EP1977268A1 - Dispositif et procédé de repérage multidimensionnel d objets cibles, notamment de transpondeurs rfid - Google Patents

Dispositif et procédé de repérage multidimensionnel d objets cibles, notamment de transpondeurs rfid

Info

Publication number
EP1977268A1
EP1977268A1 EP07703667A EP07703667A EP1977268A1 EP 1977268 A1 EP1977268 A1 EP 1977268A1 EP 07703667 A EP07703667 A EP 07703667A EP 07703667 A EP07703667 A EP 07703667A EP 1977268 A1 EP1977268 A1 EP 1977268A1
Authority
EP
European Patent Office
Prior art keywords
distance
radio
target object
based system
antennas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07703667A
Other languages
German (de)
English (en)
Inventor
Claus Seisenberger
Leif Wiebking
Joachim WÜRKER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1977268A1 publication Critical patent/EP1977268A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/74Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems
    • G01S13/82Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted
    • G01S13/84Systems using reradiation of radio waves, e.g. secondary radar systems; Analogous systems wherein continuous-type signals are transmitted for distance determination by phase measurement

Definitions

  • the present invention relates to a radio-based system for multi-dimensional location of a target object, in particular an RFID transponder, in particular based on the principle of modulated backscatter with a base station having a plurality of antennas for transmitting
  • Basic signals and / or receiving response signals a target object for receiving the base signals and for outputting response signals.
  • a first possibility is to determine the removal of RFID transponders using field strength based location systems. Due to the problem of multipath propagation, this method only provides accuracies in the range of several meters.
  • positioning systems operate according to the SDMA method.
  • the removal of a transponder is obtained by the orientation of a highly concentrated transmit / receive antenna at which the maximum of the receive level occurs.
  • systems for the one-dimensional distance measurement of a backscatter transponder are in use, which are based on the transit time measurement of a radio signal modulated by the transponder.
  • Radio-based systems are all technical systems that use electromagnetic waves that can be transmitted and received by antennas. These include, for example, radar waves used, for example, in the range of 500 MHz to 100 GHz, or waves used for RFID (Radio Frequency Identification), which are used, for example, in the range of 800 MHz to 2.4 GHz. Basic signals and response signals are such electromagnetic waves.
  • a target bin angle ⁇ z is an angle in a horizontal x, y plane or a vertical y, z plane at the horizontal plane between a major axis direction of the base station lying on the y axis and a projection of the line from the Base station to the target object in the horizontal plane or in the vertical plane between the lying on the y-axis of the main direction of the base station and a projection of the line from the
  • the radio-based system it is possible to locate target objects, in particular transponders, which operate on the principle of modulated backscatter, with the aid of a frequency-modulated radio signal emitted by the base station.
  • the one-dimensional distance measurement takes place via a transit time measurement of the electromagnetic radio signal from the transmitter via the transponder back to the receiver.
  • the two- or three-dimensional location is realized with a suitable antenna arrangement with the aid of a novel phase evaluation. From the measurement of the occurring at the individual antennas of the base station phase information of the reflected signal from the transponder, can on the respective storage angle ⁇ z of
  • Transponders are closed.
  • the antennas are arranged at a distance of cU and can due to their spatial
  • the first and the second device can be integrated in the base station, for example. It is also possible that the first and second device are combined into one.
  • Target reflectors for example, from a measurement of the signal transit time t-L from the transmitter to the reflector and back to
  • Receiver determined.
  • a transmission signal for example, a linearly modulated in its frequency high-frequency signal
  • FMCW signal can be used. Based on the distance r z and a Zielmonyablagewinkel ⁇ z can be calculated by trigonometry x and y coordinates. If the target object storage angle ⁇ z is detected in a vertical plane, the elevation or the z coordinate can be determined.
  • the principle known as modulated backscatter of the modulated base signal is used.
  • the signal reflected by the transponder is likewise given a modulation by the backscatter cross section or the reflection behavior of the transponder antenna being periodically varied with a modulation frequency f moc [.
  • the principle known as modulated backscatter is used.
  • the base signal may also be modulated.
  • the signal reflected by the transponder is impressed on a modulation. Due to the transponder modulation causes the originating from the transponder signal components in the spectrum in a higher frequency band to (f moc ⁇ ) are moved. Above and below the modulation frequency f moc [des
  • Transponders result in two maxima whose mutual frequency spacing ⁇ F is proportional to the distance r z of the
  • Transponder from the base station is.
  • a distance r j _ is determined the target object to an antenna based maxima phase differences by means of the second means.
  • a maximum phase difference is the difference of the phase values at the frequency locations at which the abovementioned maxima occur.
  • a maxima detection algorithm is used for determining the frequency spacing ⁇ F of both at the modulation frequency f moc [occurring maxima. From the determined frequency difference ⁇ F the distance of the transponder can be calculated according to the following formula:
  • Phase differences determinable Due to the high sensitivity of the phase slope curve smallest distance differences ⁇ r- j _ can be resolved through a phase evaluation.
  • Property is used to determine an occurring path difference ⁇ r-j_ between antennas and thus the target deviation angle ⁇ z .
  • At least one target object storage angle ⁇ z can be determined by means of the second device on the basis of the ratio of distance differences ⁇ r j of two adjacent antennas to their distances cU.
  • the arcussinus of this ratio is equal to the Zielumbleablagewinkel ⁇ z .
  • the x and y position of the target object for example by means of the second device, can be calculated:
  • the distance r z of the base station from the target object is essential greater than mutual distances dj of adjacent antennas to each other.
  • the distance to the target object is advantageously much larger than the mutual distance of the antennas from one another, that is, r z »dj. It can thus be approximately assumed that the rays reflected from the target object to the antennas run parallel to one another.
  • the antenna distance d j must be chosen correspondingly small, and the smaller the shorter the wavelength ⁇ .
  • This difference distance can be chosen arbitrarily small regardless of the antenna dimensions. Due to this configuration, it is possible to set the angle range for a target location to any value between ⁇ 90 ".
  • the antennas are arranged along a horizontal or along a vertical. In this way, a three-dimensional location is possible. It can on the one hand the Azimuth and on the other hand, the elevation of a target object are determined. Together with the measured distance, the x, y and z coordinates can be calculated.
  • the use of five antennas is particularly advantageous because the effort is limited.
  • the target objects are transponders, RFID tags or radio interrogation sensors. This makes the radio-based system versatile.
  • the target objects are passive or semi-passive. In this way, advantageously the use of an amplifier in the target object is not required.
  • a method is also claimed for using a radio-based system for multi-dimensional location of a target object, in particular an RFID transponder.
  • Figure 1 shows an embodiment of a radio-based system for two-dimensional positioning
  • Figure 2a shows a first embodiment of a one-dimensional distance measurement
  • FIG. 2b shows a baseband of the spectrum for the first
  • FIG. 3 shows a second exemplary embodiment of a one-dimensional distance measurement
  • FIG. 4 is a graphical representation of the baseband of the
  • Figure 5 shows a first embodiment of a two-dimensional position determination
  • FIG. 7 shows the system components according to the exemplary embodiment according to FIG. 5;
  • Figure 8 shows two representations of the dependence of a uniqueness range of the distance between two antennas to each other
  • FIG. 9 shows a further exemplary embodiment for two-dimensional position determination with extended uniqueness range
  • Figure 10 shows an embodiment for three-dimensional positioning
  • FIG. 11 shows a representation of the position of a target object in three-dimensional space.
  • FIG. 1 shows, for example, the construction and the measured variables of a two-dimensional locating system.
  • 1 denotes a base station
  • 2 a target object, for example a
  • the distance of the base station 1 to the target object 2 is designated by r z .
  • the target placement angle ⁇ z is shown.
  • a transponder 2 is used as target object 2.
  • the transponder 2 to be located can work passively, that is to say field-powered without its own power supply. These may also be semi-passive, that is they are provided with their own battery or accumulator.
  • the antennas 3 in the base station 1 is a one-, two- or three-dimensional location possible.
  • the signal reflected by the transponder 2 can be evaluated by the individual antennas 3 sequentially or also in parallel.
  • the antennas 3 may also be arranged as an array. The positioning may also be provided in the form of multiple remote antennas.
  • the transponder 2 may have an antenna 3a.
  • a first device Ia for distance determination and a device Ib for determining the angle can be integrated in the base station 1.
  • FIG. 2 shows a first exemplary embodiment of a one-dimensional distance measurement.
  • An apparatus and a method for radio-based location is based in particular on radar technology.
  • a frequency-modulated electromagnetic transmission signal is emitted by the base station 1.
  • the removal of a located in the observation area of the base station 1 and the radar receiver target object 2 and Target reflectors are determined from a measurement of the signal transit time tL from the transmitter to the reflector and back to the receiver.
  • a transmission signal for example, a linearly modulated in its frequency high-frequency signal FMCW signal is used.
  • the signal delay t-L and thus the distance of the reflector can be determined.
  • the evaluation of the frequency difference which is proportional to the distance of the target object 2, takes place in the frequency domain. In the baseband according to FIG. 2b of the spectrum, this results in a signal peak at the frequency which corresponds to the frequency difference.
  • 4 designates the transmission signal, 5 the reception signal and 6 the difference frequency signal.
  • the transmission signal 4 can also be used as the base signal 4 and the
  • Receiving signal 5 are referred to as response signal 5.
  • ⁇ F denotes the frequency difference, fg the frequency of the
  • Transmit signal 4 T the ramp duration and B the frequency deviation of the FMCW transmission signal 4.
  • the signal delay is shown with t-L.
  • FIG. 2b shows the signal peak or the maximum at the frequency which corresponds to the frequency difference ⁇ F.
  • FIG. 3 shows a base station 1 and an antenna 3, via which a transmission signal / base signal 4 is sent to a transponder 2.
  • the transponder 2 has a modulator 7, which is modulated by means of a modulation signal 8.
  • the transponder 2 has an antenna 3a.
  • the transponder 2 transmits a received signal 5 or a
  • the signal reflected by the transponder 2 is in this case a modulation, by means of a modulation signal 8, impressed by the backscatter cross section or the reflection behavior of the transponder antenna 3a periodically with the modulation frequency f moc [is varied.
  • Modulation can be active or passive, but an active version, that is an active amplification of the signal in the transponder 2 is not required.
  • the principle of modulated backscattering is extremely energy efficient, making it ideal for use in field-powered RFID transponders 2.
  • a modulation method both an amplitude and a phase modulation can be used.
  • transponders 2 based on modulated backscatter are used with particular advantage.
  • the transponder 2 used in this case can be passive.
  • a modulator 7 is fed from the radio field. It is therefore not a separate source of energy such as a battery or a battery on the transponder 2 required. There is an unreinforced backscatter.
  • the use of semi-passive transponders is possible.
  • a modulator 7 is integrated with a transponder 2
  • Another embodiment is active transponder 2. According to this embodiment, an energy source for amplifier and modulator 7 on the transponder 2 is present. That is, the base signal 4 transmitted from the base station 1 is sent back stronger, or a response signal 5 is generated and transmitted.
  • the modulation causes the signal components originating from the transponder 2 to be shifted in the spectrum to a higher frequency band (by f moc ⁇ ).
  • FIG. 4 shows by way of example the spectrum relevant for the distance evaluation. Above and below the
  • FIG. 5 shows a first exemplary embodiment of a two-dimensional position determination by means of a reading device.
  • two antennas 3 arranged parallel next to one another at a distance d are used, which can each be controlled one after the other by the base station 1.
  • the x and y position of the transponder 2 can thus be determined from the distance value r z determined above. If the distance to the target object 2 is much greater than the mutual distance of the antennas from each other, that is, r z »d, then one can approximately assume that those from the target object 2 to the two antennas reflected
  • the phase of the signals received by both antennas is used.
  • denotes the wavelength of the transmission signal.
  • FIG. 6 shows the course of the phase difference ⁇ over the distance range of a wavelength ⁇ .
  • FIG. 7 shows a radio-oriented system with a base station 1 which uses two antennas 3.
  • a target object 2 or transponder 2 is shown which has a modulator 7 modulated by means of a modulation signal 8 and an antenna 3a.
  • ⁇ - ⁇ _ and T2 the respective distances of the two antennas 3 of the base station 1 to the antenna 3a of the transponder 2 are shown.
  • phase difference of the detected maxima of each of the first and the second antenna 3 of the base station 1 is determined:
  • the two antenna signals are evaluated simultaneously or phase-coherently to determine their mutual phase angle.
  • the uniqueness range can advantageously be extended by means of an arrangement of three parallel, side-by-side antennas 3.
  • FIG. 9 shows a corresponding one
  • the base station 1 again measures the phase differences of the detected maxima with the respective antenna A] _, A2, A3:
  • a three-dimensional location can be carried out. Expand the system by one or more others
  • the azimuth 10 and, secondly, the elevation 11 of the transponder 2 are determined on the one hand. Together with the measured distance r z , the x, y and z coordinates can thus be calculated.
  • the possible antenna location consisting of five antennas (A ] _ to
  • FIG. A5 is shown in FIG.
  • the antennas A] _ to A3 serve to measure the azimuth. 10
  • the antennas A4, A2 and A5 are used to measure the elevation 11.
  • the antennas are also marked with the reference numeral 3.
  • Fig. 11 shows a representation of a base station 1 in the origin of an x, y, z coordinate system.
  • the transponder 2 is located at an x ⁇ , y ⁇ and z ⁇ position, which can be determined by means of the distance from the transponder 2 to the base station 1 and the two target placement angles ⁇ z .

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

La présente invention concerne un système à base radioélectrique de repérage multidimensionnel d’un objet cible (2). Un objet cible (2) peut notamment être un transpondeur RFID. Un signal de base (4) est envoyé par une station de base (1) et renvoyé par un transpondeur à rétrodiffusion. Une distance entre la station de base (1) et le transpondeur est déterminée au moyen d’un écart de fréquence ΔF entre deux maximums dans la bande de base du spectre d’un signal de base (4) émis par une antenne (3) de la station (1) de base auquel est superposé un signal (5) de réponse reçu simultanément. Une interprétation de la phase est réalisée pour calculer un angle αz de dérive de l’objet cible. Un repérage unidimensionnel, bidimensionnel ou tridimensionnel peut être réalisé, suivant le nombre et la disposition des antennes (3) de la station de base (1).
EP07703667A 2006-01-27 2007-01-05 Dispositif et procédé de repérage multidimensionnel d objets cibles, notamment de transpondeurs rfid Withdrawn EP1977268A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006004023A DE102006004023A1 (de) 2006-01-27 2006-01-27 Vorrichtung und Verfahren zur mehrdimensionalen Ortung von Zielobjekten, insbesondere RFID-Transpondern
PCT/EP2007/050109 WO2007085517A1 (fr) 2006-01-27 2007-01-05 Dispositif et procédé de repérage multidimensionnel d’objets cibles, notamment de transpondeurs rfid

Publications (1)

Publication Number Publication Date
EP1977268A1 true EP1977268A1 (fr) 2008-10-08

Family

ID=37872229

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07703667A Withdrawn EP1977268A1 (fr) 2006-01-27 2007-01-05 Dispositif et procédé de repérage multidimensionnel d objets cibles, notamment de transpondeurs rfid

Country Status (4)

Country Link
US (1) US20100231410A1 (fr)
EP (1) EP1977268A1 (fr)
DE (1) DE102006004023A1 (fr)
WO (1) WO2007085517A1 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008024815A2 (fr) 2006-08-22 2008-02-28 Dimensions Imaging Procédé et système pour fournir une tolérance à l'interférence et aux obstructions en observation en ligne directe
DE102008038365A1 (de) * 2008-07-02 2010-01-07 Adc Automotive Distance Control Systems Gmbh Fahrzeug-Radarsystem und Verfahren zur Bestimmung einer Position zumindest eines Objekts relativ zu einem Fahrzeug
US20100102781A1 (en) * 2008-10-24 2010-04-29 Sony Ericsson Mobile Communications Ab Apparatus and method for charging a battery
EP2182383A1 (fr) 2008-10-30 2010-05-05 Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO Agent de mesure, étiquette, procédé de mesure, procédé de fourniture de mesure et produit de programme informatique
DE102008060188A1 (de) * 2008-11-28 2010-06-10 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Abstandsmessung
US8231506B2 (en) * 2008-12-05 2012-07-31 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US8628453B2 (en) 2008-12-05 2014-01-14 Nike, Inc. Athletic performance monitoring systems and methods in a team sports environment
US20100184564A1 (en) 2008-12-05 2010-07-22 Nike, Inc. Athletic Performance Monitoring Systems and Methods in a Team Sports Environment
DE102009015540A1 (de) * 2009-04-01 2010-10-14 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur Geschwindigkeitsüberwachung
DE102009016480B4 (de) * 2009-04-06 2021-12-23 Conti Temic Microelectronic Gmbh Verfahren für ein Radarsystem zur Unterdrückung von Mehrdeutigkeiten bei der Bestimmung von Objektmaßen
DE102009016479B4 (de) * 2009-04-06 2021-12-23 Conti Temic Microelectronic Gmbh Verfahren für ein Radarsystem zur Vermeidung von durch Störeinstrahlungen bzw. -einkopplungen verursachten Fehlreaktionen
EP2259083B1 (fr) 2009-06-04 2015-08-26 Lambda: 4 Entwicklungen GmbH Système décorrélé
FI122310B (fi) * 2010-04-09 2011-11-30 Teknologian Tutkimuskeskus Vtt Menetelmä, järjestelmä ja tietokoneohjelmatuote RFID-tunnisteiden etäisyysmittaukseen
DE102011075767A1 (de) * 2011-05-12 2012-11-15 Endress + Hauser Gmbh + Co. Kg Einsatz von aktiven Radarreflektoren in einer produktions- oder fördertechnischen Umgebung der Automatisierungstechnik
US9507976B2 (en) 2011-08-22 2016-11-29 Metrologic Instruments, Inc. Encoded information reading terminal with item locate functionality
US9477865B2 (en) 2013-12-13 2016-10-25 Symbol Technologies, Llc System for and method of accurately determining true bearings of radio frequency identification (RFID) tags associated with items in a controlled area
AT515088B1 (de) * 2014-02-14 2015-06-15 Mkw Electronics Gmbh Verfahren für die Ortung von Tieren mit Hilfe von Funkwellen
EP3128345B1 (fr) 2014-03-31 2019-05-01 Murata Manufacturing Co., Ltd. Système de détection de position
PL2933653T3 (pl) * 2014-04-16 2018-01-31 Skidata Ag Sposób optymalizacji dokładności lokalizacji znacznika RFID w bardzo wysokim zakresie częstotliwości radiowych w przypadku systemu do lokalizacji znaczników RFID zawierających wiele czytników
US9755294B2 (en) 2014-07-07 2017-09-05 Symbol Technologies, Llc Accurately estimating true bearings of radio frequency identification (RFID) tags associated with items located in a controlled area
FR3040498B1 (fr) * 2015-08-31 2018-02-09 Valeo Comfort And Driving Assistance Procede de determination d'une distance entre un vehicule et un identifiant d'acces et de demarrage du vehicule
US9900787B2 (en) * 2015-09-30 2018-02-20 George Ou Multicomputer data transferring system with a base station
US9773136B2 (en) 2015-10-19 2017-09-26 Symbol Technologies, Llc System for, and method of, accurately and rapidly determining, in real-time, true bearings of radio frequency identification (RFID) tags associated with items in a controlled area
DE102016207424A1 (de) * 2016-04-29 2017-11-02 Siemens Aktiengesellschaft Transponder, insbesondere RFID Transponder, und Verfahren zum Betreiben eines, insbesondere RFID, Transponders
DE102016108594B3 (de) * 2016-05-10 2017-11-02 Endress + Hauser Gmbh + Co. Kg Verfahren zur Ermittlung des Füllstandes sowie zur Ermittlung zumindest einer Zusatzinformation
DE102016208808A1 (de) * 2016-05-20 2017-11-23 Continental Teves Ag & Co. Ohg Sensorvorrichtung für ein Fahrzeug
US11561122B2 (en) 2017-06-13 2023-01-24 Saudi Arabian Oil Company Tank gauging and inventory management system
US10746866B2 (en) * 2017-06-13 2020-08-18 Saudi Arabian Oil Company RFID triangulated tank gauging and inventory management system
US10726218B2 (en) 2017-07-27 2020-07-28 Symbol Technologies, Llc Method and apparatus for radio frequency identification (RFID) tag bearing estimation
EP3564706A1 (fr) * 2018-05-04 2019-11-06 Lambda: 4 Entwicklungen GmbH Procédé et système de mesure de distance et de vitesse à haute résolution
DE102018118192A1 (de) * 2018-07-27 2020-02-20 Hochschule Trier University of Applied Sciences Radarsystem
EP3899583A4 (fr) * 2019-01-05 2022-09-07 Xco Tech Inc. Procédé de correction d'ambiguïté de phase dans des transitions de mesures de plage et de phase
DE102019111503A1 (de) * 2019-05-03 2020-11-05 Pipetronics Gmbh & Co. Kg Befestigungseinrichtung für ein lokalisierungssystem für vorrichtungen in auskleidungsschläuchen
US11112484B2 (en) * 2019-05-15 2021-09-07 Nanning Fugui Precision Industrial Co., Ltd. System and method for establishing relative distance and position of a transmitting antenna
DE102019120016B4 (de) * 2019-07-24 2021-04-22 Ifm Electronic Gmbh Verfahren zum Betreiben einer automatischen Ladestation für ein Elektrofahrzeug mit einer RFID-Basis.
CN112702785A (zh) * 2019-10-22 2021-04-23 佛山市云米电器科技有限公司 蓝牙定位方法、装置、系统和存储介质
US11341830B2 (en) 2020-08-06 2022-05-24 Saudi Arabian Oil Company Infrastructure construction digital integrated twin (ICDIT)
US11687053B2 (en) 2021-03-08 2023-06-27 Saudi Arabian Oil Company Intelligent safety motor control center (ISMCC)
CN115113196A (zh) 2021-03-17 2022-09-27 纬创资通股份有限公司 生理信息及表征信息检测与识别方法及其监测雷达
CN113949987B (zh) * 2021-09-08 2024-05-31 深圳市微能信息科技有限公司 一种定位方法、装置、基站和可读存储介质
US12024985B2 (en) 2022-03-24 2024-07-02 Saudi Arabian Oil Company Selective inflow control device, system, and method

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3691560A (en) * 1961-02-02 1972-09-12 Calvin M Hammack Method and apparatus for geometrical determination
US3866229A (en) * 1961-02-02 1975-02-11 Hammack Calvin M Method and apparatus for automatically determining position-motion state of a moving object
FR2343258A1 (fr) * 1976-07-01 1977-09-30 Trt Telecom Radio Electr Systeme radioelectrique de localisation d'un objet determine
FR2481465A1 (fr) * 1980-04-25 1981-10-30 Trt Telecom Radio Electr Procede et dispositif pour la determination precise d'azimut a partir de la mesure de plusieurs dephasages
US4725841A (en) * 1983-06-30 1988-02-16 X-Cyte, Inc. System for interrogating a passive transponder carrying phase-encoded information
SE442348B (sv) * 1984-07-04 1985-12-16 Stiftelsen Inst Mikrovags Forfarande och anordning for bestemning av inbordes lege mellan tva objekt
JPS61105700A (ja) * 1984-10-29 1986-05-23 東洋通信機株式会社 航空機衝突防止装置に於ける他航空機トラツキング表示方式
US6084530A (en) * 1996-12-30 2000-07-04 Lucent Technologies Inc. Modulated backscatter sensor system
DE19946161A1 (de) * 1999-09-27 2001-04-26 Siemens Ag Verfahren zur Abstandsmessung
EP1471367A4 (fr) * 2002-01-28 2005-02-02 Hitachi Ltd Radar
DE10301451A1 (de) * 2003-01-10 2004-07-22 Atmel Germany Gmbh Verfahren sowie Sende- und Empfangseinrichtung zur drahtlosen Datenübertragung und Modulationseinrichtung
WO2005010798A2 (fr) * 2003-07-29 2005-02-03 Dan Raphaeli Procede et systeme correspondant pour un dispositif portatif de localisation d'etiquettes d'identification par radiofrequence
JP4328705B2 (ja) * 2004-02-27 2009-09-09 均 北吉 Rfidタグ装置
EP1735638B1 (fr) * 2004-03-15 2008-10-29 Kongsberg Seatex As Procede et systeme permettant de determiner la position de batiments de mer et d'objets similaires

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007085517A1 *

Also Published As

Publication number Publication date
US20100231410A1 (en) 2010-09-16
WO2007085517A1 (fr) 2007-08-02
DE102006004023A1 (de) 2007-08-09

Similar Documents

Publication Publication Date Title
WO2007085517A1 (fr) Dispositif et procédé de repérage multidimensionnel d’objets cibles, notamment de transpondeurs rfid
WO2008017617A1 (fr) Dispositif et procédé de localisation d'un objet cible
DE102018108648B4 (de) Fmcw radar mit störsignalunterdrückung
Buffi et al. A phase-based technique for localization of UHF-RFID tags moving on a conveyor belt: Performance analysis and test-case measurements
AT511750B1 (de) Verfahren und system zur ortung von objekten
EP2629113B1 (fr) Système radar doté d'agencements et procédé pour découpler des signaux d'émission et de réception ainsi que pour annuler des rayonnements parasites
DE102020111533A1 (de) Mimo-radar-vorrichtungen und mimo-radar-verfahren
DE102010002474B4 (de) Radarvorrichtung zum Unterdrücken von Wirkungen von Gitterkeulen bei der Erfassung einer Richtung eines Ziels auf der Grundlage einer Phasendifferenz zwischen empfangenen reflektierten Wellen
EP2845026B1 (fr) Procédé et ensemble pour la détection relative de position de stations par radiolocalisation
DE102012203172B4 (de) Radarvorrichtung und Einfallswinkelberechnungsverfahren für eine Radarvorrichtung
WO2004053523A1 (fr) Procede et systeme de capteurs a capacite multicible destines a la detection d'ecart et d'angle d'objets cibles en zone proche
DE102020107804A1 (de) Radarvorrichtung und Verfahren zum Detektieren von Radarzielen
EP2396670A1 (fr) Procédé et système pour déterminer la distance, la vitesse et/ou la direction de déplacement d'une étiquette rfid
DE102005009579B4 (de) Verfahren zur Lokalisierung eines Detektierplättchens
WO2019219262A1 (fr) Détecteur radar à entrées et sorties multiples (mimo) pour véhicules automobiles
WO2020069921A1 (fr) Système radar destiné à un véhicule
EP2005209B1 (fr) Procédé et dispositif de saisie d'un ou de plusieurs objets dans l'environnement d'un véhicule à moteur
DE112019005500T5 (de) Antennenvorrichtung, bewegbarer körper und zielbestimmungsverfahren
Peichl et al. TIRAMI-SAR-a synthetic aperture radar approach for efficient detection of landmines and UXO
DE102020207135A1 (de) Simultane Identifizierung und Lokalisierung von Objekten durch bistatische Messung
WO2017137624A1 (fr) Dispositif de détermination d'une position d'un émetteur et procédé correspondant
DE112019001829T5 (de) Objektpositionserfassungssystem
DE102018010369A1 (de) Mimo fmcw radarsystem
DE4314216A1 (de) Anordnung zum Lokalisieren eines Objektes
Bai et al. 3D automotive millimeter-wave radar with two-dimensional electronic scanning

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080530

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

17Q First examination report despatched

Effective date: 20091210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100421