspindelstock 4 längs der X-Richtung die Messeinrichtung 1 diese Bewegung ebenfalls mitausführt.The measuring device 1 is arranged stationarily on the wheelhead with respect to its X-axis, so that during a movement of the grinding wheel 5 with the wheelhead 4 along the X-direction, the measuring device 1 also mitausführt this movement.

In Figur 2 ist eine vergrößerte Teilansicht des Eingriffs der Schleifscheibe 5 am Schleifscheibeneingriffsbereich 8 an dem zu schleifenden Hublagerzapfen 2 dargestellt, dessen Längsachse mit 14 bezeichnet ist. Mittels der Schleifscheibe 5 wird die Außen-Sollkontur 10 des Hublagerzapfens 2 erzeugt. Während des Schleifens ist die Messvorrichtung 1 mit ihrem Messkopf 7 und ihren daran angeordneten Messflächen 11 am Anlagebereich 9 des Hublagerzapfens 2 angelegt. Die Messflächen 11 bilden ein Prisma aus, welches sich an unterschiedliche zu schleifende Durchmesser anlegt. Zwischen den Messflächen 11 ist die eigentliche Messvorrichtung angeordnet, welche eine Linearmessvorrichtung darstellt und entsprechend dem zu messenden Durchmesser oder der zu messenden Kontur des zu schleifenden Hublagerzapfens 2 in Richtung des gezeigten Doppelpfeiles bewegbar ist. Die Zustellung der Schleifscheibe 5 an den Hublagerzapfen 2 ist durch die angedeutete X-Achse gezeigt. Die prismenförmige Messgabel liegt auf dem Werkstück in einer prismenförmigen Auflage durch eine vorbestimmte Auflagekraft mit den beiden, durch Auflagestifte definierten Messflächen 11 an dem zu messenden Bauteil, d.h. an dessen Oberfläche an. Die Auflagestifte bestehen aus Hartmetall oder diamantbeschichtetem Werkstoff. Die eigentliche Messvorrichtung, welche zwischen den beiden Auflagestiften etwa in der Mitte des V-förmigen Prismas angeordnet ist, ist ein Messtaster, mittels welchem die Messung der Lagerstelle vorgenommen wird.In FIG. 2 is an enlarged partial view of the engagement of the grinding wheel 5 at the grinding wheel engagement region 8 shown on the to be grounded crankpin 2, whose longitudinal axis is denoted by 14. By means of the grinding wheel 5, the outer nominal contour 10 of the pin bearing journal 2 is generated. During grinding, the measuring device 1 is applied with its measuring head 7 and its measuring surfaces 11 arranged thereon on the abutment region 9 of the crank journal 2. The measuring surfaces 11 form a prism, which applies to different diameter to be ground. Between the measuring surfaces 11, the actual measuring device is arranged, which is a linear measuring device and according to the diameter to be measured or the contour to be measured of the to be ground lifting bearing pin 2 in the direction of the double arrow shown is movable. The delivery of the grinding wheel 5 to the stroke bearing journal 2 is shown by the indicated X-axis. The prism-shaped measuring fork rests on the workpiece in a prism-shaped support by a predetermined bearing force with the two measuring surfaces 11 defined by support pins on the component to be measured, ie on its surface. The support pins are made of carbide or diamond coated material. The actual measuring device, which is arranged between the two support pins approximately in the middle of the V-shaped prism, is a probe, by means of which the measurement of the bearing point is made.

In Figur 3 ist eine Teil-Vorderansicht auf den Schleifspindelstock 4 beim Schleifen eines Hublagerzapfens 2 einer Kurbelwelle 3 dargestellt. Die Kurbelwelle 3 ist angedeutet durch zwei angeschnittene Hauptlager, zwei Kurbelwangen und ein zwischen den beiden Kurbelwangen angeordnetes Hublager 2. Die Rotationsbewegung der Kurbelwelle 3 wird durch die CNC-gesteuerte C-Achse realisiert. Die Schleifscheibe 5 mit einer Breite B befindet sich im Eingriff mit dem Hublagerzapfen 2 und ist während dessen Schleifens dargestellt. Auf der zum Eingriffsbereich 8 der Schleifscheibe 5 umfangmäßig versetzten Seite des Hublagerzapfens 2 ist die Messvorrichtung 1 dargestellt, welche an den Hublagerzapfen 2 mit ihren Messflächen 11 zum Zwecke des Messens angestellt ist. Die Messvorrichtung 1 ist auf dem Schleifspindelstock 4 mittels eines Zustellschlittens montiert und führt die gleichen Zustellbewegungen der X-Achse der Schleifscheibe 5 aus, welche auf einer Schleifspindel montiert ist. Gemäß einem Ausführungsbeispiel der Erfindung ist die Messvorrichtung 1 in Z-Richtung mittels einer CNC-gesteuerten separaten ZM-Achse in mehrere Messebenen an dem zu vermessenden Hublagerzapfen 2 verfahrbar (angedeutet durch den Doppelpfeil über der Messvorrichtung 1). Unten rechts in der Figur findet sich die Andeutung der Z-Achse für die Schleifscheibe 5 bzw. den Schleifspindelstock 4. Die Bewegung der Messvorrichtung 1 in Z-Achsrichtung wird durch die dargestellte eigenständige CNC-gesteuerte ZM-Achse realisiert.In FIG. 3 is a partial front view of the wheel spindle 4 during grinding of a crank pin 2 a crankshaft 3 shown. The crankshaft 3 is indicated by two truncated main bearings, two crank webs and a crank bearing 2 arranged between the two crank webs. The rotational movement of the crankshaft 3 is realized by the CNC-controlled C axis. The grinding wheel 5 with a width B is engaged with the pin bearing pin 2 and is shown during its grinding. The measuring device 1 is shown on the side of the stroke bearing journal 2 that is circumferentially offset from the engagement region 8 of the grinding wheel 5, which measuring device is set against the stroke bearing journal 2 with its measuring surfaces 11 for the purpose of measuring. The measuring device 1 is mounted on the wheelhead 4 by means of a feed carriage and performs the same feed movements of the X-axis of the grinding wheel 5, which is mounted on a grinding spindle. According to one exemplary embodiment of the invention, the measuring device 1 can be moved in the Z direction by means of a CNC-controlled separate ZM axis into a plurality of measuring planes on the stroke bearing journal 2 to be measured (indicated by the double arrow above the measuring device 1). At the bottom right in the figure is the indication of the Z-axis for the grinding wheel 5 and the wheel spindle 4. The movement of the measuring device 1 in the Z-axis direction is realized by the illustrated stand-alone CNC ZM axis.

In üblicher Weise wird die Schleifscheibe 5 über ihre X-Achse, welche ebenfalls CNC-gesteuert ist, an den zu schleifenden Hublagerzapfen 2 zugestellt. Die Z-Achse des Schleifspindelstocks 4 kann entweder unter der X-Achse angeordnet sein, in welchem Fall vorzugsweise eine Kreuzschlitten-Bauweise (nicht dargestellt) vorgesehen ist, oder unter dem Schleiftisch, in welchem Fall der Schleiftisch mit den zugehörigen Schleiftischaufbauten wie Werkstückspindelstock und Reitstock (jeweils nicht dargestellt) verfahren wird. Diese beiden Ausführungsformen sind bei der Konstruktion von Schleifmaschinen durchaus üblich.In the usual way, the grinding wheel 5 is delivered via its X-axis, which is also CNC-controlled, to be driven to the crankpin 2. The Z-axis of the wheelhead 4 may be located either below the X-axis, in which case preferably a cross slide design (not shown) is provided, or below the grinding table, in which case the grinding table with associated grinding table structures such as the workhead and tailstock (not shown) is moved. These two embodiments are quite common in the design of grinding machines.

Erfindungsgemäß ist von Bedeutung, dass zwischen dem Werkstück, d.h. der Kurbelwelle 3, und der Schleifscheibe 5 eine Relativbewegung in Richtung der Z-Achse bzw. ZM-Achse vorgesehen ist. Dadurch werden mit der Messvorrichtung 1 Messungen in unterschiedlichen Messebenen vorgenommen, so dass das zu vermessende Bauteil in mehreren Ebenen längs seiner Achse genau vermessen werden kann und auch die komplette Außen-Sollkontur 10 vermessen werden kann, was bei Messeinrichtungen und Systemen gemäß dem Stand der Technik bisher nicht der Fall ist.According to the invention, it is important that between the workpiece, i. the crankshaft 3, and the grinding wheel 5 is provided a relative movement in the direction of the Z-axis or ZM-axis. As a result, measurements are made in different measuring planes with the measuring device 1, so that the component to be measured can be measured accurately in several planes along its axis and also the complete outer nominal contour 10 can be measured, which is the case in measuring devices and systems according to the prior art so far not the case.

Aus Figur 3 ist somit ersichtlich, dass die Messvorrichtung 1 achsparallel zur Rotationsachse 13 der Schleifscheibe 5 während des Schleifens, d.h. während des Schleifzyklus automatisch in beliebig viele voneinander beabstandete Messebenen verschoben werden kann, welche senkrecht zur Längsachse 14 des Hublagerzapfens 2 verlaufen. Die Richtung für diese Bewegung ist durch die Bezeichnung "ZM" angegeben.Out FIG. 3 is thus apparent that the measuring device 1 axially parallel to the axis of rotation 13 of the grinding wheel 5 during grinding, ie during the grinding cycle can be automatically moved to any number of spaced measuring planes which are perpendicular to the longitudinal axis 14 of the pin bearing pin 2. The direction for this movement is indicated by the designation "ZM".

Da die CNC-gesteuerte ZM-Achse unabhängig von der CNC-gesteuerten Z-Achse ist, kann die Messvorrichtung 1 in Richtung der ZM-Achse die Messebene an dem gerade geschliffenen Hublagerzapfen 2 parallel zur Achsrichtung der Schleifscheibe 5 auf dem Hublagerzapfen 2 automatisch während des Schleifens verstellen. Es ist somit mit der erfindungsgemäßen Messvorrichtung 1 möglich, dass während des Schleifens die Messungen an der jeweiligen gerade geschliffenen Lagerstelle, d.h. während des fortlaufenden Schleifprozesses, d.h. in einem In-Prozess-Messverfahren, hinsichtlich Zylinderform, Konizität, Balligkeit oder Konkavität ausgeführt und die Zustellungen der Schleifscheibe 5 durch das Schleifprogramm während des Schleifens auch noch korrigiert werden. Es werden somit mit dem erfindungsgemäßen Verfahren hochgenaue Lagerstellen hergestellt, weil die Ergebnisse der In-Prozess-Messung hinsichtlich Abmessung und Form der zu messenden Lagerstelle in die Steuereinrichtung eingegeben und auf Basis dieser Messwerte eine korrigierte Außen-Sollkontur 10 erzeugt werden. Dadurch ergibt sich eine signifikant höhere Qualität der geschliffenen Werkstückbereiche, d.h. Lagerstellen der Kurbelwelle.Since the CNC-controlled ZM-axis is independent of the CNC-controlled Z-axis, the measuring device 1 in the direction of the ZM-axis, the measuring plane on the straight ground pin bearing pin 2 parallel to the axial direction of the grinding wheel 5 on the pin bearing pin 2 automatically during the Adjust grinding. It is thus possible with the measuring device 1 according to the invention, that carried out during grinding the measurements at the respective straight ground bearing, ie during the continuous grinding process, ie in an in-process measuring method, in terms of cylinder shape, taper, crown or concavity and the deliveries the grinding wheel 5 are also corrected by the grinding program during grinding. Thus, with the method according to the invention, highly accurate bearing points are produced because the results of the in-process measurement are entered into the control device in terms of size and shape of the bearing point to be measured, and a corrected outer nominal contour 10 is generated on the basis of these measured values. This results in a significantly higher quality of the ground workpiece areas, ie bearing points of the crankshaft.

In Figur 4 ist in einer Teil-Schnittansicht eine Schienenführung der Messvorrichtung 1 entlang ihrer ZM-Achse dargestellt. Die ZM-Achse ist senkrecht zur Zeichnungsebene angeordnet. Mit dem Doppelpfeil und "X" ist angedeutet, dass die X-Achse über die Bewegung des Schleifspindelstockes 4 erfolgt, weil die Messvorrichtung 1 auf diesem Schleifspindelstock 4 fest angeordnet ist, mithin die Bewegungen des Schleifspindelstockes 4 entlang der X-Achse mitausführt. In Figur 4 ist gezeigt, dass die Grundplatte der Messvorrichtung 1 auf einer Führung mittels Führungsschienen 12 auf dem Schleifspindelstock 4 montiert ist. Im vorliegenden Fall ist eine Führung dargestellt, welche aus zwei Führungsschienen 12 besteht und jeweils mit spielfrei vorgespannten Kugel- oder Rollenumlaufschuhen aufgebaut ist. In der Mitte zwischen den Führungsschienen 12 ist ein Achsantrieb mittels einer Kugelrollspindel in vereinfachter Darstellung gezeigt.In FIG. 4 is shown in a partial sectional view of a rail guide of the measuring device 1 along its ZM axis. The ZM axis is arranged perpendicular to the plane of the drawing. With the double arrow and "X" is indicated that the X-axis takes place via the movement of the wheelhead 4, because the measuring device 1 is fixedly mounted on this wheel spindle 4, thus mitausführt the movements of the wheelhead 4 along the X-axis. In FIG. 4 It is shown that the base plate of the measuring device 1 is mounted on a guide by means of guide rails 12 on the wheelhead 4. In the present case, a guide is shown, which consists of two guide rails 12 and is constructed in each case with backlash-biased ball or Rollenumlaufschuhen. In the middle between the guide rails 12, a final drive by means of a ball screw is shown in a simplified representation.

Figur 5 stellt eine Schnittdarstellung durch die Messvorrichtung 1 entlang der in Figur 4 eingezeichneten Schnittebene A-A dar. Die Schnittebene befindet sich unterhalb einer nicht bezeichneten Verstellplatte, die das erste Schwenklager des Schwenkarmes der Messvorrichtung 1 aufnimmt. FIG. 5 shows a sectional view through the measuring device 1 along the in FIG. 4 The cutting plane is located below an unmarked adjusting plate which receives the first pivot bearing of the pivoting arm of the measuring device 1.

In Figur 5 sind die zwei Führungsschienen 12 mit den zugehörigen Kugel- oder Rollenumlaufschuhen in Draufsicht dargestellt. Die Kugel-oder Rollenumlaufschuhe sind mit der Verstellplatte durch eine Schraubverbindung fest verbunden. In der Mitte zwischen den Führungsschienen 12 ist der Verstellantrieb dargestellt, welcher in diesem Fall ein Antrieb über eine nicht näher dargestellte Kugelrollspindel ist, welche separat gelagert ist und über eine Kupplung mit einem CNC-gesteuerten Servomotor angetrieben wird. Eine derartige Ausgestaltung der Verschiebung bzw. Bewegung der Messvorrichtung 1 in ihrer ZM-Achsrichtung ist stabil und steif genug, um im Zusammenhang mit der CNC-Steuerung eine hochgenaue Positionierung der Messvorrichtung 1 in beliebigen, je nach Oberflächenform des geschliffenen Lagerzapfens angeordneten Messebenen in einer definierten Anzahl während des Schleifprozesses automatisch gewährleisten zu können.In FIG. 5 the two guide rails 12 are shown with the associated ball or Rollenumlaufschuhen in plan view. The ball or roller circulating shoes are firmly connected to the adjusting plate by a screw connection. In the middle between the guide rails 12 of the adjusting drive is shown, which in this case is a drive via a ball screw, not shown, which is mounted separately and is driven via a coupling with a CNC-controlled servo motor. Such a configuration of the displacement or movement of the measuring device 1 in its ZM-axis direction is stable and rigid enough, in conjunction with the CNC control, a highly accurate positioning of the measuring device 1 in any desired, depending on the surface shape of the ground journal tap planes arranged in a defined Automatically guarantee number during the grinding process.

In Figur 6 ist ein Hublagerzapfen 2 einer mit zwei Wangen angedeuteten Kurbelwelle 3 gezeigt, welche mittels einer Schleifscheibe 5 mit einer Breite B geschliffen wird. Die Breite B der Schleifscheibe 5 ist dabei so groß, dass die Länge L des zu schleifenden Hublagerzapfens 2 im Wege des Einstechschleifens geschliffen werden kann. Des Weiteren sind die parallel zueinander angeordneten Längsachsen 14 des Hublagerzapfens 2 und die Rotationsachse 13 der Schleifscheibe 5 eingezeichnet. Im Schleifscheibeneingriffsbereich 8 ist schematisch die Anordnung von drei Messebenen der nicht dargestellten Messvorrichtung eingezeichnet, wobei die mittlere Messebene zwischen den beiden durch den Doppelpfeil ZM gekennzeichneten äußeren Messebenen, welche den Messbereich begrenzen, angeordnet ist. Durch die Verstellbarkeit der Messvorrichtung 1 entlang der CNC-gesteuerten ZM-Achse kann also ein Verschieben der Messebene in dem gesamten Bereich, welcher je nach Auslegung und Dimensionierung durch die Ausgestaltung der ZM-Achse festgelegt werden kann, stufenlos erfolgen. Das dargestellte Hublager weist beidseitig des eigentlichen Hublagerzapfens 2 Freistiche auf. Ein Einstechschleifen zur Erzeugung der Außen-Sollkontur 10 des Hublagerzapfens 2 kann jedoch auch im Wege des Einstechschleifens in einem solchen Falle erfolgen, wenn anstelle der Freistiche Übergangsradien zu beiden Planseiten vorgesehen sind.In FIG. 6 is shown a crank journal 2 of a two cheeks indicated crankshaft 3, which is ground by means of a grinding wheel 5 with a width B. The width B of the grinding wheel 5 is so large that the length L of the stroke bearing pin 2 to be ground can be ground in the way of plunge grinding. Furthermore, the mutually parallel longitudinal axes 14 of the pin bearing journal 2 and the axis of rotation 13 of the grinding wheel 5 are shown. In the grinding wheel engagement region 8, the arrangement of three measuring planes of the measuring device, not shown, is shown schematically, wherein the average measuring plane between the two marked by the double arrow ZM outer Measuring levels, which limit the measuring range, is arranged. As a result of the adjustability of the measuring device 1 along the CNC-controlled ZM axis, displacement of the measuring plane in the entire region, which can be determined by the design of the ZM axis depending on the design and dimensioning, can be carried out continuously. The illustrated stroke bearing has on both sides of the actual stroke bearing journal 2 undercuts. However, a plunge grinding for generating the outer nominal contour 10 of the pin bearing journal 2 can also be effected in the way of plunge grinding in such a case, if instead of the reliefs transition radii are provided on both sides of the plan.

Auch Figur 7 zeigt ein teilweise dargestelltes Hublager mit einem Hublagerzapfen 2 zwischen zwei teilweise dargestellten Wangen einer Kurbelwelle 3. Der Hublagerzapfen 2 mit einer Hublagerzapfenlänge L wird mittels einer Schleifscheibe 5 am Schleifscheibeneingriffsbereich 8 geschliffen. Die Breite B der Schleifscheibe 5 ist geringer als die Hublagerzapfenlänge L, so dass die Schleifscheibe 5 entlang ihrer Rotationsachse 13, welche parallel zur Längsachse 14 des Hublagerzapfens 2 verläuft, im Wege des Längsschleifens die Außen-Sollkontur 10 des Hublagerzapfens 2 erzeugt. Beispielhaft sind sechs verschiedene, in axialer Richtung der Längsachse 14 des Hublagerzapfens 2 erlaufende Messebenen dargestellt, von denen beispielhaft zwei mittels des ZM-bezeichneten Doppelpfeils gekennzeichnet sind. Die Schleifscheibe 5 wird dabei im Wege des Längsschleifens von ihrer linken Position, die in Figur 7 dargestellt ist, bis in ihre maximal rechte Position verfahren, in welcher die Schleifscheibe 5 in gestrichelten Linien dargestellt ist. Prinzipiell ist es auch möglich, mit einer wie gezeichneten Breite B der Schleifscheibe 5 die Außen-Sollkontur 10 des Hublagerzapfens 2 durch zwei Einstichschleifvorgänge zu erzeugen, anstelle des beschriebenen Längsschleifens. Wird mit zumindest zwei Einstichschleifvorgängen geschliffen, muss die Lagerstelle durch zwei oder mehr nacheinander und nebeneinander erfolgende Einstichvoränge geschliffen werden. Die unterschiedlichen Messebenen können über die gesamte Breite des Hublagers angeordnet und stufenlos angefahren werden. Die Anzahl der Messebenen, in denen ein Messvorgang während des Schleifens vorgenommen wird, richtet sich dabei nach der Genauigkeit der zu erzielenden Außen-Sollform 10 wie auch nach deren Form.Also FIG. 7 shows a partially illustrated stroke bearing with a crankpins 2 between two partially illustrated cheeks of a crankshaft 3. The crankpins 2 with a crankpins L length is sanded by means of a grinding wheel 5 at the grinding wheel engagement area 8. The width B of the grinding wheel 5 is less than the stroke bearing journal length L, so that the grinding wheel 5 along its rotation axis 13, which runs parallel to the longitudinal axis 14 of the crank journal 2, by way of longitudinal grinding, the outer target contour 10 of the pin bearing pin 2 generates. By way of example, six different measurement planes running in the axial direction of the longitudinal axis 14 of the crankpin 2 are shown, two of which are identified by means of the double arrow indicated by the ZM. The grinding wheel 5 is thereby by longitudinal grinding from its left position, in FIG. 7 is shown, moved to its maximum right position, in which the grinding wheel 5 is shown in dashed lines. In principle, it is also possible, with a width B of the grinding wheel 5 as drawn, to produce the outer nominal contour 10 of the pin bearing journal 2 by two recess grinding operations, instead of the described longitudinal grinding. If sanding is carried out with at least two recess grinding operations, the bearing point must be ground by two or more puncture prongs, one after the other and next to each other. The different measuring levels can be arranged over the entire width of the stroke bearing and steplessly approached. The number of measurement planes in which a measuring operation is carried out during grinding depends on the accuracy of the external target shape 10 to be achieved as well as on the shape thereof.

In Figur 8 ist ein Hublager mit einem Hublagerzapfen 2 zwischen zwei teilweise dargestellten Wangen einer Kurbelwelle 3 gezeigt, welcher eine Hubzapfenlänge L aufweist. Die gestrichelt eingezeichneten Linien sollen verdeutlichen, was unter Konizität eines Lagerzapfens im Rahmen dieser Anmeldung zu verstehen ist. Zum einen wird durch eine speziell profilierte oder schräg angestellte Schleifscheibe die Konizität an dem Hublagerzapfen 2 geschliffen, wobei je nach Breite der Schleifscheibe oder Länge des Hublagerzapfens im Wege des Einstechschleifens oder Längsschleifens oder Doppeleinstechschleifens die Außen-Kontur des Lagerzapfens erzeugt werden kann. Durch eine entsprechende Anzahl von Messebenen und Ausführungen von laufenden Messungen während des Schleifens, d.h. einem Ausführen einer so genannten In-Prozess-Messung, kann eine hochgenaue konische Form eines Lagerzapfens geschliffen werden, ohne dass am Ende des Schleifens, wie das unter Umständen im Stand der Technik der Fall ist, beim Vermessen nach dem Schleifen festgestellt werden müsste, dass die konische Außen-Kontur gegenüber der zu erzielenden Sollkontur zu klein ist und damit die gesamte Kurbelwelle Ausschuss wäre.In FIG. 8 is a lift bearing with a crankpin 2 between two partially illustrated cheeks of a crankshaft 3 shown, which has a Hubzapfenlänge L. The dashed lines are intended to illustrate what is to be understood by taper of a journal in the context of this application. On the one hand, the taper on the crankpins 2 is ground by a specially profiled or obliquely arranged grinding wheel, wherein, depending on the width of the grinding wheel or length of the journal bearing by means of plunge grinding or longitudinal grinding or Doppeleinstechschleifens the outer contour of the journal can be generated. By a corresponding number of measurement levels and executions of ongoing measurements during grinding, ie, performing a so-called in-process measurement, a highly accurate conical shape of a bearing pin can be ground without the end of the grinding, as may stand The technique is the case, when measuring after grinding should be found that the conical outer contour against the target contour to be achieved is too small and thus the entire crankshaft committee.

Aus Gründen der Belastung wie auch beispielsweise aus schmierungstechnischen Gründen kann die Form eines Hublagerzapfens 2 auch ballig oder konkav sein. Dies ist in Figur 9 dargestellt, wobei die durchgezogenen Linien die ballige Form des Hublagerzapfens 2 repräsentieren und die gestrichelte Form eine konkave Form darstellt. Der Hublagerzapfen 2 weist in seinen Übergängen zu den Wangen der Kurbelwelle 3 Freistiche auf. Mit Hilfe des erfindungsgemäßen Messverfahrens in Verbindung mit dem Schleifverfahren, mittels welchem die im Prozess gewonnenen Messwerte laufend in die Steuerung für die Zustellung der Schleifscheibe eingegeben werden, kann somit eine nahezu beliebige Außen-Sollkontur 10 eines Lagerzapfens, d.h. auch eines Hublagerzapfens 2 geschliffen werden, wobei eine sehr hohe Genauigkeit des jeweiligen geschliffenen Lagerzapfens erreicht werden kann.For reasons of load as well as for example for lubrication reasons, the shape of a crank pin 2 may also be spherical or concave. This is in FIG. 9 shown, wherein the solid lines represent the spherical shape of the crank pin 2 and the dashed form represents a concave shape. The stroke bearing journal 2 has in its transitions to the cheeks of the crankshaft 3 undercuts. With the aid of the measuring method according to the invention in conjunction with the grinding method, by means of which the measured values obtained in the process are continuously entered into the control for the infeed of the grinding wheel, it is thus possible to grind almost any desired outside contour contour 10 of a journal, ie also of a journal bearing journal 2, wherein a very high accuracy of the respective ground journal can be achieved.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Messvorrichtungmeasurement device
22
Hublagerzapfencrankpins
33
Kurbelwellecrankshaft
44
SchleifspindelstockWheelhead
55
Schleifscheibegrinding wheel
66
Zentrum der KurbelwelleCenter of the crankshaft
77
Messfühlerprobe
88th
Schleifscheiben-EingriffsbereichWheel engagement area
99
Anlagebereichplant area
1010
Außen-SollkonturTarget outside contour
1111
Messflächenmeasuring surfaces
1212
Führungsschieneguide rail
1313
Rotationsachse SchleifscheibeRotation axis grinding wheel
1414
Längsachse HublagerzapfenLongitudinal axis of crankpins
1515
Tastelementscanning element
BB
SchleifscheibenbreiteGrinding wheel width
LL
HublagerzapfenlängeHublagerzapfenlänge

Claims (19)

  1. Method for measuring and generating an external setpoint contour (10) of at least one region of a workpiece, in particular of a crankshaft (3), with regard to dimensions and shape by longitudinal grinding or plunge grinding by means of a grinding disc (5), which has an axis of rotation, on a grinding centre with CNC controller for the X axis of said grinding disc, which X axis is directed at right angles relative to the longitudinal extent of a workpiece region to be ground, in which method
    a) an actual contour on the workpiece is measured;
    b) measurement values of the dimensions and of the shape in at least two mutually spaced-apart measurement planes, which extend transversely with respect to the longitudinal extent of the respective workpiece region and which are situated in the grinding disc engagement region, are detected by means of a measurement device (1) during the grinding process;
    c) the measurement planes are generated by means of a relative movement between the workpiece region and the measurement device (1) in a Z axis direction, which is formed along the axis of rotation in the longitudinal direction of the workpiece region to be ground, relative to the movement of the grinding disc (5) in the direction of the Z axis during the grinding process;
    d) the measurement values are transmitted to the CNC controller, and
    e) the CNC controller is controlled such that any deviations from the setpoint contour are corrected, and the setpoint contour of the respective workpiece region (2) is ground in adaptive fashion on the basis of the measurement values detected for the respective measurement planes of a workpiece region.
  2. Method according to Claim 1, in which the workpiece regions (2) are measured with regard to roundness, cylindricity, conicity, sphericity and/or concavity along the spacing between at least two measurement planes which are spaced apart at the workpiece region (2), wherein the measurement planes are adjusted in continuously variable fashion.
  3. Method according to Claim 1 or 2, in which the workpiece is clamped so as to be positionally fixed with regard to its longitudinal axis (6), and the measurement device (1) is moved in the direction of the longitudinal axis (6) in the respective measurement plane.
  4. Method according to one of Claims 1 to 3, in which the measurement device (1) is arranged on the grinding spindle stock (4) and is moved relative to the latter in the direction of the Z axis for the purposes of measurement in different measurement planes.
  5. Method according to one of Claims 1 to 4, in which the movement of the measurement device (1) is performed by means of an electric drive which is controlled in freely programmable fashion.
  6. Method according to one of Claims 1 to 4, in which the measurement device (1) is moved hydraulically or pneumatically in the Z direction.
  7. Method according to one of Claims 1 to 6, in which measurement is performed during the grinding process, in particular during the finish grinding process.
  8. Method according to one of Claims 1 to 6, in which measurement is performed during an interrupted grinding disc feed movement, and, during the measurement process, the grinding disc (5) remains in a holding position until the measurement has been performed.
  9. Method according to Claim 8, in which the measurement values are detected after the finish grinding process, the measured contour of the workpiece is evaluated, and during the grinding of the next workpiece, a possibly required correction of the contour is performed by means of the CNC controller of the grinding disc (5).
  10. Method according to one of Claims 1 to 9, in which the setpoint shape of the workpiece region to be ground is generated by pivoting of the grinding disc (5) in a horizontal plane about a CNC-controlled axis, wherein the plane lies horizontally with respect to the central axis of the workpiece.
  11. Method according to one of Claims 1 to 10, in which the setpoint shape of the workpiece region is ground by means of a grinding program input into the CNC controller.
  12. Method according to Claim 8 or 9, in which the setpoint shape of the workpiece region to be ground is generated by means of the grinding disc (5), which is dressed in advance in a manner corresponding to the setpoint shape by means of a dressing disc, and the workpiece region is ground in a corrected manner by means of redressing of the grinding disc.
  13. Grinding machine for carrying out the method according to one of Claims 1 to 12, having a measurement device (1) for measuring dimensions and shape, such as roundness, of workpiece regions (2) of a region of a workpiece revolving around a centre, in particular of a crankshaft (3), having a central longitudinal axis, the grinding machine having:
    a) a grinding disc (5) which is mounted in a grinding spindle stock (4) and which, during the grinding process, performs grinding with a simultaneous feed movement in the direction of an X axis which is directed at a right angle relative to the longitudinal extent of a workpiece region to be ground,
    b) wherein the measurement device (1) is arranged on the grinding spindle stock (4) and is designed such that a measurement sensor (7) is movable such that it can be pivoted in in the direction of the workpiece central longitudinal axis onto, and so as to abut against, an abutment region (9), which is situated in the grinding disc engagement region (8), on the workpiece region (2) in freely programmable measurement planes which are arranged transversely with respect to the longitudinal axis (10) of the workpiece region (2) and which are formed during the grinding process,
    wherein the measurement planes are generated by means of a relative movement between the workpiece region and the measurement device (1) in a Z axis direction, which is formed along the axis of rotation in the longitudinal direction of the workpiece region to be ground, relative to the movement of the grinding disc (5) in the direction of the Z axis during the grinding process.
  14. Grinding machine according to Claim 13, in which the measurement sensor (7) has two measurement surfaces (11) arranged in the manner of a prism, which measurement surfaces each make contact with the workpiece region (2) at the abutment region (9) during the measurement process.
  15. Grinding machine according to Claim 13 or 14, in which the measurement device is displaceable hydraulically, pneumatically or electrically.
  16. Grinding machine according to one of Claims 13 to 15, in which the measurement device (1) is displaceable in CNC-controlled fashion on the grinding spindle stock (4).
  17. Grinding machine according to one of Claims 13 to 16, in which the grinding disc (5) has a width corresponding to the length of the workpiece region (2).
  18. Grinding machine according to one of Claims 13 to 16, in which the grinding disc (5) has a width (B) smaller than the axial length (L) of the workpiece region (2), and said grinding disc performs longitudinal grinding along its axis of rotation (13) over the axial longitudinal direction of the workpiece longitudinal axis.
  19. Grinding machine according to one of Claims 13 to 18, in which the measurement device (1) measures the dimensions of the respective workpiece region, in particular crankpin bearing journal, at such a number of measurement planes of said workpiece region that a conical, spherical or concave shape can be determined and can be generated on the basis of the measurement values.
EP14820837.4A 2013-12-19 2014-12-18 Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding Active EP3083137B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013226733.9A DE102013226733B4 (en) 2013-12-19 2013-12-19 PROCESS AND GRINDING MACHINE FOR MEASURING AND GENERATING AN OUTER TARGET CONTOUR OF A WORKPIECE BY GRINDING
PCT/EP2014/078469 WO2015091800A2 (en) 2013-12-19 2014-12-18 Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding

Publications (2)

Publication Number Publication Date
EP3083137A2 EP3083137A2 (en) 2016-10-26
EP3083137B1 true EP3083137B1 (en) 2017-10-25

Family

ID=52232177

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14820837.4A Active EP3083137B1 (en) 2013-12-19 2014-12-18 Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding

Country Status (10)

Country Link
US (1) US11260501B2 (en)
EP (1) EP3083137B1 (en)
JP (1) JP6333391B2 (en)
KR (1) KR102265597B1 (en)
CN (1) CN105873725B (en)
BR (1) BR112016011005B1 (en)
DE (1) DE102013226733B4 (en)
ES (1) ES2655522T3 (en)
RU (1) RU2678349C1 (en)
WO (1) WO2015091800A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7184697B2 (en) * 2019-03-29 2022-12-06 株式会社小松製作所 Industrial machine, dimension estimation device, and dimension estimation method
CN117464500B (en) * 2023-12-27 2024-03-08 苏州铁近机电科技股份有限公司 Bearing inner ring grinding machine, assembly method thereof and positioning assembly for assembly

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2329382A (en) * 1941-01-15 1943-09-14 Lempco Products Inc Crankshaft locator
US3271910A (en) * 1961-04-12 1966-09-13 Haisch Rudolf Method of and apparatus for correcting the size and angular relation between a workpiece to be ground and a tool
GB2103129B (en) * 1981-06-15 1984-12-12 Werkzeugmasch Heckert Veb Arrangement in a coordinate grinding machine of a measuring apparatus for determining the position of a workpiece surface which is being ground
IT1156686B (en) 1982-10-18 1987-02-04 Finike Italiana Marposs HEAD FOR THE CONTROL OF LINEAR DIMENSIONS
SU1215965A1 (en) 1984-05-03 1986-03-07 Опытно-Конструкторское Бюро Шлифовальных Станков Device for controlling dimensional accuracy in case of infeed grinding
JP2590531B2 (en) * 1988-05-20 1997-03-12 日本精工株式会社 Method and apparatus for measuring in-process effective diameter of screw shaft
FR2665526A1 (en) * 1990-08-02 1992-02-07 Meseltron Sa DEVICE FOR MEASURING DIAMETERS OF CYLINDRICAL PARTS DURING PROCESSING.
WO1995021728A1 (en) 1992-05-20 1995-08-17 Barton Kenneth A Ii Method and apparatus for correcting diametrical taper on a workpiece
IT1263452B (en) 1993-07-01 1996-08-05 Marposs Spa BUFFER COMPARATOR.
DE4423422A1 (en) 1994-07-06 1996-01-11 Grieshaber Masch Process for fine external machining, in particular rotationally symmetrical bodies
IT1273865B (en) * 1994-12-27 1997-07-11 Marposs Spa CONTROL DEVICE FOR A MICRO FINISHING MACHINE TOOL
GB9608351D0 (en) 1996-04-23 1996-06-26 Western Atlas Uk Ltd Composite component grinding method and apparatus
DE19650155C1 (en) * 1996-12-04 1998-06-25 Supfina Grieshaber Gmbh & Co Fine finishing machine for workpieces
WO2000050841A1 (en) * 1999-02-22 2000-08-31 Obschestvo S Ogranichennoi Otvetstvennostiju 'tekhnomash' Method and device for measuring the inclinations of the geometrical shape of a cylindrical part, correction steady and variants
JP4487387B2 (en) * 1999-06-25 2010-06-23 株式会社ジェイテクト Roundness measuring device
ITBO20000012A1 (en) * 2000-01-18 2001-07-18 Marposs Spa PIN DIAMETER CONTROL EQUIPMENT.
IT1321212B1 (en) * 2000-03-06 2003-12-31 Marposs Spa PIN DIAMETER CONTROL EQUIPMENT.
IT1321211B1 (en) 2000-03-06 2003-12-31 Marposs Spa APPARATUS AND METHOD FOR THE CONTROL OF PINS.
JP3939959B2 (en) * 2001-10-24 2007-07-04 株式会社日平トヤマ Crankshaft processing machine pin diameter measurement method
ITBO20020369A1 (en) * 2002-06-12 2003-12-12 Marposs Spa APPARATUS FOR THE CONTROL OF DIMENSIONAL AND GEOMETRIC FEATURES OF PINS
JP4730944B2 (en) 2004-06-04 2011-07-20 コマツNtc株式会社 Multi-head grinding machine and grinding method using multi-head grinding machine
JP2007000945A (en) * 2005-06-21 2007-01-11 Jtekt Corp Grinding method and device
DE102008009124B4 (en) * 2008-02-14 2011-04-28 Erwin Junker Maschinenfabrik Gmbh Method for grinding rod-shaped workpieces and grinding machine
EP2361314B1 (en) 2008-10-27 2015-03-18 Becton Dickinson and Company Assay for chlamydia trachomatis by amplification and detection of chlamydia trachomatis pmpa gene
JP5332507B2 (en) 2008-10-28 2013-11-06 株式会社ジェイテクト Grinding machine and grinding method
DE102009032353A1 (en) * 2009-07-08 2011-09-08 Hommel-Etamic Gmbh Method for determining the shape of a workpiece
MX2010013147A (en) * 2009-07-28 2011-07-06 Komatsu Ntc Ltd Grinding machine and measurement device.
DE102010013069B4 (en) * 2010-03-26 2012-12-06 Hommel-Etamic Gmbh measuring device
JP5892526B2 (en) 2011-03-24 2016-03-23 エルヴィン ユンカー マシーネンファブリーク ゲゼルシャフト ミットベシュレンクテル ハフツングErwin Junker Maschinenfabrik GmbH Grinding machine in which a grinding spindle unit is pivotally mounted and a method for pivoting a grinding spindle unit on a grinding machine
US8978879B2 (en) 2012-01-31 2015-03-17 Laitram, L.L.C. Multi-directional roller assembly
DE102012018580B4 (en) * 2012-09-20 2015-06-11 Jenoptik Industrial Metrology Germany Gmbh Measuring device and measuring method for in-process measurement on test specimens during a machining operation on a processing machine, in particular a grinding machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2016129362A (en) 2018-01-24
US20160311077A1 (en) 2016-10-27
BR112016011005B1 (en) 2021-08-10
BR112016011005A2 (en) 2017-08-08
CN105873725B (en) 2019-01-15
ES2655522T3 (en) 2018-02-20
CN105873725A (en) 2016-08-17
KR20160100985A (en) 2016-08-24
RU2678349C1 (en) 2019-01-28
DE102013226733A1 (en) 2015-06-25
EP3083137A2 (en) 2016-10-26
DE102013226733B4 (en) 2021-12-23
KR102265597B1 (en) 2021-06-18
JP6333391B2 (en) 2018-05-30
US11260501B2 (en) 2022-03-01
WO2015091800A3 (en) 2015-08-13
WO2015091800A2 (en) 2015-06-25
JP2017501895A (en) 2017-01-19

Similar Documents

Publication Publication Date Title
DE102014204807B4 (en) Method and device for grinding large crankshafts
DE102006007055B4 (en) Method for grinding rod-shaped workpieces, grinding machine for carrying out the method and grinding cell in twin arrangement
DE102007034706B3 (en) Grinding center and method for simultaneous grinding of multiple bearings and end faces of crankshafts
EP2440369B1 (en) Grinding-supporting device
DE10144644B4 (en) Method and device for grinding centric bearing points of crankshafts
EP3310530B1 (en) Method and grinding machine for grinding external and internal contours of workpieces in one set-up
DE102008009124B4 (en) Method for grinding rod-shaped workpieces and grinding machine
WO2007137762A1 (en) Method of machining the bearing seats of the main and rod bearings of crankshafts
EP1181132A1 (en) Rough-grinding and finish-grinding a crankshaft in a clamping
DE102007026562A1 (en) Grinding center and method for simultaneously grinding multiple bearings of crankshafts
EP3230008B1 (en) Measuring steady rest for supporting and measuring central workpiece regions, grinding machine with such a measuring steady rest, and method for supporting and measuring central workpiece regions
CH703141B1 (en) A device for grinding at least a portion of a component.
EP3083137B1 (en) Method and grinding machine for measuring and producing a target outer contour of a workpiece by means of grinding
DE102007021659A1 (en) Surface grinding method for producing flat work piece surface in surface grinding machine, involves producing eccentric rotary motion of grinding spindle about grinding unit axis that is arranged in eccentric distance to spindle axis
DE102004013192B3 (en) Bearing and cams grinding method e.g. for cam shaft, involves having cam shaft consisting of steel tube and cam directs tube toward grinding machine, with which after sharpening procedure directs cam shaft toward same grinding machine
EP3375561B1 (en) Method and device for machining of wheel treads of wheels for railway vehicles
DE19738818A1 (en) Pattern-controlled precision-machining system
WO2012025072A2 (en) Method for producing honed surfaces

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160718

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170717

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 939473

Country of ref document: AT

Kind code of ref document: T

Effective date: 20171115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014006000

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2655522

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20180220

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20171025

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180225

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180125

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014006000

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

26N No opposition filed

Effective date: 20180726

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20141218

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171025

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 939473

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191218

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221230

Year of fee payment: 9

Ref country code: DE

Payment date: 20230224

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231220

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20231219

Year of fee payment: 10

Ref country code: CZ

Payment date: 20231206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240118

Year of fee payment: 10