EP1972695A1 - Production process of an aluminium alloy - Google Patents

Production process of an aluminium alloy Download PDF

Info

Publication number
EP1972695A1
EP1972695A1 EP08002908A EP08002908A EP1972695A1 EP 1972695 A1 EP1972695 A1 EP 1972695A1 EP 08002908 A EP08002908 A EP 08002908A EP 08002908 A EP08002908 A EP 08002908A EP 1972695 A1 EP1972695 A1 EP 1972695A1
Authority
EP
European Patent Office
Prior art keywords
weight
max
alloy
aluminum
magnesium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP08002908A
Other languages
German (de)
French (fr)
Other versions
EP1972695B1 (en
Inventor
Franz-Josef Dr. Klinkenberg
Johann Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1972695A1 publication Critical patent/EP1972695A1/en
Application granted granted Critical
Publication of EP1972695B1 publication Critical patent/EP1972695B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the invention relates to a method for producing an aluminum alloy, in particular for die casting.
  • AlSiMg alloys especially the AlSi9MgMnSr alloy, which are sold under different trade names such as "Silafont 36", "Aural 2" and the like, are mostly used for the production of die-cast components.
  • the iron is largely replaced by manganese.
  • improvements in elongation are expected due to the reduced iron content and strontium addition.
  • these die cast alloys are characterized not only by excellent castability but also by very good elongation in the cast state, maximum elongation after heat treatment and, moreover, by very good corrosion resistance.
  • the object of the invention is therefore to provide a simple process for producing an AlSi9MgMnSr alloy which has at least as good properties as the commercially available AlSi9MgMnSr alloys.
  • According to the invention is based on a commercial AlSi9Mg casting alloy as a base alloy, z. Example, a cast alloy having the following composition: 9.0 to 12.5 wt.% Silicon, 0.1 to 0.5 wt.%, In particular at least 0.3 wt.% Magnesium and at most 0.25 wt.%, in particular not more than 0.15% by weight of iron, not more than 0.15% by weight of titanium, not more than 0.10% by weight of zinc, not more than 0.10% by weight of manganese, not more than 0.05% by weight of copper, where aluminum is the radical forms and the impurities individually a maximum of 0.03 wt.%, A maximum of 0.1 wt.% Make up.
  • the master alloy is an aluminum alloy which contains all of the manganese, the entire strontium and, if appropriate, iron and possibly the remaining magnesium of the aluminum alloy to be produced, ie an AlMnSr alloy which optionally additionally contains Fe and / or Mg, ie B an AlMnSrFe, AlMnSrMg or AlMnSrFeMg alloy.
  • the manganese content of the master alloy is preferably selected such that the manganese content in the alloy to be produced within wide limits of 0.3 to 1 wt.% Can be adjusted taking into account the burnup in the base alloy.
  • the strontium content of the master alloy is preferably selected so that the strontium content in the alloy to be produced is 50-300, preferably 150-250 ppm.
  • the die cast alloy thus produced has the same properties as the commercial AlSi9MgMnSr die cast alloys. It is at least equivalent to commercially available AlSi9MgMnSr die-cast alloys both in terms of joining technology and in terms of their dynamic and static properties.
  • the method according to the invention it is possible to economically convert a commercially available base alloy into a high-quality die casting variant without accepting metallurgical problems.
  • the die-cast alloy produced by the process according to the invention can be used particularly well in motor vehicle and engine construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)

Abstract

Production of an aluminum alloy comprises adding 9 wt.% silicon, a part of the magnesium used in the production of the alloy and a pre-alloy containing manganese, strontium and strontium and optionally iron and magnesium to the molten aluminum-based alloy. The allot contains (in wt.%) 9.5-11.5 silicon, 0.3-11.0 manganese, 0.1-0.6 magnesium, maximum 0.25 iron, maximum 0.15 titanium, maximum 0.01 zinc, maximum 0.05 copper, 5-300 ppm strontium and a balance of aluminum.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Aluminium-Legierung, insbesondere für den Druckguss.The invention relates to a method for producing an aluminum alloy, in particular for die casting.

Zur Herstellung von Druckgussbauteilen werden meist AlSiMg-Legierungen verwendet, vor allem die Legierung AlSi9MgMnSr, die unter unterschiedlichen Handelsnamen wie "Silafont 36", "Aural 2" und dergleichen vertrieben werden. Bei diesen Legierungen ist das Eisen weitgehend durch Mangan ersetzt. Bei noch ausreichender Verringerung der Klebeneigung sollen aufgrund des reduzierten Eisengehalts und der Strontiumzugabe Verbesserungen in der Dehnung erzielt werden. Damit zeichnen sich diese Druckgusslegierungen neben einer ausgezeichneten Giessbarkeit durch eine sehr gute Dehnung im Gusszustand, höchste Dehnung nach Wärmebehandlung und darüber hinaus durch eine sehr gute Korrosionsbeständigkeit aus.AlSiMg alloys, especially the AlSi9MgMnSr alloy, which are sold under different trade names such as "Silafont 36", "Aural 2" and the like, are mostly used for the production of die-cast components. In these alloys, the iron is largely replaced by manganese. With sufficient reduction in tack, improvements in elongation are expected due to the reduced iron content and strontium addition. As a result, these die cast alloys are characterized not only by excellent castability but also by very good elongation in the cast state, maximum elongation after heat treatment and, moreover, by very good corrosion resistance.

In der Automobilindustrie ist es von Bedeutung, eine bestimmte Legierung nicht nur von einem sondern von verschiedenen Herstellern beziehen zu können, damit z. B. bei Ausfall eines Herstellers kein Lieferengpass entsteht. Ferner sollen die Legierungen einzelner Hersteller miteinander vermischt werden können, ohne dass schmelzmetallurgische Probleme entstehen. Es hat sich jedoch gezeigt, dass, wenn die AlSi9MgMnSr-Legierungen verschiedener Hersteller vermischt werden, mitunter Legierungen entstehen können, die sowohl in gefügetechnischer Hinsicht wie in ihren dynamischen und statischen Eigenschaften unzureichend sind, und dies trotz gleicher chemischer Zusammensetzung.In the automotive industry, it is important to be able to obtain a particular alloy not only from one but from different manufacturers, so z. B. in case of failure of a manufacturer no supply bottleneck arises. Furthermore, the alloys of individual manufacturers should be able to be mixed together without melting-metallurgical problems. It has been found, however, that when the AlSi9MgMnSr alloys from different manufacturers are mixed, it is sometimes possible to produce alloys which are unsatisfactory both in terms of joining technology and in terms of their dynamic and static properties, and despite their chemical composition.

Aufgabe der Erfindung ist es daher, ein einfaches Verfahren zur Herstellung einer AlSi9MgMnSr-Legierung bereitzustellen, die zumindest gleich gute Eigenschaften wie die handelsüblichen AlSi9MgMnSr-Legierungen aufweist.The object of the invention is therefore to provide a simple process for producing an AlSi9MgMnSr alloy which has at least as good properties as the commercially available AlSi9MgMnSr alloys.

Dies wird erfindungsgemäß durch das im Anspruch 1 gekennzeichnete Verfahren erreicht. In den Ansprüchen 2 und 3 sind bevorzugte Ausführungsformen des erfindungsgemäßen Verfahrens angegeben. Der Anspruch 4 hat die Verwendung der erfindungsgemäßen hergestellten Legierung zur Herstellung von Druckgussbauteilen zum Gegenstand.This is inventively achieved by the method characterized in claim 1. In claims 2 and 3 preferred embodiments of the method according to the invention are given. The claim 4 has the use of the alloy according to the invention for the production of die-cast components for the subject.

Nach der Erfindung wird von einer handelsüblichen AlSi9Mg-Gusslegierung als Basislegierung ausgegangen, z. B. einer Gusslegierung die folgende Zusammensetzung aufweist: 9,0 bis 12,5 Gew.% Silizium, 0,1 bis 0,5 Gew.%, insbesondere mindestens 0,3 Gew.% Magnesium und maximal 0,25 Gew.%, insbesondere maximal 0,15 Gew.% Eisen, maximal 0,15 Gew.% Titan, maximal 0,10 Gew.% Zink, maximal 0,10 Gew.% Mangan, maximal 0,05 Gew.% Kupfer, wobei Aluminium den Rest bildet und die Verunreinigungen einzeln maximal 0,03 Gew. %, insgesamt maximal 0,1 Gew.% ausmachen.According to the invention is based on a commercial AlSi9Mg casting alloy as a base alloy, z. Example, a cast alloy having the following composition: 9.0 to 12.5 wt.% Silicon, 0.1 to 0.5 wt.%, In particular at least 0.3 wt.% Magnesium and at most 0.25 wt.%, in particular not more than 0.15% by weight of iron, not more than 0.15% by weight of titanium, not more than 0.10% by weight of zinc, not more than 0.10% by weight of manganese, not more than 0.05% by weight of copper, where aluminum is the radical forms and the impurities individually a maximum of 0.03 wt.%, A maximum of 0.1 wt.% Make up.

Vorzugsweise wird als Basislegierung folgende Legierung verwendet:

  • Si 9,0 - 12,5 Gew.%
  • Fe 0,15 Gew.%
  • Cu 0,02 Gew.%
  • Mn 0,10 Gew.%
  • Mg 0,10 - 0,45 Gew.%
  • Zn 0,07 Gew.%
  • Ti 0,15 Gew.%
sowie Al als Rest und Verunreinigungen einzeln maximal 0,03 Gew.%, insgesamt maximal 0,1 Gew.%. Das heißt, die bevorzugte Basislegierung entspricht einer Legierung nach DIN EN AB-43300, jedoch kann der Si-Gehalt statt 9,0 bis 10,0 Gew.% bei der Legierung nach dieser Norm erfindungsgemäß mehr als 10,0 Gew.% bis zu 12,5 Gew.% und der Mg-Gehalt statt 0,30 bis 0,45 Gew.% entsprechend dieser Norm erfindungsgemäß 0,10 - 0,45 Gew.% betragen.The following alloy is preferably used as the base alloy:
  • Si 9.0-12.5% by weight
  • Fe 0.15% by weight
  • Cu 0.02% by weight
  • Mn 0.10% by weight
  • Mg 0.10-0.45% by weight
  • Zn 0.07% by weight
  • Ti 0.15% by weight
and Al as the remainder and impurities individually a maximum of 0.03% by weight, in total not more than 0.1% by weight. That is, the preferred one Base alloy corresponds to an alloy according to DIN EN AB-43300, but the Si content instead of 9.0 to 10.0 wt.% In the alloy according to this standard according to the invention more than 10.0 wt.% Up to 12.5 wt. % and the Mg content instead of 0.30 to 0.45 wt.% according to this standard according to the invention 0.10 to 0.45 wt.% Be.

Die Basislegierung, auch mit mehr als 10,0 Gew.% Silizium bzw. weniger als 0,30 Gew.% Magnesium wird als Gusslegierung im Handel angeboten. Die Basislegierung wird dann in die gewünschte Druckgusslegierung übergeführt. Dazu wird die Basislegierung geschmolzen und innig mit der Vorlegierung vermischt, und zwar in einer solchen Menge, dass eine Alsi9MgMnSr-Druckgusslegierung der gewünschten, nachstehend angegebenen Zusammensetzung entsteht:

  • 9,5 bis 11,5 Gew.% Silizium,
  • 0,3 bis 1,0, insbesondere 0,4 bis 0,8 Gew.% Mangan,
  • 0,1 bis 0,6, insbesondere 0,3 bis 0,5 Gew.% Magnesium,
  • max. 0,25 Gew.% Eisen,
  • maximal 0,15, vorzugsweise maximal 0,10 Gew.% Titan,
  • maximal 0,10, vorzugsweise maximal 0,08 Gew.% Zink,
  • maximal 0,05 Gew.% Kupfer,
  • 50 bis 300, insbesondere 150 bis 250 ppm Strontium sowie Aluminium als Rest und Verunreinigungen einzeln max. 0,03 Gew. %, insgesamt max. 0,1 Gew.%.
The base alloy, also containing more than 10.0% by weight of silicon or less than 0.30% by weight of magnesium, is commercially available as a cast alloy. The base alloy is then converted into the desired diecasting alloy. For this purpose, the base alloy is melted and intimately mixed with the master alloy, in an amount such that an Alsi9MgMnSr die casting alloy of the desired composition given below is produced:
  • 9.5 to 11.5 wt% silicon,
  • From 0.3 to 1.0, in particular from 0.4 to 0.8,% by weight of manganese,
  • 0.1 to 0.6, in particular 0.3 to 0.5 wt.% Magnesium,
  • Max. 0.25% by weight iron,
  • not more than 0.15, preferably not more than 0.10% by weight of titanium,
  • not more than 0.10, preferably not more than 0.08% by weight of zinc,
  • not more than 0.05% by weight of copper,
  • 50 to 300, in particular 150 to 250 ppm strontium and aluminum as balance and impurities individually max. 0.03% by weight, in total max. 0.1% by weight.

Die Vorlegierung ist eine Aluminiumlegierung, die das gesamte Mangan, das gesamte Strontium sowie ggf. Eisen und ggf. das restliche Magnesium der herzustellenden Aluminium-Legierung enthält, also eine AlMnSr-Legierung, die zusätzlich ggf. Fe und/oder Mg enthält, d. h. z. B. eine AlMnSrFe-, AlMnSrMg- oder AlMnSrFeMg-Legierung.The master alloy is an aluminum alloy which contains all of the manganese, the entire strontium and, if appropriate, iron and possibly the remaining magnesium of the aluminum alloy to be produced, ie an AlMnSr alloy which optionally additionally contains Fe and / or Mg, ie B an AlMnSrFe, AlMnSrMg or AlMnSrFeMg alloy.

Der Mangan-Gehalt der Vorlegierung wird dabei vorzugsweise derart gewählt, dass sich der Mangan-Gehalt in der herzustellenden Legierung in weiten Grenzen von 0,3 bis 1 Gew.% unter Berücksichtigung des Abbrandes in der Basislegierung einstellen lässt. Gleichermaßen wird der Strontium-Gehalt der Vorlegierung vorzugsweise so gewählt, dass der Strontium-Gehalt in der herzustellenden Legierung 50 - 300, vorzugsweise 150 - 250 ppm beträgt.The manganese content of the master alloy is preferably selected such that the manganese content in the alloy to be produced within wide limits of 0.3 to 1 wt.% Can be adjusted taking into account the burnup in the base alloy. Similarly, the strontium content of the master alloy is preferably selected so that the strontium content in the alloy to be produced is 50-300, preferably 150-250 ppm.

Die so hergestellte Druckgusslegierung weist die gleichen Eigenschaften wie die handelsüblichen AlSi9MgMnSr-Druckgusslegierungen auf. Sie ist sowohl in gefügetechnischer Hinsicht wie in ihren dynamischen und statischen Eigenschaften den handelsüblichen AlSi9MgMnSr-Druckgusslegierungen zumindest gleichwertig.The die cast alloy thus produced has the same properties as the commercial AlSi9MgMnSr die cast alloys. It is at least equivalent to commercially available AlSi9MgMnSr die-cast alloys both in terms of joining technology and in terms of their dynamic and static properties.

Mit dem erfindungsgemäßen Verfahren ist es möglich, wirtschaftlich sinnvoll eine handelsübliche Basislegierung in eine hochwertige Druckgussvariante überzuführen, ohne metallurgische Probleme in Kauf zu nehmen. Die nach dem erfindungsgemäßen Verfahren hergestellte Druckgusslegierung ist insbesondere im Kraftfahrzeug- und Motorenbau hervorragend verwendbar.With the method according to the invention, it is possible to economically convert a commercially available base alloy into a high-quality die casting variant without accepting metallurgical problems. The die-cast alloy produced by the process according to the invention can be used particularly well in motor vehicle and engine construction.

Claims (4)

Verfahren zur Herstellung einer Aluminium-Legierung folgender Zusammensetzung: 9,5 bis 11,5 Gew.% Silizium, 0,3 bis 1, 0 Gew.% Mangan, 0,1 bis 0,6 Gew.% Magnesium, max. 0,25 Gew.% Eisen, max. 0,15 Gew.% Titan, max. 0,10 Gew.% Zink, max. 0,05 Gew.% Kupfer, 50 - 300 ppm Strontium, sowie Aluminium als Rest und Verunreinigungen einzeln max. 0,03 Gew. %, insgesamt max. 0,1 Gew.%, dadurch gekennzeichnet, dass einer erschmolzenen Aluminium-Basislegierung, die mindestens 9 Gew.% Silizium und zumindest einen Teil des Magnesiums der herzustellenden Aluminium-Legierung enthält, eine Aluminium-Vorlegierung, die das restliche Mangan, das gesamte Strontium sowie ggf. Eisen und ggf. Magnesium enthält, in einer solchen Menge beigegeben wird, dass eine Aluminium-Legierung der vorstehenden Zusammensetzung gebildet wird. Process for producing an aluminum alloy of the following composition: 9.5 to 11.5 wt% silicon, 0.3 to 1.0% by weight of manganese, 0.1 to 0.6% by weight of magnesium, Max. 0.25% by weight iron, Max. 0.15% by weight of titanium, Max. 0.10% by weight of zinc, Max. 0.05% by weight copper, 50-300 ppm strontium, as well Aluminum as remainder and impurities individually max. 0.03% by weight, in total max. 0.1 wt.%, Characterized in that a molten aluminum base alloy containing at least 9 wt.% Silicon and at least a portion of the magnesium of the aluminum alloy to be produced, an aluminum master alloy containing the remaining manganese, the entire strontium and optionally iron and optionally magnesium, is added in an amount such that an aluminum alloy of the above composition is formed. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die herzustellende Aluminium-Legierung 0,4 bis 0,8 Gew.% Mangan, 0,3 bis 0,5 Gew.% Magnesium und/oder 150 bis 250 ppm Strontium aufweist.A method according to claim 1, characterized in that the aluminum alloy to be produced 0.4 to 0.8 wt.% Manganese, 0.3 to 0.5 wt.% Magnesium and / or 150 to 250 ppm strontium. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Aluminium-Basislegierung folgende Zusammensetzung aufweist: 9,0 bis 12,5 Gew.% Silizium, 0,1 bis 0,45 Gew.% Magnesium, max. 0,25 Gew.% Eisen, max. 0,15 Gew.% Titan, max. 0,10 Gew.% Zink, max. 0,10 Gew.% Mangan max. 0,05 Gew.% Kupfer, Aluminium als Rest und Verunreinigungen einzeln max. 0,03 Gew.%, insbesondere max. 0,1 Gew.%. A method according to claim 1 or 2, characterized in that the aluminum-based alloy has the following composition: 9.0 to 12.5 wt.% Silicon, 0.1 to 0.45% by weight of magnesium, Max. 0.25% by weight iron, Max. 0.15% by weight of titanium, Max. 0.10% by weight of zinc, Max. 0.10% by weight of manganese Max. 0.05% by weight copper, Aluminum as remainder and impurities individually max. 0.03 wt.%, In particular max. 0.1% by weight. Verwendung der nach einer der Ansprüche 1 bis 3 hergestellten Aluminium-Legierung als Druckgusslegierung.Use of the aluminum alloy produced according to one of claims 1 to 3 as a diecasting alloy.
EP20080002908 2007-03-15 2008-02-16 Production process of an aluminium alloy Active EP1972695B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710012424 DE102007012424A1 (en) 2007-03-15 2007-03-15 Process for producing an aluminum alloy

Publications (2)

Publication Number Publication Date
EP1972695A1 true EP1972695A1 (en) 2008-09-24
EP1972695B1 EP1972695B1 (en) 2010-08-18

Family

ID=39365620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080002908 Active EP1972695B1 (en) 2007-03-15 2008-02-16 Production process of an aluminium alloy

Country Status (2)

Country Link
EP (1) EP1972695B1 (en)
DE (2) DE102007012424A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038704B2 (en) 2011-04-04 2015-05-26 Emerson Climate Technologies, Inc. Aluminum alloy compositions and methods for die-casting thereof
CN110541094A (en) * 2019-09-30 2019-12-06 中信戴卡股份有限公司 Die-casting aluminum alloy and automobile part
CN115927926A (en) * 2022-11-30 2023-04-07 重庆剑涛铝业有限公司 High-plasticity aluminum alloy for vehicle body structure and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102888541A (en) * 2012-10-30 2013-01-23 季华 Preparation method of aluminum-titanium alloy

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937044A (en) * 1989-10-05 1990-06-26 Timminco Limited Strontium-magnesium-aluminum master alloy
EP0687742A1 (en) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Die casting alloy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608245B2 (en) * 1967-09-21 1975-10-02 Metallgesellschaft Ag, 6000 Frankfurt Process for the production of master alloys containing strontium
DE69034025T2 (en) * 1989-03-07 2003-07-24 Aluminum Co America Alcoa Ct Aluminum alloy casting
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
US20050199318A1 (en) * 2003-06-24 2005-09-15 Doty Herbert W. Castable aluminum alloy

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4937044A (en) * 1989-10-05 1990-06-26 Timminco Limited Strontium-magnesium-aluminum master alloy
EP0687742A1 (en) * 1994-06-16 1995-12-20 ALUMINIUM RHEINFELDEN GmbH Die casting alloy

Non-Patent Citations (11)

* Cited by examiner, † Cited by third party
Title
FRANKE ALOIS J ET AL: "Drei Jahre Erfahrung mit eisenarmen Druckgusslegierungen // Three years' of experience with low iron die casting alloys", GIESSEREIPRAXIS, FACHVERLAG SCHIELE UND SCHON GMBH, BERLIN, DE, no. 2, 1 January 1998 (1998-01-01), pages 72 - 76, XP009099395, ISSN: 0016-9781 *
FRANKE ALOIS J ET AL: "L duttilità nei pressocolati in alluminio /// Ductility in aluminium pressure die casting", 20030101, vol. 7, no. 26, 1 January 2003 (2003-01-01), pages 83 - 85, XP009099391 *
HIELSCHER ET AL: "Sicherheitsbauteile aus eisenarmen Aluminium-Druckgusslegierungen // Safety components from die-cast low-iron aluminum alloys", WERKSTOFFWOCHE, XX, XX, 1 January 1998 (1998-01-01), pages 185 - 190, XP009099394 *
HIELSCHER U ET AL: "Eine neue eisenarme Druckgusslegierung//A new low-iron pressure die casting alloy", ALUMINIUM, ALUMINIUM VERLAG, DUESSELDORF, DE, vol. 71, no. 6, 1 January 1995 (1995-01-01), pages 676 - 686, XP009099392, ISSN: 0002-6689 *
KLOS RALF ET AL: "Silafont-36 - optimizing the manganese and magnesium content for structural part application", LIVARSKI VESTNIK, DRUSTVO LIVARJEV SLOVENIJE, vol. 51, no. 1, 1 January 2004 (2004-01-01), pages 22 - 36, XP009099390, ISSN: 0024-5135 *
KOCH H ET AL: "Eisenarme Aluminium-Druckgusslegierungen als Substitutionswerkstoff fuer Stahlblechkonstruktionen im Automobilbau // Low-iron aluminum die cast alloys as substitute material for steel sheet constructions in automobile manufacture", GIESSEREIPRAXIS, FACHVERLAG SCHIELE UND SCHON GMBH, BERLIN, DE, no. 4, 1 January 2000 (2000-01-01), pages 148 - 152, XP009099393, ISSN: 0016-9781 *
KOCH H ET AL: "SILAFONT-36 THE NEW LOW-IRON HIGH-PRESSURE DIE-CASTING ALLOY", LIGHT METALS,, 1 January 1995 (1995-01-01), pages 1011 - 1018, XP008053123, ISSN: 0147-0809 *
KOCH HUBERT ET AL: "Ductile high-pressure die casting alloy with low iron content", GIESSEREI, GIESSEREI VERLAG, DUSSELDORF, DE, vol. 82, no. 15, 31 July 1995 (1995-07-31), pages 517 - 523, XP009099456, ISSN: 0016-9765 *
KOCH HUBERT ET AL: "Ductile pressure castings for automotive applications. A status report", AUTOMOTIVE ALLOYS. PROCEEDINGS PF THE SYMPOSIUM PRESENTED AT THETMS ANNUAL MEETING, XX, XX, 1 January 1997 (1997-01-01), pages 185 - 194, XP009099396 *
KOCH HUBERT: "Ductility optimization in the as-cast state of Silafont-36 (Al Si9MgMn)", GIESSEREI, GIESSEREI VERLAG, DUSSELDORF, DE, vol. 91, no. 4, 1 April 2004 (2004-04-01), pages 20 - 25, XP009099455, ISSN: 0016-9765 *
MAHMOUDI MORTEZA ET AL: "Simultaneous grain refining and modification of 356 aluminium alloy using aluminium base master alloys containing strontium , titanium and boron", LIGHT METALS,, 1 January 2005 (2005-01-01), pages 1129 - 1133, XP009099414, ISSN: 0147-0809 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038704B2 (en) 2011-04-04 2015-05-26 Emerson Climate Technologies, Inc. Aluminum alloy compositions and methods for die-casting thereof
CN110541094A (en) * 2019-09-30 2019-12-06 中信戴卡股份有限公司 Die-casting aluminum alloy and automobile part
CN115927926A (en) * 2022-11-30 2023-04-07 重庆剑涛铝业有限公司 High-plasticity aluminum alloy for vehicle body structure and preparation method thereof
CN115927926B (en) * 2022-11-30 2024-01-30 重庆剑涛铝业有限公司 High-plasticity aluminum alloy for vehicle body structure and preparation method thereof

Also Published As

Publication number Publication date
DE502008001133D1 (en) 2010-09-30
EP1972695B1 (en) 2010-08-18
DE102007012424A1 (en) 2008-09-18

Similar Documents

Publication Publication Date Title
EP1612286B1 (en) Aluminium alloy for pressure die casting
CH689143A5 (en) Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
DE102005047406A1 (en) High hardness molding plate and method of making this plate
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
DE102007033827A1 (en) Aluminum casting alloy and its use
DE4446898A1 (en) Magnesium@ alloy for components of cars, electric and electronic equipment
WO2013160108A2 (en) Diecasting alloy based on al-si, comprising particularly secondary aluminium
DE102008020523B4 (en) Ductile magnesium alloy
EP3363924A1 (en) Aluminium alloy
EP1972695B1 (en) Production process of an aluminium alloy
DE2450607A1 (en) HIGHLY EFFECTIVE ALLOY AND PROCESS FOR MANUFACTURING WORKPIECES FROM THIS ALLOY
EP1645647B1 (en) Cold age hardenable Al-alloy and process of the manufacture of a cast part
DE60211830T2 (en) Creep resistant magnesium alloys with good castability
DE102012108590A1 (en) casting
DE202015100698U1 (en) cast alloy
WO2019243411A1 (en) Aluminum alloy, method for producing an engine component, engine component, and use of an aluminum alloy to produce an engine component
DE10206035A1 (en) Aluminum-based alloy used in the production of a piston for use in an internal combustion engine contains alloying additions of silicon, magnesium, vanadium and beryllium
DE60224578T2 (en) METHOD FOR PRODUCING A MAGNESIUM BASED ALLOY
EP1980633B1 (en) Use of a bronze alloy for a worm gear
DE102006059899A1 (en) High temperature resistant aluminum casting alloy for use in engine core construction units, ingot pouring, engine block, cylinder head, crankcase and in automotive industry, consists of various metals
DE202007019373U1 (en) Use of a bronze alloy for a worm gear
DE102017103148A1 (en) Al-cast alloy
DE102008024531A1 (en) Aluminum cast alloy used for cylinder heads, pistons of combustion engines, crank housings or engine blocks contains alloying additions of silicon, magnesium, titanium and vanadium
CH148199A (en) Process for the production of sand castings from copper-silicon-zinc alloys.
EP1418247B1 (en) Magnesium alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20081004

17Q First examination report despatched

Effective date: 20081125

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502008001133

Country of ref document: DE

Date of ref document: 20100930

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001133

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230217

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230228

Year of fee payment: 16

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 17

Ref country code: GB

Payment date: 20240222

Year of fee payment: 17