EP1963066B1 - Method for calibrating an optical glass drilling machine - Google Patents

Method for calibrating an optical glass drilling machine Download PDF

Info

Publication number
EP1963066B1
EP1963066B1 EP06778799A EP06778799A EP1963066B1 EP 1963066 B1 EP1963066 B1 EP 1963066B1 EP 06778799 A EP06778799 A EP 06778799A EP 06778799 A EP06778799 A EP 06778799A EP 1963066 B1 EP1963066 B1 EP 1963066B1
Authority
EP
European Patent Office
Prior art keywords
drilling
blank
tool
blind bore
lens support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06778799A
Other languages
German (de)
French (fr)
Other versions
EP1963066A1 (en
Inventor
Bruno Bizet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Briot International SA
Original Assignee
Briot International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Briot International SA filed Critical Briot International SA
Publication of EP1963066A1 publication Critical patent/EP1963066A1/en
Application granted granted Critical
Publication of EP1963066B1 publication Critical patent/EP1963066B1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • B28D1/143Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling lens-drilling machines

Definitions

  • EP-A-1,310,327 a drilling machine of the aforementioned type.
  • a drill bit is wedged into a tool holder assembly to make through holes through an ophthalmic lens.
  • the end position of the drill cutter is calibrated according to the position of this cutter in the tool holder, and the nominal length of the milling cutter supplied by the manufacturer. The accuracy on this position is for example of the order of 0.5 mm.
  • the machine is programmed to move the drilling tool relative to the lens on a displacement greater than the sum of the thickness of the lens and the maximum tolerance of length of the cutter.
  • the precision on the position of the end of the drill bit provided by the manufacturer is not sufficient to control the position of the bottom of the blind hole in the lens with sufficient precision.
  • An object of the invention is therefore to obtain a calibration method of an optical glass drilling machine of improved precision and reliability.
  • the subject of the invention is a method according to claim 1.
  • the method according to the invention may comprise one or more of the features which are the subject of claims 2 to 7.
  • the drilling machine 11 shown on the Figure 1 is intended to make holes in ophthalmic lenses, these lenses having been previously roughed by peripheral grinding.
  • the machine 11 shown on the Figure 1 is adapted to drill blind holes or countersinks in a lens, these blind holes being used to immobilize a mechanical part, for example by pressing a pin.
  • a calibration blank 13 is placed in the machine 11.
  • the blank 13 is a substantially planar disk having a constant thickness.
  • the machine 11 comprises a frame 17, a lens support 19, a tool-holder assembly 21, means 23 for axial and radial relative positioning of the assembly 21 with respect to the support 19, a probe assembly 24 and a control unit. order 25.
  • the lens holder 19 comprises a carriage 27 pivotally mounted on the frame 17, provided with two half-shafts 29A, 29B adapted to grip the blank 13, and a motor 31 for slowly rotating the blank 13.
  • the carriage 27 is hinged relative to the frame 17, by a rear longitudinal edge 28, about an axis X-X 'of substantially horizontal tilting.
  • the two half-shafts 29A, 29B are mounted along the front longitudinal edge 32 of the carriage 27. These half-shafts 29A, 29B extend along a substantially horizontal first axis AA 'parallel to the X-X axis .
  • the half-shafts 29A, 29B are provided with respective free ends 33A, 33B arranged opposite one another, adapted to grip the blank 13.
  • the drive motor 31 of the blank 13 rotates the half-shafts 29A, 29B around the first axis A-A 'by a transmission mechanism (not shown).
  • the tool holder assembly 21 comprises a support 35, a linkage arm 37 projecting from the support 35, a drilling tool 39, a rotation drive motor 41 the tool 39, and means 43 for tilting the tool 39 relative to the support 35.
  • the link arm 37 is articulated by a first end 45 on the support 21, about a horizontal pivot axis B-B 'substantially orthogonal to the first axis A-A'.
  • the tool 39 is mounted in a guide housing formed at the free end 47 of the connecting arm.
  • the tool 39 is rotatably mounted about a second axis CC 'substantially orthogonal to the linkage arm 37.
  • the tool 39 comprises, from left to right on the Figure 2 , a substantially cylindrical drive portion 49 axially wedged against an inner surface 50 of the linkage arm 37, and a piercing cutter 51 integral with a free end 52 of the actuating portion 49.
  • the inner surface extends along an axis of the arm 37 perpendicular to the axis C-C '.
  • the piercing cutter 51 protrudes outwardly from the arm 37 along the axis C-C '. It has a free end 53 of drilling.
  • the drilling cutter 51 has a theoretical or nominal length L T of between 12 mm and 40 mm and a diameter of between 0.8 mm and 3.0 mm.
  • the arm 37 and consequently the tool 39, is rotatable about the axis BB 'on an angular displacement of at least 30 ° and preferably 180 °, in particular being able to take an upper vertical position in which the second axis CC 'is substantially parallel to the first axis A-A', and a plurality of inclination positions in which the second axis CC 'is inclined with respect to the first axis A-A'.
  • the tool 39 remains substantially in the vertical plane passing through the first axis A-A ', regardless of its position around the axis B-B'.
  • the motor 41 for rotating the tool 39 is fixed on the link arm 37. It is connected to the tool 39 by transmission means 55 arranged in the arm 37.
  • the adjusting means 43 of the inclination angle of the tool 39 comprise a motor 61 for actuating a worm 63, and a toothed wheel 65 tangent; mounted to the link arm 37.
  • the worm 63 extends in a direction substantially parallel to the first axis A-A '.
  • the toothed wheel 65 is fixed on the arm 37 at its end 45. It extends in a vertical plane.
  • the means 23 for axial and radial relative positioning of the tool-holder assembly 21 with respect to the lens support 19 comprise means 71 for tilting the carriage 27 around its tilting axis X-X ', and means 73 for translation.
  • axial axis of the tool holder assembly 21 along an axis DD ' parallel to the first axis A-A'.
  • the tilting means 71 of the carriage 27 and the axial translation means 73 of the tool-holder assembly are respectively connected to an actuator 75A for placing the carriage 27 in relative position with respect to the tool-holder assembly 21 along the an axis perpendicular to the axis A-A ', and an actuator 75B relative positioning of the tool holder assembly 21 relative to the carriage 27 along the axis A-A'.
  • These actuators 75A, 75B are constituted, for example, by respective drive-stepper motors of the tilting means 71 and translation means 73.
  • the actuators 75A and 75B are controlled by the control unit 25.
  • the control unit 25 comprises a computer 77 which determines the relative position of the tool-holder assembly 21 with respect to the carriage 27, with reference to their positions on the frame 17, as a function of the respective control signals transmitted to the actuators 75A. , 75B.
  • the calculator 77 also calculates the relative position that must be occupied by the free end 53 of the cutter 51 with respect to the blank 13 during drilling, as a function of the depth of penetration and the type of blind hole or countersink. realize in the sketch 13.
  • the control unit 25 controls, on the one hand, the displacement of the tool-holder assembly 21 along the axis DD 'and, on the other hand, the displacement of the carriage 19 around the axis X-X' .
  • This last movement is likeable to a pseudo-translation movement along an axis perpendicular to the first axis A-A '.
  • the control unit 25 also slaved the axial and radial positioning means 23 to position the cutter 51 of the tool 39 in contact with the blank 13 of the lens 15 and make it penetrate into it.
  • the control unit 25 is connected to the actuating motor 61 of the tilting means 43 for controlling the rotation of the worm 63 in a first direction or in the opposite direction to the first direction, so as to adjust the inclination of the second axis CC 'relative to the first axis A-A'.
  • the probe assembly 24 comprises two arms 79A, 79B carried by the frame 17, each arm 79A, 79B being provided with a respective feeler finger 81A, 81B.
  • Each arm 79A, 79B is thus movable in translation along a substantially horizontal axis E-E ', between a retracted retracted position in the frame 17 and an active measuring position.
  • the fingers 81A, 81B extend substantially parallel to the axis A-A ', facing each other, on either side of the blank 13. in the measuring position, the front finger 81A is applied against a front surface 83A of the blank 13 and the rear finger 81B is applied against a rear surface 83B of the blank 13.
  • the probe assembly 24 further comprises a sensor 85 for measuring the linear position of the feeler fingers 81A, 81B along the axis E-E '.
  • the sensor 85 is connected to the computer 77.
  • the linear positions obtained by the sensor 85 are converted by the computer 77 into a distance between the feeler fingers 81A, 81B.
  • This method comprises a step of placing the blank 13 in the support 19, a step of drilling a blind bore of a desired depth into the front surface 83A of the blank, a step of measuring the actual depth of the blank. the blind bore using the probe assembly 24, which comprises a probing phase before the drilling step and a probing phase after the piercing step.
  • the method according to the invention further comprises a step of calibrating the control means 25.
  • the blank 13 is wedged between the two ends 33A, 33B of the half-shafts 29A, 29B by an adapter suitably positioned on this blank.
  • the front surface 83A of the blank 13 is substantially perpendicular to the axis A-A '.
  • the probe assembly 24 is activated. As illustrated by Figure 3 , the feeler arms 79A, 79B are brought from their retracted position to their active measuring position in which the fingers 81A, 81B are respectively in contact with the front surface 83A and the rear surface 83B of the blank.
  • the measurement taken by the position sensor 85 is transmitted to the computer 77, which determines the thickness E AV of the blank 13, before drilling, at the desired drilling point 87 located on the front surface 83A.
  • the inclination adjusting means 43 are activated so that the link arm 37 is arranged perpendicularly to the axis A-A '.
  • the axis CC 'of the drilling cutter 51 is then substantially parallel to the axis A-A'.
  • the computer 77 determines the relative position of the inner surface 50 of the arm 37 relative to the position of the front surface 83A of the blank 13.
  • the position of the free end 53 of the drilling cutter is then calculated by the calculator, based on the relative position of the surface 50 and the theoretical length L T of the drilling tool 39, provided by the manufacturer.
  • the control means 25 are then activated to move the free end 53 and bring it substantially in contact with the surface 83A, at the point 87.
  • the control unit 25 activates the actuators 75A, 75B to mill a blind bore 91 of axis CC 'and a desired depth P D into the front surface 83A of the blank 13, based on the relative position of the free end 53 of the cutter 51 with respect to the blank calculated by the computer 77.
  • the probe assembly 24 is activated again.
  • the probe arms 79A, 79B are brought into their active measuring position, so that the front finger 81A contacts the bottom of the blind bore 91, and the rear finger 81B comes into contact with the rear surface 83B , opposite the background.
  • the thickness E AP of the blank 13 in the blind bore 91 is thus determined and transmitted to the computer 77.
  • the calculator 77 determines the actual length of the piercing tool 39 by the following formula:
  • the R The T - P D - E AV - E AP , where L R is the actual length of the drilling tool 39, L T is the theoretical length of the drilling tool given by the manufacturer, P D is the desired depth of the blind bore, E AV is the thickness measured by the feeler assembly 24 before the drilling of the blind bore 91, and E AP is the thickness measured by the assembly 24 in the blind bore 91 after drilling.
  • the actual length L R of the drilling tool 39 is then introduced into the computer 77, to replace the theoretical length L T to control the tool 39 during the subsequent drilling of blind holes and counterbores in ophthalmic lenses.
  • This method is used to overcome the manufacturing tolerances of drilling drills 51 used to make blind holes or counterbores in ophthalmic lenses.
  • each positioning actuator 75A, 75B which feels at least the 83A front surface of the blank 13, before and after drilling, it is possible to significantly improve the accuracy of the calculation of the position of the drilling cutter 51 on the machine 11.
  • the two probing phases are performed after drilling the blind bore 91, by measuring the thickness of the lens in the blind bore 91, and at a point in the vicinity of this bore 91.
  • the grinding machine 11 further comprises a wheel set comprising, for example, a roughing wheel, a beveling finishing wheel and a beveling polishing wheel.
  • a wheel set comprising, for example, a roughing wheel, a beveling finishing wheel and a beveling polishing wheel.
  • the probe assembly 24 comprises a single probe finger 81A for sensing the front surface 83A.
  • the actual depth of the blind bore 91 is determined by the difference between the measurement of the linear position of the finger 81A in contact with the piercing point 87, before the piercing, and the measurement of the linear position of the finger 81A at contact of the bottom of the bore 91, after drilling.

Description

La présente invention concerne un procédé d'étalonnage d'une machine de perçage de verres optiques comprenant :

  • un support de lentille ;
  • un ensemble porte-outil portant un outil de perçage rotatif comprenant une fraise de perçage ;
  • des moyens de déplacement relatif de l'ensemble porte-outil par rapport au support de lentille ; et
  • des moyens de commande de la position de l'outil de perçage par rapport au support de lentille comprenant des moyens de détermination de la position relative de l'ensemble porte-outil par rapport au support de lentille et au moins un actionneur de mise en position relative de l'ensemble porte-outil par rapport au support de lentille.
The present invention relates to a method of calibrating an optical lens piercing machine comprising:
  • a lens holder;
  • a toolholder assembly carrying a rotary drilling tool comprising a piercing cutter;
  • relative movement means of the tool holder assembly relative to the lens holder; and
  • means for controlling the position of the piercing tool with respect to the lens support comprising means for determining the relative position of the tool-holder assembly relative to the lens support and at least one positioning actuator relative to the tool holder assembly relative to the lens holder.

On connaît de EP-A-1 310 327 une machine de perçage du type précité. Dans cette machine, une fraise de perçage est calée dans un ensemble porte-outil afin de réaliser des trous traversants à travers une lentille ophtalmique. La position de l'extrémité de la fraise de perçage est étalonnée en fonction de la position de cette fraise dans le porte-outil, et de la longueur nominale de la fraise fournie par le fabricant. La précision sur cette position est par exemple de l'ordre de 0,5 mm.We know EP-A-1,310,327 a drilling machine of the aforementioned type. In this machine, a drill bit is wedged into a tool holder assembly to make through holes through an ophthalmic lens. The end position of the drill cutter is calibrated according to the position of this cutter in the tool holder, and the nominal length of the milling cutter supplied by the manufacturer. The accuracy on this position is for example of the order of 0.5 mm.

Le document WO 00/67974 décrit un procédé d'étalonnage selon le préambule de la revendication 1.The document WO 00/67974 describes a calibration method according to the preamble of claim 1.

Un tel étalonnage de la machine est satisfaisant pour réaliser des trous traversants dans des lentilles ophtalmiques. En effet, la machine est programmée pour déplacer l'outil de perçage par rapport à la lentille sur un déplacement supérieur à la somme de l'épaisseur de la lentille et de la tolérance maximale de longueur de la fraise.Such a calibration of the machine is satisfactory for making through holes in ophthalmic lenses. Indeed, the machine is programmed to move the drilling tool relative to the lens on a displacement greater than the sum of the thickness of the lens and the maximum tolerance of length of the cutter.

Toutefois, ce procédé d'étalonnage ne donne pas entière satisfaction pour la réalisation de trous borgnes et/ou de lamages dans les lentilles ophtalmiques.However, this calibration method is not entirely satisfactory for the production of blind holes and / or counterbores in ophthalmic lenses.

En effet, compte tenu de la faible épaisseur des lentilles ophtalmiques, la précision sur la position de l'extrémité de la fraise de perçage fournie par le fabricant n'est pas suffisante pour commander la position du fond du trou borgne dans la lentille avec suffisamment de précision.Indeed, given the small thickness of the ophthalmic lenses, the precision on the position of the end of the drill bit provided by the manufacturer is not sufficient to control the position of the bottom of the blind hole in the lens with sufficient precision.

Pour tenter de déterminer avec plus de précision la position de l'extrémité de la fraise de perçage, il est connu de placer une lentille dans le support, puis de déplacer la fraise de perçage vers la lentille pour déterminer la position de l'ensemble porte-outil par rapport au support lorsque l'ensemble ne peut plus se déplacer vers la lentille, après contact entre la fraise et la lentille.In an attempt to more accurately determine the position of the end of the piercing cutter, it is known to place a lens in the holder and then move the piercing cutter toward the lens to determine the position of the door assembly. tool relative to the support when the assembly can no longer move towards the lens, after contact between the cutter and the lens.

Toutefois, la précision de ce procédé est limitée, et le risque de casse de la fraise de perçage, qui est très fine, est élevé.However, the accuracy of this process is limited, and the risk of breakage of the drill bit, which is very thin, is high.

Un but de l'invention est donc d'obtenir un procédé d'étalonnage d'une machine de perçage de verres optiques de précision et de fiabilité améliorées.An object of the invention is therefore to obtain a calibration method of an optical glass drilling machine of improved precision and reliability.

A cet effet, l'invention a pour objet un procédé selon la revendication 1.For this purpose, the subject of the invention is a method according to claim 1.

Le procédé selon l'invention peut comprendre l'une ou plusieurs des caractéristiques qui font l'objet des revendications 2 à 7.The method according to the invention may comprise one or more of the features which are the subject of claims 2 to 7.

L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée uniquement à titre d'exemple, et faite en se référant aux dessins annexés, sur lesquels :

  • la Figure 1 est une vue schématique partielle en élévation des parties pertinentes d'une machine de perçage pour la mise en oeuvre du procédé selon l'invention ;
  • la Figure 2 est une vue agrandie d'un détail marqué II sur la Figure 1;
  • la Figure 3 est une vue partielle en perspective d'une ébauche de lentille utilisée dans le procédé selon l'invention, lors d'une première étape de ce procédé ;
  • la Figure 4 est une vue analogue à la Figure 3 lors d'une deuxième étape de ce procédé ; et
  • la Figure 5 est une vue en section verticale suivant un plan V-V d'un détail de la Figure 4.
The invention will be better understood on reading the description which follows, given solely by way of example, and with reference to the appended drawings, in which:
  • the Figure 1 is a partial schematic view in elevation of the relevant parts of a drilling machine for carrying out the method according to the invention;
  • the Figure 2 is an enlarged view of a detail marked II on the Figure 1 ;
  • the Figure 3 is a partial perspective view of a lens blank used in the method according to the invention, in a first step of this method;
  • the Figure 4 is a view similar to the Figure 3 during a second step of this process; and
  • the Figure 5 is a view in vertical section along a VV plane of a detail of the Figure 4 .

La machine de perçage 11 représentée sur la Figure 1 est destinée à réaliser des trous dans des lentilles ophtalmiques, ces lentilles ayant été préalablement ébauchées par meulage périphérique.The drilling machine 11 shown on the Figure 1 is intended to make holes in ophthalmic lenses, these lenses having been previously roughed by peripheral grinding.

La machine 11 représentée sur la Figure 1 est adaptée pour percer des trous borgnes ou des lamages dans une lentille, ces trous borgnes étant utilisés pour immobiliser une pièce mécanique, par exemple en y enfonçant un ergot.The machine 11 shown on the Figure 1 is adapted to drill blind holes or countersinks in a lens, these blind holes being used to immobilize a mechanical part, for example by pressing a pin.

Dans l'exemple représenté sur la Figure 1, une ébauche de calibration 13 est placée dans la machine 11. L'ébauche 13 est un disque sensiblement plan présentant une épaisseur constante.In the example shown on the Figure 1 , a calibration blank 13 is placed in the machine 11. The blank 13 is a substantially planar disk having a constant thickness.

La machine 11 comprend un bâti 17, un support de lentille 19, un ensemble porte-outil 21, des moyens 23 de positionnement relatif axial et radial de l'ensemble 21 par rapport au support 19, un ensemble de palpage 24 et une unité de commande 25.The machine 11 comprises a frame 17, a lens support 19, a tool-holder assembly 21, means 23 for axial and radial relative positioning of the assembly 21 with respect to the support 19, a probe assembly 24 and a control unit. order 25.

Le support de lentille 19 comprend un chariot 27 monté basculant sur le bâti 17, muni de deux demi-arbres 29A, 29B adaptés pour saisir l'ébauche 13, et un moteur 31 d'entraînement en rotation lente de l'ébauche 13.The lens holder 19 comprises a carriage 27 pivotally mounted on the frame 17, provided with two half-shafts 29A, 29B adapted to grip the blank 13, and a motor 31 for slowly rotating the blank 13.

Le chariot 27 est articulé par rapport au bâti 17, par un bord longitudinal arrière 28, autour d'un axe X-X' de basculement sensiblement horizontal.The carriage 27 is hinged relative to the frame 17, by a rear longitudinal edge 28, about an axis X-X 'of substantially horizontal tilting.

Les deux demi-arbres 29A, 29B sont montés le long du bord longitudinal avant 32 du chariot 27. Ces demi-arbres 29A, 29B s'étendent le long d'un premier axe A-A' sensiblement horizontal parallèle à l'axe X-X'.The two half-shafts 29A, 29B are mounted along the front longitudinal edge 32 of the carriage 27. These half-shafts 29A, 29B extend along a substantially horizontal first axis AA 'parallel to the X-X axis .

Les demi-arbres 29A, 29B sont munis d'extrémités libres respectives 33A, 33B disposées en regard l'une de l'autre, adaptées pour saisir l'ébauche 13.The half-shafts 29A, 29B are provided with respective free ends 33A, 33B arranged opposite one another, adapted to grip the blank 13.

Le moteur d'entraînement 31 de l'ébauche 13 entraîne en rotation les demi-arbres 29A, 29B autour du premier axe A-A' par un mécanisme de transmission (non-ieprésenté).The drive motor 31 of the blank 13 rotates the half-shafts 29A, 29B around the first axis A-A 'by a transmission mechanism (not shown).

Dans la machine 11 illustrée par la Figure 1, l'ensemble porte-outil 21 comprend un support 35, un bras 37 de liaison en saillie par rapport au support 35, un outil de perçage 39, un moteur 41 d'entraînement en rotation rapide de l'outil 39, et des moyens 43 d'inclinaison de l'outil 39 par rapport au support 35.In the machine 11 illustrated by the Figure 1 , the tool holder assembly 21 comprises a support 35, a linkage arm 37 projecting from the support 35, a drilling tool 39, a rotation drive motor 41 the tool 39, and means 43 for tilting the tool 39 relative to the support 35.

Le bras de liaison 37 est articulé par une première extrémité 45 sur le support 21, autour d'un axe de pivotement horizontal B-B' sensiblement orthogonal au premier axe A-A'.The link arm 37 is articulated by a first end 45 on the support 21, about a horizontal pivot axis B-B 'substantially orthogonal to the first axis A-A'.

Comme illustré par la Figure 2, l'outil 39 est monté dans un logement de guidage ménagé à l'extrémité libre 47 du bras de liaison. L'outil 39 est monté rotatif autour d'un deuxième axe C-C' sensiblement orthogonal au bras de liaison 37.As illustrated by Figure 2 , the tool 39 is mounted in a guide housing formed at the free end 47 of the connecting arm. The tool 39 is rotatably mounted about a second axis CC 'substantially orthogonal to the linkage arm 37.

L'outil 39 comprend, de la gauche vers la droite sur la Figure 2, une partie d'entraînement 49 sensiblement cylindrique calée axialement contre une surface interne 50 du bras de liaison 37, et une fraise de perçage 51 solidaire d'une extrémité libre 52 de la partie d'actionnement 49.The tool 39 comprises, from left to right on the Figure 2 , a substantially cylindrical drive portion 49 axially wedged against an inner surface 50 of the linkage arm 37, and a piercing cutter 51 integral with a free end 52 of the actuating portion 49.

La surface interne s'étend suivant un axe du bras 37 perpendiculairement à l'axe C-C'.The inner surface extends along an axis of the arm 37 perpendicular to the axis C-C '.

La fraise de perçage 51 fait saillie extérieurement hors du bras 37 le long de l'axe C-C'. Elle présente une extrémité libre 53 de perçage.The piercing cutter 51 protrudes outwardly from the arm 37 along the axis C-C '. It has a free end 53 of drilling.

La fraise de perçage 51 présente une longueur théorique ou nominale LT comprise entre 12 mm et 40 mm et un diamètre compris entre 0,8 mm et 3,0 mm.The drilling cutter 51 has a theoretical or nominal length L T of between 12 mm and 40 mm and a diameter of between 0.8 mm and 3.0 mm.

Le bras 37, et par suite l'outil 39, est mobile en rotation autour de l'axe B-B' sur un déplacement angulaire d'au moins 30° et préférentiellement de 180°, en pouvant prendre notamment une position verticale supérieure dans laquelle le deuxième axe C-C' est sensiblement parallèle au premier axe A-A', et une pluralité de positions d'inclinaison dans laquelle le deuxième axe C-C' est incliné par rapport au premier axe A-A'.The arm 37, and consequently the tool 39, is rotatable about the axis BB 'on an angular displacement of at least 30 ° and preferably 180 °, in particular being able to take an upper vertical position in which the second axis CC 'is substantially parallel to the first axis A-A', and a plurality of inclination positions in which the second axis CC 'is inclined with respect to the first axis A-A'.

Dans l'exemple illustré par la Figure 1, l'outil 39 reste sensiblement dans le plan vertical qui passe par le premier axe A-A', quelle que soit sa position autour de l'axe B-B'.In the example illustrated by the Figure 1 , the tool 39 remains substantially in the vertical plane passing through the first axis A-A ', regardless of its position around the axis B-B'.

Le moteur 41 d'entraînement en rotation de l'outil 39 est fixé sur le bras de liaison 37. Il est relié à l'outil 39 par des moyens de transmission 55 disposés dans le bras 37.The motor 41 for rotating the tool 39 is fixed on the link arm 37. It is connected to the tool 39 by transmission means 55 arranged in the arm 37.

Les moyens de réglage 43 de l'angle d'inclinaison de l'outil 39 comprennent un moteur 61 d'actionnement d'une vis sans fin 63, et une roue dentée 65 tangente; montée solidaire du bras de liaison 37. La vis sans fin 63 s'étend suivant une direction sensiblement parallèle au premier axe A-A'.The adjusting means 43 of the inclination angle of the tool 39 comprise a motor 61 for actuating a worm 63, and a toothed wheel 65 tangent; mounted to the link arm 37. The worm 63 extends in a direction substantially parallel to the first axis A-A '.

La roue dentée 65 est fixée sur le bras 37 à son extrémité 45. Elle s'étend dans un plan vertical.The toothed wheel 65 is fixed on the arm 37 at its end 45. It extends in a vertical plane.

Les moyens 23 de positionnement relatif axial et radial de l'ensemble porte-outil 21 par rapport au support de lentille 19 comprennent des moyens 71 de basculement du chariot 27 autour de son axe de basculement X-X', et des moyens 73 de translation axiale de l'ensemble porte-outil 21 le long d'un axe D-D' parallèle au premier axe A-A'.The means 23 for axial and radial relative positioning of the tool-holder assembly 21 with respect to the lens support 19 comprise means 71 for tilting the carriage 27 around its tilting axis X-X ', and means 73 for translation. axial axis of the tool holder assembly 21 along an axis DD 'parallel to the first axis A-A'.

Les moyens 71 de basculement du chariot 27 et les moyens 73 de translation axiale de l'ensemble porte-outil sont reliés respectivement à un actionneur 75A de mise en position relative du chariot 27 par rapport à l'ensemble porte-outil 21 le long d'un axe perpendiculaire à l'axe A-A', et à un actionneur 75B de mise en position relative de l'ensemble porte-outil 21 par rapport au chariot 27 le long de l'axe A-A'. Ces actionneurs 75A, 75B sont par exemple constitués par des moteurs pas-à-pas d'entraînement respectifs des moyens de basculement 71 et des moyens de translation 73. Les actionneurs 75A et 75B sont pilotés par l'unité de commande 25.The tilting means 71 of the carriage 27 and the axial translation means 73 of the tool-holder assembly are respectively connected to an actuator 75A for placing the carriage 27 in relative position with respect to the tool-holder assembly 21 along the an axis perpendicular to the axis A-A ', and an actuator 75B relative positioning of the tool holder assembly 21 relative to the carriage 27 along the axis A-A'. These actuators 75A, 75B are constituted, for example, by respective drive-stepper motors of the tilting means 71 and translation means 73. The actuators 75A and 75B are controlled by the control unit 25.

L'unité de commande 25 comprend un calculateur 77 qui détermine la position relative de l'ensemble porte-outil 21 par rapport au chariot 27, en référence à leurs positions sur le bâti 17, en fonction des signaux de commande respectifs transmis aux actionneurs 75A, 75B.The control unit 25 comprises a computer 77 which determines the relative position of the tool-holder assembly 21 with respect to the carriage 27, with reference to their positions on the frame 17, as a function of the respective control signals transmitted to the actuators 75A. , 75B.

Le calculateur 77 calcule également la position relative qui doit être occupée par l'extrémité libre 53 de la fraise 51 par rapport à l'ébauche 13 lors du perçage, en fonction de la profondeur de pénétration et du type de trou borgne ou de lamage à réaliser dans l'ébauche 13.The calculator 77 also calculates the relative position that must be occupied by the free end 53 of the cutter 51 with respect to the blank 13 during drilling, as a function of the depth of penetration and the type of blind hole or countersink. realize in the sketch 13.

L'unité de commande 25 pilote d'une part, le déplacement de l'ensemble porte-outil 21 le long de l'axe D-D' et d'autre part, le déplacement du chariot 19 autour de l'axe X-X'. Ce dernier mouvement est assimilable à un mouvement de pseudo-translation le long d'un axe perpendiculaire au premier axe A-A'.The control unit 25 controls, on the one hand, the displacement of the tool-holder assembly 21 along the axis DD 'and, on the other hand, the displacement of the carriage 19 around the axis X-X' . This last movement is likeable to a pseudo-translation movement along an axis perpendicular to the first axis A-A '.

L'unité de commande 25 asservit par ailleurs les moyens de positionnement axial et radial 23 pour positionner la fraise 51 de l'outil 39 au contact de l'ébauche 13 de la lentille 15 et la faire pénétrer dans celle-ci.The control unit 25 also slaved the axial and radial positioning means 23 to position the cutter 51 of the tool 39 in contact with the blank 13 of the lens 15 and make it penetrate into it.

L'unité de commande 25 est reliée au moteur d'actionnement 61 des moyens d'inclinaison 43 pour commander la rotation de la vis sans fin 63 dans un premier sens ou dans le sens opposé au premier sens, afin de régler l'inclinaison du deuxième axe C-C' par rapport au premier axe A-A'.The control unit 25 is connected to the actuating motor 61 of the tilting means 43 for controlling the rotation of the worm 63 in a first direction or in the opposite direction to the first direction, so as to adjust the inclination of the second axis CC 'relative to the first axis A-A'.

L'ensemble de palpage 24 comprend deux bras 79A, 79B portés par le bâti 17, chaque bras 79A, 79B étant muni d'un doigt de palpage respectif 81A, 81B.The probe assembly 24 comprises two arms 79A, 79B carried by the frame 17, each arm 79A, 79B being provided with a respective feeler finger 81A, 81B.

Chaque bras 79A, 79B est ainsi mobile en translation le long d'un axe E-E' sensiblement horizontal, entre une position escamotée rétractée dans le bâti 17 et une position active de mesure.Each arm 79A, 79B is thus movable in translation along a substantially horizontal axis E-E ', between a retracted retracted position in the frame 17 and an active measuring position.

Dans la position active de mesure, les doigts 81A, 81 B s'étendent sensiblement parallèlement à l'axe A-A', en regard l'un de l'autre, de part et d'autre de l'ébauche 13. Ainsi, dans la position de mesure, le doigt avant 81A est appliqué contre une surface avant 83A de l'ébauche 13 et le doigt arrière 81B est appliqué contre une surface arrière 83B de l'ébauche 13.In the active measuring position, the fingers 81A, 81B extend substantially parallel to the axis A-A ', facing each other, on either side of the blank 13. in the measuring position, the front finger 81A is applied against a front surface 83A of the blank 13 and the rear finger 81B is applied against a rear surface 83B of the blank 13.

L'ensemble de palpage 24 comprend en outre un capteur 85 de mesure de la position linéaire des doigts de palpage 81A, 81B le long de l'axe E-E'. Le capteur 85 est raccordé au calculateur 77. Les positions linéaires obtenues par le capteur 85 sont converties par le calculateur 77 en une distance entre les doigts de palpage 81A, 81B.The probe assembly 24 further comprises a sensor 85 for measuring the linear position of the feeler fingers 81A, 81B along the axis E-E '. The sensor 85 is connected to the computer 77. The linear positions obtained by the sensor 85 are converted by the computer 77 into a distance between the feeler fingers 81A, 81B.

Un procédé d'étalonnage selon l'invention va maintenant être décrit.A calibration method according to the invention will now be described.

Ce procédé comprend une étape de disposition de l'ébauche 13 dans le support 19, une étape de perçage d'un alésage borgne d'une profondeur désirée dans la surface avant 83A de l'ébauche, une étape de mesure de la profondeur réelle de l'alésage borgne à l'aide de l'ensemble de palpage 24, laquelle comprend une phase de palpage avant l'étape de perçage et une phase de palpage après l'étape de perçage. Le procédé selon invention comprend en outre une étape de calibration des moyens de commande 25.This method comprises a step of placing the blank 13 in the support 19, a step of drilling a blind bore of a desired depth into the front surface 83A of the blank, a step of measuring the actual depth of the blank. the blind bore using the probe assembly 24, which comprises a probing phase before the drilling step and a probing phase after the piercing step. The method according to the invention further comprises a step of calibrating the control means 25.

Initialement, l'ébauche 13 est calée entre les deux extrémités 33A, 33B des demi-arbres 29A, 29B par un adaptateur convenablement positionné sur cette ébauche. Dans cette position, la surface avant 83A de l'ébauche 13 est sensiblement perpendiculaire à l'axe A-A'.Initially, the blank 13 is wedged between the two ends 33A, 33B of the half-shafts 29A, 29B by an adapter suitably positioned on this blank. In this position, the front surface 83A of the blank 13 is substantially perpendicular to the axis A-A '.

Dans la première phase de palpage, l'ensemble de palpage 24 est activé. Comme illustré par la Figure 3, les bras de palpage 79A, 79B sont amenés de leur position rétractée à leur position active de mesure dans laquelle les doigts 81A, 81 B sont au contact respectivement de la surface avant 83A et de la surface arrière 83B de l'ébauche.In the first probing phase, the probe assembly 24 is activated. As illustrated by Figure 3 , the feeler arms 79A, 79B are brought from their retracted position to their active measuring position in which the fingers 81A, 81B are respectively in contact with the front surface 83A and the rear surface 83B of the blank.

La mesure relevée par le capteur de position 85 est transmise au calculateur 77, qui détermine l'épaisseur EAV de l'ébauche 13, avant perçage, au niveau du point de perçage souhaité 87 situé sur la surface avant 83A.The measurement taken by the position sensor 85 is transmitted to the computer 77, which determines the thickness E AV of the blank 13, before drilling, at the desired drilling point 87 located on the front surface 83A.

Au début de l'étape de perçage, les moyens de réglage de l'inclinaison 43 sont activés pour que le bras de liaison 37 soit disposé perpendiculairement à l'axe A-A'. L'axe C-C' de la fraise de perçage 51 est alors sensiblement parallèle à l'axe A-A'. Le calculateur 77 détermine alors la position relative de la surface interne 50 du bras 37 par rapport à la position de la surface avant 83A de l'ébauche 13. La position de l'extrémité libre 53 de la fraise de perçage est alors calculée par le calculateur, sur la base de la position relative de la surface 50 et de la longueur théorique LT de l'outil de perçage 39, fournie par le fabricant.At the beginning of the drilling step, the inclination adjusting means 43 are activated so that the link arm 37 is arranged perpendicularly to the axis A-A '. The axis CC 'of the drilling cutter 51 is then substantially parallel to the axis A-A'. The computer 77 then determines the relative position of the inner surface 50 of the arm 37 relative to the position of the front surface 83A of the blank 13. The position of the free end 53 of the drilling cutter is then calculated by the calculator, based on the relative position of the surface 50 and the theoretical length L T of the drilling tool 39, provided by the manufacturer.

Les moyens de commande 25 sont alors activés pour déplacer l'extrémité libre 53 et l'amener sensiblement au contact de la surface 83A, au niveau du point 87.The control means 25 are then activated to move the free end 53 and bring it substantially in contact with the surface 83A, at the point 87.

L'unité de commande 25 active les actionneurs 75A, 75B pour fraiser un alésage 91 borgne d'axe C-C' et d'une profondeur désirée PD dans la surface avant 83A de l'ébauche 13, sur la base de la position relative de l'extrémité libre 53 de la fraise 51 par rapport à l'ébauche calculée par le calculateur 77.The control unit 25 activates the actuators 75A, 75B to mill a blind bore 91 of axis CC 'and a desired depth P D into the front surface 83A of the blank 13, based on the relative position of the free end 53 of the cutter 51 with respect to the blank calculated by the computer 77.

Lorsque le calculateur 77 détermine que la profondeur désirée PD est atteinte, le déplacement axial de la fraise 51 est arrêté. La fraise 51 est alors déplacée radialement par rapport à l'axe C-C' pour réaliser l'alésage 91 visible sur la Figure 4. Cet alésage présente donc une section transversale supérieure à la section transversale de la fraise 51.When the computer 77 determines that the desired depth P D is reached, the axial displacement of the cutter 51 is stopped. The cutter 51 is then moved radially relative to the axis CC 'to make the bore 91 visible on the Figure 4 . This bore therefore has a cross section greater than the cross section of the cutter 51.

Puis, la fraise 51 est extraite de l'alésage 91 et l'ensemble porte-outil 21 est déplacé à l'écart de l'ébauche 13.Then, the cutter 51 is extracted from the bore 91 and the tool-holder assembly 21 is moved away from the blank 13.

Dans la seconde phase de palpage, l'ensemble de palpage 24 est de nouveau activé. Les bras de palpage 79A, 79B sont amenés dans leur position active de mesure, de sorte que le doigt avant 81A entre en contact avec le fond de l'alésage borgne 91, et que le doigt arrière 81B entre en contact avec la surface arrière 83B, en regard du fond. L'épaisseur EAP de l'ébauche 13 dans l'alésage borgne 91 est ainsi déterminée et transmise au calculateur 77.In the second probing phase, the probe assembly 24 is activated again. The probe arms 79A, 79B are brought into their active measuring position, so that the front finger 81A contacts the bottom of the blind bore 91, and the rear finger 81B comes into contact with the rear surface 83B , opposite the background. The thickness E AP of the blank 13 in the blind bore 91 is thus determined and transmitted to the computer 77.

En référence aux Figures 2 et 5, le calculateur 77 détermine alors la longueur réelle de l'outil de perçage 39 par la formule suivante : L R = L T - P D - E AV - E AP ,

Figure imgb0001
où LR est la longueur réelle de l'outil de perçage 39, LT est la longueur théorique de l'outil de perçage donnée par le fabricant, PD est la profondeur désirée de l'alésage borgne, EAV est l'épaisseur mesurée par l'ensemble de palpage 24 avant le perçage de l'alésage borgne 91, et EAP est l'épaisseur mesurée par l'ensemble 24 dans l'alésage borgne 91 après son perçage.With reference to Figures 2 and 5 the calculator 77 then determines the actual length of the piercing tool 39 by the following formula: The R = The T - P D - E AV - E AP ,
Figure imgb0001
where L R is the actual length of the drilling tool 39, L T is the theoretical length of the drilling tool given by the manufacturer, P D is the desired depth of the blind bore, E AV is the thickness measured by the feeler assembly 24 before the drilling of the blind bore 91, and E AP is the thickness measured by the assembly 24 in the blind bore 91 after drilling.

La longueur réelle LR de l'outil de perçage 39 est alors introduite dans le calculateur 77, afin de remplacer la longueur théorique LT pour commander l'outil 39 lors du perçage ultérieur de trous borgnes et de lamages dans des lentilles ophtalmiques.The actual length L R of the drilling tool 39 is then introduced into the computer 77, to replace the theoretical length L T to control the tool 39 during the subsequent drilling of blind holes and counterbores in ophthalmic lenses.

Grâce à l'invention qui vient d'être décrite, il est possible de disposer d'un procédé simple et précis d'étalonnage d'une machine de perçage 11 de verres optiques, sans l'utilisation d'outils spécifiques susceptibles de détériorer la fraise 51. L'étalonnage est ainsi réalisé sans contact de la fraise 51 avec un outil de calibration additionnel.Thanks to the invention which has just been described, it is possible to have a simple and accurate method of calibrating a drilling machine 11 of optical glasses, without the use of specific tools that could deteriorate the 51. The calibration is thus achieved without contact of the cutter 51 with an additional calibration tool.

Ce procédé est mis en oeuvre pour s'affranchir des tolérances de fabrication des fraises de perçage 51 utilisées pour réaliser des trous borgnes ou des lamages dans des lentilles ophtalmiques.This method is used to overcome the manufacturing tolerances of drilling drills 51 used to make blind holes or counterbores in ophthalmic lenses.

Par le simple perçage d'un alésage borgne 91 dans une ébauche 13, et par la mesure de la profondeur réelle de l'alésage borgne 91 par un capteur de palpage distinct de chaque actionneur de mise en position 75A, 75B qui palpe au moins la surface avant 83A de l'ébauche 13, avant et après son perçage, il est possible d'améliorer considérablement la précision du calcul de la position de la fraise de perçage 51 sur la machine 11.By simply drilling a blind bore 91 in a blank 13, and by measuring the actual depth of the blind bore 91 by a separate probing sensor of each positioning actuator 75A, 75B which feels at least the 83A front surface of the blank 13, before and after drilling, it is possible to significantly improve the accuracy of the calculation of the position of the drilling cutter 51 on the machine 11.

En variante, les deux phases de palpage sont réalisées après le perçage de l'alésage borgne 91, en mesurant l'épaisseur de la lentille dans l'alésage borgne 91, et en un point au voisinage de cet alésage 91.Alternatively, the two probing phases are performed after drilling the blind bore 91, by measuring the thickness of the lens in the blind bore 91, and at a point in the vicinity of this bore 91.

Dans une autre variante (non représentée), la machine de meulage 11 comprend en outre un train de meules comportant par exemple une meule d'ébauchage, une meule de finition avec biseautage et une meule de polissage avec biseautage. Une telle machine est décrite par exemple dans la demande française n° 03 03 792 .In another variant (not shown), the grinding machine 11 further comprises a wheel set comprising, for example, a roughing wheel, a beveling finishing wheel and a beveling polishing wheel. Such a machine is described for example in the French application no. 03 03 792 .

Dans une autre variante, l'ensemble de palpage 24 comprend un doigt de palpage unique 81A pour palper la surface avant 83A. Dans cette variante, la profondeur réelle de l'alésage borgne 91 est déterminée par la différence entre la mesure de la position linéaire du doigt 81A au contact du point 87 de perçage, avant le perçage, et la mesure de position linéaire du doigt 81A au contact du fond de l'alésage 91, après le perçage.In another variant, the probe assembly 24 comprises a single probe finger 81A for sensing the front surface 83A. In this variant, the actual depth of the blind bore 91 is determined by the difference between the measurement of the linear position of the finger 81A in contact with the piercing point 87, before the piercing, and the measurement of the linear position of the finger 81A at contact of the bottom of the bore 91, after drilling.

Claims (7)

  1. Method for calibrating a machine (1) for drilling optical glasses comprising:
    • a lens support (19);
    • a tool holder assembly (21) holding a rotary drilling tool (39) having a drill cutter (51);
    • means (23) for relative displacement of the tool holder assembly (21) in relation to the lens support (19); and
    • means (25) for controlling the position of the drilling tool (39) in relation to the lens support (19) comprising means (77) for determining the relative position of the tool holder assembly (21) in relation to the lens support (19), and at least one actuator (75A, 75B) for relative positioning of the tool holder (21) in relation to the lens support (19);
    comprising the following steps:
    (a) placing a blank (13) in the support (19);
    (b) drilling a blind bore (91) on the basis of a desired depth (PD) into a first surface (83A) of the blank (13),
    characterised in that the drilling is controlled by the control means (25) on the basis of the relative position of the drilling tool (39) in relation to the blank (13) determined as a function of the desired depth (PD) and the theoretical length (LT) of the drilling tool (39) by the determination means (77), wherein the method comprises the following steps:
    (c) measuring the real depth (EAV - EAP) of the blind bore (91); and
    (d) calibrating the control means (25) as a function of the desired depth (PD) and the measured real depth (EAV - EAP).
  2. Method according to claim 1, characterised in that step (c) is conducted by means of at least one position sensor (85) connected to a front feeler (81A) intended to be positioned to face the first surface of step (c) comprising at least two phases of sensing the first surface (83A), wherein at least one sensing phase is performed in the base of the bore (91) after the blind bore (91) has been drilled.
  3. Method according to claim 2, characterised in that at least one phase of sensing the first surface (83A) is performed at the level of the drilling point (87) of the blind bore (91) before the blind bore (91) is drilled.
  4. Method according to claim 2 or 3, characterised in that the position sensor (85) is additionally connected to a rear feeler (81B), wherein for each sensing phase of the first surface (83A), step (c) comprises sensing a second surface (83B) of the blank located opposite the first surface (83A) in order to determine a measured thickness of the blank (13).
  5. Method according to claim 4, characterised in that the calibration step comprises calculating a real length (LR) of the drilling tool (39) on the basis of the theoretical length (LT) of the drilling tool (39) corrected by the difference between the thickness (EAV) of the blank (13) measured before the blind bore (91) is drilled and the thickness(EAP) of the blank measured after this blind bore has been drilled.
  6. Method according to any one of the preceding claims, characterised in that the drilling step comprises the formation of a blind bore (91) with a cross-section larger than the cross-section of a drill cutter (51) of the tool (39).
  7. Method according to any one of the preceding claims, characterised in that step (a) comprises arranging a plane blank (13) of substantially constant thickness in the lens support (19).
EP06778799A 2005-07-25 2006-07-06 Method for calibrating an optical glass drilling machine Expired - Fee Related EP1963066B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507890A FR2888765B1 (en) 2005-07-25 2005-07-25 CALIBRATION METHOD OF OPTICAL GLASS DRILLING MACHINE
PCT/FR2006/001623 WO2007012717A1 (en) 2005-07-25 2006-07-06 Method for calibrating an optical glass drilling machine

Publications (2)

Publication Number Publication Date
EP1963066A1 EP1963066A1 (en) 2008-09-03
EP1963066B1 true EP1963066B1 (en) 2009-04-08

Family

ID=36200600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778799A Expired - Fee Related EP1963066B1 (en) 2005-07-25 2006-07-06 Method for calibrating an optical glass drilling machine

Country Status (3)

Country Link
EP (1) EP1963066B1 (en)
FR (1) FR2888765B1 (en)
WO (1) WO2007012717A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297524B (en) * 2017-05-15 2018-09-25 中车青岛四方机车车辆股份有限公司 Floor openings device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRN990012A1 (en) * 1999-05-06 2000-11-06 Ct Ottico Foto G I O Snc Di Gi MACHINE FOR DRILLING OR MILLING LENSES IN GLASSES.

Also Published As

Publication number Publication date
FR2888765B1 (en) 2008-10-10
FR2888765A1 (en) 2007-01-26
WO2007012717A1 (en) 2007-02-01
EP1963066A1 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1807244B1 (en) Device and method for adjusting the drilling direction of a drilling tool for an ophthalmic lens
EP0853527B1 (en) Device for measuring or checking an orbitally mobile cylindrical part during machining thereof
FR3003488A1 (en) METHOD OF DRILLING AN OPHTHALMIC LENS ACCORDING TO A HELICOIDAL OR PSEUDO-HELICOIDAL TRACK AND DRILLING DEVICE THEREFOR
EP0172105A1 (en) Working centre for numerically controlled beams
FR2751256A1 (en) MACHINE FOR GRINDING OPTICAL LENSES
EP1689569B1 (en) Method for piercing optical glasses with the aid of a digitally controlled drill and device for carrying out said method .
EP1963066B1 (en) Method for calibrating an optical glass drilling machine
EP3024619B1 (en) Method and machine for etching optical lenses
WO2007060329A1 (en) Method and device for trimming an ophthalmic lens in order to machine the edge of the lens along a desired curve
EP2627476B1 (en) Template for calibrating a machine used to machine an ophthalmic lens, device and method using such a template
EP1522378B1 (en) Five axis machine tool with continuous grinding wheel dressing device
EP2964423B1 (en) Device for cutting an ophthalmic lens
EP1993797B1 (en) Method for drilling an ophthalmic lens to obtain the desired shape and dimension of a hole to be drilled in said lens
EP1910023B1 (en) Method and device for measuring the geometry of a cutting edge to be chamfered
EP2214865B1 (en) Device for correcting the edging of an ophthalmic lens and method for edging an ophthalmic lens
EP0991496B1 (en) Method and apparatus for sensing spectacle frames, and corresponding grinding machine
EP2024135B1 (en) Device and method of trimming a lens including verification of the adequacy of a lock adapter of said lens with a characteristic of this lens or its desired shape
FR2826599A1 (en) Spectacle lens drilling procedure and apparatus has rotary plate on drill base to move lens about fixed point to make edge notch and hole
FR2863516A1 (en) Lengthy airfoil machining device, has airfoil support with stationary mandrels mounted on stationary structure by flexible connections, where stationary structure is attached with central column
EP2305422B1 (en) Method and device for machining an ophthalmic lens in order to insert said lens in a spectacle frame
WO2007060304A2 (en) Method for calibrating a grinder and corresponding device
FR2736571A1 (en) IMPROVEMENT CONCERNING NUMERICALLY CONTROLLED MACHINE TOOLS
BE351864A (en)
FR2843710A1 (en) OPHTHALMIC LENS GRINDING DEVICE AND METHOD
CH135797A (en) Machine for the manufacture of helical groove control units for the steering of vehicles.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): ES FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Effective date: 20120330

Ref country code: FR

Ref legal event code: CD

Owner name: LUNEAU TECHNOLOGY OPERATIONS, FR

Effective date: 20120330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130725

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731