EP1962041A2 - Wärmeübertragungsvorrichtung - Google Patents

Wärmeübertragungsvorrichtung Download PDF

Info

Publication number
EP1962041A2
EP1962041A2 EP08100462A EP08100462A EP1962041A2 EP 1962041 A2 EP1962041 A2 EP 1962041A2 EP 08100462 A EP08100462 A EP 08100462A EP 08100462 A EP08100462 A EP 08100462A EP 1962041 A2 EP1962041 A2 EP 1962041A2
Authority
EP
European Patent Office
Prior art keywords
channel
flow
ribs
heat transfer
cooling fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08100462A
Other languages
English (en)
French (fr)
Other versions
EP1962041A3 (de
Inventor
Hans-Ulrich Kühnel
Dieter Thönnessen
Michael Sanders
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pierburg GmbH
Original Assignee
Pierburg GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pierburg GmbH filed Critical Pierburg GmbH
Publication of EP1962041A2 publication Critical patent/EP1962041A2/de
Publication of EP1962041A3 publication Critical patent/EP1962041A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/12Elements constructed in the shape of a hollow panel, e.g. with channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0025Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2215/00Fins
    • F28F2215/06Hollow fins; fins with internal circuits

Definitions

  • the invention relates to a heat transfer device, which is composed of a plurality of housing parts, which are interconnected such that at least one of a fluid to be cooled flowed through the channel and at least one of a cooling fluid flow-through channel in heat exchanging contact with each other are arranged, of at least one the housing parts extend ribs in the flow-through of the fluid to be cooled channel.
  • Such heat exchangers are used for example as a cooler in internal combustion engines.
  • applications for cooling the exhaust gas and for cooling the charge air are known. In both cases, this cooling is used to improve the combustion process and thus reduce the pollution of the exhaust gas with pollutants.
  • heat exchangers and here in particular made of die-cast heat exchanger from a plurality of nested shells, from which extend ribs, in particular in the flowed through by the fluid to be cooled channel.
  • this case usually serves the base plate, from which extend the ribs, as a partition between the coolant channel and the gas usually leading channel.
  • Such a heat transfer device is for example from the DE 20 2006 009 464 U1 known.
  • This heat exchanger has an internal coolant channel, from which ribs extend into a channel through which exhaust gas flows, for example.
  • the ribs have a main flow direction the exhaust gas of elongated shape, are arranged offset to one another in the flow direction and formed interrupted transversely to the flow direction.
  • this heat exchanger already has a good cooling efficiency due to its rib shape, it remains desirable to additionally increase it or to reduce the necessary installation space while maintaining the same cooling capacity.
  • the ribs in the interior have a through-flow of the cooling fluid cavity which extends from the cooling fluid flow-through channel into the rib.
  • the fin efficiency is improved because the distance between the coolant and gas leading channel is reduced.
  • the rib itself reaches a lower temperature over its height, so that the temperature difference with the exhaust gas increases, as a result of which the heat exchange between the rib and the exhaust gas is improved.
  • the cavity extends substantially over the entire height of the rib, so that even in areas where usually the cooling effect of the rib decreases considerably due to a higher existing temperature, the temperature can be significantly reduced and thus the fin efficiency over the entire channel height of the channel through which the fluid to be cooled can be improved.
  • guide devices for forced flow through the ribs are arranged in the channel through which the cooling fluid can flow. Without such guiding devices, hotspots could result from boiling cooling water in the cavities of the ribs, since the suddenly enlarging cross-section does not ensure adequate replacement of the coolant.
  • the existing guide devices for forced flow a constant flow and thus a constant exchange of the coolant is ensured.
  • the ribs extend at least from a first housing part, which serves as a partition between the channel through which the fluid to be cooled and the channel through which the cooling fluid can flow, into the channel through which the fluid to be cooled and the guide devices are connected to a second housing part arranged, which forms with the first housing part of the flow through the cooling fluid channel.
  • the guide devices are formed by protuberances on the second housing part, which extend into the cavities of the ribs.
  • dead water areas can be reliably prevented in the ribs, in which a uniform flow through the entire cavity is ensured in the ribs.
  • the protuberances extend into the cavities of the ribs such that the cross-section through which the cooling fluid flows in the main flow direction is constant, as a result of which the pressure loss in the coolant channel remains low due to such an embodiment. Furthermore, this in turn prevents dead water areas or turbulences in the region of the ribs due to the uniform flow of the coolant, which in turn increases the rib efficiency.
  • the inner walls of the first and second housing parts which face toward the channel through which the cooling fluid can flow are continuous, so that no cross-sectional jumps occur in the flowed through by the cooling fluid channel, which again reduces the pressure loss and dead water areas are avoided.
  • a heat transfer device improves the cooling efficiency per unit volume due to increased cooling performance of the fins without generating unnecessary pressure losses in the coolant channel. Furthermore, such a heat transfer device without additional manufacturing steps to manufacture, so that no additional costs. With the same desired cooling capacity and the same pump power of the coolant pump can be reduced according to the necessary space. This happens in particular in that the coolant area is now pulled up into the ribs and thus the heat conduction through the cooling rib to the coolant is shortened.
  • FIG. 1 shows a top view of a heat exchanger according to the invention in a sectional view.
  • FIG. 2 shows a top view of an alternative heat exchanger according to the invention in a sectional view.
  • FIG. 3 shows a second alternative embodiment of a heat exchanger according to the invention in a top view and a sectional view.
  • FIG. 4 shows a side view of a detail of a heat transfer device according to the invention in a sectional view.
  • FIG. 5 shows in the same representation one for FIG. 4 alternative embodiment.
  • FIG. 6 shows another one to the FIGS. 4 and 5 Alternative embodiment of a heat transfer device according to the invention in a corresponding representation.
  • FIGS. 1 to 3 show cross sections of three different inventive heat transfer devices, which are composed of several housing parts.
  • the same reference numerals are used in the various figures for the same components.
  • the heat transfer devices consist of a first housing part 1, which is produced for example by die casting and has a partition wall 2, from which ribs 3 extend into a channel 4 through which a fluid to be cooled can flow.
  • This fluid may be, for example, the exhaust gas of an internal combustion engine.
  • a second housing part 5 is placed such that between the first housing part 1 and the second housing part 5 is formed by a flow through a cooling fluid channel 6, so that a heat transfer via the partition wall 2 between the cooling fluid and the fluid to be cooled can take place inside the heat transfer device.
  • the fourth housing part 8 attached to the first housing part 1.
  • the attachment of the housing parts to each other is preferably carried out by friction stir welding.
  • the channels 6 apparently traversed by the cooling fluid, which are formed in cross-section on the opposite sides, are fluidically connected to each other in another plane, so that in the view two channels present after assembly, they form only one channel 6 only needs to be supplied via a coolant inlet 9 with cooling fluid. It should be clear that on the opposite side of the head another nozzle serves as a coolant outlet.
  • the fluid to be cooled preferably flows in and out from the head sides of the heat transfer device. Of course, forms are also conceivable in which the flow-through of the cooling fluid channel 6 completely surrounds the channel 4 through which the fluid to be cooled flows in cross section.
  • cavities 10 are formed in the ribs, which continue in different embodiments in the extension direction of the ribs 3.
  • the cavity 10 extends in an embodiment according to the FIG. 1 from flowing through the cooling fluid channel 6 to shortly before the end of the maximum vertical extent of the rib 3, while in the embodiment according to the FIG. 2 this cavity 10 extends only about halfway up the rib height.
  • an embodiment is selected in which only such a cavity 10 is located in the foot region of the rib 3.
  • a heat transfer device can now be created in different ways. Of course, it is also important to pay attention to the strength of the ribs 3.
  • FIGS. 4 to 6 is each, as in the FIGS. 1 to 3 a first housing part 1 is shown, which has a partition wall 2 and ribs 3, and a second housing part 5, through which the through-flow of the cooling fluid channel 6 is closed.
  • the sections shown here show different embodiments of the formation of the cavities 10 and thus to improve the fin efficiency.
  • the second housing part 5 as a guide device 12 protuberances, which extend from the second housing part 5 in the direction of the respective ribs 3.
  • These protuberances 12 are also in the FIGS. 1 to 3 shown in cross section.
  • each rib 3 a substantially parallelepiped-shaped cavity 10 is created, wherein the cooling fluid is directed through the protuberance 12 into the cavity 10.
  • the inner walls 13 of the two housing parts 1, 5 are formed continuously, so that turbulence of the cooling fluid in the flow-through by cooling fluid channel 6 are largely avoided, which lowers the pressure drop and hotspots in the flow-through by the cooling fluid channel 6, in particular in the region of the cavities 10 of the ribs. 3 prevented.
  • the protuberances 12 so far in the direction of the rib that the flow-through cross-section of the cooling fluid flow-through channel 6 remains substantially constant. This significantly reduces the pressure loss in the radiator and ensures a complete flow. Since at the same time the inner walls 13 of the housing parts 1 and 5 are formed continuously, in comparison to known designs without cavities significantly increased efficiency of the pressure loss is not changed substantially.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

Es sind Wärmeübertragungsvorrichtungen bekannt, welche aus mehreren Gehäuseteilen zusammengesetzt sind und die einen von einem zu kühlenden Fluid durchströmbaren Kanal (4) und einen vom einem Kühlfluid durchströmbaren Kanal (6) aufweisen, die in wärmeaustauschendem Kontakt zueinander angeordnet sind. Dabei erstrecken sich Rippen (3), insbesondere in den vom zu kühlenden Fluid durchströmbaren Kanal (4). Erfindungsgemäß ist nun vorgesehen, in den Rippen (3) Hohlräume (10) vorzusehen, die mit dem vom Kühlfluid durchströmbaren Kanal (6) in fluidischer Verbindung stehen und somit ebenfalls vom Kühlfluid durchströmt werden. Durch die Verkürzung der Strecken der wärmeaustauschenden Fluide zueinander kann der Wirkungsgrad einer derartigen Wärmeübertragungsvorrichtung gesteigert werden oder aber die Baugröße einer derartigen Wärmeübertragungsvorrichtung bei gleich bleibendem Kühlerwirkungsgrad verringert werden.

Description

  • Die Erfindung betrifft eine Wärmeübertragungsvorrichtung, welche aus mehreren Gehäuseteilen aufgebaut ist, welche derart miteinander verbunden sind, dass zumindest ein von einem zu kühlenden Fluid durchströmbarer Kanal und zumindest ein von einem Kühlfluid durchströmbarer Kanal in Wärme austauschendem Kontakt zueinander angeordnet sind, wobei sich von zumindest einem der Gehäuseteile Rippen in den vom zu kühlenden Fluid durchströmbaren Kanal erstrecken.
  • Derartige Wärmetauscher werden beispielsweise als Kühler in Verbrennungskraftmaschinen genutzt. Hier sind beispielsweise Anwendungen zur Kühlung des Abgases als auch zur Kühlung der Ladeluft bekannt. In beiden Fällen dient diese Kühlung der Verbesserung des Verbrennungsprozesses und somit einer Verminderung der Belastung des Abgases mit Schadstoffen.
  • Es ist bekannt, Wärmetauscher und hier insbesondere aus Druckguss hergestellte Wärmetauscher aus mehreren ineinander angeordneten Schalen herzustellen, von denen aus sich Rippen insbesondere in den vom zu kühlenden Fluid durchströmten Kanal erstrecken. Dabei dient üblicherweise die Grundplatte, von der aus sich die Rippen erstrecken, als Trennwand zwischen dem Kühlmittelkanal und dem üblicherweise Gas führenden Kanal.
  • Eine derartige Wärmeübertragungsvorrichtung ist beispielsweise aus der DE 20 2006 009 464 U1 bekannt. Dieser Wärmetauscher weist einen innen liegenden Kühlmittelkanal auf, von dem aus sich Rippen in einen beispielsweise von Abgas durchströmten Kanal erstrecken. Die Rippen weisen dabei eine in Hauptströmungsrichtung des Abgases längliche Form auf, sind in Strömungsrichtung versetzt zueinander angeordnet und quer zur Strömungsrichtung unterbrochen ausgebildet.
  • Obwohl dieser Wärmetauscher aufgrund seiner Rippenform bereits einen guten Kühlungswirkungsgrad aufweist, bleibt es wünschenswert, diesen zusätzlich zu erhöhen oder bei gleich bleibender Kühlleistung den notwendigen Bauraum zu reduzieren.
  • Es ist somit Aufgabe der Erfindung, eine Wärmeübertragungsvorrichtung bereitzustellen, bei der der Wärmeaustausch im Vergleich zu bekannten Ausführungen weiter verbessert wird und somit der Kühlungswirkungsgrad pro Größeneinheit erhöht wird.
  • Diese Aufgabe wird dadurch gelöst, dass die Rippen im Innern einen vom Kühlfluid durchströmbaren Hohlraum aufweisen, der sich vom Kühlfluid durchströmbaren Kanal in die Rippe erstreckt. Hierdurch wird der Rippenwirkungsgrad verbessert, da der Abstand zwischen Kühlmittel und Gas führendem Kanal verringert wird. Die Rippe selber erreicht hierdurch über ihre Höhe eine geringere Temperatur, so dass die Temperaturdifferenz zum Abgas steigt, wodurch der Wärmeaustausch zwischen Rippe und Abgas verbessert wird.
  • In einer weiterführenden Ausführungsform erstreckt sich der Hohlraum im Wesentlichen über die gesamte Höhe der Rippe, so dass auch in Bereichen, in denen üblicherweise die Kühlwirkung der Rippe aufgrund einer höheren vorhandenen Temperatur erheblich nachlässt, die Temperatur erheblich reduziert werden kann und somit der Rippenwirkungsgrad über die gesamte Kanalhöhe des vom zu kühlenden Fluid durchströmbaren Kanals verbessert wird.
  • Des Weiteren ist es vorteilhaft, wenn im vom Kühlfluid durchströmbaren Kanal Leitvorrichtungen zur Zwangsdurchströmung der Rippen angeordnet sind. Ohne derartige Leitvorrichtungen könnten sich Hotspots durch kochendes Kühlwasser in den Hohlräumen der Rippen ergeben, da durch den sich plötzlich vergrößernden Querschnitt kein ausreichender Austausch des Kühlmittels sichergestellt wird. Durch die vorhandenen Leitvorrichtungen zur Zwangsdurchströmung wird eine ständige Durchströmung und somit ein ständiger Austausch des Kühlmittels sichergestellt.
  • In einer hierzu weiterführenden Ausführung erstrecken sich die Rippen zumindest von einem ersten Gehäuseteil, welches als Trennwand zwischen dem vom zu kühlenden Fluid durchströmbaren Kanal und dem vom Kühlfluid durchströmbaren Kanal dient, in den vom zu kühlenden Fluid durchströmbaren Kanal und die Leitvorrichtungen sind an einem zweiten Gehäuseteil angeordnet, welches mit dem ersten Gehäuseteil den vom Kühlfluid durchströmbaren Kanal bildet. Es bleibt somit eine einfache Formgebung der Werkzeuge zur Herstellung der Gehäuseteile bestehen, so dass trotz Verwendung der Leitvorrichtungen der Montageaufwand unverändert bleibt. Somit wird auf einfache Weise die Zwangsdurchströmung sichergestellt.
  • Vorzugsweise sind die Leitvorrichtungen durch Ausstülpungen am zweiten Gehäuseteil ausgebildet, die sich in die Hohlräume der Rippen erstrecken. Es ergibt sich somit ein Wärmetauscher, bei dem die Herstellbarkeit der Leitvorrichtungen deutlich vereinfacht wird und aufgrund dieser Anordnung in einem einzelnen Herstellungsschritt das zweite Gehäuseteil mit den Leitvorrichtungen gefertigt werden kann. Hierdurch können zuverlässig Totwassergebiete in den Rippen verhindert werden, in dem eine gleichmäßige Durchströmung des gesamten Hohlraumes in den Rippen sichergestellt wird.
  • In einer weiterführenden Ausführungsform erstrecken sich die Ausstülpungen derart in die Hohlräume der Rippen, dass der in Hauptströmungsrichtung des Kühlfluids durchströmte Querschnitt konstant ist, wodurch der Druckverlust im Kühlmittelkanal durch eine derartige Ausführung gering bleibt. Des Weiteren werden hierdurch wiederum aufgrund der gleichmäßigen Strömung des Kühlmittels Totwassergebiete oder Verwirbelungen im Bereich der Rippen verhindert, was wiederum den Rippenwirkungsgrad erhöht.
  • In einer bevorzugten Ausführungsform sind die zum vom Kühlfluid durchströmbaren Kanal weisenden Innenwände des ersten und zweiten Gehäuseteils stetig ausgebildet, so dass keine Querschnittssprünge im vom Kühlfluid durchströmten Kanal entstehen, wodurch erneut der Druckverlust verringert wird und Totwassergebiete vermieden werden.
  • Besondere Vorteile ergeben sich , wenn die Gehäuseteile der Wärmeübertragungsvorrichtung im Druckgussverfahren hergestellt werden.
  • Es wird deutlich, dass durch derartige Ausführungsformen einer Wärmeübertragungsvorrichtung der Kühlungswirkungsgrad pro Volumeneinheit aufgrund einer gesteigerten Kühlleistung der Rippen verbessert wird, ohne unnötige Druckverluste im Kühlmittelkanal zu generieren. Des Weiteren ist eine derartige Wärmeübertragungsvorrichtung ohne zusätzliche Herstellungsschritte zu fertigen, so dass keine zusätzlichen Kosten entstehen. Bei gleicher gewünschter Kühlleistung und gleicher Pumpleistung der Kühlmittelpumpe kann entsprechend der notwendige Bauraum verringert werden. Dies geschieht insbesondere dadurch, dass der Kühlmittelbereich nun in die Rippen hochgezogen wird und somit die Wärmeleitung durch die Kühlrippe zum Kühlmittel verkürzt wird.
  • Ausführungsbeispiele sind in den Figuren dargestellt und werden nachfolgend beschrieben.
  • Figur 1 zeigt eine Kopfansicht eines erfindungsgemäßen Wärmetauschers in geschnittener Darstellung.
  • Figur 2 zeigt eine Kopfansicht eines alternativen erfindungsgemäßen Wärmetauschers in geschnittener Darstellung.
  • Figur 3 zeigt eine zweite alternative Ausführungsform eines erfindungsgemäßen Wärmetauschers in Kopfansicht und geschnittener Darstellung.
  • Figur 4 zeigt in Seitenansicht einen Ausschnitt einer erfindungsgemäßen Wärmeübertragungsvorrichtung in geschnittener Darstellung.
  • Figur 5 zeigt in gleicher Darstellungsweise eine zur Figur 4 alternative Ausführungsform.
  • Figur 6 zeigt eine weitere zu den Figuren 4 und 5 alternative Ausführungsform einer erfindungsgemäßen Wärmeübertragungsvorrichtung in entsprechender Darstellungsweise.
  • Die Figuren 1 bis 3 zeigen Querschnitte dreier unterschiedlicher erfindungsgemäßer Wärmeübertragungsvorrichtungen, welche aus mehreren Gehäuseteilen zusammengesetzt sind. Im Folgenden werden für gleiche Bauteile gleiche Bezugszeichen in den verschiedenen Figuren benutzt.
  • Die Wärmeübertragungsvorrichtungen bestehen aus einem ersten Gehäuseteil 1, welches beispielsweise im Druckgussverfahren hergestellt ist und eine Trennwand 2 aufweist, von der aus sich Rippen 3 in einen von einem zu kühlenden Fluid durchströmbaren Kanal 4 erstrecken. Dieses Fluid kann beispielsweise das Abgas einer Brennkraftmaschine sein.
  • Auf das erste Gehäuseteil 1 wird ein zweites Gehäuseteil 5 derartig aufgesetzt, dass zwischen dem ersten Gehäuseteil 1 und dem zweiten Gehäuseteil 5 ein von einem Kühlfluid durchströmbarer Kanal 6 gebildet wird, so dass eine Wärmeübertragung über die Trennwand 2 zwischen dem Kühlfluid und dem zu kühlenden Fluid im Innern der Wärmeübertragungsvorrichtung stattfinden kann.
  • Ein drittes Gehäuseteil 7, welches ähnlich aufgebaut ist wie das erste Gehäuseteil 1, wird von der zum zweiten Gehäuseteil 5 entgegengesetzten Seite auf das erste Gehäuseteil 1 aufgesetzt und mit diesem verbunden. Auch dieses dritte Gehäuseteil 7 weist eine Trennwand 2 sowie Rippen 3 auf, wobei auch hier beanstandet vom dritten Gehäuseteil 7 ein viertes Gehäuseteil 8 aufgesetzt wird, so dass zwischen dem dritten Gehäuseteil 7 und dem vierten Gehäuseteil 8 ein vom Kühlfluid durchströmbarer Kanal 6 gebildet wird. Im vorliegenden Ausführungsbeispiel ist das vierte Gehäuseteil 8 am ersten Gehäuseteil 1 befestigt. Es wäre jedoch ebenso denkbar, dieses am dritten Gehäuseteil 7 zu befestigen. Die Befestigung der Gehäuseteile aneinander erfolgt vorzugsweise durch Reibrührschweißen.
  • Die in den Darstellungen scheinbar getrennten vom Kühlfluid durchströmbaren Kanäle 6, welche im Querschnitt an den entgegengesetzten Seiten ausgebildet sind, sind in einer anderen Ebene fluidisch miteinander verbunden, so dass diese in der Ansicht zwei vorhanden Kanäle nach dem Zusammenbau lediglich einen Kanal 6 bilden, der lediglich über einen Kühlmitteleinlass 9 mit Kühlfluid versorgt werden muss. Es sollte klar sein, dass an der entgegengesetzten Kopfseite ein weiterer Stutzen als Kühlmittelauslass dient. Das zu kühlende Fluid strömt vorzugsweise von den Kopfseiten der Wärmeübertragungsvorrichtung ein bzw. aus. Selbstverständlich sind auch Formen denkbar, bei denen der vom Kühlfluid durchströmte Kanal 6 den vom zu kühlenden Fluid durchströmten Kanal 4 im Querschnitt vollständig umgibt.
  • In den Figuren 1 bis 3 wird deutlich, dass erfindungsgemäß in den Rippen 3 Hohlräume 10 ausgebildet sind, welche sich in den verschiedenen dargestellten Ausführungsformen unterschiedlich weit in Erstreckungsrichtung der Rippen 3 fortsetzen. So erstreckt sich der Hohlraum 10 bei einer Ausführung gemäß der Figur 1 vom vom Kühlfluid durchströmbaren Kanal 6 bis kurz vor Ende der maximalen senkrechten Erstreckung der Rippe 3, während bei der Ausführung gemäß der Figur 2 sich dieser Hohlraum 10 nur etwa bis zur Hälfte der Rippenhöhe erstreckt. Gemäß Figur 3 ist eine Ausführung gewählt, bei der sich lediglich im Fußbereich der Rippe 3 ein derartiger Hohlraum 10 befindet.
  • Je nach gewünschtem Rippenwirkungsgrad sowie den vorhandenen Temperaturen und Bauraum kann nun in unterschiedlicher Weise eine erfindungsgemäße Wärmeübertragungsvorrichtung geschaffen werden. Hierbei ist selbstverständlich auch auf die Festigkeit der Rippen 3 zu achten.
  • Dadurch, dass die Hohlräume 10 der Rippen 3 in den Durchströmungsbereich des vom zu kühlenden Fluid durchströmbaren Kanal 4 hineingeführt werden, wird der Abstand zwischen den in Wärmeaustausch stehenden Fluiden verringert und somit der Wirkungsgrad der Wärmeübertragungsvorrichtungen deutlich erhöht. Somit kann auf verringertem Bauraum und mit verringerten Kühlmitteldurchsätzen eine größere Kühlleistung erreicht werden.
  • Insbesondere bei Wärmeübertragungsvorrichtungen, welche keine durchgängigen Rippen 3 über die gesamte Durchströmungslänge des zu kühlenden Fluides aufweisen, sondern, wie in den Figuren 4 bis 6 dargestellt, über kürzere zueinander versetzte Rippen 3 verfügen, ist es sinnvoll, um einen Kühlmittelfluss in den Rippen 3 sicherzustellen, Leitvorrichtungen 12 im Bereich unterhalb der Rippen 3 anzuordnen.
  • In den Figuren 4 bis 6 ist jeweils, wie in den Figuren 1 bis 3 ein erstes Gehäuseteil 1 dargestellt, welches eine Trennwand 2 sowie Rippen 3 aufweist, sowie ein zweites Gehäuseteil 5 dargestellt, durch welches der vom Kühlfluid durchströmbare Kanal 6 geschlossen wird. Die hier gezeigten Ausschnitte zeigen unterschiedliche Ausführungsformen zur Ausbildung der Hohlräume 10 und somit zur Verbesserung des Rippenwirkungsgrades. In diesen Ausführungsformen weist das zweite Gehäuseteil 5 als Leitvorrichtung 12 Ausstülpungen auf, welche sich vom zweiten Gehäuseteil 5 in Richtung zu den jeweiligen Rippen 3 erstrecken. Diese Ausstülpungen 12 sind auch in den Figuren 1 bis 3 im Querschnitt dargestellt.
  • In der Figur 4 wird in jeder Rippe 3 ein im Wesentlichen quaderförmiger Hohlraum 10 geschaffen, wobei das Kühlfluid durch die Ausstülpung 12 in den Hohlraum 10 gelenkt wird.
  • In einer Ausführung gemäß der Figur 5 werden die Innenwände 13 der beiden Gehäuseteile 1, 5 stetig ausgebildet, so dass Verwirbelungen des Kühlfluids im von Kühlfluid durchströmbaren Kanal 6 weitestgehend vermieden werden, was den Druckverlust senkt und Hotspots im vom Kühlfluid durchströmbaren Kanal 6, insbesondere im Bereich der Hohlräume 10 der Rippen 3 verhindert.
  • In einer weiterführenden Ausführungsform gemäß der Figur 6 sind die Ausstülpungen 12 soweit in Richtung zur Rippe bezogen, dass der durchströmbare Querschnitt des Kühlfluid durchströmbaren Kanals 6 im Wesentlichen konstant bleibt. Dies verringert deutlich den Druckverlust im Kühler und sichert eine vollständige Durchströmung. Da gleichzeitig die Innenwände 13 der Gehäuseteile 1 und 5 stetig ausgebildet sind, wird bei im Vergleich zu bekannten Ausführungen ohne Hohlräume deutlich erhöhtem Wirkungsgrad der Druckverlust im Wesentlichen nicht verändert.
  • Es wird deutlich, dass durch die gezeigten Ausführungsformen die Kühlleistung der Wärmeübertragungsvorrichtung durch verschiedene Möglichkeiten zur Beeinflussung des Rippen- und somit des Kühlerwirkungsgrades erhöht werden kann. Bei konstanter Kühlleistung kann der notwendige Bauraum reduziert werden. Die Herstellbarkeit im Druckgussverfahren bleibt ohne größeren Aufwand vorhanden.
  • Es sollte deutlich sein, dass der Schutzbereich nicht auf die beschriebenen Ausführungen beschränkt ist. Insbesondere lassen sich verschiedene Zusammensetzungen der unterschiedlichen Gehäuseteile, beispielsweise in Schalenbauweise verwirklichen. Auch die Form der Rippen oder die Anordnung der Kanäle zueinander ist veränderbar. Je nach Aufbau des Wärmetauschers kann dieser auch im Sandgussverfahren oder durch Strangpressen hergestellt werden.

Claims (8)

  1. Wärmeübertragungsvorrichtung, welche aus mehreren Gehäuseteilen aufgebaut ist, welche derart miteinander verbunden sind, dass zumindest ein von einem zu kühlenden Fluid durchströmbarer Kanal und zumindest ein von einem Kühlfluid durchströmbarer Kanal in Wärme austauschendem Kontakt zueinander angeordnet sind, wobei sich von zumindest einem der Gehäuseteile Rippen in den vom zu kühlenden Fluid durchströmbaren Kanal erstrecken,
    dadurch gekennzeichnet, dass die Rippen (3) im Innern einen vom Kühlfluid durchströmbaren Hohlraum (10) aufweisen, der sich vom Kühlfluid durchströmbaren Kanal (6) in die Rippe (3) erstreckt.
  2. Wärmeübertragungsvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass sich der Hohlraum (10) im Wesentlichen über die gesamte Höhe der Rippe (3) erstreckt.
  3. Wärmeübertragungsvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass im vom Kühlfluid durchströmbaren Kanal (6) Leitvorrichtungen (12) zur Zwangsdurchströmung der Rippen (3) angeordnet sind.
  4. Wärmeübertragungsvorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass sich die Rippen (3) zumindest von einem ersten Gehäuseteil (1), welches als Trennwand (2) zwischen dem vom zu kühlenden Fluid durchströmbaren Kanal (4) und dem vom Kühlfluid durchströmbaren Kanal (6) dient, in den vom zu kühlenden Fluid durchströmbaren Kanal (4) erstrecken und die Leitvorrichtungen (12) an einem zweiten Gehäuseteil (5) angeordnet sind, welches mit dem ersten Gehäuseteil (1) den vom Kühlfluid durchströmbaren Kanal (6) bildet.
  5. Wärmeübertragungsvorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass die Leitvorrichtungen (12) als Ausstülpungen am zweiten Gehäuseteil (5) ausgebildet sind, die sich in die Hohlräume (10) der Rippen (3) erstrecken.
  6. Wärmeübertragungsvorrichtung nach Anspruch 5, dadurch gekennzeichnet, dass sich die Ausstülpungen (12) derart in die Hohlräume (10) der Rippen (3) erstrecken, dass der in Hauptströmungsrichtung des Kühlfluids durchströmte Querschnitt des vom Kühlfluid durchströmbaren Kanals (6) konstant ist.
  7. Wärmeübertragungsvorrichtung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass die zum vom Kühlfluid durchströmbaren Kanal (6) weisenden Innenwände (13) des ersten Gehäuseteils (1) und des zweiten Gehäuseteils (5) stetig ausgebildet sind.
  8. Wärmeübertragungsvorrichtung nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, dass die Gehäuseteile (1, 5, 7, 8) im Druckgussverfahren hergestellt sind.
EP08100462A 2007-02-23 2008-01-15 Wärmeübertragungsvorrichtung Withdrawn EP1962041A3 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200710008865 DE102007008865B3 (de) 2007-02-23 2007-02-23 Wärmeübertragungsvorrichtung

Publications (2)

Publication Number Publication Date
EP1962041A2 true EP1962041A2 (de) 2008-08-27
EP1962041A3 EP1962041A3 (de) 2011-01-19

Family

ID=39410480

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08100462A Withdrawn EP1962041A3 (de) 2007-02-23 2008-01-15 Wärmeübertragungsvorrichtung

Country Status (2)

Country Link
EP (1) EP1962041A3 (de)
DE (1) DE102007008865B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159806A1 (de) * 2011-05-24 2012-11-29 Pierburg Gmbh Wärmeübertragungsvorrichtung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009005879A1 (de) * 2009-01-23 2010-08-05 Semikron Elektronik Gmbh & Co. Kg Kühleinrichtung mit einem Rippenkühlkörper

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8220601U1 (de) 1982-07-19 1987-12-10 Weigelt, Arno-Wolfgang, Ing.(Grad.), 7250 Leonberg, De
DE202006009464U1 (de) 2005-09-23 2006-09-14 Pierburg Gmbh Wärmetauscher

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE438312A (de) *
JPH0682190A (ja) * 1992-09-01 1994-03-22 Kobe Steel Ltd 強制液冷用アルミニウム冷却板
DE19638794C1 (de) * 1996-09-21 1997-10-30 Mtu Muenchen Gmbh Wärmetauscher

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8220601U1 (de) 1982-07-19 1987-12-10 Weigelt, Arno-Wolfgang, Ing.(Grad.), 7250 Leonberg, De
DE202006009464U1 (de) 2005-09-23 2006-09-14 Pierburg Gmbh Wärmetauscher

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012159806A1 (de) * 2011-05-24 2012-11-29 Pierburg Gmbh Wärmeübertragungsvorrichtung
CN103547877A (zh) * 2011-05-24 2014-01-29 皮尔伯格有限责任公司 热交换设备

Also Published As

Publication number Publication date
EP1962041A3 (de) 2011-01-19
DE102007008865B3 (de) 2008-08-28

Similar Documents

Publication Publication Date Title
DE102005058204B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102008036222B3 (de) Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
EP1996888B1 (de) Wärmetauscher für ein kraftfahrzeug
EP1985953A1 (de) Wärmetauscher, insbesondere zur Abgaskühlung, Verfahren zum Betreiben eines solchen Wärmetauschers und System mit einem Abgaskühler
DE102009047620C5 (de) Wärmeübertrager mit Rohrbündel
DE102007005370A1 (de) Wärmetauscher
DE102007052585B3 (de) Verfahren zur Herstellung eines Wärmetauschers
DE102005045103B3 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102007043992B4 (de) Ladeluftmodul für eine Verbrennungskraftmaschine
DE102004050567A1 (de) Wärmetauscher
DE102011050596B4 (de) Wärmeübertragungsvorrichtung
DE102006029043B4 (de) Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
DE102005045098B4 (de) Kühlvorrichtung für eine Verbrennungskraftmaschine
DE102007008865B3 (de) Wärmeübertragungsvorrichtung
DE102007041338B3 (de) Wärmeübertragungseinheit für eine Verbrennungskraftmaschine
EP2333473A2 (de) Wärmeübertragungsvorrichtung sowie Wärmeübertragungsvorproduktanordnung und Verfahren zur Herstellung einer derartigen Wärmeübertragungsvorrichtung
DE102012111928A1 (de) Wärmetauscher für eine Verbrennungskraftmaschine
EP2299225A2 (de) Wärmeübertrager sowie Verfahren zur Herstellung eines derartigen Wärmeübertragers im Druckguss
DE102005036045B4 (de) Kühlvorrichtung für Verbrennungskraftmaschinen
WO2011150920A2 (de) Wärmetauscher
DE112020001170T5 (de) Wärmetauscher
DE102009030866B4 (de) Abgasrohr für eine Verbrennungskraftmaschine
WO2015075245A1 (de) Abgaswärmetauscher zur abgaskühlung einer brennkraftmaschine, vorzugsweise für ein kraftfahrzeug
EP2405222A2 (de) Wärmetauschervorrichtung und ein Verfahren zur Herstellung einer Wärmetauschervorrichtung
DE102011053421A1 (de) Vorprodukt eines Gehäuseteils, Innengehäuse, Wärmeübertragungsvorrichtung und Verfahren zur Herstellung eines derartigen Innengehäuses und einer derartigen Wärmeübertragungsvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080115

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140801