EP1973365B1 - Method and apparatus for handling random access procedure in a wireless communications system - Google Patents

Method and apparatus for handling random access procedure in a wireless communications system Download PDF

Info

Publication number
EP1973365B1
EP1973365B1 EP08005480A EP08005480A EP1973365B1 EP 1973365 B1 EP1973365 B1 EP 1973365B1 EP 08005480 A EP08005480 A EP 08005480A EP 08005480 A EP08005480 A EP 08005480A EP 1973365 B1 EP1973365 B1 EP 1973365B1
Authority
EP
European Patent Office
Prior art keywords
rnti
random access
message
access procedure
network
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08005480A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP1973365A3 (en
EP1973365A2 (en
Inventor
Yu-Chih Jen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Innovative Sonic Ltd
Original Assignee
Innovative Sonic Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Sonic Ltd filed Critical Innovative Sonic Ltd
Publication of EP1973365A2 publication Critical patent/EP1973365A2/en
Publication of EP1973365A3 publication Critical patent/EP1973365A3/en
Application granted granted Critical
Publication of EP1973365B1 publication Critical patent/EP1973365B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access, e.g. scheduled or random access
    • H04W74/08Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access]
    • H04W74/0833Non-scheduled or contention based access, e.g. random access, ALOHA, CSMA [Carrier Sense Multiple Access] using a random access procedure

Definitions

  • the present invention relates to a method and apparatus for handling random access procedure in a wireless communications system according to the pre-characterizing clauses of claims I and 3.
  • the third generation mobile telecommunications system (called 3G system) provides high frequency spectrum utilization, universal coverage, and high quality, high-speed multimedia data transmission, and also meets all kinds of QoS requirements simultaneously, providing diverse, flexible, two-way transmission services and better communication quality to reduce transmission interruption rates.
  • 3G system provides high frequency spectrum utilization, universal coverage, and high quality, high-speed multimedia data transmission, and also meets all kinds of QoS requirements simultaneously, providing diverse, flexible, two-way transmission services and better communication quality to reduce transmission interruption rates.
  • the next generation mobile telecommunications technology and related communication protocols have been developed.
  • a Random Access Channel is configured in an uplink (UL) channel between a user equipment (UE) and the network, and utilized for timing alignment, RNTI (Radio Network Temporary Identifier) assignment, and resource request.
  • DL downlink
  • NB Node B
  • signals on RACH can be used for UL timing alignment.
  • UE uses downlink Synchronization Channel or reference signals to perform synchronization on timing and frame. However, since signals may be delayed due to a distance between the transmitter and receiver, UE is not able to determine whether a message transmitted from UE is at a starting position of a receiving frame of NB.
  • NB evaluates timing offset of a UE according to RACH signals from the UE, and notifies the UE to adjusting UL timing via Downlink Shared Channel (DL-SCH), to achieve timing synchronization.
  • RACH signal is composed of preambles used for UL timing synchronization and UE identity detection, or carrying short sinalling or signature.
  • RACH signals among different UEs are transmitted to NB by contention-based or non-contention-based method. That is, UE can select a RACH transmission opportunity and randomly select a preamble to transmit signals, or transmit a signal carrying a preamble assigned by the network (in such a situation, the RACH transmission opportunity is assigned by the network or selected by the UE). If the network cannot identify the transmitted RACH signal due to collision or low power, or if contention lost occurs due to a randomly-selected preamble, the UE can retransmit the RACH signal with larger power in the next available RACH transmission opportunity, until a response from the network is received or a condition is reached, e.g., maximum transmitting or maximum power.
  • a RACH transmission opportunity is related to a time-frequency radio resource, not only related to time or frequency. Therefore, when RACH physical resource is selected, its time period and frequency band are determined. Of course, at certain time period, there may be more than one frequency sub-band for selection.
  • preamble can be random access preamble, which is randomly selected by UE, or dedicated preamble, which is assigned by network (source cell or target cell). Basically, when UE uses (randomly selected) random access preamble, there is possibility another UE use the same preamble and transmit it in the same RACH opportunity so that network doesn't know whether the signal comes from one or more than one UE.
  • Random access procedure performance mainly in terms of latency and overhead is affected by collision/contention probability, time/frequency resources, number of user equipments (load), number of preamble signature, channel quality, UE identities, and even access causes and so on.
  • initial access e.g. UE originated call, network originated call, tracking area update and initial cell access
  • initial NAS signaling for NAS procedures e.g. service request, network attach, routing/tracking area update
  • synchronization request e.g. service request, network attach, routing/tracking area update
  • handover access and scheduling request e.g. service request, network attach, routing/tracking
  • the four steps are: Random Access Preamble on RACH, Random Access Response via CCCH (Common Control Channel) on DL-SCH, RRC Connection Request via CCCH on UL-SCH, and RRC Contention Resolution via DCCH on DL-SCH.
  • CCCH Common Control Channel
  • radio link failure e.g. changing new serving cell
  • tracking area update can happen. It's possible that after an UE informs eNB (enhanced Node B) in message 3 about its already having C-RNTI (e.g. by index or provide its C-RNTI directly), the C-RNTI held by the UE may either have been released or become invalid before message 4 (e.g. message 4 is asynchronous to message 3 and three retransmissions are allowed) addressed by UE identity (e.g. can be invalid as well) is received by the UE.
  • eNB enhanced Node B
  • network may consider that the UE uses its original C-RNTI so as to relocate T-CRNTI assigned in message 2 to other random access UEs while the UE adopts the previous received T-CRNTI as its C-RNTI.
  • network shall know whether the UE has C-RNTI already. It's unnecessary to provide notification of having C-RNTI to result in unnecessary overhead.
  • the purpose of initiating RA may become not essential and critical after completion of random access procedure.
  • downlink resources are allocated by CRNC when HS-SCCH sets are configured/decided by NB.
  • CRNC no more. It's not clear how network maintains the resource allocation and configuration. In addition, it's necessary to consider how continuous packet connectivity feature is fulfilled in LTE at handover.
  • the UE should expect the random access response message for both contention-based and non-contention-based random access procedures from network if the network receives the preamble over RACH.
  • the random access response message shall be addressed to a RA-RNTI corresponding to or uniquely identifying the accessing RACH time-frequency resource where the RACH accessing pattern (time-frequency within radio frame) is indicated.
  • network shall send the random access response message within flexible window (e.g. one or more TTI).
  • the network doesn't send random access response message earlier enough so that scheduled the same RACH time-frequency resource (identifying by the same RA-RNTI expected) is reached before reception of the response message (e.g. random access response message is received later than scheduled time slot of next period of the same RACH time-frequency resource within a radio frame or expected reception time for accesses at next period of the same RACH time-frequency resource within a radio frame), the problem will happen.
  • UEs sending preambles at next period of the same RACH time-frequency resource expect the same associated RA-RNTI by wasting power in reception response message which actually is intended for UEs with access attempts at previous period of the same RACH time-frequency resource. Consequently, the power control mechanism for access attempts at next period of the same RACH time-frequency resource cannot work correctly to reflect the UL channel conditions between base station and UEs with access attempts at next period of the same RACH time-frequency resource so as to may further impact subsequent transmissions.
  • UEs with the same used random access preambles at next period of the same accessing opportunity may also consider the response message intended to the UEs with the same random access preambles sending at previous period of the same accessing opportunity is intended to them so that they will all send message 3 in UL where the network cannot really differentiate which UE accesses the RACH time-frequency resource in the previous period of the accessing pattern and which one accesses later. Therefore, it's unfair to the UE sending access attempts earlier.
  • C-RNTI is used to address message 4 for RRC connected UE
  • the UE may wait for long time (e.g. until its assigned T-CRNTI is reused by a winner UE) or even forever (e.g. no winner UE uses the T-CRNTI) since message 4 is not synchronized to message 3.
  • T-CRNTI When the C-RNTI of a UE is detected or known by network upon receive message 3, it's unnecessary to address T-CRNTI on L1/L2 control channel for winner UE since UE knows its own C-RNTI if there is one. The life span of T-CRNTI should be able to be terminated before estimated duration of reception of T-CRNTI is reached. Otherwise, the T-CRNTI may be out of stocks/in shortage or availability of T-CRNTI to a UE may be delayed.
  • network may assign dedicated preambles to some UEs going to initiate random access triggered by these causes to avoid (if there is enough RACH time/frequency resources) or reduce contention (if too many UEs asking for accesses). Since normally an UE receiving dedicated preamble is in connected state and its context is available at network entity beforehand, the network entity shall know whether the UE has C-RNTI or not beforehand. It seems that it's unnecessary to assign T-CRNTI in message 2 in this kind of scenario.
  • T-CRNTI may be considered necessarily to be issued, it's unnecessary to send whole T-CRNTI on DL-SCH which not only consumes radio resource but also limits the number of UEs which can be dealt with during random access procedure in message 2 (e.g. message size so that the number of UEs being able to receive message 2 is limited if we assume each UE requires certain amount of information length in message 2).
  • HARQ is supported for contention resolution message with allowing one retransmission.
  • acknowledgment errors can lead to confusion between network and UEs. If DTX/ACK or NACK/ACK happens, for UEs originally without C-RNTI, the network will consider the UE adopts T-CRNTI as C-RNTI while the T-CRNTI is not actually used. In contrast, if ACK/NACK happens, the network will consider the UE doesn't adopt T-CRNTI as C-RNTI while the T-CRNTI is actually occupied. The further problem may occur when two UEs consider they have same C-RNTI.
  • message 4 is supported by HARQ. Therefore, if DTX/ACK happens, the network may consider an assigned T-CRNTI is adopted as a UE's C-RNTI while it's released.
  • a UE waiting for the response message should not send NACK to network corresponding to the response message. Otherwise, if acknowledgement errors happen (e.g. ACK/NACK or NACK/ACK), following UL-SCH transmission will result in radio disturbance and may be miss detected.
  • acknowledgement errors e.g. ACK/NACK or NACK/ACK
  • the UE identity may be occupied at the UE but the network considers the UE identity is free to assign.
  • the dedicated preamble may still be used by the UE when the network assigns the same dedicated preamble to another UE.
  • NAS procedures such as tracking area update (TAU), network attach (NA), and service request (SR) can be initiated when the UE is in LTE_IDLE or LTE_DETACHED.
  • TAU tracking area update
  • NA network attach
  • SR service request
  • NAS layer it's possible for NAS layer to initiate re-authentication even though it's relatively rare for cases of TAU and SR procedures.
  • duration for completion of either TAU or SR procedure usually is quite short (note: for NA, duration of procedure might be quite long) so that it would be rare that a handover would be required within the duration.
  • handover may need to be supported before S1 context has been available at eNB and RRC security has been established, shown as figure 2 .
  • D1 3GPP TS 36.300, V1.00.2007-03, Release 8, dated 5.03.2007, discloses to address the contention resolution message to the temporary C-RNTI and that a UE should promote a temporary C-RNTI as its own C-RNTI only if the UE has not any C-RNTI.
  • the present invention aims at providing a method and apparatus of handling random access procedure in a wireless communications system for implementing timing alignment and resource request, so as to enhance system efficiency.
  • the claimed method for handling a random access procedure in a user equipment, called UE hereinafter, of a wireless communications system comprises outputting a message 3 as a scheduled transmission not comprising a specific field indicating whether the UE has a cell Radio Network Temporary Identifier, called C-RNTI hereinafter, or not during the random access procedure.
  • C-RNTI Cell Radio Network Temporary Identifier
  • Fig. 4 illustrates a schematic diagram of a wireless communications system 1200.
  • the wireless communications system 1200 is preferably an LTE system, and is briefly composed of a network and a plurality of UEs.
  • the network and the UEs are simply utilized for illustrating the structure of the wireless communications system 1200.
  • the network terminal may comprise a plurality of base stations (or Node B), radio network controllers and so on according to actual demands, and the UEs can be devices such as mobile phones, computer systems, etc.
  • Fig. 1 is a functional block diagram of a communications device 100.
  • the communications device 100 can be used for implementing the network and the UE shown in Fig. 12.
  • Fig. 1 only shows an input device 102, an output device 104, a control circuit 106, a central processing unit (CPU) 108, a memory 110, a program code 112, and a transceiver 114 of the communications device 100.
  • the control circuit 106 executes the program code 112 in the memory 110 through the CPU 108, thereby controlling an operation of the communications device 100.
  • the communications device 100 can receive signals input by a user through the input device 102, such as a keyboard, and can output images and sounds through the output device 104, such as a monitor or speakers.
  • the transceiver 114 is used to receive and transmit wireless signals, delivering received signals to the control circuit 106, and outputting signals generated by the control circuit 106 wirelessly. From a perspective of a communications protocol framework, the transceiver 114 can be seen as a portion of Layer 1, and the control circuit 106 can be utilized to realize functions of Layer 2 and Layer 3.
  • the communications device 100 is utilized in a third generation (3G) mobile communications system.
  • 3G third generation
  • Fig. 2 is a diagram of the program code 112 shown in Fig. 1 .
  • the program code 112 includes a Non Access Stratum (NAS) 200, a Layer 3 202, and a Layer 2 206, and is coupled to a Layer 1 218.
  • the NAS 200 can generate NAS messages for realizing NAS applications.
  • the Layer 3 202 is composed of an RRC layer, for performing radio resource control.
  • the Layer 2 206 performs link control, and the Layer 1 218 performs physical connections. Whether a PDCP layer belongs to the Layer 3 202 or the Layer 2 206 is not relevant to this invention.
  • a RACH is configured in the communications device 100 for the random access procedure.
  • the embodiment of the present invention provides a RA processing program code 220 for handling a random access procedure, so as to prevent the prior art problems.
  • definitions of the messages 1, 2, 3, 4 are the same as what mentioned above. That is, the message I is corresponding to step "Random Access Preamble on RACH in uplink”, the message 2 is corresponding to step “Random Access Response on DL-SCH”, the message 3 is corresponding to step "First scheduled UL transmission on UL-SCH”, and the message 4 is corresponding to step "Contention Resolution on DL-SCH.”
  • Fig. 3 illustrates a process 40 according to an embodiment of the present invention.
  • the process 40 is utilized for handling a random access procedure in a network of the wireless communications system 1200, and can be compiled into the RA processing program code 220.
  • the process 40 comprises the following steps: Step 400: Start.
  • Step 402 During the random access procedure, send a message 4 conveying a UE identity received in a message 3 for contention resolution.
  • a message 4 sent from the network conveys a UE identity received in a message 3 for contention resolution during the random access procedure.
  • the network can use a C-RNTI of the UE or a T-CRNTI corresponding to the UE, to address the message 4 to the UE.
  • the UE shall adopt the T-CRNTI as the C-RNTI.
  • the UE keeps using the C-RNTI.
  • the network can detect the C-RNTI according to the UE identity in the message 3, and release the T-CRNTI and allowing assigning the T-CRNTI to other random UEs when the C-RNTI is detected.
  • the C-RNTI held by the UE may either have been released or become invalid before message 4 (e.g. message 4 is asynchronous to message 3 and three retransmissions are allowed) addressed by UE identity (e.g. can be invalid as well) is received by the UE. Consequently, for example, network may consider that the UE uses its original C-RNTI so as to relocate T-CRNTI assigned in message 2 to other random access UEs while the UE adopts the previous received T-CRNTI as its C-RNTI.
  • the network can detect the C-RNTI according to the UE identity in the message 3, and release the T-CRNTI and allowing assigning the T-CRNTI to other random UEs when the C-RNTI is detected.
  • the embodiment of the present invention provides different operations of the random access procedure, to achieve timing alignment and resource request.
EP08005480A 2007-03-21 2008-03-25 Method and apparatus for handling random access procedure in a wireless communications system Active EP1973365B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US89598707P 2007-03-21 2007-03-21
US94594807P 2007-06-25 2007-06-25
US98321807P 2007-10-28 2007-10-28

Publications (3)

Publication Number Publication Date
EP1973365A2 EP1973365A2 (en) 2008-09-24
EP1973365A3 EP1973365A3 (en) 2008-12-31
EP1973365B1 true EP1973365B1 (en) 2011-12-21

Family

ID=39624952

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08005480A Active EP1973365B1 (en) 2007-03-21 2008-03-25 Method and apparatus for handling random access procedure in a wireless communications system

Country Status (7)

Country Link
US (1) US9668279B2 (ja)
EP (1) EP1973365B1 (ja)
JP (2) JP2008278473A (ja)
KR (2) KR20080086416A (ja)
AT (1) ATE538620T1 (ja)
ES (1) ES2378584T3 (ja)
TW (1) TWI364936B (ja)

Families Citing this family (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101133746B1 (ko) 2006-06-21 2012-04-09 한국전자통신연구원 패킷 기반 셀룰라 시스템에서 하향 링크로의 제어 정보전송 방법 및 이의 수신 방법
CN101309500B (zh) 2007-05-15 2011-07-20 华为技术有限公司 不同无线接入技术间切换时安全协商的方法和装置
KR101486352B1 (ko) 2007-06-18 2015-01-26 엘지전자 주식회사 무선 통신 시스템의 단말에서의 상향링크 동기 상태 제어방법
KR101341515B1 (ko) 2007-06-18 2013-12-16 엘지전자 주식회사 무선 통신 시스템에서의 반복 전송 정보 갱신 방법
WO2008156314A2 (en) 2007-06-20 2008-12-24 Lg Electronics Inc. Effective system information reception method
US9008006B2 (en) * 2007-08-10 2015-04-14 Lg Electronics Inc. Random access method for multimedia broadcast multicast service(MBMS)
KR101479341B1 (ko) * 2007-08-10 2015-01-05 엘지전자 주식회사 Mbms 서비스를 제공하는 무선 통신 시스템에서효율적인 수신 방법
KR101392697B1 (ko) 2007-08-10 2014-05-19 엘지전자 주식회사 이동통신 시스템에서의 보안 오류 검출방법 및 장치
EP2186247A4 (en) 2007-08-10 2014-01-29 Lg Electronics Inc METHOD FOR CONTROLLING HARQ OPERATION WITH DYNAMIC RADIO RESOURCE ALLOCATION
KR101490253B1 (ko) 2007-08-10 2015-02-05 엘지전자 주식회사 무선 통신 시스템에서의 제어정보 전송 및 수신 방법
WO2009022837A1 (en) * 2007-08-10 2009-02-19 Lg Electronics Inc. A control method for uplink connection of idle terminal
KR101514841B1 (ko) 2007-08-10 2015-04-23 엘지전자 주식회사 효율적인 랜덤 액세스 재시도를 수행하는 방법
WO2009022877A2 (en) 2007-08-14 2009-02-19 Lg Electronics Inc. A method of transmitting and processing data block of specific protocol layer in wireless communication system
KR100937432B1 (ko) 2007-09-13 2010-01-18 엘지전자 주식회사 무선 통신 시스템에서의 무선자원 할당 방법
US8768383B2 (en) * 2007-09-13 2014-07-01 Lg Electronics Inc. Method for providing control information using the paging procedure
KR101461970B1 (ko) 2007-09-13 2014-11-14 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
KR101396062B1 (ko) 2007-09-18 2014-05-26 엘지전자 주식회사 헤더 지시자를 이용한 효율적인 데이터 블록 전송방법
KR101435844B1 (ko) 2007-09-18 2014-08-29 엘지전자 주식회사 무선 통신 시스템에서의 데이터 블록 전송 방법
KR101513033B1 (ko) 2007-09-18 2015-04-17 엘지전자 주식회사 다중 계층 구조에서 QoS를 보장하기 위한 방법
AU2008301677C1 (en) * 2007-09-18 2012-03-15 Sharp Kabushiki Kaisha Radio communication system, base station device, mobile station device, and random access method
KR101591824B1 (ko) 2007-09-18 2016-02-04 엘지전자 주식회사 무선 통신 시스템에서의 폴링 과정 수행 방법
WO2009038377A2 (en) 2007-09-20 2009-03-26 Lg Electronics Inc. Method of effectively transmitting radio resource allocation request in mobile communication system
KR101441138B1 (ko) * 2007-09-28 2014-09-18 엘지전자 주식회사 무선통신 시스템에서 상향링크 시간 동기 수행 방법
KR101428816B1 (ko) * 2007-09-28 2014-08-12 엘지전자 주식회사 이동통신 시스템에서의 셀 선택방법 및 단말의 정적상태 검출방법
KR101473010B1 (ko) * 2007-10-17 2014-12-15 엘지전자 주식회사 패킷망을 이용하여 서킷서비스를 제공하는 방법
KR101487557B1 (ko) 2007-10-23 2015-01-29 엘지전자 주식회사 공통제어채널의 데이터를 전송하는 방법
KR20090041323A (ko) 2007-10-23 2009-04-28 엘지전자 주식회사 데이터 블록 구성함에 있어서 단말의 식별 정보를 효과적으로 전송하는 방법
US8432812B2 (en) * 2007-10-29 2013-04-30 Lg Electronics Inc. Method of performing random access procedure in wireless communication system
KR20090043465A (ko) 2007-10-29 2009-05-06 엘지전자 주식회사 무선 베어러 타입에 따른 오류 해결 방법
KR100926571B1 (ko) * 2007-12-06 2009-11-12 한국전자통신연구원 무선 통신 시스템에서 임의 접속 응답 정보의 송수신 방법,이를 구현하는 기지국 장치 및 단말장치
US8718694B2 (en) * 2007-12-07 2014-05-06 Interdigital Patent Holdings, Inc. Method and apparatus of signaling and procedure to support uplink power level determination
US8665857B2 (en) * 2007-12-18 2014-03-04 Qualcomm Incorporated Method and apparatus for sending and receiving random access response in a wireless communication system
KR101532789B1 (ko) * 2008-01-04 2015-07-09 엘지전자 주식회사 재전송 데이터를 처리하는 harq 동작 방법
KR101514079B1 (ko) * 2008-01-07 2015-04-21 엘지전자 주식회사 상향링크 시간 동기 타이머의 재구성 방법
US8908570B2 (en) 2008-02-01 2014-12-09 BlackBerrry Limited Control signal management system and method
US8649353B2 (en) 2008-03-04 2014-02-11 Interdigital Patent Holdings, Inc. Method and apparatus for accessing a random access channel by selectively using dedicated or contention-based preambles during handover
KR101163275B1 (ko) 2008-03-17 2012-07-05 엘지전자 주식회사 Pdcp 상태 보고 전송 방법
WO2009116788A1 (en) 2008-03-17 2009-09-24 Lg Electronics Inc. Method of transmitting rlc data
KR101468742B1 (ko) * 2008-05-06 2014-12-04 엘지전자 주식회사 무선통신 시스템에서 데이터 전송 방법
GB2461159B (en) 2008-06-18 2012-01-04 Lg Electronics Inc Method for transmitting Mac PDUs
GB2461780B (en) 2008-06-18 2011-01-05 Lg Electronics Inc Method for detecting failures of random access procedures
US9226195B2 (en) * 2008-06-30 2015-12-29 Htc Corporation Method for determining RLC Data PDU size in wireless communications system according to control data
WO2010002130A2 (en) * 2008-07-03 2010-01-07 Lg Electronics Inc. Method for processing ndi in random access procedure and a method for transmitting and receiving a signal using the same
US9094202B2 (en) * 2008-08-08 2015-07-28 Qualcomm Incorporated Utilizing HARQ for uplink grants received in wireless communications
US8780816B2 (en) * 2008-08-12 2014-07-15 Qualcomm Incorporated Handling uplink grant in random access response
US20100074204A1 (en) * 2008-09-16 2010-03-25 Qualcomm Incorporated Uplink hybrid automatic repeat request operation during random access
JP5380459B2 (ja) * 2008-10-30 2014-01-08 株式会社エヌ・ティ・ティ・ドコモ 無線基地局及び移動通信方法
KR100949972B1 (ko) 2009-01-02 2010-03-29 엘지전자 주식회사 단말의 임의접속 수행 기법
CN101815314A (zh) 2009-02-20 2010-08-25 华为技术有限公司 发现无线网络问题的方法、装置及系统
KR101558305B1 (ko) * 2009-06-09 2015-10-07 삼성전자주식회사 무선통신 시스템에서 기지국의 접속 모드를 관리하기 위한 장치 및 방법
US9392621B2 (en) * 2009-06-26 2016-07-12 Qualcomm Incorporated Initiating a random access procedure for determining communication parameters
US8452297B2 (en) 2009-06-29 2013-05-28 Htc Corporation Method of random access channel optimization and related communication device
US20110194630A1 (en) * 2010-02-10 2011-08-11 Yang Hua-Lung Systems and methods for reporting radio link failure
US9363059B2 (en) * 2010-04-02 2016-06-07 Acer Incorporated Method of handling component carrier activation and deactivation and communication device thereof
CN102884848B (zh) * 2010-04-06 2016-02-17 上海贝尔股份有限公司 载波聚合的无线网络中用于定时提前的方法和装置
CN103109506B (zh) * 2010-05-18 2016-08-24 Lg电子株式会社 在向一组终端分配同一stid或c-rnti的无线通信系统中所述一组终端接收下行链路控制信道的方法以及所述终端请求带宽的方法
EP2622931A4 (en) * 2010-09-27 2016-02-24 Ericsson Telefon Ab L M METHOD AND ARRANGEMENT FOR THE JOINT USE OF A FIRST TEMPORARY IDENTIFIER OF A MOBILE WIRELESS NETWORK
US9369980B2 (en) * 2011-07-19 2016-06-14 Industrial Technology Research Institute Method of handling random access response
JP2014220740A (ja) * 2013-05-10 2014-11-20 京セラ株式会社 ユーザ端末、セルラ基地局、及びプロセッサ
US9351312B2 (en) * 2013-09-19 2016-05-24 Telefonaktiebolaget Lm Ericsson (Publ) System and method for providing and using radio network temporary identifiers signatures for interference cancellation
WO2015042866A1 (en) * 2013-09-27 2015-04-02 Alcatel Lucent Methods and devices for random access
JP6505862B2 (ja) 2014-12-03 2019-04-24 ホアウェイ・テクノロジーズ・デュッセルドルフ・ゲーエムベーハー プリアンブルコーディングによってランダムアクセスを優先順位付けする方法
EP3245835B1 (en) 2015-01-13 2019-06-05 Telefonaktiebolaget LM Ericsson (publ) A network node, a wireless device and respective method performed thereby for use in a random access procedure therebetween in a cell of the network node
HUE043644T2 (hu) 2015-04-22 2019-08-28 Intel Ip Corp Alacsony várakozási idejû, versenyzésre alapozott ütemezési kérelem
EP3373684B1 (en) * 2015-11-30 2021-02-17 Huawei Technologies Co., Ltd. Scheduling device, scheduled device, and resource scheduling method and apparatus
US10327265B2 (en) * 2016-11-04 2019-06-18 Qualcomm Incorporated Random access procedure timing designs
US10405354B2 (en) * 2016-12-09 2019-09-03 Samsung Electronics Co., Ltd. Method and apparatus for RACH procedure in wireless systems
CN108282899B (zh) * 2017-01-05 2020-03-06 电信科学技术研究院 一种两步竞争随机接入方法和装置
CN108282895B (zh) 2017-01-06 2019-12-20 电信科学技术研究院 一种随机接入方法及终端
TWI658747B (zh) * 2018-02-09 2019-05-01 大陸商電信科學技術研究院有限公司 Random access method and terminal
CN111132265B (zh) * 2018-11-01 2021-06-08 华为技术有限公司 网络接入方法及装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE515752C2 (sv) 1995-08-28 2001-10-08 Telia Ab Direktåtkomst i OFDM-system
WO1999003296A1 (en) 1997-07-14 1999-01-21 Hughes Electronics Corporation Immediate channel assignment in a wireless system
FI114077B (fi) * 1999-03-10 2004-07-30 Nokia Corp Tunnuksen varausmenetelmä
US6285662B1 (en) 1999-05-14 2001-09-04 Nokia Mobile Phones Limited Apparatus, and associated method for selecting a size of a contention window for a packet of data system
US6567396B1 (en) 1999-12-13 2003-05-20 Telefonaktiebolaget Lm Ericsson (Publ) Adaptive throughput in packet data communication systems using idle time slot scheduling
US6778835B2 (en) 2000-03-18 2004-08-17 Lg Electronics Inc. Method for allocating physical channel of mobile communication system and communication method using the same
EP1283650A1 (de) 2001-08-07 2003-02-12 Siemens Aktiengesellschaft Verfahren, Sende-/Empfangseinheit und Kommunikationssystem zur Übertragung von Daten von einem Versender an mehrere Empfänger
KR100926707B1 (ko) 2002-11-05 2009-11-17 엘지전자 주식회사 이동통신 시스템의 데이터 통신방법
US7684788B2 (en) * 2003-09-29 2010-03-23 M-Stack Limited Method and apparatus for processing messages received by a device from a network
JP2006279577A (ja) 2005-03-29 2006-10-12 Fujitsu Ltd デュアルモード通信方法およびデュアルモード通信端末
US7836294B2 (en) 2005-08-08 2010-11-16 Motorola Mobility, Inc. Mobile station security mode method
US20080051091A1 (en) * 2006-08-25 2008-02-28 Nokia Corporation Apparatus, method and computer program product providing enhanced robustness of handover in E-UTRAN with paging of the active UE
RU2419227C2 (ru) * 2006-10-03 2011-05-20 Квэлкомм Инкорпорейтед Повторная синхронизация временных идентификаторов ue в системе беспроводной связи
RU2426251C2 (ru) * 2006-10-31 2011-08-10 Квэлкомм Инкорпорейтед Устройство и способ произвольного доступа для беспроводной связи
KR101384865B1 (ko) * 2007-01-09 2014-04-16 엘지전자 주식회사 충돌 해결을 위한 랜덤 액세스 방법
US8526953B2 (en) * 2007-03-12 2013-09-03 Nokia Corporation Apparatus, method and computer program product providing auxiliary handover command

Also Published As

Publication number Publication date
US9668279B2 (en) 2017-05-30
JP5614888B2 (ja) 2014-10-29
JP2011083021A (ja) 2011-04-21
TWI364936B (en) 2012-05-21
EP1973365A3 (en) 2008-12-31
KR20100076919A (ko) 2010-07-06
ATE538620T1 (de) 2012-01-15
KR20080086416A (ko) 2008-09-25
TW200840382A (en) 2008-10-01
KR101268889B1 (ko) 2013-05-29
ES2378584T3 (es) 2012-04-16
JP2008278473A (ja) 2008-11-13
US20080233941A1 (en) 2008-09-25
EP1973365A2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
EP1973365B1 (en) Method and apparatus for handling random access procedure in a wireless communications system
US20080233940A1 (en) Method and Apparatus for Handling Random Access Procedure in a Wireless Communications System
US20080232317A1 (en) Method and Apparatus for Handling Random Access Procedure in a Wireless Communications System
EP2101531B1 (en) Method and apparatus for handling a contention-based random acces procedure
US20080232283A1 (en) Method and Apparatus for Handling Random Access Procedure in a Wireless Communications System
US8411626B2 (en) Method and apparatus for handling UL-SCH transmission
KR102078980B1 (ko) 랜덤 액세스 성능 개선을 돕는 기지국
KR101260079B1 (ko) 무선 통신 시스템의 랜덤 액세스 방법
KR101548393B1 (ko) Rach 상에서의 고속 전송을 위한 방법 및 장치
KR101159436B1 (ko) 공통 e-dch 전송에서의 충돌을 관리하는 방법 및 장치
US20100124188A1 (en) Methods utilized in mobile devices and base stations, and the mobile devices and base stations thereof
US20090300457A1 (en) Method and Apparatus for Improving HARQ Uplink Transmission
EP2265069B1 (en) Method for transmitting data in a wireless communication system and system thereof
EP2264936A2 (en) Method for avoiding false random access procedure completion in a wireless communication system
US20210160934A1 (en) Handling timing conflicts involving random access procedure messages

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080325

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20090902

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602008012089

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H04Q0007380000

Ipc: H04W0074080000

RIC1 Information provided on ipc code assigned before grant

Ipc: H04W 74/08 20090101AFI20110407BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 538620

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008012089

Country of ref document: DE

Effective date: 20120223

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2378584

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120322

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120421

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120423

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 538620

Country of ref document: AT

Kind code of ref document: T

Effective date: 20111221

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20120924

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008012089

Country of ref document: DE

Effective date: 20120924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120325

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008012089

Country of ref document: DE

Representative=s name: HOEFER & PARTNER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008012089

Country of ref document: DE

Representative=s name: HOEFER & PARTNER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008012089

Country of ref document: DE

Representative=s name: HOEFER & PARTNER, DE

Effective date: 20140604

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008012089

Country of ref document: DE

Owner name: INNOVATIVE SONIC LIMITED, MU

Free format text: FORMER OWNER: INNOVATIVE SONIC LTD., ROAD TOWN, TORTOLA, VG

Effective date: 20140604

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008012089

Country of ref document: DE

Representative=s name: HOEFER & PARTNER, DE

Effective date: 20140610

Ref country code: DE

Ref legal event code: R081

Ref document number: 602008012089

Country of ref document: DE

Owner name: INNOVATIVE SONIC LIMITED, MU

Free format text: FORMER OWNER: INNOVATIVE SONIC LIMITED, PORT LOUIS, MU

Effective date: 20140610

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008012089

Country of ref document: DE

Representative=s name: HOEFER & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20140610

Ref country code: DE

Ref legal event code: R082

Ref document number: 602008012089

Country of ref document: DE

Representative=s name: HOEFER & PARTNER PATENTANWAELTE MBB, DE

Effective date: 20140604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080325

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

Effective date: 20150312

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230216

Year of fee payment: 16

Ref country code: FI

Payment date: 20230323

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230216

Year of fee payment: 16

Ref country code: IT

Payment date: 20230321

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230404

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240326

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20240326

Year of fee payment: 17

Ref country code: DE

Payment date: 20240219

Year of fee payment: 17

Ref country code: GB

Payment date: 20240219

Year of fee payment: 17