EP1963066B1 - Verfahren zur kalibrierung einer optischen glasbohrmaschine - Google Patents

Verfahren zur kalibrierung einer optischen glasbohrmaschine Download PDF

Info

Publication number
EP1963066B1
EP1963066B1 EP06778799A EP06778799A EP1963066B1 EP 1963066 B1 EP1963066 B1 EP 1963066B1 EP 06778799 A EP06778799 A EP 06778799A EP 06778799 A EP06778799 A EP 06778799A EP 1963066 B1 EP1963066 B1 EP 1963066B1
Authority
EP
European Patent Office
Prior art keywords
drilling
blank
tool
blind bore
lens support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06778799A
Other languages
English (en)
French (fr)
Other versions
EP1963066A1 (de
Inventor
Bruno Bizet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Briot International SA
Original Assignee
Briot International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Briot International SA filed Critical Briot International SA
Publication of EP1963066A1 publication Critical patent/EP1963066A1/de
Application granted granted Critical
Publication of EP1963066B1 publication Critical patent/EP1963066B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/14Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling
    • B28D1/143Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by boring or drilling lens-drilling machines

Definitions

  • EP-A-1,310,327 a drilling machine of the aforementioned type.
  • a drill bit is wedged into a tool holder assembly to make through holes through an ophthalmic lens.
  • the end position of the drill cutter is calibrated according to the position of this cutter in the tool holder, and the nominal length of the milling cutter supplied by the manufacturer. The accuracy on this position is for example of the order of 0.5 mm.
  • the machine is programmed to move the drilling tool relative to the lens on a displacement greater than the sum of the thickness of the lens and the maximum tolerance of length of the cutter.
  • the precision on the position of the end of the drill bit provided by the manufacturer is not sufficient to control the position of the bottom of the blind hole in the lens with sufficient precision.
  • An object of the invention is therefore to obtain a calibration method of an optical glass drilling machine of improved precision and reliability.
  • the subject of the invention is a method according to claim 1.
  • the method according to the invention may comprise one or more of the features which are the subject of claims 2 to 7.
  • the drilling machine 11 shown on the Figure 1 is intended to make holes in ophthalmic lenses, these lenses having been previously roughed by peripheral grinding.
  • the machine 11 shown on the Figure 1 is adapted to drill blind holes or countersinks in a lens, these blind holes being used to immobilize a mechanical part, for example by pressing a pin.
  • a calibration blank 13 is placed in the machine 11.
  • the blank 13 is a substantially planar disk having a constant thickness.
  • the machine 11 comprises a frame 17, a lens support 19, a tool-holder assembly 21, means 23 for axial and radial relative positioning of the assembly 21 with respect to the support 19, a probe assembly 24 and a control unit. order 25.
  • the lens holder 19 comprises a carriage 27 pivotally mounted on the frame 17, provided with two half-shafts 29A, 29B adapted to grip the blank 13, and a motor 31 for slowly rotating the blank 13.
  • the carriage 27 is hinged relative to the frame 17, by a rear longitudinal edge 28, about an axis X-X 'of substantially horizontal tilting.
  • the two half-shafts 29A, 29B are mounted along the front longitudinal edge 32 of the carriage 27. These half-shafts 29A, 29B extend along a substantially horizontal first axis AA 'parallel to the X-X axis .
  • the half-shafts 29A, 29B are provided with respective free ends 33A, 33B arranged opposite one another, adapted to grip the blank 13.
  • the drive motor 31 of the blank 13 rotates the half-shafts 29A, 29B around the first axis A-A 'by a transmission mechanism (not shown).
  • the tool holder assembly 21 comprises a support 35, a linkage arm 37 projecting from the support 35, a drilling tool 39, a rotation drive motor 41 the tool 39, and means 43 for tilting the tool 39 relative to the support 35.
  • the link arm 37 is articulated by a first end 45 on the support 21, about a horizontal pivot axis B-B 'substantially orthogonal to the first axis A-A'.
  • the tool 39 is mounted in a guide housing formed at the free end 47 of the connecting arm.
  • the tool 39 is rotatably mounted about a second axis CC 'substantially orthogonal to the linkage arm 37.
  • the tool 39 comprises, from left to right on the Figure 2 , a substantially cylindrical drive portion 49 axially wedged against an inner surface 50 of the linkage arm 37, and a piercing cutter 51 integral with a free end 52 of the actuating portion 49.
  • the inner surface extends along an axis of the arm 37 perpendicular to the axis C-C '.
  • the piercing cutter 51 protrudes outwardly from the arm 37 along the axis C-C '. It has a free end 53 of drilling.
  • the drilling cutter 51 has a theoretical or nominal length L T of between 12 mm and 40 mm and a diameter of between 0.8 mm and 3.0 mm.
  • the arm 37 and consequently the tool 39, is rotatable about the axis BB 'on an angular displacement of at least 30 ° and preferably 180 °, in particular being able to take an upper vertical position in which the second axis CC 'is substantially parallel to the first axis A-A', and a plurality of inclination positions in which the second axis CC 'is inclined with respect to the first axis A-A'.
  • the tool 39 remains substantially in the vertical plane passing through the first axis A-A ', regardless of its position around the axis B-B'.
  • the motor 41 for rotating the tool 39 is fixed on the link arm 37. It is connected to the tool 39 by transmission means 55 arranged in the arm 37.
  • the adjusting means 43 of the inclination angle of the tool 39 comprise a motor 61 for actuating a worm 63, and a toothed wheel 65 tangent; mounted to the link arm 37.
  • the worm 63 extends in a direction substantially parallel to the first axis A-A '.
  • the toothed wheel 65 is fixed on the arm 37 at its end 45. It extends in a vertical plane.
  • the means 23 for axial and radial relative positioning of the tool-holder assembly 21 with respect to the lens support 19 comprise means 71 for tilting the carriage 27 around its tilting axis X-X ', and means 73 for translation.
  • axial axis of the tool holder assembly 21 along an axis DD ' parallel to the first axis A-A'.
  • the tilting means 71 of the carriage 27 and the axial translation means 73 of the tool-holder assembly are respectively connected to an actuator 75A for placing the carriage 27 in relative position with respect to the tool-holder assembly 21 along the an axis perpendicular to the axis A-A ', and an actuator 75B relative positioning of the tool holder assembly 21 relative to the carriage 27 along the axis A-A'.
  • These actuators 75A, 75B are constituted, for example, by respective drive-stepper motors of the tilting means 71 and translation means 73.
  • the actuators 75A and 75B are controlled by the control unit 25.
  • the control unit 25 comprises a computer 77 which determines the relative position of the tool-holder assembly 21 with respect to the carriage 27, with reference to their positions on the frame 17, as a function of the respective control signals transmitted to the actuators 75A. , 75B.
  • the calculator 77 also calculates the relative position that must be occupied by the free end 53 of the cutter 51 with respect to the blank 13 during drilling, as a function of the depth of penetration and the type of blind hole or countersink. realize in the sketch 13.
  • the control unit 25 controls, on the one hand, the displacement of the tool-holder assembly 21 along the axis DD 'and, on the other hand, the displacement of the carriage 19 around the axis X-X' .
  • This last movement is likeable to a pseudo-translation movement along an axis perpendicular to the first axis A-A '.
  • the control unit 25 also slaved the axial and radial positioning means 23 to position the cutter 51 of the tool 39 in contact with the blank 13 of the lens 15 and make it penetrate into it.
  • the control unit 25 is connected to the actuating motor 61 of the tilting means 43 for controlling the rotation of the worm 63 in a first direction or in the opposite direction to the first direction, so as to adjust the inclination of the second axis CC 'relative to the first axis A-A'.
  • the probe assembly 24 comprises two arms 79A, 79B carried by the frame 17, each arm 79A, 79B being provided with a respective feeler finger 81A, 81B.
  • Each arm 79A, 79B is thus movable in translation along a substantially horizontal axis E-E ', between a retracted retracted position in the frame 17 and an active measuring position.
  • the fingers 81A, 81B extend substantially parallel to the axis A-A ', facing each other, on either side of the blank 13. in the measuring position, the front finger 81A is applied against a front surface 83A of the blank 13 and the rear finger 81B is applied against a rear surface 83B of the blank 13.
  • the probe assembly 24 further comprises a sensor 85 for measuring the linear position of the feeler fingers 81A, 81B along the axis E-E '.
  • the sensor 85 is connected to the computer 77.
  • the linear positions obtained by the sensor 85 are converted by the computer 77 into a distance between the feeler fingers 81A, 81B.
  • This method comprises a step of placing the blank 13 in the support 19, a step of drilling a blind bore of a desired depth into the front surface 83A of the blank, a step of measuring the actual depth of the blank. the blind bore using the probe assembly 24, which comprises a probing phase before the drilling step and a probing phase after the piercing step.
  • the method according to the invention further comprises a step of calibrating the control means 25.
  • the blank 13 is wedged between the two ends 33A, 33B of the half-shafts 29A, 29B by an adapter suitably positioned on this blank.
  • the front surface 83A of the blank 13 is substantially perpendicular to the axis A-A '.
  • the probe assembly 24 is activated. As illustrated by Figure 3 , the feeler arms 79A, 79B are brought from their retracted position to their active measuring position in which the fingers 81A, 81B are respectively in contact with the front surface 83A and the rear surface 83B of the blank.
  • the measurement taken by the position sensor 85 is transmitted to the computer 77, which determines the thickness E AV of the blank 13, before drilling, at the desired drilling point 87 located on the front surface 83A.
  • the inclination adjusting means 43 are activated so that the link arm 37 is arranged perpendicularly to the axis A-A '.
  • the axis CC 'of the drilling cutter 51 is then substantially parallel to the axis A-A'.
  • the computer 77 determines the relative position of the inner surface 50 of the arm 37 relative to the position of the front surface 83A of the blank 13.
  • the position of the free end 53 of the drilling cutter is then calculated by the calculator, based on the relative position of the surface 50 and the theoretical length L T of the drilling tool 39, provided by the manufacturer.
  • the control means 25 are then activated to move the free end 53 and bring it substantially in contact with the surface 83A, at the point 87.
  • the control unit 25 activates the actuators 75A, 75B to mill a blind bore 91 of axis CC 'and a desired depth P D into the front surface 83A of the blank 13, based on the relative position of the free end 53 of the cutter 51 with respect to the blank calculated by the computer 77.
  • the probe assembly 24 is activated again.
  • the probe arms 79A, 79B are brought into their active measuring position, so that the front finger 81A contacts the bottom of the blind bore 91, and the rear finger 81B comes into contact with the rear surface 83B , opposite the background.
  • the thickness E AP of the blank 13 in the blind bore 91 is thus determined and transmitted to the computer 77.
  • the calculator 77 determines the actual length of the piercing tool 39 by the following formula:
  • the R The T - P D - E AV - E AP , where L R is the actual length of the drilling tool 39, L T is the theoretical length of the drilling tool given by the manufacturer, P D is the desired depth of the blind bore, E AV is the thickness measured by the feeler assembly 24 before the drilling of the blind bore 91, and E AP is the thickness measured by the assembly 24 in the blind bore 91 after drilling.
  • the actual length L R of the drilling tool 39 is then introduced into the computer 77, to replace the theoretical length L T to control the tool 39 during the subsequent drilling of blind holes and counterbores in ophthalmic lenses.
  • This method is used to overcome the manufacturing tolerances of drilling drills 51 used to make blind holes or counterbores in ophthalmic lenses.
  • each positioning actuator 75A, 75B which feels at least the 83A front surface of the blank 13, before and after drilling, it is possible to significantly improve the accuracy of the calculation of the position of the drilling cutter 51 on the machine 11.
  • the two probing phases are performed after drilling the blind bore 91, by measuring the thickness of the lens in the blind bore 91, and at a point in the vicinity of this bore 91.
  • the grinding machine 11 further comprises a wheel set comprising, for example, a roughing wheel, a beveling finishing wheel and a beveling polishing wheel.
  • a wheel set comprising, for example, a roughing wheel, a beveling finishing wheel and a beveling polishing wheel.
  • the probe assembly 24 comprises a single probe finger 81A for sensing the front surface 83A.
  • the actual depth of the blind bore 91 is determined by the difference between the measurement of the linear position of the finger 81A in contact with the piercing point 87, before the piercing, and the measurement of the linear position of the finger 81A at contact of the bottom of the bore 91, after drilling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Perforating, Stamping-Out Or Severing By Means Other Than Cutting (AREA)

Claims (7)

  1. Verfahren zum Eichen einer Maschine (11) zum Bohren optischer Gläser, Folgendes aufweisend:
    - einen Linsenträger (19);
    - eine Werkzeugträgereinheit (21), die das Drehbohrwerkzeug (39) trägt und eine Bohrfräse (51) aufweist;
    - Mittel (23) zum relativen Bewegen der Werkzeugträgereinheit (21) in Bezug zu dem Linsenträger (19); und
    - Mittel (25) zum Steuern der Position des Bohrwerkzeugs (39) in Bezug zu dem Linsenträger (19), die Mittel (77) zum Bestimmen der relativen Position der Werkzeugträgereinheit (21) in Bezug zu dem Linsenträger (19) aufweisen, und mindestens einen Stellantrieb (75A, 75B) zum relativen Positionieren der Werkzeugträgereinheit (21) in Bezug zu dem Linsenträger (19);
    wobei das Verfahren die folgenden Schritte aufweist:
    (a) Anordnen eines Rohlings (13) in dem Träger (19);
    (b) Bohren einer Sackbohrung (91) auf der Basis einer erstrebenswerten Tiefe (PD) in einer ersten Fläche (83A) des Rohlings (13), dadurch gekennzeichnet das Bohren von den Steuermitteln (25) auf der Basis der relativen Position des Bohrwerkzeugs (39) in Bezug zu dem bestimmten Rohling (13), in Abhängigkeit von der erstrebenswerten Tiefe (PD) und der theoretischen Länge (LT) des Bohrwerkzeugs (39) durch die Bestimmungsmittel (77) gesteuert wird,
    wobei das Verfahren die folgenden Schritte aufweist :
    (c) Messen der tatsächlichen Tiefe (EAV-EAP) der Sackbohrung (91) und
    (d) Kalibrieren der Steuermittel (25) in Abhängigkeit von der erstrebenswerten Tiefe (PD) und der gemessenen realen Tiefe (EAV-EAP).
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Schritt (c) mittels mindestens eines Positionssensors (85) ausgeführt wird, der mit einem vorderen Fühler (81A) verbunden ist, der dazu bestimmt ist, der ersten Fläche gegenüber platziert zu werden, wobei der Schritt (c) mindestens zwei Abtastphasen der ersten Fläche (83A) aufweist, wobei mindestens eine Abtastphase nach dem Bohren der Sackbohrung (91) in dem Grund der Bohrung (91) ausgeführt wird.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass mindestens eine Abtastphase der ersten Fläche (83A) vor dem Bohren der Sackbohrung (91) auf dem Niveau des Bohrpunkts (87) der Sackbohrung (91) ausgeführt wird.
  4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass der Positionssensor (85) ferner mit einem hinteren Fühler (81B) verbunden ist, wobei der Schritt (c) für jede Abtastphase der ersten Fläche (83A) das Abtasten einer zweiten Fläche (83B) des Rohlings, die der ersten Fläche (83A) entgegen gesetzt ist, aufweist, um eine gemessene Stärke des Rohlings (13) zu bestimmen.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der Kalibrierungsschritt das Berechnen einer realen Länge (LR) des Bohrwerkzeugs (39) auf der Basis der theoretischen Länge (LT) des Bohrwerkzeugs (39) um den Unterschied zwischen der vor dem Bohren der Sackbohrung (91) gemessenen Stärke (EAV) des Rohlings (13) und der nach dem Bohren dieser Sackbohrung gemessenen Stärke des Rohlings (EAP) korrigiert wird.
  6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Bohrschritt das Bilden einer Sackbohrung (91) mit einem Querschnitt aufweist, der größer ist als der Querschnitt einer Bohrfräse (51) des Werkzeugs (39).
  7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schritt (a) das Anordnen eines ebenen Rohlings (13) mit einer Stärke, die im Wesentlichen konstant ist, in dem Linsenträger (19) aufweist.
EP06778799A 2005-07-25 2006-07-06 Verfahren zur kalibrierung einer optischen glasbohrmaschine Expired - Fee Related EP1963066B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0507890A FR2888765B1 (fr) 2005-07-25 2005-07-25 Procede d'etalonnage d'une machine de percage de verres optiques
PCT/FR2006/001623 WO2007012717A1 (fr) 2005-07-25 2006-07-06 Procede d'etalonnage d'une machine de percage de verres optiques

Publications (2)

Publication Number Publication Date
EP1963066A1 EP1963066A1 (de) 2008-09-03
EP1963066B1 true EP1963066B1 (de) 2009-04-08

Family

ID=36200600

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778799A Expired - Fee Related EP1963066B1 (de) 2005-07-25 2006-07-06 Verfahren zur kalibrierung einer optischen glasbohrmaschine

Country Status (3)

Country Link
EP (1) EP1963066B1 (de)
FR (1) FR2888765B1 (de)
WO (1) WO2007012717A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107297524B (zh) * 2017-05-15 2018-09-25 中车青岛四方机车车辆股份有限公司 地板开孔装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRN990012A1 (it) * 1999-05-06 2000-11-06 Ct Ottico Foto G I O Snc Di Gi Macchina per forare o fresare lenti di occhiali.

Also Published As

Publication number Publication date
WO2007012717A1 (fr) 2007-02-01
FR2888765B1 (fr) 2008-10-10
EP1963066A1 (de) 2008-09-03
FR2888765A1 (fr) 2007-01-26

Similar Documents

Publication Publication Date Title
EP1807244B1 (de) Vorrichtung und verfahren zum einstellen der bohrrichtung eines bohrwerkzeugs für eine ophthalmische linse
EP0853527B1 (de) Mess-und regelgerät für die bearbeitung von umlaufenden zylindrischen werkstücken
FR3003488A1 (fr) Procede de percage d'une lentille ophtalmique selon une trajectoire helicoidale ou pseudo-helicoidale et dispositif de percage associe
EP0172105A1 (de) Bearbeitungszentrum für Stabmaterial numerisch gesteuert
FR2751256A1 (fr) Machine de meulage de verres optiques
EP1689569B1 (de) Verfahren zum durchstechen von optischen gläsern mit hilfe eines digital gesteuerten bohrers und vorrichtung zur durchführung des verfahrens
EP1963066B1 (de) Verfahren zur kalibrierung einer optischen glasbohrmaschine
EP3024619B1 (de) Verfahren und vorrichtung zur ätzung von kontaktlinsen
WO2007060329A1 (fr) Procédé et dispositif de détourage d'une lentille ophtalmique pour usiner le chant de la lentille suivant une courbe voulue
EP2627476B1 (de) Schablone zum kalibrieren einer maschine zur bearbeitung einer ophthalmischen linse, vorrichtung und verfahren mit einer derartigen schablone
EP1522378B1 (de) Fünfachsige Werkzeugmaschine mit fortlaufender Schleifscheibenabrichtvorrichtung
EP2964423B1 (de) Vorrichtung zum schneiden einer ophthalmischen linse
EP1993797B1 (de) Bohrverfahren für brillenglas zur erzielung der gewünschten form und grösse eines in dieses glas zu bohrenden loches
EP1910023B1 (de) Vorrichtung und verfahren zum messen der geometrie einer abzuschrägenden schneidkante
EP2214865B1 (de) Vorrichtung zur korrektur der ätzung einer kontaktlinse und verfahren zur ätzung einer kontaktlinse
EP0991496B1 (de) Verfahren und vorrichtung zum abtasten von brillengestellen und schleifmaschine dafür
FR2826599A1 (fr) Procede de percage de verres optiques, et dispositif de mise en oeuvre dudit procede
WO2007060304A2 (fr) Methode d'etalonnage d'une meuleuse et dispositif correspondant
FR2575955A1 (fr) Procede et installation pour la rectification et le controle du diametre d'une meule
FR2863516A1 (fr) Machine et procede d'usinage d'un profile de grande longueur
EP2305422B1 (de) Verfahren und Vorrichtung zur Bearbeitung einer Augenlinse zur Montage auf eine Brillenfassung
FR2736571A1 (fr) Amelioration concernant les machines-outils a commande numerique
WO2006106200A1 (fr) Machine de meulage de verres optiques munie d'une meule de finition inclinee et verre optique correspondant
BE351864A (de)
FR2843710A1 (fr) Dispositif et procede de meulage de lentille ophtalmique

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080528

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): ES FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RBV Designated contracting states (corrected)

Designated state(s): ES FR IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): ES FR IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090719

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090408

REG Reference to a national code

Ref country code: FR

Ref legal event code: CJ

Effective date: 20120330

Ref country code: FR

Ref legal event code: CD

Owner name: LUNEAU TECHNOLOGY OPERATIONS, FR

Effective date: 20120330

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130725

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731