EP1972695B1 - Production process of an aluminium alloy - Google Patents

Production process of an aluminium alloy Download PDF

Info

Publication number
EP1972695B1
EP1972695B1 EP20080002908 EP08002908A EP1972695B1 EP 1972695 B1 EP1972695 B1 EP 1972695B1 EP 20080002908 EP20080002908 EP 20080002908 EP 08002908 A EP08002908 A EP 08002908A EP 1972695 B1 EP1972695 B1 EP 1972695B1
Authority
EP
European Patent Office
Prior art keywords
weight
max
alloy
gew
aluminium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20080002908
Other languages
German (de)
French (fr)
Other versions
EP1972695A1 (en
Inventor
Franz-Josef Dr. Klinkenberg
Johann Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayerische Motoren Werke AG
Original Assignee
Bayerische Motoren Werke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayerische Motoren Werke AG filed Critical Bayerische Motoren Werke AG
Publication of EP1972695A1 publication Critical patent/EP1972695A1/en
Application granted granted Critical
Publication of EP1972695B1 publication Critical patent/EP1972695B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • C22C21/04Modified aluminium-silicon alloys

Definitions

  • the invention relates to a method for producing an aluminum alloy, in particular for die casting.
  • AlSiMg alloys especially the AlSi9MgMnSr alloy, which are sold under different trade names such as "Silafont 36", "Aural 2" and the like, are mostly used for the production of die-cast components (see, for example, the document: Koch H. et al. : “Silafont - 36 - The new low-iron high pressure casting alloy", Light Metals, 1995, pages 1011-1018 .).
  • the iron is largely replaced by manganese.
  • improvements in elongation are expected due to the reduced iron content and strontium addition.
  • these die cast alloys are characterized not only by excellent castability but also by very good elongation in the cast state, maximum elongation after heat treatment and, moreover, by very good corrosion resistance.
  • the object of the invention is therefore to provide a simple process for producing an AlSi9MgMnSr alloy which has at least as good properties as the commercially available AlSi9MgMnSr alloys.
  • the master alloy is an aluminum alloy which contains the remaining manganese, the entire strontium and optionally iron and possibly the remaining magnesium of the aluminum alloy to be produced, ie an AlMnSr alloy which optionally additionally contains Fe and / or Mg, ie B an AlMnSrFe, AlMnSrMg or AlMnSrFeMg alloy.
  • the manganese content of the master alloy is selected such that the manganese content in the alloy to be produced within wide limits of 0.3 to 1 wt.% Can be adjusted taking into account the burnup in the base alloy.
  • the strontium content of the master alloy is selected so that the strontium content in the alloy to be produced is 50-300, preferably 150-250 ppm.
  • the die cast alloy thus produced has the same properties as the commercial AlSi9MgMnSr die cast alloys. It is at least equivalent to commercially available AlSi9MgMnSr die-cast alloys both in terms of joining technology and in terms of their dynamic and static properties.
  • the method according to the invention it is possible to economically convert a commercially available base alloy into a high-quality die casting variant without accepting metallurgical problems.
  • the die-cast alloy produced by the process according to the invention can be used particularly well in motor vehicle and engine construction.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Molds, Cores, And Manufacturing Methods Thereof (AREA)
  • Continuous Casting (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung einer Aluminium-Legierung, insbesondere für den Druckguss.The invention relates to a method for producing an aluminum alloy, in particular for die casting.

Zur Herstellung von Druckgussbauteilen werden meist AlSiMg-Legierungen verwendet, vor allem die Legierung AlSi9MgMnSr, die unter unterschiedlichen Handelsnamen wie "Silafont 36", "Aural 2" und dergleichen vertrieben werden (siehe z.B. das Dokument: Koch H. et al. : "Silafont - 36 - The new low-iron high pressure die casting alloy", Light Metals, 1995, pages 1011-1018 .). Bei diesen Legierungen ist das Eisen weitgehend durch Mangan ersetzt. Bei noch ausreichender Verringerung der Klebeneigung sollen aufgrund des reduzierten Eisengehalts und der Strontiumzugabe Verbesserungen in der Dehnung erzielt werden. Damit zeichnen sich diese Druckgusslegierungen neben einer ausgezeichneten Giessbarkeit durch eine sehr gute Dehnung im Gusszustand, höchste Dehnung nach Wärmebehandlung und darüber hinaus durch eine sehr gute Korrosionsbeständigkeit aus.AlSiMg alloys, especially the AlSi9MgMnSr alloy, which are sold under different trade names such as "Silafont 36", "Aural 2" and the like, are mostly used for the production of die-cast components (see, for example, the document: Koch H. et al. : "Silafont - 36 - The new low-iron high pressure casting alloy", Light Metals, 1995, pages 1011-1018 .). In these alloys, the iron is largely replaced by manganese. With sufficient reduction in tack, improvements in elongation are expected due to the reduced iron content and strontium addition. As a result, these die cast alloys are characterized not only by excellent castability but also by very good elongation in the cast state, maximum elongation after heat treatment and, moreover, by very good corrosion resistance.

In der Automobilindustrie ist es von Bedeutung, eine bestimmte Legierung nicht nur von einem sondern von verschiedenen Herstellern beziehen zu können, damit z. B. bei Ausfall eines Herstellers kein Lieferengpass entsteht. Ferner sollen die Legierungen einzelner Hersteller miteinander vermischt werden können, ohne dass schmelzmetallurgische Probleme entstehen. Es hat sich jedoch gezeigt, dass, wenn die AlSi9MgMnSr-Legierungen verschiedener Hersteller vermischt werden, mitunter Legierungen entstehen können, die sowohl in gefügetechnischer Hinsicht wie in ihren dynamischen und statischen Eigenschaften unzureichend sind, und dies trotz gleicher chemischer Zusammensetzung.In the automotive industry, it is important to be able to obtain a particular alloy not only from one but from different manufacturers, so z. B. in case of failure of a manufacturer no supply bottleneck arises. Furthermore, the alloys of individual manufacturers should be able to be mixed together without melting-metallurgical problems. It has been found, however, that when the AlSi9MgMnSr alloys from different manufacturers are mixed, it is sometimes possible to produce alloys which are unsatisfactory both in terms of joining technology and in terms of their dynamic and static properties, and despite their chemical composition.

Aufgabe der Erfindung ist es daher, ein einfaches Verfahren zur Herstellung einer AlSi9MgMnSr-Legierung bereitzustellen, die zumindest gleich gute Eigenschaften wie die handelsüblichen AlSi9MgMnSr-Legierungen aufweist.The object of the invention is therefore to provide a simple process for producing an AlSi9MgMnSr alloy which has at least as good properties as the commercially available AlSi9MgMnSr alloys.

Dies wird erfindungsgemäß durch das im Anspruch 1 gekennzeichnete Verfahren erreicht.This is inventively achieved by the method characterized in claim 1.

Nach der Erfindung wird von einer handelsüblichen AlSi9Mg-Gusslegierung als Basislegierung ausgegangen, die folgende Zusammensetzung aufweist:

  • 9,0 bis 12,5 Gew.% Silizium, 0,1 bis 0,45 Gew.%, insbesondere mindestens 0,3 Gew.% Magnesium und maximal 0,25 Gew.%, insbesondere maximal 0,15 Gew.% Eisen, maximal 0,15 Gew.% Titan, maximal 0,10 Gew.% Zink, maximal 0,10 Gew.% Mangan, maximal 0,05 Gew.% Kupfer, wobei Aluminium den Rest bildet und die Verunreinigungen einzeln maximal 0,03 Gew. %, insgesamt maximal 0,1 Gew.% ausmachen.
According to the invention, a commercial AlSi9Mg casting alloy is used as the base alloy, which has the following composition:
  • 9.0 to 12.5% by weight of silicon, 0.1 to 0.45% by weight, in particular at least 0.3% by weight of magnesium and not more than 0.25% by weight, in particular not more than 0.15% by weight of iron 0.15% by weight of titanium, not more than 0.10% by weight of zinc, not more than 0.10% by weight of manganese, not more than 0.05% by weight of copper, with aluminum forming the remainder and the impurities individually a maximum of 0.03 % By weight, totaling at most 0.1% by weight.

Vorzugsweise wird als Basislegierung folgende Legierung verwendet:

  • Si 9,0 - 12,5 Gew.%
  • Fe 0,15 Gew.%
  • Cu 0,02 Gew.%
  • Mn 0,10 Gew.%
  • Mg 0,10 - 0,45 Gew.%
  • Zn 0,07 Gew.%
  • Ti 0,15 Gew.%
  • sowie A1 als Rest und Verunreinigungen einzeln maximal 0,03 Gew.%, insgesamt maximal 0,1 Gew.%. Das heißt, die bevorzugte Basislegierung entspricht einer Legierung nach DIN EN AB-43300, jedoch kann der Si-Gehalt statt 9,0 bis 10,0 Gew.% bei der Legierung nach dieser Norm erfindungsgemäß mehr als 10,0 Gew.% entsprechend dieser Norm erfindungsgemäß 0,10 - 0,45 Gew.% betragen.
The following alloy is preferably used as the base alloy:
  • Si 9.0-12.5% by weight
  • Fe 0.15% by weight
  • Cu 0.02% by weight
  • Mn 0.10% by weight
  • Mg 0.10-0.45% by weight
  • Zn 0.07% by weight
  • Ti 0.15% by weight
  • and A1 as the remainder and impurities individually a maximum of 0.03% by weight, in total not more than 0.1% by weight. That is, the preferred one Base alloy corresponds to an alloy according to DIN EN AB-43300, but the Si content instead of 9.0 to 10.0 wt.% In the alloy according to this standard according to the invention more than 10.0 wt.% According to this standard according to the invention 0.10 - 0.45 wt.% Be.

Die Basislegierung auch mit mehr als 10,0 Gew.% Silizium bzw. weniger als 0,30 Gew.% Magnesium wird als Gusslegierung im Handel angeboten. Die Basislegierung wird dann in die gewünschte Druckgusslegierung übergeführt. Dazu wird die Basislegierung geschmolzen und innig mit der Vorlegierung vermischt, und zwar in einer solchen Menge, dass eine AlSi9MgMnSr-Druckgusslegierung der gewünschten, nachstehend angegebenen Zusammensetzung entsteht:

  • 9,5 bis 11,5 Gew.% Silizium,
  • 0,3 bis 1,0, insbesondere 0,4 bis 0,8 Gew.% Mangan,
  • 0,1 bis 0,6, insbesondere 0,3 bis 0,5 Gew.% Magnesium,
  • max. 0,25 Gew.% Eisen,
  • maximal 0,15, vorzugsweise maximal 0,10 Gew.% Titan,
  • maximal 0,10, vorzugsweise maximal 0,08 Gew.% Zink,
  • maximal 0,05 Gew.% Kupfer,
  • 50 bis 300, insbesondere 150 bis 250 ppm Strontium sowie Aluminium als Rest und Verunreinigungen einzeln max. 0,03 Gew. %, insgesamt max. 0,1 Gew.%.
The base alloy also containing more than 10.0% by weight of silicon or less than 0.30% by weight of magnesium is commercially available as cast alloy. The base alloy is then converted into the desired diecasting alloy. For this purpose, the base alloy is melted and intimately mixed with the master alloy in such an amount as to produce an AlSi9MgMnSr die casting alloy of the desired composition shown below:
  • 9.5 to 11.5 wt% silicon,
  • From 0.3 to 1.0, in particular from 0.4 to 0.8,% by weight of manganese,
  • 0.1 to 0.6, in particular 0.3 to 0.5 wt.% Magnesium,
  • Max. 0.25% by weight iron,
  • not more than 0.15, preferably not more than 0.10% by weight of titanium,
  • not more than 0.10, preferably not more than 0.08% by weight of zinc,
  • not more than 0.05% by weight of copper,
  • 50 to 300, in particular 150 to 250 ppm strontium and aluminum as balance and impurities individually max. 0.03% by weight, in total max. 0.1% by weight.

Die Vorlegierung ist eine Aluminiumlegierung, die das restliche Mangan, das gesamte Strontium sowie ggf. Eisen und ggf. das restliche Magnesium der herzustellenden Aluminium-Legierung enthält, also eine AlMnSr-Legierung, die zusätzlich ggf. Fe und/oder Mg enthält, d. h. z. B. eine AlMnSrFe-, AlMnSrMg- oder AlMnSrFeMg-Legierung.The master alloy is an aluminum alloy which contains the remaining manganese, the entire strontium and optionally iron and possibly the remaining magnesium of the aluminum alloy to be produced, ie an AlMnSr alloy which optionally additionally contains Fe and / or Mg, ie B an AlMnSrFe, AlMnSrMg or AlMnSrFeMg alloy.

Der Mangan-Gehalt der Vorlegierung wird dabei derart gewählt, dass sich der Mangan-Gehalt in der herzustellenden Legierung in weiten Grenzen von 0,3 bis 1 Gew.% unter Berücksichtigung des Abbrandes in der Basislegierung einstellen lässt. Gleichermaßen wird der Strontium-Gehalt der Vorlegierung so gewählt, dass der Strontium-Gehalt in der herzustellenden Legierung 50 - 300, vorzugsweise 150 - 250 ppm beträgt.The manganese content of the master alloy is selected such that the manganese content in the alloy to be produced within wide limits of 0.3 to 1 wt.% Can be adjusted taking into account the burnup in the base alloy. Similarly, the strontium content of the master alloy is selected so that the strontium content in the alloy to be produced is 50-300, preferably 150-250 ppm.

Die so hergestellte Druckgusslegierung weist die gleichen Eigenschaften wie die handelsüblichen AlSi9MgMnSr-Druckgusslegierungen auf. Sie ist sowohl in gefügetechnischer Hinsicht wie in ihren dynamischen und statischen Eigenschaften den handelsüblichen AlSi9MgMnSr-Druckgusslegierungen zumindest gleichwertig.The die cast alloy thus produced has the same properties as the commercial AlSi9MgMnSr die cast alloys. It is at least equivalent to commercially available AlSi9MgMnSr die-cast alloys both in terms of joining technology and in terms of their dynamic and static properties.

Mit dem erfindungsgemäßen Verfahren ist es möglich, wirtschaftlich sinnvoll eine handelsübliche Basislegierung in eine hochwertige Druckgussvariante überzuführen, ohne metallurgische Probleme in Kauf zu nehmen. Die nach dem erfindungsgemäßen Verfahren hergestellte Druckgusslegierung ist insbesondere im Kraftfahrzeug- und Motorenbau hervorragend verwendbar.With the method according to the invention, it is possible to economically convert a commercially available base alloy into a high-quality die casting variant without accepting metallurgical problems. The die-cast alloy produced by the process according to the invention can be used particularly well in motor vehicle and engine construction.

Claims (2)

  1. A method for producing an aluminium alloy of the following composition:
    9.5 to 11.5 % by weight silicon,
    0.3 to 1.0 % by weight manganese,
    0.1 to 0.5 % by weight magnesium,
    max. 0.25 % by weight iron,
    max. 0.15 % by weight titanium,
    max. 0.10 % by weight zinc,
    max. 0.05 % by weight copper,
    50 to 300 ppm strontium, and
    aluminium as the remainder and impurities individually max. 0.03 % by weight, in total max. 0.1 % by weight, characterised in that a molten aluminium-base alloy, has the following composition:
    9.0 to 12.5 % by weight silicon,
    0.1 to 0.45 % by weight magnesium,
    max. 0.25% by weight iron,
    max. 0.15 % by weight titanium,
    max. 0.10 % by weight zinc,
    max. 0.10 % by weight manganese,
    max. 0.05 % by weight copper,
    aluminium as the remainder and impurities individually max. 0.03 % by weight, in total max. 0.1 % by weight, is an aluminium master alloy, which contains the remaining manganese, the total strontium and optionally iron and optionally magnesium, in a quantity such that an aluminium alloy of the above composition is formed.
  2. A method according to claim 1, characterised in that the aluminium alloy to be produced has 0.4 to 0.8 % by weight manganese, 0.3 to 0.5 % by weight magnesium and/or 150 to 250 ppm strontium.
EP20080002908 2007-03-15 2008-02-16 Production process of an aluminium alloy Active EP1972695B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710012424 DE102007012424A1 (en) 2007-03-15 2007-03-15 Process for producing an aluminum alloy

Publications (2)

Publication Number Publication Date
EP1972695A1 EP1972695A1 (en) 2008-09-24
EP1972695B1 true EP1972695B1 (en) 2010-08-18

Family

ID=39365620

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20080002908 Active EP1972695B1 (en) 2007-03-15 2008-02-16 Production process of an aluminium alloy

Country Status (2)

Country Link
EP (1) EP1972695B1 (en)
DE (2) DE102007012424A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9038704B2 (en) 2011-04-04 2015-05-26 Emerson Climate Technologies, Inc. Aluminum alloy compositions and methods for die-casting thereof
CN102888541A (en) * 2012-10-30 2013-01-23 季华 Preparation method of aluminum-titanium alloy
CN110541094A (en) * 2019-09-30 2019-12-06 中信戴卡股份有限公司 Die-casting aluminum alloy and automobile part
CN115927926B (en) * 2022-11-30 2024-01-30 重庆剑涛铝业有限公司 High-plasticity aluminum alloy for vehicle body structure and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1608245B2 (en) * 1967-09-21 1975-10-02 Metallgesellschaft Ag, 6000 Frankfurt Process for the production of master alloys containing strontium
DE69033755T2 (en) * 1989-03-07 2002-05-29 Aluminum Company Of America, Alcoa Center Process and device for vacuum pressure casting
US4937044A (en) * 1989-10-05 1990-06-26 Timminco Limited Strontium-magnesium-aluminum master alloy
CH689143A5 (en) * 1994-06-16 1998-10-30 Rheinfelden Aluminium Gmbh Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
US20030143102A1 (en) * 2001-07-25 2003-07-31 Showa Denko K.K. Aluminum alloy excellent in cutting ability, aluminum alloy materials and manufacturing method thereof
US20050199318A1 (en) * 2003-06-24 2005-09-15 Doty Herbert W. Castable aluminum alloy

Also Published As

Publication number Publication date
DE102007012424A1 (en) 2008-09-18
EP1972695A1 (en) 2008-09-24
DE502008001133D1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP1612286B1 (en) Aluminium alloy for pressure die casting
CH689143A5 (en) Aluminum-silicon casting alloys with high corrosion resistance, particularly for safety components.
EP3176275B2 (en) Aluminium-silicon die casting alloy method for producing a die casting component made of the alloy, and a body component with a die casting component
EP1443122A1 (en) Die cast aluminium alloy
DE4446898A1 (en) Magnesium@ alloy for components of cars, electric and electronic equipment
WO2013160108A2 (en) Diecasting alloy based on al-si, comprising particularly secondary aluminium
DE102005047406A1 (en) High hardness molding plate and method of making this plate
EP1972695B1 (en) Production process of an aluminium alloy
DE60210899T2 (en) High strength and creep resistant magnesium alloys
EP3363924A1 (en) Aluminium alloy
WO2005045081A1 (en) Aluminium alloy, component made therefrom and method for production of said component
EP1645647B1 (en) Cold age hardenable Al-alloy and process of the manufacture of a cast part
DE60211830T2 (en) Creep resistant magnesium alloys with good castability
EP1340827B1 (en) Aluminium-silicon cast alloy for piston and castpart production
AT407533B (en) ALUMINUM ALLOY
DE202015100698U1 (en) cast alloy
WO2019243411A1 (en) Aluminum alloy, method for producing an engine component, engine component, and use of an aluminum alloy to produce an engine component
DE60224578T2 (en) METHOD FOR PRODUCING A MAGNESIUM BASED ALLOY
DE10131344C1 (en) Zinc alloy used for casting and die casting contains alloying additions of aluminum, copper, magnesium, silicon, titanium, and boron
EP1980633B1 (en) Use of a bronze alloy for a worm gear
DE202007019373U1 (en) Use of a bronze alloy for a worm gear
DE102006059899A1 (en) High temperature resistant aluminum casting alloy for use in engine core construction units, ingot pouring, engine block, cylinder head, crankcase and in automotive industry, consists of various metals
EP1657319B1 (en) Use of an Aluminium casting alloy
AT404844B (en) Pressure-casting alloy
DE19812444B4 (en) TiAl-based alloy

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20081004

17Q First examination report despatched

Effective date: 20081125

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502008001133

Country of ref document: DE

Date of ref document: 20100930

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110519

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008001133

Country of ref document: DE

Effective date: 20110519

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230502

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240213

Year of fee payment: 17

Ref country code: GB

Payment date: 20240222

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240229

Year of fee payment: 17

Ref country code: FR

Payment date: 20240222

Year of fee payment: 17