EP1967727B1 - Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel - Google Patents

Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel Download PDF

Info

Publication number
EP1967727B1
EP1967727B1 EP08100932A EP08100932A EP1967727B1 EP 1967727 B1 EP1967727 B1 EP 1967727B1 EP 08100932 A EP08100932 A EP 08100932A EP 08100932 A EP08100932 A EP 08100932A EP 1967727 B1 EP1967727 B1 EP 1967727B1
Authority
EP
European Patent Office
Prior art keywords
throttle
fuel
valve needle
fuel injector
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08100932A
Other languages
English (en)
French (fr)
Other versions
EP1967727A2 (de
EP1967727A3 (de
Inventor
Hans-Christoph Magel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1967727A2 publication Critical patent/EP1967727A2/de
Publication of EP1967727A3 publication Critical patent/EP1967727A3/de
Application granted granted Critical
Publication of EP1967727B1 publication Critical patent/EP1967727B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/007Details not provided for in, or of interest apart from, the apparatus of the groups F02M63/0014 - F02M63/0059
    • F02M63/0078Valve member details, e.g. special shape, hollow or fuel passages in the valve member
    • F02M63/008Hollow valve members, e.g. members internally guided
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/30Fuel-injection apparatus having mechanical parts, the movement of which is damped
    • F02M2200/304Fuel-injection apparatus having mechanical parts, the movement of which is damped using hydraulic means

Definitions

  • the present invention relates to a fuel injector for injecting fuel into a combustion chamber of a brake engine according to the closer defined in the preamble of claim 1.
  • fuel injectors which have a control valve, which is actuated for example by an electromagnet.
  • the control valve By means of the control valve, the lifting movement of a nozzle needle is controlled, which is received within the injector housing or within the nozzle body of the fuel injector.
  • the nozzle needle closes injection openings introduced in the nozzle body, so that the injection openings are released over a defined time range by a lifting movement of the nozzle needle, so that the fuel supplied under high pressure can pass from the injection openings into the combustion chamber of the internal combustion engine.
  • Such fuel injectors are used in stroke-controlled common rail systems. The advantage here is that the injection pressure to the load and the speed of the engine can be adjusted.
  • Hub-controlled common rail injectors are known with a solenoid valve, which is formed from the electromagnet and the control valve.
  • a fuel injector is from the EP 1 612 405 known.
  • the nozzle needle is therefore controlled via a control chamber in the lifting movement, so that when venting the control chamber, the nozzle needle can lift off from the seat of the injection openings to release them.
  • the pressure in the control chamber is controlled by the control valve, wherein known active valve elements are formed for example of ball elements or cylinder elements, which are brought into a sealing seat for conditioning.
  • the control valves comprise a valve needle, which is not pressure balanced and therefore must be operated with high forces.
  • the solenoid of the solenoid valve comprises a compression spring which must press the nozzle needle into the sealing seat.
  • valve needles of the control valves are known, which allow smaller spring forces, so that even smaller switching forces of the electromagnets are sufficient. This also smaller valve lifts and thus faster switching times are feasible.
  • the multiple injection capability can also be improved.
  • needle bumpers occur which impair the switching performance even with a pressure balanced valve.
  • the pressure-balanced arrangement of the valve needle is effected by an indifferent pressurization by the high-pressure fuel, so that the valve needle has at least no fuel-pressurized surfaces, which cause a fluidic force in the direction of the lifting movement. To damp the movement of the valve needle are used in this located in the low pressure circuit anchor surfaces.
  • strong influences of the fuel temperature, the air content and the return pressure occur, which cause large tolerance problems.
  • the valve pin is guided in accordance with the underlying state of the art on a pressure pin which extends through the valve needle.
  • the pressure pin is stationary in the solenoid valve, and serves as a guide of the valve needle.
  • the valve pin further has a through-hole, wherein the pressure pin does not extend completely through the through-hole.
  • the connection between the control chamber and the Abêtraum carried by a fluid channel, which is arranged concentrically to the pressure pin and thus concentric with the valve needle.
  • the fuel injector includes a valve plate against which the valve needle can be brought into abutment. In this case, a sealing seat is formed, wherein the fluid channel extends centrally out of the annular sealing seat.
  • the fluid channel opens into the still free space, which is formed by the through hole within the valve needle, and limited in the stroke direction by the end face of the pressure pin.
  • the pressure-balanced arrangement of the valve needle is formed by the fact that the high pressure of the fuel radially loads the valve needle only via the bore wall, so that the Valve needle is movable in the stroke direction without force, and is actuated only by the compression spring within the solenoid, with only small hydraulic forces due to the flow dynamics of the fuel add through the sealing seat added.
  • the problem of the impact behavior of the valve needle results in particular from the pressure-balanced arrangement, since the valve needle is subjected to force neither in the opening direction nor in the closing direction.
  • the invention concludes the technical teaching that the through-bore between the pressure pin and the end-side sealing geometry comprises a flow constriction in order to fluidically dampen the lifting movement of the valve needle.
  • the advantage of the present invention resides in a merely simple geometric change of the valve needle for producing a damping effect, which utilizes a flow constriction through which the fuel, which fills the remaining space in the through-bore within the valve needle and is provided from the fluid channel, flows through.
  • a hydraulic damping can be generated, which dampens or completely avoids the impact behavior of the valve needle both in the opening stroke and in the closing stroke.
  • the fuel must flow through the flow restriction, so that a force is transmitted to the valve needle. This force slows the movement of the valve needle, wherein the degree of the selected flow restriction can be adjusted so that the dynamic behavior of the valve needle can be optimally adapted to the requirements.
  • the flow constriction can be designed in such a way that a throttle wall, in which there is at least one throttle, is introduced transversely to the lifting axis of the valve needle.
  • the throttle wall can be viewed as an interruption of the through hole near the valve needle, wherein the throttle wall is located in the portion of the through hole into which the pressure pin does not extend into.
  • a throttle chamber is formed between the end face of the pressure pin and the throttle wall, wherein the fluidic connection of the throttle chamber to the high-pressure fuel area is limited to the throttle itself.
  • the space formed inside the valve needle through the through-hole is filled with fuel in each switching state of the control valve. If the valve needle with the end-side sealing geometry is located in the sealing seat on the valve plate, the throttle chamber is maximally open in terms of its volume.
  • the anchor area of the valve needle is tightened.
  • the end sealing geometry lifts off from the sealing seat, and the valve needle slides over the pressure pin in the direction of the electromagnet.
  • the pressure pin moves deeper into the through hole inside the valve needle. Consequently, the space of the throttle chamber decreases, so that fuel must flow through the throttle.
  • the valve needle is damped by the fuel flowing through the throttle in their movement. If the energization of the electromagnet is terminated, then a compression spring within the solenoid valve pushes the valve needle again in the direction of the sealing seat, so that the throttle chamber increases in volume again. Therefore, the fuel must again flow through the throttle in the opposite direction, so that damping of the valve needle can be generated even in the closing movement.
  • the throttle is formed by a bore in the throttle wall itself, which includes edge fillets to provide improved throttle flow.
  • the throttle chamber is connected to the fuel region below the valve needle, which merges into the fluid channel.
  • the valve needle comprises a radially extending throttle, and the throttle wall is completely closed.
  • the throttle chamber communicates via the throttle with the Abberichtraum, which represents only one possible variant of the present invention.
  • the present invention is not limited to the position of the throttle in the direction of the high pressure region, wherein at least one throttle can be arranged in the throttle wall, and at the same time constitute a radially arranged throttle in the direction of the low pressure space possible variants.
  • valve needle can be provided that the opening stroke of the valve needle can be limited by a stop of the end face of the pressure pin to the reactor wall. This can be done over a defined length of the pressure pin, so that in the open state, the throttle chamber has no more volume.
  • control valve comprises a Abberichtraum in which the valve needle is received, and by lifting the sealing geometry of the valve needle from the sealing seat, a fluid channel is vented into the Ab horrraum.
  • a fluid channel is vented into the Ab horrraum.
  • the duration of the injection can be determined, since at a termination of the energization of the electromagnet, the valve needle is pressed by the compression spring back into the sealing seat, and set in the control room again high fuel pressure. Thus, the nozzle needle is again brought against the injection openings in a closed position.
  • electromagnet or the solenoid valve formed by this is designed either as a solenoid valve or as a piezoelectrically actuated valve.
  • a throttle is introduced in order to limit the lifting speed of the nozzle needle.
  • the venting of the control chamber is slower, so that the dynamics of the nozzle needle is limited.
  • the injector includes a high-pressure fuel chamber, and the control chamber is fluidly connected via a throttle with the high-pressure fuel chamber. About this throttle the control chamber from the high-pressure fuel chamber is again filled with fuel, so that in the control chamber again the high fuel pressure can be set when the completion of the fuel is interrupted by the fluid channel by closing the valve needle.
  • the figure is a schematic representation of a fuel injector with an inventive design of the valve needle of the control valve.
  • a fuel injector 1 according to the invention is shown schematically in cross section.
  • the fuel injector 1 comprises an injector housing 2, to which a nozzle body 3 adjoins.
  • a nozzle needle 4 is received in a liftable manner.
  • the fuel injector is in a closed state, since the nozzle needle 4 is sealingly abutted against the injection openings 5.
  • a high pressure fuel which is provided by a fuel line and duct system from a high pressure source.
  • the nozzle needle 4 is controlled via a control chamber 15, which is filled in the illustrated closed state of the fuel injector 1 with a high-pressure fuel.
  • the nozzle needle 4 is held against the injection openings 5 due to the geometric design and the associated area difference in the closing seat.
  • the control chamber 15 is vented via a fluid channel 14, the nozzle needle 4 lifts off from the injection openings 5, and the fuel can enter the combustion chamber.
  • the control of the pressurization or the pressure venting of the control chamber 15 via a control valve, which is essentially formed by a valve needle 7.
  • the valve needle 7 is movable in the direction of a lifting axis 6, wherein the movement via an electromagnet 21 can be generated.
  • the damping device is initially formed by a throttle wall 10, in which a throttle 11 is introduced. This forms between the end face of the pressure pin 8 and the throttle wall 10, a throttle chamber 12, which communicates only via the throttle 11 fluidly with the high-pressure fuel range from the fluid channel 14. If the valve needle 7 lifted by the electromagnet 21 from the sealing seat 9, so the space of the throttle chamber 12 decreases. Thus, the fuel from the throttle chamber 12 must flow through the throttle 11, which causes a throttle effect. This will be a Damping force exerted on the valve needle 7, so that the impact behavior of the valve needle 7 is avoided in the opening stroke.
  • the present invention is not limited in its execution to the above-mentioned preferred embodiment. Rather, a number of variants is conceivable which makes use of the illustrated solution even with fundamentally different types.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die vorliegende Erfindung betrifft einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Bremskraftmaschine gemäß der im Oberbegriff des Anspruch 1 näher definierten Art.
  • Stand der Technik
  • Allgemein bekannt sind Kraftstoffinjektoren, welche ein Steuerventil aufweisen, das beispielsweise durch einen Elektromagneten betätigt wird. Mittels des Steuerventils ist die Hubbewegung einer Düsennadel steuerbar, welche innerhalb des Injektorgehäuses bzw. innerhalb des Düsenkörpers des Kraftstoffinjektors aufgenommen ist. Im Ruhezustand verschließt die Düsennadel im Düsenkörper eingebrachte Einspritzöffnungen, so dass durch eine Hubbewegung der Düsennadel die Einspritzöffnungen über einen definierten Zeitbereich freigegeben werden, so das unter Hochdruck zugeführter Kraftstoff aus den Einspritzöffnungen in den Brennraum der Brennkraftmaschine gelangen kann. Derartige Kraftstoffinjektoren kommen bei hubgesteuerten Common-Rail-Systemen zum Einsatz. Vorteilhaft dabei ist, dass der Einspritzdruck an die Last und die Drehzahl der Brennkraftmaschine angepasst werden kann.
  • Bekannt sind hubgesteuerte Common-Rail-Injektoren mit einem Magnetventil, welches aus dem Elektromagneten und dem Steuerventil gebildet wird. Ein derartiger Kraftstoffinjektor ist aus der EP 1 612 405 bekannt. Die Düsennadel wird daher über ein Steuerraum in der Hubbewegung gesteuert, so dass bei Entlüftung des Steuerraums die Düsennadel aus dem Sitz der Einspritzöffnungen abheben kann, um diese freizugeben. Der Druck im Steuerraum wird über das Steuerventil gesteuert, wobei bekannte aktive Ventilelemente beispielsweise aus Kugelelementen oder Zylinderelementen gebildet werden, die in einem Dichtsitz zur Anlage gebracht werden. Die Steuerventile umfassen eine Ventilnadel, welche nicht druckausgeglichen ist und daher mit hohen Kräften betätigt werden muss. Der Elektromagnet des Magnetventils umfasst eine Druckfeder, welche die Düsennadel in den Dichtsitz drücken muss. Folglich ist bei hohen Kraftstoffdrücken eine hohe Federkraft erforderlich, was ebenso große Schaltkräfte des Magnetventils erfordert. Ein weiterer Nachteil ergibt sich aus dem damit erforderlichen großen Bauraum, wodurch Anschlagpreller erzeugt werden, welche entstehen, wenn die Ventilnadel entweder in den Dichtsitz gedrückt wird oder beim Öffnungshub gegen einen Hubanschlag trifft. Damit ergibt sich insgesamt eine schlechte Schaltperformance des Steuerventils, so dass die Steuerung mit einem Kugel-Magnetventil starke Einschränkungen hinsichtlich einer gewünschten Mehrfacheinspritzung aufweist. Ferner besteht nicht die Möglichkeit, sehr kurze Zeitabstände zwischen einzelnen Einspritzvorgängen zu realisieren.
  • Ferner sind Kraftstoffinjektoren mit druckausgeglichenen Ventilnadeln der Steuerventile bekannt, welche kleinere Federkräfte ermöglichen, so dass auch kleinere Schaltkräfte der Elektromagneten hinreichend sind. Damit sind ferner kleinere Ventilhübe und somit schnellere Schaltzeiten realisierbar. Auch die Mehrfacheinspritzungsfähigkeit kann verbessert werden. Jedoch treten am oberen und am unteren Hubanschlag Nadelpreller auf, die auch bei einem druckausgeglichenen Ventil die Schaltperformance beeinträchtigen. Die druckausgeglichene Anordnung der Ventilnadel wird dabei durch eine indifferente Druckbeaufschlagung durch den Kraftstoffhochdruck bewirkt, so dass die Ventilnadel zumindest keine kraftstoffbeaufschlagten Druckflächen aufweist, welche in Richtung der Hubbewegung eine fluidische Kraft hervorrufen. Zur Dämpfung der Bewegung der Ventilnadel werden an dieser im Niederdruckkreis befindliche Ankerflächen herangezogen. Dabei treten jedoch starke Einflüsse der Kraftstofftemperatur, des Luftgehaltes und des Rücklaufdruckes auf, die große Toleranzprobleme hervorrufen.
  • Die Ventilnadel ist gemäß dem zu Grunde liegenden Stand der Technik auf einem Druckstift geführt, der sich durch die Ventilnadel hindurch erstreckt. Der Druckstift ist ruhend im Magnetventil angeordnet, und dient als Führung der Ventilnadel. Die Ventilnadel weißt ferner eine Durchgangsbohrung auf, wobei sich der Druckstift nicht vollständig durch die Durchgangsbohrung hindurch erstreckt. Die Verbindung zwischen dem Steuerraum und dem Absteuerraum erfolgt durch einen Fluidkanal, welcher konzentrisch zum Druckstift und damit konzentrisch zur Ventilnadel angeordnet ist. Der Kraftstoffinjektor umfasst eine Ventilplatte, gegen die die Ventilnadel zur Anlage gebracht werden kann. Dabei wird ein Dichtsitz gebildet, wobei sich der Fluidkanal mittig aus dem ringförmigen Dichtsitz heraus erstreckt. Dabei mündet der Fluidkanal in den noch freien Raum, der durch die Durchgangsbohrung innerhalb der Ventilnadel gebildet ist, und in Hubrichtung durch die Endfläche des Druckstiftes begrenzt. Die druckausgeglichene Anordnung der Ventilnadel wird dadurch gebildet, dass der Hochdruck des Kraftstoffs die Ventilnadel lediglich über die Bohrungswandung radial belastet, so dass die Ventilnadel in Hubrichtung kraftfrei bewegbar ist, und lediglich durch die Druckfeder innerhalb des Elektromagneten betätigt wird, wobei sich lediglich geringe hydraulische Kräfte aufgrund der Strömungsdynamik des Kraftstoffs durch den Dichtsitz hinzu addieren. Die Problematik des Prallverhaltens der Ventilnadel ergibt sich insbesondere aus der druckausgeglichenen Anordnung, da die Ventilnadel weder in der Öffnungsrichtung noch in der Schließrichtung kraftbeaufschlagt wird.
  • Es ist daher die Aufgabe der vorliegenden Erfindung, einen Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine zu schaffen, welcher ein Steuerventil mit einer verbesserten Anordnung und einer verbesserten Ausgestaltung einer Ventilnadel aufweist.
  • Offenbarung der Erfindung
  • Diese Aufgabe wird ausgehend von einem Kraftstoffinjektor zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine gemäß dem Oberbegriff des Anspruchs 1 in Verbindung mit dessen kennzeichnenden Merkmalen gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen angegeben.
  • Die Erfindung schließt die technische Lehre, dass die Durchgangsbohrung zwischen dem Druckstift und der endseitigen Dichtgeometrie eine Strömungsverengung umfasst, um die Hubbewegung der Ventilnadel fluidisch zu dämpfen.
  • Der Vorteil der vorliegenden Erfindung liegt in einer lediglich einfachen geometrischen Änderung der Ventilnadel zur Erzeugung einer Dämpfungswirkung, welche eine Strömungsverengung nutzbar macht, durch die der Kraftstoff, der den verbleibenden Raum in der Durchgangsbohrung innerhalb der Ventilnadel füllt und aus dem Fluidkanal bereitgestellt wird, hindurchströmt. Mittels der Strömungsverengung ist eine hydraulische Dämpfung erzeugbar, welche das Prallverhalten der Ventilnadel sowohl im Öffnungshub als auch im Schließhub dämpft bzw. vollständig vermeidet. Der Kraftstoff muss durch die Strömungsverengung hindurchströmen, so dass eine Kraft auf die Ventilnadel übertragen wird. Diese Kraft verlangsamt die Bewegung der Ventilnadel, wobei das Maß der gewählten Strömungsverengung derart angepasst werden kann, dass das dynamische Verhalten der Ventilnadel den Erfordernissen optimal angepasst werden kann.
  • Die Strömungsverengung kann der Gestalt ausgeführt sein, dass quer zur Hubachse der Ventilnadel eine Drosselwandung eingebracht ist, in welcher sich wenigstens eine Drossel befindet. Die Drosselwandung kann als Unterbrechung der Durchgangsbohrung nahe der Ventilnadel betrachtet werden, wobei sich die Drosselwandung in dem Abschnitt der Durchgangsbohrung befindet, in die sich der Druckstift nicht hinein erstreckt. Somit wird zwischen der Endfläche des Druckstiftes und der Drosselwandung eine Drosselkammer gebildet, wobei die fluidische Verbindung der Drosselkammer zum Kraftstoffhochdruckbereich auf die Drossel selbst begrenzt ist. Der Raum, der innerhalb der Ventilnadel durch die Durchgangsbohrung gebildet wird, ist in jedem Schaltzustand des Steuerventils mit Kraftstoff gefüllt. Befindet sich die Ventilnadel mit der endseitigen Dichtgeometrie im Dichtsitz an der Ventilplatte, so ist die Drosselkammer hinsichtlich ihres Volumens maximal geöffnet. Wird der Elektromagnet des Magnetventils bestromt, so wird der Ankerbereich der Ventilnadel angezogen. Dabei hebt die endseitige Dichtgeometrie vom Dichtsitz ab, und die Ventilnadel gleitet über den Druckstift in Richtung des Elektromagneten. Dabei wandert der Druckstift tiefer in die Durchgangsbohrung innerhalb der Ventilnadel hinein. Folglich verkleinert sich der Raum der Drosselkammer, so dass Kraftstoff durch die Drossel hindurch strömen muss. Dabei wird die Ventilnadel durch den durch die Drossel hindurchströmenden Kraftstoff in ihrer Bewegung gedämpft. Wird die Bestromung des Elektromagneten beendet, so drückt eine Druckfeder innerhalb des Magnetventils die Ventilnadel wieder in Richtung des Dichtsitzes, so dass sich die Drosselkammer in ihrem Volumen wieder vergrößert. Daher muss der Kraftstoff in entgegengesetzter Richtung wieder durch die Drossel hindurchströmen, so dass auch in der Schließbewegung eine Dämpfung der Ventilnadel erzeugbar ist.
  • Es ist von Vorteil, dass die Drossel durch eine Bohrung in der Drosselwandung selbst gebildet ist, welche Kantenverrundungen umfasst, um eine verbesserte Drosselströmung zu schaffen. Über die Drossel innerhalb der Drosselwandung ist die Drosselkammer mit dem Kraftstoffbereich unterhalb der Ventilnadel verbunden, welcher in den Fluidkanal übergeht. Alternative Ausgestaltungen der Erfindung können darin gesehen werden, dass die Ventilnadel eine radial verlaufende Drossel umfasst, und die Drosselwandung vollständig geschlossen ist. Damit kommuniziert die Drosselkammer über die Drossel mit dem Absteuerraum, was lediglich eine mögliche Variante der vorliegenden Erfindung darstellt.
  • Ferner besteht die Möglichkeit, mehrere Drosseln in der Drosselwandung einzubringen. Damit können strömungstechnische Verbesserungen erzielt werden, so dass der Einzelquerschnitt der jeweiligen Drosseln klein ausgeführt werden kann, und die Drosseln parallel wirken. Insgesamt ist eine Verbesserung der Schaltperformence der druckausgeglichenen Ventilnadel erreichbar, wobei durch die Lage im Hochdruckbereich des Kraftstoffs eine exakte Funktion der Dämpfung sichergestellt werden kann, da es im Hochdruck kein Auftreten von Luft-Kraftstoffgemisch gibt und der Rücklauf keinen Einfluss hat. Dabei werden in der Drosselkammer kleine Flächen verwendet, so dass hohe Druckdifferenzen über die Dämpferdrossel entstehen. Dies führt zu einer turbulenten Strömung durch die Dämpfungsdrossel und damit zu einem stabilen, toleranzunempfindlichen Dämpfungsverhalten. Durch die Lage im Hochdruckbereich können sowohl beim Öffnen als auch beim Schließen große Druckdifferenzen der Drosselkammer hervorgerufen werden. Die vorliegende Erfindung ist jedoch nicht auf die Lage der Drossel in Richtung des Hochdruckbereiches beschränkt, wobei auch wenigstens eine Drossel in der Drosselwandung angeordnet sein kann, und zugleich eine radial angeordnete Drossel in Richtung des Niederdruckraums mögliche Varianten darstellen.
  • Gemäß einer weiteren vorteilhaften Ausführungsform der Ventilnadel kann vorgesehen sein, dass der Öffnungshub der Ventilnadel durch einen Anschlag der Endfläche des Druckstiftes an die Drosselwandung begrenzbar ist. Dies kann über eine definierte Länge des Druckstiftes erfolgen, so dass im geöffneten Zustand die Drosselkammer kein Volumen mehr aufweist.
  • Vorteilhafterweise umfasst das Steuerventil ein Absteuerraum, in dem die Ventilnadel aufgenommen ist, und durch ein Abheben der Dichtgeometrie der Ventilnadel vom Dichtsitz ein Fluidkanal in den Absteuerraum entlüftbar ist. Damit wird eine vorteilhafte Anordnung der Ventilnadel aufgezeigt, so dass die Ventilnadel selbst innerhalb des Absteuerraums aufgenommen ist, und der Absteuerraum über einen Absteuerkanal die Steuermenge des Kraftstoffs in das Kraftstoffsystem zurückführen kann. Öffnet die Ventilnadel den Fluidkanal in Richtung des Absteuerraums, so fällt der Druck im Steuerraum ab, und die Düsennadel kann die Einspritzöffnungen innerhalb des Düsenkörpers freigeben. Über die Dauer der Bestromung des Elektromagneten lässt sich die Dauer der Einspritzung bestimmen, da bei einer Beendigung der Bestromung des Elektromagneten die Ventilnadel durch die Druckfeder wieder in den Dichtsitz gedrückt wird, und sich im Steuerraum wieder Kraftstoffhochdruck einstellt. Damit wird die Düsennadel wieder gegen die Einspritzöffnungen in eine Schließposition gebracht.
  • Eine vorteilhafte Ausführungsform des Elektromagneten bzw. des durch diesen gebildeten Magnetventils kann darin gesehen werden, dass dieser entweder als Magnetventil oder auch als piezoelektrisch betätigtes Ventil ausgeführt ist.
  • Ferner ist von Vorteil, dass innerhalb des Fluidkanals 14 eine Drossel eingebracht ist, um die Hubgeschwindigkeit der Düsennadel zu begrenzen. Damit erfolgt die Entlüftung des Steuerraums langsamer, so dass die Dynamik der Düsennadel begrenzt wird. Ebenso ist von Vorteil, dass das Injektorgehäuse einen Kraftstoffhochdruckraum umfasst, und der Steuerraum über eine Drossel mit dem Kraftstoffhochdruckraum fluidisch verbunden ist. Über diese Drossel wird der Steuerraum aus dem Kraftstoffhochdruckraum wieder mit Kraftstoff gefüllt, so dass sich im Steuerraum wieder der Kraftstoffhochdruck einstellen kann, wenn der Abschluss des Kraftstoffs durch den Fluidkanal durch ein Schließen der Ventilnadel unterbrochen wird.
  • Weitere, die Erfindung verbessernde Maßnahmen werden nachstehend gemeinsam mit der Beschreibung eines bevorzugten Ausführungsbeispiels der Erfindung anhand der einzigen Figur näher dargestellt.
  • Ausführungsbeispiel
  • Es zeigt:
  • Die Figur eine schematische Darstellung eines Kraftstoffinjektors mit einer erfindungsgemäßen Ausgestaltung der Ventilnadel des Steuerventils.
  • In der Figur ist ein erfindungsgemäßer Kraftstoffinjektor 1 im Querschnitt schematisch dargestellt. Der Kraftstoffinjektor 1 umfasst ein Injektorgehäuse 2, an welchem sich ein Düsenkörper 3 anschließt. Im Injektorgehäuse 2 sowie im Düsenkörper 3 ist eine Düsennadel 4 hubbeweglich aufgenommen. In der Darstellung befindet sich der Kraftstoffinjektor in einem geschlossenen Zustand, da die Düsennadel 4 gegen die Einspritzöffnungen 5 dichtend zur Anlage gebracht ist. Vor den Einspritzöffnungen 5 befindet sich ein unter Hochdruck stehender Kraftstoff, welcher durch ein Kraftstoffleitungs- und Kanalsystem aus einer Hochdruckquelle zur Verfügung gestellt wird.
  • Die Düsennadel 4 wird über einen Steuerraum 15 gesteuert, welcher im dargestellten geschlossenen Zustand des Kraftstoffinjektors 1 mit einem unter Hochdruck stehenden Kraftstoff gefüllt ist. Damit wird die Düsennadel 4 aufgrund der geometrischen Ausbildung und der damit einhergehenden Flächendifferenz in dem Schließsitz gegen die Einspritzöffnungen 5 gehalten. Wird jedoch der Steuerraum 15 über einen Fluidkanal 14 entlüftet, so hebt sich die Düsennadel 4 von den Einspritzöffnungen 5 ab, und der Kraftstoff kann in den Brennraum gelangen. Die Steuerung der Druckbeaufschlagung bzw. der Druckentlüftung des Steuerraums 15 erfolgt über ein Steuerventil, welches im Wesentlichen durch eine Ventilnadel 7 gebildet ist. Die Ventilnadel 7 ist in Richtung einer Hubachse 6 beweglich, wobei die Bewegung über einen Elektromagneten 21 erzeugbar ist. Wird der Elektromagnet 21 bestromt, so wird der Ankerplattenbereich der Ventilnadel 7 in Richtung des Elektromagneten 21 angezogen. Die endseitige Dichtgeometrie an der Ventilnadel 7, welche im dargestellten geschlossenen Zustand gegen den Dichtsitz 9 abdichtet, hebt bei der Bestromung vom Dichtsitz 9 ab, so dass der Fluidkanal 14 in den Absteuerraum 13 entlüftet werden kann. Damit fällt der Kraftstoffdruck im Steuerraum 15 ab. Wird die Bestromung des Elektromagneten 21 beendet, so drückt eine Druckfeder 22 die Ventilnadel 7 erneut gegen den Dichtsitz 9. Folglich füllt sich der Steuerraum 15 wieder mit Kraftstoff, wobei der Zulauf des Kraftstoffs über eine Drossel 18 aus einem Kraftstoffhochdruckraum 17 erfolgt. Im Absteuerraum 13 befindet sich hingegen der Kraftstoff nicht unter Hochdruck, sondern bildet die Niederdruckseite des Kraftstoffinjektors 1. Über einen nicht dargstellten Absteuerkanal wird der Absteuerraum 13 mit einem Rücklaufbereich des Kraftstoffsystems verbunden. Aus dem unter Hochdruck stehenden Fluidkanal 14 wird ein Bereich innerhalb der Ventilnadel 7 mit Kraftstoff gefüllt, welcher durch die Durchgangsbohrung innerhalb der Ventilnadel 7 gebildet wird. Die Durchgangsbohrung wird in Richtung der Hubachse 6 durch die Endfläche des Druckstiftes 8 begrenzt, wobei sich innerhalb des verbleibenden Raums in der Durchgangsbohrung die erfindungsgemäße Anordnung bzw. die erfindungsgemäße Ausgestaltung der Dämpfungseinrichtung befindet.
  • Die Dämpfungseinrichtung wird zunächst durch eine Drosselwandung 10 gebildet, in der eine Drossel 11 eingebracht ist. Damit bildet sich zwischen der Endseite des Druckstiftes 8 und der Drosselwandung 10 eine Drosselkammer 12 aus, welche lediglich über die Drossel 11 fluidisch mit dem Kraftstoffhochdruckbereich aus dem Fluidkanal 14 kommuniziert. Wird die Ventilnadel 7 durch den Elektromagneten 21 vom Dichtsitz 9 abgehoben, so verkleinert sich der Raum der Drosselkammer 12. Damit muss der Kraftstoff aus der Drosselkammer 12 durch die Drossel 11 hindurchströmen, was eine Drosselwirkung hervorruft. Damit wird eine Dämpfungskraft auf die Ventilnadel 7 ausgeübt, so dass das Prallverhalten der Ventilnadel 7 im Öffnungshub vermieden wird. Wird die Bestromung des Elektromagneten 21 beendet, so drückt die Druckfeder 22 die Ventilnadel 7 erneut gegen den Dichtsitz 9, so dass sich das Volumen der Drosselkammer 12 wieder vergrößert. Folglich strömt der Kraftstoff in entgegengesetzter Richtung durch die Drossel 11, so dass auch für die Schließbewegung der Ventilnadel 7 eine Kraft auf diese ausgeübt wird, welche sich in Form einer Dämpfung äußert. Somit ist erfindungsgemäß eine gedämpfte Führung der Ventilnadel 7 erreicht, wobei die Dämpfung über den unter Hochdruck stehenden Kraftstoff erfolgt. Durch die Lage im Hochdruckbereich kann eine exakte Funktion der Dämpfung sichergestellt werden, da es im Hochdruck kein Auftreten von Luft/Kraftstoffgemisch gibt und der Rücklaufdruck keinen Einfluss hat.
  • Die vorliegende Erfindung beschränkt sich in ihrer Ausführung nicht auf das vorstehend angegebene bevorzugte Ausführungsbeispiel. Vielmehr ist eine Anzahl von Varianten denkbar, welche von der dargestellten Lösung auch bei grundsätzlich anders gearteten Ausführungen Gebraucht macht.

Claims (10)

  1. Kraftstoffinjektor (1) zum Einspritzen von Kraftstoff in einen Brennraum einer Brennkraftmaschine, umfassend eine hubbeweglich in einem Injektorgehäuse (2) und/oder in einem Düsenkörper (3) geführte Düsennadel (4) zum Freigeben und/oder zum Schließen von wenigstens einer im Düsenkörper (3) eingebrachten Einspritzöffnung (5), wobei die Bewegung der Düsennadel (4) durch ein Steuerventil steuerbar ist, welches eine hubbeweglich in Richtung einer Hubachse (6) geführte Ventilnadel (7) mit einer Durchgangsbohrung aufweist, in die sich ein ruhend angeordneter Druckstift (8) hinein erstreckt, und wobei die Ventilnadel (7) endseitig eine Dichtgeometrie aufweist, die gegen einen Dichtsitz (9) dichtend zur Anlage bringbar ist, dadurch gekennzeichnet, dass die Durchgangsbohrung zwischen dem Druckstift (8) und der endseitigen Dichtgeometrie eine Strömungsverengung umfasst, um die Hubbewegung der Ventilnadel (7) fluidisch zu dämpfen.
  2. Kraftstoffinjektor (1) nach Anspruch 1,
    dadurch gekennzeichnet, dass die Strömungsverengung in Gestalt einer quer zur Hubachse (6) verlaufenden Drosselwandung (10) gebildet ist, in welcher wenigstens eine Drossel (11) eingebracht ist.
  3. Kraftstoffinjektor (1) nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass zwischen der Endfläche des Druckstiftes (8) und der Drosselwandung (10) eine Drosselkammer (12) gebildet ist, und eine fluidische Verbindung der Drosselkammer (12) zum Kraftstoffhochdruckbereich auf die Drossel (11) begrenzt ist.
  4. Kraftstoffinjektor (1) nach einem der Ansprüche 1 bis 3,
    dadurch gekennzeichnet, dass die Drossel (11) durch eine Bohrung in der Drosselwandung (10) gebildet ist, welche Kantenverrundungen umfasst, um eine verbesserte Drosselströmung zu schaffen.
  5. Kraftstoffinjektor (1) nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet, dass mehrere Drosseln (11) in der Drosselwandung (10) eingebracht sind.
  6. Kraftstoffinjektor (1) nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet, dass der Öffnungshub der Ventilnadel (7) durch einen Anschlag der Endfläche des Druckstiftes (8) an die Drosselwandung (10) begrenzbar ist.
  7. Kraftstoffinjektor (1) nach einem der vorgenannten Ansprüche,
    dadurch gekennzeichnet, dass das Steuerventil einen Absteuerraum (13) umfasst, in dem die Ventilnadel (7) aufgenommen ist, und durch ein Abheben der Dichtgeometrie der Ventilnadel (7) vom Dichtsitz (9) ein Fluidkanal (14) in den Absteuerraum entlüftbar ist.
  8. Kraftstoffinjektor (1) nach Anspruch 7,
    dadurch gekennzeichnet, dass die Düsennadel (4) mittels einer Druckbeaufschlagung und/oder Druckentlüftung eines Steuerraums (15) in der Hubbewegung steuerbar ist, wobei der Steuerraum (15) mit dem Fluidkanal (14) verbunden ist.
  9. Kraftstoffinjektor (1) nach einem der Ansprüche 7 oder 8,
    dadurch gekennzeichnet, dass im Fluidkanal (14) eine Drossel (16) eingebracht ist, um die Hubgeschwindigkeit der Düsennadel (4) zu begrenzen.
  10. Kraftstoffinjektor (1) nach einem der Ansprüche 8 oder 9,
    dadurch gekennzeichnet, dass das Injektorgehäuse (2) einen Kraftstoffhochdruckraum (17) umfasst, und der Steuerraum (15) über eine Drossel (18) mit dem Kraftstoffhochdruckraum (17) fluidisch verbunden ist.
EP08100932A 2007-03-08 2008-01-25 Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel Not-in-force EP1967727B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102007011317A DE102007011317A1 (de) 2007-03-08 2007-03-08 Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel

Publications (3)

Publication Number Publication Date
EP1967727A2 EP1967727A2 (de) 2008-09-10
EP1967727A3 EP1967727A3 (de) 2009-07-01
EP1967727B1 true EP1967727B1 (de) 2011-08-24

Family

ID=39388333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08100932A Not-in-force EP1967727B1 (de) 2007-03-08 2008-01-25 Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel

Country Status (3)

Country Link
EP (1) EP1967727B1 (de)
AT (1) ATE521803T1 (de)
DE (1) DE102007011317A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007044356A1 (de) * 2007-09-17 2009-03-19 Robert Bosch Gmbh Injektor
DE102009045434A1 (de) * 2009-10-07 2011-04-14 Robert Bosch Gmbh Kraftstoffeinspritzventil
DE102010003202A1 (de) * 2010-03-24 2011-09-29 Robert Bosch Gmbh Common-Rail-Injektor mit druckausgeglichenem Schaltventil und zusätzlichem Speichervolumen
DE102011077618A1 (de) * 2011-06-16 2012-12-20 Robert Bosch Gmbh Injektor, insbesondere Kraftstoffinjektor für eine Brennkraftmaschine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049666A1 (de) * 2006-10-24 2008-05-02 Robert Bosch Gmbh Injektor mit einem eine konische hubanschlagfläche aufweisenden steuerventil

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE413528T1 (de) * 2004-06-30 2008-11-15 Fiat Ricerche Kraftstoffeinspritzeinrichtung für eine brennkraftmaschine
EP1719904A1 (de) * 2005-05-02 2006-11-08 Robert Bosch Gmbh Kraftstoffeinspritzdüse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008049666A1 (de) * 2006-10-24 2008-05-02 Robert Bosch Gmbh Injektor mit einem eine konische hubanschlagfläche aufweisenden steuerventil

Also Published As

Publication number Publication date
EP1967727A2 (de) 2008-09-10
EP1967727A3 (de) 2009-07-01
DE102007011317A1 (de) 2008-09-11
ATE521803T1 (de) 2011-09-15

Similar Documents

Publication Publication Date Title
EP2634413B1 (de) Einspritzventil
DE10121892A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2009121646A1 (de) Magnetventil mit mehrteiligem anker ohne ankerführung
EP1967727B1 (de) Kraftstoffinjektor mit einer verbesserten Ausführung eines Steuerventils zur Steuerung einer Düsennadel
WO2008110408A1 (de) Kraftstoffinjektor mit verbessertem steuerventil
EP2743493B1 (de) Kraftstoffinjektor
DE102007058766A1 (de) Steuerventil für einen Kraftstoffinjektor
EP2032834A1 (de) Kraftstoff-einspritzvorrichtung für eine brennkraftmaschine
EP2603680B1 (de) Einspritzvorrichtung zum einbringen einer harnstofflösung in den abgasstrang einer brennkraftmaschine
EP2021616A1 (de) Magnetventil mit geflutetem ankerraum
WO2010052099A1 (de) Brennstoffeinspritzventil
EP2147206B1 (de) Kraftstoffinjektor mit magnetventil
EP2733345A1 (de) Druckregelventil für einen Hochdruckspeicher eines Verbrennungsmotors
EP3346121B1 (de) Magnetventil für ein kraftstoffeinspritzsystem und kraftstoffhochdruckpumpe
DE102006047935A1 (de) Kraftstoffinjektor für eine Brennkraftmaschine
DE102007034319A1 (de) Injektor
WO2005040594A1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102006061895A1 (de) Kraftstoffeinspritzeinrichtung mit einem verbesserten Steuerventil
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer
DE102006027484A1 (de) Kraftstoffinjektor mit kraftausgeglichenem Steuerventil
DE102013225376A1 (de) Magnetventil für einen Kraftstoffinjektor
DE102021129011A1 (de) Kraftstoffinjektor
DE10003252A1 (de) Einspritzdüse
DE102009029231A1 (de) Kraftstoffinjektor
DE102006028918A1 (de) Kraftstoff-Einspritzvorrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20100104

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502008004575

Country of ref document: DE

Effective date: 20111027

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20110824

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111224

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111226

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111125

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: ROBERT BOSCH G.M.B.H.

Effective date: 20120131

26N No opposition filed

Effective date: 20120525

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502008004575

Country of ref document: DE

Effective date: 20120525

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120125

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20111124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 521803

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110824

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120125

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080125

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190122

Year of fee payment: 12

Ref country code: IT

Payment date: 20190121

Year of fee payment: 12

Ref country code: DE

Payment date: 20190326

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502008004575

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200801

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200125