EP1958915B1 - Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space - Google Patents

Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space Download PDF

Info

Publication number
EP1958915B1
EP1958915B1 EP08006281.3A EP08006281A EP1958915B1 EP 1958915 B1 EP1958915 B1 EP 1958915B1 EP 08006281 A EP08006281 A EP 08006281A EP 1958915 B1 EP1958915 B1 EP 1958915B1
Authority
EP
European Patent Office
Prior art keywords
grab
determined
gripper
movement
pendular
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08006281.3A
Other languages
German (de)
French (fr)
Other versions
EP1958915B8 (en
EP1958915A2 (en
EP1958915A3 (en
Inventor
Bernd Mann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isam AG
Original Assignee
Isam AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isam AG filed Critical Isam AG
Publication of EP1958915A2 publication Critical patent/EP1958915A2/en
Publication of EP1958915A3 publication Critical patent/EP1958915A3/en
Publication of EP1958915B1 publication Critical patent/EP1958915B1/en
Application granted granted Critical
Publication of EP1958915B8 publication Critical patent/EP1958915B8/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/06Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads
    • B66C13/063Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for minimising or preventing longitudinal or transverse swinging of loads electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements

Definitions

  • the invention initially relates to a method for loading and / or unloading a loading space or storage space with material, in particular for loading and / or unloading a loading space of a ship with bulk material, vzw. with coal or ore, or with containers according to the features of the preamble of claim 1. Furthermore, the invention relates to a device operating according to the aforementioned method, according to the features of the preamble of claim 17.
  • vzw The known in the prior art devices for loading and / or unloading a hold of a ship, being stored in the hold bulk goods or the cargo space bulk, vzw. Coal, ore or the like is taken are vzw. designed as so-called "unloading bridges" and provided in the respective ports.
  • the bulk material, in particular the various types of ore and / or coals, are delivered by seagoing vessels.
  • the deletion of the hold of the ships is vzw. with the aforementioned unloading bridges.
  • Such unloading bridges usually have in each case a water-side and in each case a land-side essentially horizontally extending outrigger, which are arranged on two substantially vertically extending supporting pillars.
  • the pillars which have a landing gear, are movable parallel to the quay wall and thus also parallel to the ship lying on the quay wall.
  • a kind of movable carriage called “cat” is arranged movable.
  • a gripper is arranged with the aid of cable elements, which can be moved in the vertical direction, namely up and down to be lowered in particular by the hatch of a ship in the hold of the ship to receive the bulk material here or to take. Thereafter, the gripper is pulled in the vertical direction through the hatch back up and then essentially using the movable carriage on the boom from the water side driven on the land side, where the bulk material is stored on a heap or on a conveyor belt.
  • the gripper has vzw. a separate locking mechanism, which also vzw. is controlled by appropriate additional rope elements.
  • the rope elements are vzw. via corresponding cable drums and these vzw. powered by DC motors.
  • the sledge is vzw. pulled over arranged rope elements or rope drums along the boom and has vzw. a standing with the boom in contact landing gear or casters.
  • the position of the carriage (in the direction of the boom) and of the gripper is controlled by detecting the angular positions of the corresponding cable drums.
  • the locking mechanism of the gripper is also controlled by separate rope elements, a force measurement can be done on the one hand on the tethers of the gripper and on the lock ropes.
  • the force measurement on the rope elements is vzw. determined via sensory load cells. As a result, in particular, the weight of the bulk material located in the gripper can be determined.
  • the control of the gripper in the vertical direction is therefore essentially on the control of the corresponding tether of the gripper.
  • the control of the locking mechanism of the gripper (open / close) is therefore essentially on the control of the corresponding lock cable drum.
  • the control of the gripper in the horizontal direction via a movement / displacement of the carriage from right to left along the corresponding boom and a corresponding suspension drive of the pillars in the direction parallel to the quay wall.
  • the gripper is essentially "three-dimensional" movable or controllable. Vzw. the control of the gripper is done manually via a control station, which is arranged on the unloading bridge.
  • corresponding devices or "unloading bridges” are known, lifted with the help of containers from the hold of a ship or be deposited in the hold of a ship, so a corresponding ship loaded with the containers or unloaded accordingly.
  • the operation of such a discharge bridge is substantially similar to that described above, but the gripper for gripping the container is designed specifically differently than the gripper for gripping bulk material.
  • the corresponding gripper for gripping a container substantially on a kind of frame, with the help of corresponding fasteners of the corresponding container can be "taken".
  • the loading state of the hold of the ship below the "hatch” - hereinafter referred to as “hatch” - is generally very arbitrary at the beginning of discharge from the bulk material.
  • the gripper When unloading generally a flat surface of the charge in the hatch area is sought, from which then the bulk material is tapped with the gripper. A substantial portion of the cargo space is generally not directly below the hatch and is therefore not directly accessible to the drained grapple. However, it is trying to fully exploit the area of the opening to the hold, so the surface of the hatch.
  • the gripper is therefore moved up close to the hatch edges, in exceptional cases, it is set off by utilizing a pendulum motion in the edge regions of the hold, which would otherwise not be easily reached.
  • a control system wherein the position of the gripper is detected by sensors, so that a pendulum movement or a pendulum deflection of the gripper can be compensated indirectly by a corresponding control of the gripper.
  • an inertial navigation system is provided and arranged on the gripper.
  • the invention is therefore based on the object, the above-mentioned method or the device mentioned in such a way and further that the loading and / or unloading process is simplified, in particular the associated costs and possibly associated malfunctions, in particular the risk of collisions of the gripper are significantly reduced.
  • the above-indicated object is now - for the method - solved by the features of claim 1.
  • the device according to the features of claim 17 operates according to the aforementioned method.
  • a pendulum motion in particular directly at their beginning can be determined and carried out with the aid of a control system corresponding automatic immediate control of the movement of the gripper influencing actuators or components, so that the pendulum deflection or the disturbing pendulum movement of the gripper compensated accordingly, but at least can be reduced.
  • the danger of collision of the gripper with the hatch edges or the ship superstructures is avoided.
  • the risk of spillage of the gripper is minimized, so that the previously known malfunctions and the associated high costs are avoided.
  • the gripper can now be sold with pinpoint accuracy.
  • the Fig. 1 to 4 show - at least partially - a device 1 for loading and / or unloading a cargo space 2 with material 3, vzw. with bulk material 3a.
  • the device 1 shown here is therefore suitable for loading and / or unloading a loading space or a storage space with material 3, ie vzw. with bulk material 3a or, for example, also for loading and / or unloading the loading space of a ship with containers.
  • the device 1 is in the following but vzw. in particular in the Fig. 1 and 2 illustrated unloading bridge 1a explains:
  • Fig. 1 are first - more generally - the essential mechanical components of the device 1 shown.
  • the vzw. designed as a discharge bridge 1a device 1 for loading and / or unloading the cargo space 2 of a ship 4 with bulk material 3a.
  • the device 1 serves for loading and / or unloading the loading space 2 of a ship 4 with coal, ore or the like.
  • the device 1 has a gripper 5 for receiving or delivering the bulk material 3a to be transported.
  • the position of the gripper 5 relative to the transporting bulk material 3a is controllable, wherein the position of the gripper 5 is initially variable in the vertical direction according to the arrow A, namely the gripper 5 can be lowered on the one hand, on the other hand can be pulled up.
  • the gripper 5 is connected to at least one cable element 6, which is indicated schematically here.
  • the term "cable element” is also understood, for example, as chain-like elements or the like, which are not rigid and allow a pendulum movement of the gripper 5.
  • the device 1 embodied here as a discharge bridge 1a has a - first - water-side boom 7 and a - second - land-side boom 8.
  • the booms 7 and 8 are substantially horizontal and are arranged on vertically arranged pillars 9.
  • the gripper 5 is substantially in the horizontal direction along the boom 7 and 8 movable.
  • the rope element 6 shown here runs vzw. via a arranged on the carriage 10 deflection roller 11 (see. Fig. 4 ).
  • Vzw. will also be the slide 10 over here in the Fig. 1 not shown further rope elements along the boom 7 and 8 moves. With the movement of the carriage 10 is therefore also the gripper 5 - hanging on the cable element 6 - along the boom 7 and 8 correspondingly movable.
  • the entire device 1 designed as unloading bridge 1a is movable substantially parallel to the quay wall 13 and therefore also the gripper 5. It is conceivable that the device 1 not only supports the holds 2 of mobile vehicles (Trucks, ships, etc.) loading or unloading, but, for example. even on solid ground standing by walls limited cargo spaces 2 ("storage rooms").
  • Fig. 1 To control the movements of the gripper 5, is now in the Fig. 1 not shown, but from the Fig. 2 apparent control system 14 is provided.
  • the recording and / or delivery of the bulk material 3 a by the gripper 5 is realized by means of a separate locking mechanism of the gripper 5, not shown here, which in turn vzw. is operated via separate rope elements not shown here in detail. The same applies if containers are to be transported with the device 1 and a specifically designed gripper.
  • the bulk material 3a is unloaded from the hold 2, wherein the gripper 5 is lowered into the hold 2 of the ship 4 through the corresponding hatch 15, here the bulk material to be transported 3a is taken in the open state of the gripper 5, the gripper 5 then actuated by means of its locking mechanism, namely, closed and then pulled over a corresponding cable drum drive the gripper 5 again through the hatch 15 upwards. Vzw. Thereafter, the carriage 10 is then moved accordingly, namely along the boom 7 and 8, respectively, to the point where the bulk material 3a is then to be unloaded. At the same time, the entire device 1 along the quay wall 13 by means of the chassis 12 are also moved.
  • Fig. 2 shown directions, ie in the X, Y and Z directions accordingly movable so that the bulk material to be transported 3a then a funnel 16 on the conveyor belts 17 and 18 (shown by arrow B) can be discharged or on a heap 19 (shown by the arrow C) is heaped or can be removed from the heap. This depends on the particular application.
  • the device 1 For the movement / control of the gripper 5 in the individual directions, ie in the X, Y and Z directions, the device 1 has the corresponding components / actuators not shown in detail here, ie a correspondingly driven cable drum for moving the gripper 5 in the Y direction, one corresponding rope control, vzw. driven cable drums for moving the carriage 10 and thus also the gripper 5 in the X direction along the boom 7 and 8 and for the movement of the gripper 5 along the quay wall 13 in the Z direction, the chassis 12th
  • the carriage 10 via the carriage 10 is initially a decoupling of the horizontal (at least in the X direction) and vertical (in the Y direction) control of the gripper 5.
  • the corresponding cable drums not shown here are vzw. powered by DC motors.
  • the term "slide” is a vzw. understood along the boom 7 and 8 movable element. It is conceivable that the carriage 10 is guided by means of a rail system along the investors 7 and 8 or vzw. in the Fig. 4 has shown drive rollers.
  • the position of the gripper 5 can be sensed by means of an inertial navigation system 21, so that a pendulum movement or pendulum deflection of the gripper 5 can be determined and the pendulum deflection can be substantially compensated and / or reduced by a corresponding control.
  • Vzw the current position of the gripper 5 vzw. detected continuously sensory, so that a current pendulum motion and / or pendulum deflection of the gripper 5 is determined and then compensated by a corresponding automatic control of the individual components for controlling the gripper 5, this pendulum motion or the pendulum deflection substantially and / or is reduced.
  • Fig. 2 now essentially shows the device 1, the vzw. is designed as a discharge bridge 1a.
  • Good to see here is the first boom 7, the pillars 9 a control pulpit 20, the ship 4, the load compartment 2, the hatch 15 and the gripper 5, which depends on the cable element 6 and is connected to the carriage 10.
  • the carriage 10 is substantially horizontally displaceable along the first arm 7, as indicated by the unspecified arrows, wherein the apparatus 1 along the quay wall 13 is movable via the landing gear 12 not shown in detail here.
  • control system 14 shown here schematically for the corresponding control of the gripper 5. Also shown is the coordinate system that is intended to represent the directions of movement of the gripper 5 in the X, Y and Z directions, the individual movements, namely in Y Direction over a corresponding cable drive of the cable element 6, in the X direction over the carriage 10 and in the Z direction over the motorized by means of the chassis 12 device 1 along the quay wall 13 can be realized. Not shown in detail here is the locking mechanism of the gripper 5, which is also controlled via not shown here separate cable elements, so that the opening and closing movements of the gripper 5 also with the aid of the control system 14 can be realized.
  • an inertial navigation system 21 is provided.
  • An inertial navigation system 21 is particularly advantageous in poor visibility conditions for determining the position of the gripper 5, since poor visibility on the determination of the position of the gripper 5 have no influence here.
  • This inertial navigation system 21 is on the gripper 5, ie on the load receiving means according to vzw. arranged directly in a box.
  • the inertial navigation system 21 has corresponding sensors for determining the current translational and / or rotational accelerations or rotational speeds of the gripper 5.
  • the data determined by the inertial navigation system 21 data immediately to the control system 14 vzw. transmitted by radio.
  • the control system 14 has vzw. an illustrated evaluation unit 14a and / or a computing unit 14b and vzw. a storage unit 14c.
  • the data transmitted by the inertial navigation system 21 are then evaluated and thus the current position of the gripper 5 is determined or also a possible pendulum deflection and / or oscillating movement of the gripper 5 is determined or its trajectory calculated.
  • the inertial navigation system 21 or the evaluation unit of the control system 14a detects a pendulum movement of the gripper 5
  • the pendulum movement or the movement path of the gripper 5 can then be calculated via the evaluation and / or arithmetic unit 14a, 14b of the control system 14.
  • the control system 14 or the computing unit 14b then calculates the kinematic "counter measures" and gives the control commands to the individual actuators for controlling the components such as the movement of the carriage 10, the chassis 12 and / or the specific height of the gripper 5.
  • About the kinematic intervention realized by the control system 14 is now automatically the pendulum motion / pendulum deflection of the gripper 5 vzw. completely compensated, but at least reduced.
  • the control system 14 controls the actuators, ie the cable drums for the carriage 10, the motor for the chassis 12 and / or the cable drum for setting the current height of the gripper 5 automatically.
  • the inertial navigation system 21 is shown in its specific embodiment.
  • the inertial navigation system 21 is here vzw. designed as a three-axis inertial system and has a corresponding sensor, namely vzw. up to three orthogonal gyroscopes and vzw. up to three accelerometers on.
  • the inertial navigation system 21 designed as an inertial system is used to determine the position of the gripper 5 in the case of the bulk material 3a, the inertial system has three orthogonal gyroscopes and three accelerometers, namely for the corresponding three relevant pendulum axes. If the inertial navigation system 21 embodied as an inertial system is used to determine the position of the gripper 5 for containers, then the inertial navigation system 21 vzw. two orthogonal gyroscopes or vzw. two Accelerometer on, namely due to the vzw. Here realized specific suspension of the gripper 5 for the relevant here for this case here two pendulum axes.
  • the inertial navigation system 21 embodied as an inertial system is here arranged in a kind of box or the sensors are arranged in the box, this box being arranged directly on the load receiving means, namely on the gripper 5, as in FIG Fig. 2 shown. Additionally shown in the Fig. 3 Here are the corresponding respective three axes, namely the X-axis, the Y-axis and the Z-axis.
  • the data measured by the inertial system are vzw. transmitted by radio to the control system 14. For each of the possible pendulum axles, here vzw.
  • the three axes of the inertial system are permanently determined for the respective axis, the measured rotational speed about this axis and / or the vectorial acceleration in the direction of this axis using the gyro associated with this axis or the accelerometer associated with this axis.
  • the position and position of the load receiving means namely the gripper 5 in space by the corresponding integration of the measured data, ie vzw. to determine the current position and position of the gripper 5 in space.
  • the respective acceleration vectors of the respective axes X-, Y- and Z-axis
  • the resulting acceleration vector can be determined accordingly, wherein additionally and simultaneously the "rate of turn" of the gripper 5 from the individual angular velocities to the individual Axes can be determined, namely with the help of the respective measured data of orthogonal gyroscopes.
  • the position of the load receiving means namely the gripper 5 in space
  • integration simple integration with rotational speed values, dual integration with acceleration values
  • vzw. with the help of the control system 14 for a particular position of the load receiving means, so the gripper 5 in its rest position, a reference point defined for the kinematic system. This happens vzw. also in rest position of the carriage 10 and der Fahrwerkes 12.
  • the current measurement data are transmitted to the control system 14, so that the current position of the gripper 5 in space on the corresponding integration of the measurement data, in particular the pendulum deflection is calculated accordingly and the control system 14 here a pendulum deflection or pendulum motion of the gripper 5, since the inertial navigation system 21 embodied as an inertial system constantly and permanently transmits the corresponding measurement data to the control system 14 and the movement or position of the carriage 10 is always known to the control system 14, so that then the current position of the gripper 5 due to the corresponding integration of the permanently transmitted measurement data and the adaptation of the coordinates in the space whose position is calculated at any time.
  • This has the great advantage that the whole kinematic system can work without an imaging system and bad weather conditions, namely poor visibility can not influence this. On the contrary, pendulum deflections caused by wind forces can be compensated immediately.
  • a rotary movement of the gripper 5 on the one hand a substantially circular movement of the gripper 5 in space but also a circular movement gripper 5 is substantially determined about its own vertical axis.
  • Such a rotary movement of the gripper 5 is thereby compensated or vzw. Stoppbar when the gripper 5 vzw in the moment of his determined "zero crossing" with the material 3. can be brought into contact with the bulk material 3a, so that this rotational movement is stopped.
  • the system described above vzw. additionally, a continuous check of the measured data by comparing the positions of the gripper 5 integrated via the accelerometers and / or rotary gyroscopes with a position of the gripper 5 determined from the pendulum angle and the position of the carriage 10.
  • the integration of the measured data designed as an inertial inertial system 21 permanently determines the position and position of the gripper 5, wherein the reversal points of the pendulum and / or rotational movement of the gripper 5 are permanently determined and then a compensation of the movements of the gripper 5 respect. Its rest position is possible.
  • the control system 14 By the direct action of the control system 14 after the detected pendulum movement of the gripper 5 can now with the help of the evaluation or arithmetic unit 14a / 14b of the control system 14 and with the aid of a stored in the memory unit 14c computer program, the corresponding physical effects and the actual predetermined considered specific geometries and forces, the pendulum movement of the gripper 5 vzw. be compensated. Vzw.
  • the weight of the bulk material 3 a located in the gripper 5 is determined via a force measurement on the cable element 6 and transmitted to the control system 14, as vzw.
  • the control system 14 in addition also all the essential parameters for checking the measurement data of the inertial navigation system 21 - as already mentioned above - are available. It may be problematic that the measurement results of the inertial navigation system 21, which is designed as an inertial system, have an error which increases steadily with time t. The reason for this lies in possible existing ones Measuring errors of the accelerometers or gyroscopes, which are increasingly affected by integration with time. This inaccuracy (drift / bias) can now be eliminated by supporting the system.
  • Fig. 4 shows the carriage 10, the guide roller 11 for the cable element 6 for raising and lowering the gripper 5 and the cable elements 22 and 23 (guide cables) for moving the carriage 10 along the boom 7.
  • a pendulum deflection of the gripper 5 shown here represented by the Angle ⁇ , arises in the region of the carriage 10, a corresponding resultant force F Res .
  • the horizontal component of this force is F horizontal
  • the rope load of the cable element 6 is here indicated with F last .
  • the horizontal component of the resultant force F Res ie the horizontal component F horizontal, must be applied by the guide cables of the carriage 10.
  • a measurement of the pendulum deflection of the gripper 5 is now possible at least in the direction of movement of the carriage 10 (X direction), in particular because the rope length of the cable element 6 or the respective angle of rotation of the cable drum and thus the specific height of the gripper 5 is known .
  • the bearing of the deflection roller 11 can be equipped with a moment sensor.
  • the pendulum deflection of the gripper 5 can be compensated or reduced by means of the control commands or control of the individual actuators, as described above, namely via a corresponding automatic control of the carriage 10, the chassis 12 and / or the change in the height of the gripper 5.
  • the device 1 can advantageously be additionally configured in this way, so that in fact the exact position of the ship 2 and / or the hatch 15 or the hatch edges can also be sensed.
  • This is vzw. via another image acquisition system, vzw. realized via a laser scanner 24, which is designed in particular as a 3D laser scanner.
  • the laser scanner 24 is arranged on the first arm 7 above the area of the hatch 15. Vzw. is using the laser scanner 24 then the exact position of the ship 2 and the hatch 15 sensed.
  • This initially has the advantage that an "emergency stop" can be carried out, namely when the evaluation unit 14a of the control system 14 determines that a current pendulum movement of the gripper 5 in further operation to a collision with the hatch edge of the hatch 15 or with a ship body of the ship 4 would lead.
  • the evaluation unit 14a or computing unit 14b determines this from the data transmitted by the laser scanner 24 or by the sensory detection of the position of the gripper 5.
  • the current distribution of the charge, that is the bulk material 3a within the cargo space 2 is scanned.
  • an automatic method for reducing and / or compensating the pendulum deflection of the gripper 5 is now feasible.
  • the position of the gripper 5 vzw. continuously sensory detected, so that a pendulum movement of the gripper 5 is determined and then compensated by an automatic control of the gripper 5 and the individual actuators (slide 10, chassis 12, etc.) this oscillating motion substantially and / or is reduced.
  • vzw. the current movement of the carriage 10 controlled accordingly, which transmits them to the gripper 5 via the cable element 6 substantially parallel to the respective direction of movement of the carriage 10 (X direction).
  • a compensating compensation in the Z direction can also take place via the running gear 12 of the device 1, that is to say the running gear 12 can be controlled via the control system 14 in accordance with the compensation of the oscillating movement of the gripper 5.
  • the current specific height of the Gripper 5 in the Y direction
  • the current load of the gripper 5 is determined with bulk material 3 via a corresponding force measurement on the cable element 6 and a corresponding current height adjustment of the gripper 5, the pendulum motion is reduced or compensated.
  • the individual components are controlled via the control system 14.
  • an inertial navigation system 21 determines the translational and / or rotational accelerations of the gripper 5 with the aid of the sensors of the inertial navigation system 21, the determined data being transmitted to the control system 14.
  • these data are evaluated with the aid of an evaluation unit 14a and the current position of the gripper 5 or its trajectory calculated, then based on the corresponding control of the chassis 12, the carriage 10 and / or the height of the gripper 5 then the compensation or reduction of the pendulum movement can take place.
  • the current position of the gripper 5 is to be determined at any time, so that vzw. the unloading process is not affected by poor visibility, whereby crucial cost savings in operating costs can be realized.
  • the method for loading and / or unloading a loading space (2) or storage space with material (3) in particular for loading and / or unloading a loading space (2) of a ship (4) with bulk material (3a), vzw. with coal or ore, or with containers, works vzw. with the device (1, 1a).
  • the material to be transported (3), vzw. the bulk material (3a) or the container, received and / or delivered wherein the position of the gripper (5) is controlled, namely the position of the gripper (5) is changed at least in the vertical and / or horizontal direction, wherein the gripper (5 ) on at least one cable element (6) and the movements of the gripper (5) in the vertical and / or horizontal direction and / or the movements for receiving and / or delivery of the material (3) are controlled, wherein the position of the gripper ( 5) is sensory detected and a pendulum movement and / or a pendulum deflection of the gripper (5) is determined and then substantially compensated and / or reduced by a corresponding control, and wherein the position of the gripper (5) by means of an inertial navigation system (21 ) is determined.
  • the translatory and / or rotational accelerations of the gripper (5) are determined by means of the sensors of the inertial navigation system (21).
  • the data determined by the inertial navigation system (21) are transmitted to the control system (14).
  • the control system (14) uses an evaluation unit (14a) to evaluate the data transmitted by the inertial navigation system (21) and determines the position of the gripper (5) and / or calculates its trajectory using a computer unit (14b).
  • the inertial navigation system is designed as a three-axis inertial system having orthogonal gyroscopes and accelerometers, so that for each of the relevant pendulum axes permanently measured for the respective axis rotational speed about this axis and / or the vectorial acceleration in the direction of this axis can be determined.
  • the data measured by the inertial system are transmitted by radio to the control system.
  • the reference point / zero point of the kinematic system is defined.
  • the current position of the gripper and / or the pendulum motion, pendulum deflection and / or the pendulum angle is determined continuously.
  • a rotational movement of the gripper namely a circular movement of the gripper in space and / or a circular movement of the gripper is determined substantially about its own vertical axis.
  • a boom (7) is arranged substantially horizontally on at least one supporting pillar (9), wherein the supporting pillar (9) is moved on a ground, namely substantially in a 90 degrees to the direction of movement of the carriage (10) offset direction (Z Direction) is moved.
  • the substantially in the vertical direction (Y-direction) extending movements of the gripper (5) and / or the opening and closing movements of the gripper (5) are controlled by cable elements.
  • the carriage (10) is driven by cable elements (22, 23). With the aid of the control system (14), the movements of the carriage (10) and / or the support pillar (9) and the up and down movement of the gripper (5) are controlled.
  • the reversal points of the pendulum movements of the gripper (5) are determined and the current zero point of the gripper (5) in the known position or movement of the carriage (10) and / or the chassis (12) is calculated, so that a possible inherent drift of Inertial navigation system (21) is eliminable in that the inertial navigation system (21) is supported towards this zero point of the gripper (5).
  • the current position of the gripper (5) namely the pendulum deflection of the gripper (5) in all its pendulum axes and / or the rotation of the gripper (5) is determined.
  • the image acquisition system determines with a laser scanner (24) the current distribution of the charge of the bulk material (3) within the hold (2).
  • the slope angle of the bulk material (3) stored in the loading space (2) is determined.
  • a rotary movement of the gripper is compensated or stopped in that the gripper can be brought into contact with the bulk material (3a) precisely at the moment of its determined zero crossing.
  • the data of the inertial navigation system (21) and / or the data of the image acquisition system are transmitted to the control system (14), from which the pendulum motion or the pendulum deflection of the gripper (5) by means of the evaluation unit (14a) is determined, in which case Arithmetic unit (14a) of the control system (14) calculates the kinematic sequences and the control system (14) the corresponding control commands for compensation and / or reduction of the pendulum deflection of the gripper (5) are determined and wherein the carriage (10), the chassis (12). and / or the height of the gripper (5) automatically controlled accordingly, namely moved accordingly or adjusted.
  • the current distribution of the bulk material (3a) in the loading space (2) is determined with the aid of a laser scanner (24), wherein the data determined by the laser scanner (24) are transmitted to the control system (14), wherein the evaluation and / or arithmetic unit ( 14a and 14b), the angle of repose of the bulk material (3) is calculated and detected as a function of the respective specific bulk material (3) and the stored in the memory unit (14c) parameters critical slope angle of the bulk material (3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Ship Loading And Unloading (AREA)

Description

Die Erfindung betrifft zunächst ein Verfahren zum Be- und/oder Entladen eines Laderaumes bzw. Lagerraumes mit Material, insbesondere zum Be- und/oder Entladen eines Laderaumes eines Schiffes mit Schüttgut, vzw. mit Kohle oder Erz, oder mit Containern gemäß den Merkmalen des Oberbegriffes des Patentanspruches 1. Weiterhin betrifft die Erfindung eine Vorrichtung arbeitend nach dem zuvor genannten Verfahren, gemäß den Merkmalen des Oberbegriffes des Patentanspruches 17.The invention initially relates to a method for loading and / or unloading a loading space or storage space with material, in particular for loading and / or unloading a loading space of a ship with bulk material, vzw. with coal or ore, or with containers according to the features of the preamble of claim 1. Furthermore, the invention relates to a device operating according to the aforementioned method, according to the features of the preamble of claim 17.

Die im Stand der Technik bekannten Vorrichtungen zum Be- und/oder Entladen eines Laderaumes eines Schiffes, wobei in dem Laderaum Schüttgut gelagert wird bzw. dem Laderaum Schüttgut, vzw. Kohle, Erz oder dgl. entnommen wird, sind vzw. als sogenannte "Entladebrücken" ausgeführt und in den entsprechenden Häfen vorgesehen. Das Schüttgut, insbesondere die verschiedenen Erz-und/oder Kohlesorten werden mit den Seeschiffen angeliefert. Das Löschen der Laderäume der Schiffe erfolgt vzw. mit den zuvor genannten Entladebrücken.The known in the prior art devices for loading and / or unloading a hold of a ship, being stored in the hold bulk goods or the cargo space bulk, vzw. Coal, ore or the like is taken are vzw. designed as so-called "unloading bridges" and provided in the respective ports. The bulk material, in particular the various types of ore and / or coals, are delivered by seagoing vessels. The deletion of the hold of the ships is vzw. with the aforementioned unloading bridges.

Derartige Entladebrücken weisen zumeist jeweils einen wasserseitigen und jeweils einen landseitigen im wesentlichen horizontal verlaufenden Ausleger auf, die auf zwei im wesentlichen vertikal verlaufenden Stützpfeilern angeordnet sind. Die Stützpfeiler, die ein Fahrwerk aufweisen, sind parallel zur Kaimauer und damit auch parallel zu dem an der Kaimauer liegenden Schiff bewegbar. Entlang der Ausleger ist eine Art verfahrbarer Schlitten, genannt "Katze" bewegbar angeordnet. Im wesentlichen im Bereich unterhalb des Schlittens ist mit Hilfe von Seilelementen ein Greifer angeordnet, der in vertikaler Richtung, nämlich auf und ab bewegt werden kann, um insbesondere durch die Ladeluke eines Schiffes in den Laderaum des Schiffes herabgelassen zu werden, um hier das Schüttgut aufzunehmen bzw. zu ergreifen. Hiernach wird der Greifer in vertikaler Richtung durch die Ladeluke wieder nach oben gezogen und dann im wesentlichen mit Hilfe des auf dem Ausleger verfahrbaren Schlittens von der Wasserseite auf die Landseite gefahren, wo das Schüttgut auf einer Halde oder auf einem Förderband abgelegt wird.Such unloading bridges usually have in each case a water-side and in each case a land-side essentially horizontally extending outrigger, which are arranged on two substantially vertically extending supporting pillars. The pillars, which have a landing gear, are movable parallel to the quay wall and thus also parallel to the ship lying on the quay wall. Along the boom a kind of movable carriage, called "cat" is arranged movable. Substantially in the area below the carriage, a gripper is arranged with the aid of cable elements, which can be moved in the vertical direction, namely up and down to be lowered in particular by the hatch of a ship in the hold of the ship to receive the bulk material here or to take. Thereafter, the gripper is pulled in the vertical direction through the hatch back up and then essentially using the movable carriage on the boom from the water side driven on the land side, where the bulk material is stored on a heap or on a conveyor belt.

Der Greifer weist vzw. ein separates Schließwerk auf, das auch vzw. über entsprechende zusätzliche Seilelemente gesteuert wird. Über den Schlitten, also die "Katze" erfolgt im wesentlichen eine Entkopplung der horizontalen und der vertikalen Ansteuerung des Greifers. Die Seilelemente werden vzw. über entsprechende Seiltrommeln und diese vzw. über Gleichstrommotoren angetrieben. Auch der Schlitten wird vzw. über angeordnete Seilelemente bzw. Seiltrommeln entlang der Ausleger gezogen und weist vzw. ein mit dem Ausleger in Kontakt stehendes Fahrwerk bzw. Fahrrollen auf. Gesteuert wird die Position des Schlittens (in Richtung des Auslegers) und des Greifers (also der spezifische Höhenabstand - Heben/Senken) durch die Erfassung der Winkelpositionen der entsprechenden Seiltrommeln. Da das Schließwerk des Greifers ebenfalls über separate Seilelemente gesteuert wird, kann eine Kraftmessung einerseits an den Halteseilen des Greifers sowie an dessen Schließseilen erfolgen. Die Kraftmessung an den Seilelementen wird vzw. über sensorische Lastdosen ermittelt. Hierdurch ist insbesondere auch das Gewicht des sich im Greifer befindenden Schüttgutes ermittelbar.The gripper has vzw. a separate locking mechanism, which also vzw. is controlled by appropriate additional rope elements. About the carriage, so the "cat" is essentially a decoupling of the horizontal and vertical control of the gripper. The rope elements are vzw. via corresponding cable drums and these vzw. powered by DC motors. The sledge is vzw. pulled over arranged rope elements or rope drums along the boom and has vzw. a standing with the boom in contact landing gear or casters. The position of the carriage (in the direction of the boom) and of the gripper (ie the specific vertical distance - lifting / lowering) is controlled by detecting the angular positions of the corresponding cable drums. Since the locking mechanism of the gripper is also controlled by separate rope elements, a force measurement can be done on the one hand on the tethers of the gripper and on the lock ropes. The force measurement on the rope elements is vzw. determined via sensory load cells. As a result, in particular, the weight of the bulk material located in the gripper can be determined.

Die Steuerung des Greifers in vertikaler Richtung (Heben/Senken) erfolgt im wesentlichen daher über die Ansteuerung der entsprechenden Halteseiltrommel des Greifers. Die Ansteuerung des Schließwerkes des Greifers (Öffnen/Schließen) erfolgt im wesentlichen daher über die Ansteuerung der entsprechenden Schließseiltrommel. Die Steuerung des Greifers in horizontaler Richtung erfolgt über eine Bewegung/Verschiebung des Schlittens von rechts nach links entlang des entsprechenden Auslegers sowie über einen entsprechenden Fahrwerksantrieb der Stützpfeiler in Richtung parallel zur Kaimauer. Damit ist der Greifer im wesentlichen "dreidimensional" bewegbar bzw. steuerbar. Vzw. erfolgt die Steuerung des Greifers manuell über einen Steuerstand, der an der Entladebrücke angeordnet ist.The control of the gripper in the vertical direction (lifting / lowering) is therefore essentially on the control of the corresponding tether of the gripper. The control of the locking mechanism of the gripper (open / close) is therefore essentially on the control of the corresponding lock cable drum. The control of the gripper in the horizontal direction via a movement / displacement of the carriage from right to left along the corresponding boom and a corresponding suspension drive of the pillars in the direction parallel to the quay wall. Thus, the gripper is essentially "three-dimensional" movable or controllable. Vzw. the control of the gripper is done manually via a control station, which is arranged on the unloading bridge.

Weiterhin sind entsprechende Vorrichtungen bzw. "Entladebrücken" bekannt, mit deren Hilfe Container aus dem Laderaum eines Schiffes herausgehoben bzw. in den Laderaum eines Schiffes abgesetzt werden, also ein entsprechendes Schiff mit den Containern entsprechend beladen oder entladen wird. Die Funktionsweise einer derartigen Entladebrücke ist im wesentlich ähnlich zu der zuvor beschriebenen, allerdings ist der Greifer zum Ergreifen der Container spezifisch anders ausgebildet als der Greifer zum Ergreifen von Schüttgut. So weist der entsprechende Greifer zum Ergreifen eines Containers im wesentlichen eine Art Rahmen auf, mit dessen Hilfe über entsprechende Befestigungselemente der entsprechende Container "ergriffen" werden kann.Furthermore, corresponding devices or "unloading bridges" are known, lifted with the help of containers from the hold of a ship or be deposited in the hold of a ship, so a corresponding ship loaded with the containers or unloaded accordingly. The operation of such a discharge bridge is substantially similar to that described above, but the gripper for gripping the container is designed specifically differently than the gripper for gripping bulk material. Thus, the corresponding gripper for gripping a container substantially on a kind of frame, with the help of corresponding fasteners of the corresponding container can be "taken".

Die Praxis hat gezeigt, dass während des Betriebs, insbesondere beim Entladen des Laderaums des Schiffes eine Pendelauslenkung des Greifers sehr problematisch sein kann. Hierzu darf folgendes ausgeführt werden:Practice has shown that a pendulum deflection of the gripper can be very problematic during operation, especially when unloading the hold of the ship. The following may be done for this purpose:

Der Beladezustand des Laderaums des Schiffes unterhalb der "Ladeluke" - im folgenden "Luke" genannt - ist bei Beginn der Entladung vom Schüttgut im allgemeinen sehr beliebig. Beim Entladen wird im allgemeinen eine ebene Oberfläche der Ladung im Lukenbereich angestrebt, von der dann gleichmäßig das Schüttgut mit dem Greifer abgegriffen wird. Ein wesentlicher Bereich des Laderaumes befindet sich im allgemeinen nicht direkt unterhalb der Luke und ist daher für den abgelassenen Greifer nicht direkt zugänglich. Es wird aber versucht die Fläche der Öffnung zum Laderaum, also die Fläche der Luke vollständig auszunutzen. Der Greifer wird daher nah an die Lukenränder heranbewegt, in Ausnahmefällen wird er unter Ausnutzung einer Pendelbewegung auch in den Randbereichen des Laderaums abgesetzt, die ansonsten nicht ohne weiteres erreichbar wären. Es besteht aber immer eine große Kollisionsgefahr des Greifers mit den Lukenrändern, insbesondere bei einer Pendelbewegung. Das Beladen eines Laderaums eines Schiffes mit einem Greifer ist unproblematischer, da hier eine geringere Kollisionsgefahr des Greifers mit den Lukenrändern besteht und das Schüttgut im wesentlichen immer von oben mittig durch die Luke in den Laderaum abgegeben werden kann und sich hierdurch dann im wesentlichen gleichmäßig im Laderaum verteilt.The loading state of the hold of the ship below the "hatch" - hereinafter referred to as "hatch" - is generally very arbitrary at the beginning of discharge from the bulk material. When unloading generally a flat surface of the charge in the hatch area is sought, from which then the bulk material is tapped with the gripper. A substantial portion of the cargo space is generally not directly below the hatch and is therefore not directly accessible to the drained grapple. However, it is trying to fully exploit the area of the opening to the hold, so the surface of the hatch. The gripper is therefore moved up close to the hatch edges, in exceptional cases, it is set off by utilizing a pendulum motion in the edge regions of the hold, which would otherwise not be easily reached. However, there is always a high risk of collision of the gripper with the hatch edges, especially in a pendulum motion. The loading of a hold of a ship with a gripper is less problematic, since there is a lower risk of collision of the gripper with the hatch edges and the bulk material can always be discharged from the top center through the hatch into the hold and thus thereby substantially uniformly in the hold distributed.

Hingegen muss insbesondere beim Entladen des Laderaumes - nach einer gewissen Zeit des Entladevorganges - zumeist bisher ein sogenannter Radlader auf dem Boden des Laderaums abgesetzt werden, der aus den seitlichen Bereichen des Laderaums das Schüttgut in den Bereich unterhalb der Luke schiebt, wo es dann vom Greifer aufgenommen werden kann. Aber auch Pendelbewegungen oberhalb der Luke können zu Beschädigungen am Schiff, insbesondere in den Niedergängen oder an den Schiffsaufbauten führen. Zusätzlich kann der Greifer, insbesondere durch eine Schräglage des Greifers im Schüttgut, zu einer Torsionsschwingung angeregt werden.On the other hand, especially when unloading the loading space - after a certain period of unloading - usually so far a so-called wheel loader be placed on the floor of the hold, which pushes the bulk material from the lateral areas of the hold in the area below the hatch, where it can then be picked up by the gripper. But also oscillations above the hatch can lead to damage to the ship, especially in the companionways or on the ship superstructures. In addition, the gripper, in particular by an inclined position of the gripper in the bulk material, be excited to a torsional vibration.

Ähnlich verhält es sich bei den Entladenbrücken, mit deren Hilfe Container transportiert werden. Der vom dem Greifer ergriffene Container muss punktgenau abgesetzt werden, insbesondere Schwingungen bzw. Pendelauslenkungen des Greifers sind hier höchst problematisch, insbesondere aufgrund der Größe und des Gewichts der zu transportierenden Container kann es bei Kollisionen zu erheblichen Schäden und damit einhergehenden Kosten kommen. Hierzu darf folgendes ausgeführt werden:The situation is similar with the unloading bridges used to transport containers. The gripped by the gripper container must be sold with pinpoint accuracy, in particular oscillations or pendulum deflections of the gripper are highly problematic here, especially due to the size and weight of the container to be transported can result in collisions to considerable damage and the associated costs. The following may be done for this purpose:

Bei den im Stand der Technik bekannten Vorrichtungen bzw. bei den bekannten Verfahren sind mehrere Punkte problematisch. Einerseits kommt es zu Pendelbewegungen des Greifers beim Transport des entsprechenden Materials, insbesondere des Schüttgutes oder der Container. Insbesondere beim Entladevorgang von Schüttgut, was im wesentlichen daran liegt, dass der Greifer aufgrund der Ladungsverteilung des Schüttgutes im Laderaum nicht punktgenau unter dem Schlitten abgesetzt werden kann bzw. beim Absetzen entsprechend entlang einer Böschung "verrutscht", geht der mit Schüttgut beladene Greifer bei seiner Aufwärtsbewegung dann in eine Pendelbewegung über. Aufgrund der Pendelbewegung des Greifers kann es zu Kollisionen mit den Lukenrändern kommen, so dass diese beschädigt werden. Weiterhin ist problematisch, dass beim Entladevorgang im Bereich der Ladung überkritische Böschungswinkel auftreten können, wobei hier das Material unkontrolliert abrutschen kann und die Gefahr besteht, dass der Greifer verschüttet wird. Ein verschütteter Greifer ist eine gravierende Betriebsstörung, die längere Stillstände zur Folge hat. Insbesondere bei Pendelbewegungen des Greifers, der hierbei auf kritische Böschungen aufprallt, können derartige Verschüttungen des Greifers und daher Betriebsstörungen eintreten. Da das Entladen der Seeschiffe eine zeitkritische Aufgabe ist und hier lange Liegezeiten der Schiffe hohe Kosten verursachen, kann eine Betriebsstörung hier - im Endeffekt - sehr kostenintensiv sein. Hieraus ergibt sich, dass die bisher im Stand der Technik bekannten Vorrichtungen bzw. die bisherige bekannten Steuerungen des Greifers noch nicht optimal ausgebildet sind.In the devices known in the prior art or in the known methods, several points are problematic. On the one hand there are oscillating movements of the gripper during transport of the corresponding material, in particular of the bulk material or the container. In particular, during the discharge of bulk material, which is essentially because of the fact that the gripper can not be placed precisely under the carriage due to the charge distribution of the bulk material in the hold or "wiping" accordingly when settling along a slope, the loaded with bulk gripper goes to his Upward movement then into a pendulum motion over. Due to the pendulum movement of the gripper, collisions can occur with the hatch edges, so that they are damaged. Furthermore, it is problematic that during unloading process in the cargo supercritical slope angle can occur, in which case the material can slip uncontrollably and there is a risk that the gripper is spilled. A spilled gripper is a serious malfunction that results in extended downtime. Especially with pendulum movements of the gripper, which in this case impacts on critical slopes, such spills of the gripper and therefore malfunction can occur. Since unloading the seagoing vessels is a time-critical task and long downtimes of ships cause high costs, a disruption can be very costly here - in the end. It follows that the previously known in the prior art devices or the previous known controls the gripper are not yet optimally formed.

So ist beispielsweise im Stand der Technik ein Verfahren bzw. eine Vorrichtung bekannt [ LOUDA M A ET AL:" INS-based identification of quay-crane spreader yaw", ROBOTICS AND AUTOMATION; 1998. PROCEEDINGS.91988 IEEE INTERNATIONAL CO NFERENCE ON LEUVEN; BELGIUM 16-20 MAY 1998, NEW YORK, NY, USA, IEEE, US, Bd. 4, 16. Mai 1998 (1998-05-16), Seiten 3310-3315, XP010281361, ISBN: 978-0-7803-4300-9 ], wobei hier der Laderaum eines Schiffes mit Containern be- und entladen werden kann. Mit Hilfe eines Greifers wird der jeweilige Container ergriffen, wobei die Position des Greifers gesteuert wird. Hierzu ist ein Steuersystem vorgesehen, wobei die Position des Greifers sensorisch erfasst wird, so dass eine Pendelbewegung bzw. eine Pendelauslenkung des Greifers mittelbar durch eine entsprechende Ansteuerung des Greifers kompensierbar ist. Zur Erfassung der Position des Greifers ist ein Trägheitsnavigationssystem vorgesehen und an dem Greifer angeordnet.For example, in the prior art, a method and a device are known [ LOUDA MA ET AL: "INS-based identification of quay-crane spreader yaw", ROBOTICS AND AUTOMATION; 1998. PROCEEDINGS.91988 IEEE INTERNATIONAL CO NFERENCE ON LEUVEN; BELGIUM 16-20 MAY 1998, NEW YORK, NY, USA, IEEE, US, vol. 4, 16 May 1998 (1998-05-16), pages 3310-3315, XP010281361, ISBN: 978-0-7803-4300 -9 ], where here the cargo space of a ship can be loaded and unloaded with containers. With the help of a gripper, the respective container is gripped, whereby the position of the gripper is controlled. For this purpose, a control system is provided, wherein the position of the gripper is detected by sensors, so that a pendulum movement or a pendulum deflection of the gripper can be compensated indirectly by a corresponding control of the gripper. For detecting the position of the gripper, an inertial navigation system is provided and arranged on the gripper.

Der Erfindung liegt daher die Aufgabe zugrunde, das eingangs genannte Verfahren bzw. die eingangs genannte Vorrichtung derart auszugestalten und weiterzubilden, dass der Be- und/oder Entladevorgang vereinfacht ist, insbesondere die damit verbundenen Kosten und möglicherweise damit einhergehenden Betriebsstörungen, insbesondere die Gefahr von Kollisionen des Greifers erheblich vermindert sind.The invention is therefore based on the object, the above-mentioned method or the device mentioned in such a way and further that the loading and / or unloading process is simplified, in particular the associated costs and possibly associated malfunctions, in particular the risk of collisions of the gripper are significantly reduced.

Die zuvor aufgezeigte Aufgabe ist nun - für das Verfahren - durch die Merkmale des Patentanspruches 1 gelöst. Die Vorrichtung gemäß den Merkmalen des Patentanspruches 17 arbeitet nach dem zuvor genannten Verfahren.The above-indicated object is now - for the method - solved by the features of claim 1. The device according to the features of claim 17 operates according to the aforementioned method.

Dadurch, dass die Position des Greifers nunmehr vzw. kontinuierlich mit Hilfe eines Trägheitsnavigationssystems sensorisch erfasst wird, kann eine Pendelbewegung, insbesondere direkt bei deren Beginn ermittelt werden und eine mit Hilfe eines Steuersystems ausgeführte entsprechende automatische umgehende Ansteuerung der die Bewegung des Greifer beeinflussenden Aktuatoren bzw. Komponenten erfolgen, so dass die Pendelauslenkung bzw. die störende Pendelbewegung des Greifers entsprechend kompensiert, zumindest aber verringert werden kann. Insbesondere ist die Kollisionsgefahr des Greifers mit den Lukenrändern oder den Schiffsaufbauten vermieden. Weiterhin ist die Gefahr des Verschüttens des Greifers minimiert, so dass auch die bisher bekannten Betriebsstörungen und die damit einhergehenden hohen Kosten vermieden sind. Insbesondere kann der Greifer nun auch punktgenau abgesetzt werden. Dadurch, dass mit Hilfe des Trägheitsnavigationssystems die Pendelbewegung des Greifers erfasst wird und dadurch dass durch eine entsprechende automatische Ansteuerung der aktuellen Bewegungen des Greifers die Pendelauslenkung/Pendelbewegung verringert bzw. kompensiert wird, sind die eingangs genannten Nachteile vermieden und entscheidende Vorteile erzielt.The fact that the position of the gripper now vzw. is continuously sensory detected by means of an inertial navigation system, a pendulum motion, in particular directly at their beginning can be determined and carried out with the aid of a control system corresponding automatic immediate control of the movement of the gripper influencing actuators or components, so that the pendulum deflection or the disturbing pendulum movement of the gripper compensated accordingly, but at least can be reduced. In particular, the danger of collision of the gripper with the hatch edges or the ship superstructures is avoided. Furthermore, the risk of spillage of the gripper is minimized, so that the previously known malfunctions and the associated high costs are avoided. In particular, the gripper can now be sold with pinpoint accuracy. The fact that with the help of the inertial navigation system, the pendulum movement of the gripper is detected and thereby that by a corresponding automatic control of the current Movements of the gripper pendulum deflection / pendulum motion is reduced or compensated, the disadvantages mentioned above are avoided and achieved decisive advantages.

Es gibt nun unterschiedliche Möglichkeiten die Erfindung in vorteilhafter Art und Weise auszugestalten und weiterzubilden. Hierfür darf zunächst auf die dem Patentanspruch 1 nachgeordneten Patentansprüche verwiesen werden. Bevorzugte Ausführungsformen der Erfindung ergeben sich aus der nachfolgenden Beschreibung des bevorzugten Ausführungsbeispieles, erläutert anhand der nachfolgenden Zeichnung. In der Zeichnung zeigt:

Fig. 1
den Entlade- bzw. Beladevorgang des Laderaumes eines Schiffes in schematischer Darstellung von der Seite,
Fig. 2
die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens in schematischer Darstellung von der Seite dargestellt mit den wesentlichen Komponenten des Steuersystems,
Fig. 3
eine schematische Darstellung des Trägheitsnavigationssystems, nämlich eines dreiachsigen Inertialsysteme mit schematischer Darstellung der entsprechenden Achsen, und
Fig. 4
einen am Ausleger angeordneten bzw. verfahrbaren Schlitten in schematischer Darstellung von der Seite in einer bestimmten Ausführungeform mit den wesentlichen hier wirkenden Seilkräften.
There are now different ways of embodying and developing the invention in an advantageous manner. For this purpose, reference may first be made to the claims subordinate to claim 1. Preferred embodiments of the invention will become apparent from the following description of the preferred embodiment, illustrated by the following drawings. In the drawing shows:
Fig. 1
the unloading or loading process of the hold of a ship in a schematic representation from the side,
Fig. 2
the apparatus for carrying out the method according to the invention in a schematic representation from the side with the essential components of the control system,
Fig. 3
a schematic representation of the inertial navigation system, namely a three-axis inertial systems with a schematic representation of the corresponding axes, and
Fig. 4
a arranged on the boom or movable carriage in a schematic representation of the side in a particular embodiment with the essential here acting tensile forces.

Die Fig. 1 bis 4 zeigen - zumindest teilweise - eine Vorrichtung 1 zum Be-und/oder Entladen eines Laderaumes 2 mit Material 3, vzw. mit Schüttgut 3a.The Fig. 1 to 4 show - at least partially - a device 1 for loading and / or unloading a cargo space 2 with material 3, vzw. with bulk material 3a.

Die hier dargestellte Vorrichtung 1 eignet sich daher zum Be- und/oder Entladen eines Laderaumes bzw. eines Lagerraumes mit Material 3, also vzw. mit Schüttgut 3a oder bspw. auch zum Be- und/oder Entladen des Laderaumes eines Schiffes mit Containern. Die Vorrichtung 1 wird im folgenden aber vzw. anhand der insbesondere in den Fig. 1 und 2 dargestellten Entladebrücke 1a erläutert:The device 1 shown here is therefore suitable for loading and / or unloading a loading space or a storage space with material 3, ie vzw. with bulk material 3a or, for example, also for loading and / or unloading the loading space of a ship with containers. The device 1 is in the following but vzw. in particular in the Fig. 1 and 2 illustrated unloading bridge 1a explains:

In Fig. 1 sind zunächst - ganz allgemein - die wesentlichen mechanischen Bestandteile der Vorrichtung 1 dargestellt. Gut zu erkennen ist hier die vzw. als Entladebrücke 1a ausgebildete Vorrichtung 1 zum Be- und/oder Entladen des Laderaumes 2 eines Schiffes 4 mit Schüttgut 3a. Vzw. dient die Vorrichtung 1 zum Be- und/oder Entladen des Laderaumes 2 eines Schiffes 4 mit Kohle, Erz oder dgl. Die Vorrichtung 1 weist einen Greifer 5 zur Aufnahme bzw. zur Abgabe des zu transportierenden Schüttgutes 3a auf. Die Position des Greifers 5 relativ zum transportierenden Schüttgut 3a ist steuerbar, wobei die Position des Greifers 5 zunächst in vertikaler Richtung gemäß dem Pfeil A veränderbar ist, nämlich der Greifer 5 einerseits heruntergelassen, andererseits hochgezogen werden kann. Hierzu ist der Greifer 5 mit mindestens einem Seilelement 6 verbunden, das hier schematisch angedeutet ist. Unter dem Begriff "Seilelement" werden auch bspw. kettenartige Elemente oder dgl. verstanden, die nicht starr sind und eine Pendelbewegung des Greifers 5 erlauben.In Fig. 1 are first - more generally - the essential mechanical components of the device 1 shown. Good to see here is the vzw. designed as a discharge bridge 1a device 1 for loading and / or unloading the cargo space 2 of a ship 4 with bulk material 3a. Vzw. The device 1 serves for loading and / or unloading the loading space 2 of a ship 4 with coal, ore or the like. The device 1 has a gripper 5 for receiving or delivering the bulk material 3a to be transported. The position of the gripper 5 relative to the transporting bulk material 3a is controllable, wherein the position of the gripper 5 is initially variable in the vertical direction according to the arrow A, namely the gripper 5 can be lowered on the one hand, on the other hand can be pulled up. For this purpose, the gripper 5 is connected to at least one cable element 6, which is indicated schematically here. The term "cable element" is also understood, for example, as chain-like elements or the like, which are not rigid and allow a pendulum movement of the gripper 5.

Gut zu erkennen ist, dass die hier als Entladebrücke 1a ausgeführte Vorrichtung 1 einen - ersten - wasserseitigen Ausleger 7 und einen - zweiten - landseitigen Ausleger 8 aufweist. Die Ausleger 7 und 8 verlaufen im wesentlichen horizontal und sind auf vertikal angeordneten Stützpfeilern 9 angeordnet.It can be clearly seen that the device 1 embodied here as a discharge bridge 1a has a - first - water-side boom 7 and a - second - land-side boom 8. The booms 7 and 8 are substantially horizontal and are arranged on vertically arranged pillars 9.

Über einen in der Fig. 1 nicht dargestellten, in der Fig. 2 angedeuteten und in der Fig. 4 dargestellten Schlitten 10 (auch als "Katze" bezeichenbar) ist der Greifer 5 im wesentlichen in horizontaler Richtung entlang der Ausleger 7 und 8 bewegbar. Das hier dargestellte Seilelement 6 läuft vzw. über eine an dem Schlitten 10 angeordnete Umlenkrolle 11 (vgl. Fig. 4). Vzw. wird auch der Schlitten 10 über hier in der Fig. 1 nicht dargestellte weitere Seilelemente entlang der Ausleger 7 und 8 bewegt. Mit der Bewegung des Schlittens 10 ist daher auch der Greifer 5 - an dem Seilelement 6 hängend - entlang der Ausleger 7 und 8 entsprechend bewegbar. Dadurch, dass die Stützpfeiler 9 ein separates Fahrwerk 12 aufweisen, ist die gesamte als Entladebrücke 1a ausgebildete Vorrichtung 1 im wesentlichen parallel zur Kaimauer 13 bewegbar und damit ebenfalls auch der Greifer 5. Denkbar ist, dass die Vorrichtung 1 nicht nur die Laderäume 2 mobiler Fahrzeuge (LKW's, Schiffe etc.) be- oder entlädt, sondern bspw. auch auf festem Untergrund stehende durch Wandungen begrenzte Laderäume 2 ("Lagerräume").About one in the Fig. 1 not shown, in the Fig. 2 indicated and in the Fig. 4 illustrated slide 10 (also referred to as "cat" markable), the gripper 5 is substantially in the horizontal direction along the boom 7 and 8 movable. The rope element 6 shown here runs vzw. via a arranged on the carriage 10 deflection roller 11 (see. Fig. 4 ). Vzw. will also be the slide 10 over here in the Fig. 1 not shown further rope elements along the boom 7 and 8 moves. With the movement of the carriage 10 is therefore also the gripper 5 - hanging on the cable element 6 - along the boom 7 and 8 correspondingly movable. Due to the fact that the supporting pillars 9 have a separate running gear 12, the entire device 1 designed as unloading bridge 1a is movable substantially parallel to the quay wall 13 and therefore also the gripper 5. It is conceivable that the device 1 not only supports the holds 2 of mobile vehicles (Trucks, ships, etc.) loading or unloading, but, for example. even on solid ground standing by walls limited cargo spaces 2 ("storage rooms").

Um die Bewegungen des Greifers 5 zu steuern, ist nun ein in der Fig. 1 nicht dargestelltes, aber aus der Fig. 2 ersichtliches Steuersystem 14 vorgesehen. Die Aufnahme und/oder Abgabe des Schüttgutes 3a durch den Greifer 5 wird mit Hilfe eines separaten hier nicht näher dargestellten Schließwerkes des Greifers 5 realisiert, das wiederum vzw. über separate hier nicht im einzelnen dargestellte Seilelemente betätigt wird. Ähnliches gilt, wenn mit der Vorrichtung 1 und einem spezifisch ausgebildeten Greifer dann Container transportiert werden sollen.To control the movements of the gripper 5, is now in the Fig. 1 not shown, but from the Fig. 2 apparent control system 14 is provided. The recording and / or delivery of the bulk material 3 a by the gripper 5 is realized by means of a separate locking mechanism of the gripper 5, not shown here, which in turn vzw. is operated via separate rope elements not shown here in detail. The same applies if containers are to be transported with the device 1 and a specifically designed gripper.

Mit Hilfe der in den Fig. 1 bspw. in Fig. 2 dargestellten Vorrichtung 1 wird nun das Schüttgut 3a aus dem Laderaum 2 entladen, wobei der Greifer 5 in den Laderaum 2 des Schiffes 4 durch die entsprechende Luke 15 herabgelassen wird, hier das zu transportierende Schüttgut 3a im geöffneten Zustand des Greifers 5 ergriffen wird, der Greifer 5 dann mit Hilfe seines Schließwerkes betätigt, nämlich geschlossen wird und dann über einen entsprechenden Seiltrommelantrieb der Greifer 5 wieder durch die Luke 15 nach oben gezogen wird. Vzw. hiernach wird dann der Schlitten 10 entsprechend bewegt, nämlich entlang der Ausleger 7 bzw. 8 bis zu dem Punkt, wo das Schüttgut 3a dann abgeladen werden soll. Zugleich kann die gesamte Vorrichtung 1 entlang der Kaimauer 13 mit Hilfe des Fahrwerks 12 ebenfalls bewegt werden. Im Ergebnis ist damit der Greifer 5 in alle in den Fig. 1 bzw. Fig. 2 dargestellten Richtungen, also in X-, Y- und Z-Richtung entsprechend bewegbar, so dass das zu transportierende Schüttgut 3a dann über einen Trichter 16 auf die Förderbänder 17 bzw. 18 (dargestellt durch Pfeil B) abgegeben werden kann oder auch auf einer Halde 19 (dargestellt durch den Pfeil C) aufgeschüttet wird bzw. von der Halde entnommen werden kann. Dies ist abhängig vom jeweiligen Anwendungsfall.With the help of in the Fig. 1 for example in Fig. 2 1, the bulk material 3a is unloaded from the hold 2, wherein the gripper 5 is lowered into the hold 2 of the ship 4 through the corresponding hatch 15, here the bulk material to be transported 3a is taken in the open state of the gripper 5, the gripper 5 then actuated by means of its locking mechanism, namely, closed and then pulled over a corresponding cable drum drive the gripper 5 again through the hatch 15 upwards. Vzw. Thereafter, the carriage 10 is then moved accordingly, namely along the boom 7 and 8, respectively, to the point where the bulk material 3a is then to be unloaded. At the same time, the entire device 1 along the quay wall 13 by means of the chassis 12 are also moved. As a result, so that the gripper 5 in all in the Fig. 1 respectively. Fig. 2 shown directions, ie in the X, Y and Z directions accordingly movable so that the bulk material to be transported 3a then a funnel 16 on the conveyor belts 17 and 18 (shown by arrow B) can be discharged or on a heap 19 (shown by the arrow C) is heaped or can be removed from the heap. This depends on the particular application.

Für die Bewegung/Steuerung des Greifers 5 in den einzelnen Richtungen, also in X-, Y- und Z-Richtung weist die Vorrichtung 1 die entsprechenden hier nicht im einzelnen dargestellten Komponenten/Aktuatoren auf, also eine entsprechend angetriebene Seiltrommel zur Bewegung des Greifers 5 in Y-Richtung, eine entsprechende Seilsteuerung, vzw. angetriebene Seiltrommeln zur Bewegung des Schlittens 10 und damit auch des Greifers 5 in X-Richtung entlang der Ausleger 7 bzw. 8 sowie für die Bewegung des Greifers 5 entlang der Kaimauer 13 in Z-Richtung das Fahrwerk 12.For the movement / control of the gripper 5 in the individual directions, ie in the X, Y and Z directions, the device 1 has the corresponding components / actuators not shown in detail here, ie a correspondingly driven cable drum for moving the gripper 5 in the Y direction, one corresponding rope control, vzw. driven cable drums for moving the carriage 10 and thus also the gripper 5 in the X direction along the boom 7 and 8 and for the movement of the gripper 5 along the quay wall 13 in the Z direction, the chassis 12th

Insbesondere über den Schlitten 10 erfolgt zunächst eine Entkopplung der horizontalen (zumindest in X-Richtung) und vertikalen (in Y-Richtung) Steuerung des Greifers 5. Die entsprechenden hier nicht dargestellten Seiltrommeln werden vzw. über Gleichstrommotoren angetrieben. Unter dem Begriff "Schlitten" wird ein vzw. entlang des Auslegers 7 bzw. 8 bewegbares Element verstanden. Es ist denkbar, dass der Schlitten 10 mit Hilfe eines Schienensystems entlang der Anleger 7 und 8 geführt wird oder aber vzw. die in Fig. 4 dargestellten Fahrrollen aufweist.In particular, via the carriage 10 is initially a decoupling of the horizontal (at least in the X direction) and vertical (in the Y direction) control of the gripper 5. The corresponding cable drums not shown here are vzw. powered by DC motors. The term "slide" is a vzw. understood along the boom 7 and 8 movable element. It is conceivable that the carriage 10 is guided by means of a rail system along the investors 7 and 8 or vzw. in the Fig. 4 has shown drive rollers.

Die Position des Greifers 5 ist sensorisch mit Hilfe eines Trägheitsnavigations-systems 21 erfassbar, so dass eine Pendelbewegung bzw. Pendelauslenkung des Greifers 5 ermittelbar und durch eine entsprechende Ansteuerung die Pendelauslenkung im wesentlichen kompensierbar und/oder verringerbar ist. Vzw. wird also nun die aktuelle Position des Greifers 5 vzw. kontinuierlich sensorisch erfasst, so dass eine aktuelle Pendelbewegung und/oder Pendelauslenkung des Greifers 5 ermittelt wird und dann durch eine entsprechende automatische Ansteuerung der einzelnen Komponenten zur Steuerung des Greifers 5 diese Pendelbewegung bzw. die Pendelauslenkung im wesentlichen kompensiert und/oder verringert wird. Dadurch können nun Kollisionen des Greifers 5 mit dem Lukenrand der Luke 15 und auch mit den Schiffsaufbauten eines Schiffes 4 vermieden werden. Auch das Absetzen des Greifers 5 im Bereich des Laderaumes 2 ist nun optimiert, insbesondere stößt der Greifer 5 hier nicht gegen kritische Böschungen des Schüttgutes 3a, so dass ein Verschütten des Greifers 5 vermieden ist und kostenintensive Betriebsstörungen verhindert sind. Ähnliches gilt für einen Greifer, mit dem Container transportiert werden. Im einzelnen darf nunmehr folgendes ausgeführt werden:The position of the gripper 5 can be sensed by means of an inertial navigation system 21, so that a pendulum movement or pendulum deflection of the gripper 5 can be determined and the pendulum deflection can be substantially compensated and / or reduced by a corresponding control. Vzw. So now the current position of the gripper 5 vzw. detected continuously sensory, so that a current pendulum motion and / or pendulum deflection of the gripper 5 is determined and then compensated by a corresponding automatic control of the individual components for controlling the gripper 5, this pendulum motion or the pendulum deflection substantially and / or is reduced. As a result, collisions of the gripper 5 with the hatch edge of the hatch 15 and also with the ship superstructures of a ship 4 can now be avoided. The settling of the gripper 5 in the area of the loading space 2 is now optimized, in particular the gripper 5 does not hit here against critical slopes of the bulk material 3a, so that spillage of the gripper 5 is avoided and costly malfunctions are prevented. The same applies to a gripper with which containers are transported. Specifically, the following may now be executed:

Fig. 2 zeigt nun im wesentlichen die Vorrichtung 1, die vzw. als Entladebrücke 1a ausgebildet ist. Gut zu erkennen ist hier der erste Ausleger 7, die Stützpfeiler 9 eine Steuerkanzel 20, das Schiff 4, der Laderaum 2, die Luke 15 sowie der Greifer 5, der am Seilelement 6 hängt und mit dem Schlitten 10 verbunden ist. Der Schlitten 10 ist entlang des ersten Auslegers 7 im wesentlichen horizontal verschiebbar, wie durch die nicht näher bezeichneten Pfeile angedeutet, wobei über das hier nicht im einzelnen dargestellte Fahrwerk 12 die Vorrichtung 1 entlang der Kaimauer 13 bewegbar ist. Fig. 2 now essentially shows the device 1, the vzw. is designed as a discharge bridge 1a. Good to see here is the first boom 7, the pillars 9 a control pulpit 20, the ship 4, the load compartment 2, the hatch 15 and the gripper 5, which depends on the cable element 6 and is connected to the carriage 10. The carriage 10 is substantially horizontally displaceable along the first arm 7, as indicated by the unspecified arrows, wherein the apparatus 1 along the quay wall 13 is movable via the landing gear 12 not shown in detail here.

Gut ersichtlich ist weiterhin das hier schematisch dargestellte Steuersystem 14 zur entsprechenden Steuerung des Greifers 5. Auch dargestellt ist das Koordinatensystem, dass die Bewegungsrichtungen des Greifers 5 in X-, Y- und Z-Richtung darstellen soll, wobei die einzelnen Bewegungen, nämlich in Y-Richtung über einen entsprechenden Seilantrieb des Seilelementes 6, in X-Richtung über den Schlitten 10 und in Z-Richtung über die mit Hilfe des Fahrwerkes 12 motorisch bewegbare Vorrichtung 1 entlang der Kaimauer 13 realisiert werden. Nicht im einzelnen dargestellt ist hier das Schließwerk des Greifers 5, das ebenfalls über hier nicht dargestellte separate Seilelemente ansteuerbar ist, so dass die Öffnungs- und Schließbewegungen des Greifers 5 ebenfalls mit Hilfe des Steuersystems 14 realisierbar sind.Also clearly shown is the control system 14 shown here schematically for the corresponding control of the gripper 5. Also shown is the coordinate system that is intended to represent the directions of movement of the gripper 5 in the X, Y and Z directions, the individual movements, namely in Y Direction over a corresponding cable drive of the cable element 6, in the X direction over the carriage 10 and in the Z direction over the motorized by means of the chassis 12 device 1 along the quay wall 13 can be realized. Not shown in detail here is the locking mechanism of the gripper 5, which is also controlled via not shown here separate cable elements, so that the opening and closing movements of the gripper 5 also with the aid of the control system 14 can be realized.

Zur Erfassung der vzw. aktuellen Position des Greifers 5, also des Lastaufnahmemittels, in allen seinen Pendelachsen ist nun ein Trägheitsnavigationssystem 21 vorgesehen. Ein Trägheitsnavigationssystem 21 ist insbesondere bei schlechten Sichtverhältnissen zur Ermittlung der Position des Greifers 5 vorteilhaft, da schlechte Sichtverhältnisse auf die Ermittlung der Position des Greifers 5 hier keinen Einfluss haben. Dieses Trägheitsnavigationssystem 21 ist an dem Greifer 5, also an dem Lastaufnahmemittel entsprechend vzw. in einer Box direkt angeordnet. Das Trägheitsnavigationssystem 21 weist entsprechende Sensoren zur Ermittlung der aktuellen translatorischen und/oder rotatorischen Beschleunigungen bzw. Drehgeschwindigkeiten des Greifers 5 auf. Die vom Trägheitsnavigationssystem 21 ermittelten Daten werden umgehend an das Steuersystem 14 vzw. per Funk übermittelt.To capture the vzw. current position of the gripper 5, so the load receiving means, in all its pendulum axes now an inertial navigation system 21 is provided. An inertial navigation system 21 is particularly advantageous in poor visibility conditions for determining the position of the gripper 5, since poor visibility on the determination of the position of the gripper 5 have no influence here. This inertial navigation system 21 is on the gripper 5, ie on the load receiving means according to vzw. arranged directly in a box. The inertial navigation system 21 has corresponding sensors for determining the current translational and / or rotational accelerations or rotational speeds of the gripper 5. The data determined by the inertial navigation system 21 data immediately to the control system 14 vzw. transmitted by radio.

Das Steuersystem 14 weist vzw. eine dargestellte Auswerteeinheit 14a und/oder eine Recheneinheit 14b sowie vzw. eine Speichereinheit 14c auf. Es werden nun die vom Trägheitsnavigationssystem 21 übermittelten Daten ausgewertet und damit die aktuelle Position des Greifers 5 ermittelt bzw. auch eine - mögliche - aktuelle Pendelauslenkung und/oder Pendelbewegung des Greifers 5 ermittelt bzw. seine Bewegungsbahn berechnet.The control system 14 has vzw. an illustrated evaluation unit 14a and / or a computing unit 14b and vzw. a storage unit 14c. The data transmitted by the inertial navigation system 21 are then evaluated and thus the current position of the gripper 5 is determined or also a possible pendulum deflection and / or oscillating movement of the gripper 5 is determined or its trajectory calculated.

Ermittelt das Trägheitsnavigationssystem 21 bzw. die Auswerteeinheit des Steuersystems 14a eine Pendelbewegung des Greifers 5 so kann die Pendelbewegung bzw. die Bewegungsbahn des Greifers 5 dann über die Auswerte-und/oder Recheneinheit 14a, 14b des Steuersystems 14 berechnet werden. Das Steuersystem 14 bzw. die Recheneinheit 14b berechnet dann die kinematischen "Gegenmaßnahmen" und gibt die Steuerbefehle an die einzelnen Aktuatoren zur Steuerung der Komponenten wie nämlich die Bewegung des Schlittens 10, des Fahrwerkes 12 und/oder die spezifische Höhe des Greifers 5. Über den vom Steuersystem 14 realisierten kinematischen Eingriff wird automatisch nun die Pendelbewegung/Pendelauslenkung des Greifers 5 vzw. vollständig kompensiert, zumindest aber verringert. Hierzu steuert das Steuersystem 14 dann die Aktuatoren, also die Seiltrommeln für den Schlitten 10, den Motor für das Fahrwerk 12 und/oder auch die Seiltrommel zur Einstellung der aktuellen Höhe des Greifers 5 automatisch an.If the inertial navigation system 21 or the evaluation unit of the control system 14a detects a pendulum movement of the gripper 5, the pendulum movement or the movement path of the gripper 5 can then be calculated via the evaluation and / or arithmetic unit 14a, 14b of the control system 14. The control system 14 or the computing unit 14b then calculates the kinematic "counter measures" and gives the control commands to the individual actuators for controlling the components such as the movement of the carriage 10, the chassis 12 and / or the specific height of the gripper 5. About the kinematic intervention realized by the control system 14 is now automatically the pendulum motion / pendulum deflection of the gripper 5 vzw. completely compensated, but at least reduced. For this purpose, the control system 14 then controls the actuators, ie the cable drums for the carriage 10, the motor for the chassis 12 and / or the cable drum for setting the current height of the gripper 5 automatically.

In Fig. 3 ist nun das Trägheitsnavigationssystem 21 in seiner spezifischen Ausführungsform dargestellt. Das Trägheitsnavigationssystem 21 ist hier vzw. als dreiachsiges Inertialsystem ausgeführt und weist eine entsprechende Sensorik, nämlich vzw. bis zu drei orthogonale Gyroskope und vzw. bis zu drei Beschleunigungsmesser auf.In Fig. 3 Now, the inertial navigation system 21 is shown in its specific embodiment. The inertial navigation system 21 is here vzw. designed as a three-axis inertial system and has a corresponding sensor, namely vzw. up to three orthogonal gyroscopes and vzw. up to three accelerometers on.

Wird das als Inertialsystem ausgeführte Trägheitsnavigationssystem 21 zur Bestimmung der Position des Greifers 5 im Fall des Schüttgutes 3a verwendet, so weist das Inertialsystem drei orthogonale Gyroskope und drei Beschleunigungsmesser, nämlich für die entsprechenden drei relevanten Pendelachsen auf. Wird das als Inertialsystem ausgeführte Trägheitsnavigationssystem 21 zur Bestimmung der Position des Greifers 5 für Container verwendet, so weist das Trägheitsnavigationssystem 21 vzw. zwei orthogonale Gyroskope bzw. vzw. zwei Beschleunigungsmesser auf, nämlich aufgrund der vzw. hier realisierten spezifischen Aufhängung des Greifers 5 für die dann für diesen Fall hier relevanten zwei Pendelachsen.If the inertial navigation system 21 designed as an inertial system is used to determine the position of the gripper 5 in the case of the bulk material 3a, the inertial system has three orthogonal gyroscopes and three accelerometers, namely for the corresponding three relevant pendulum axes. If the inertial navigation system 21 embodied as an inertial system is used to determine the position of the gripper 5 for containers, then the inertial navigation system 21 vzw. two orthogonal gyroscopes or vzw. two Accelerometer on, namely due to the vzw. Here realized specific suspension of the gripper 5 for the relevant here for this case here two pendulum axes.

Das als Inertialsystem ausgeführte Trägheitsnavigationssystem 21 ist hier in einer Art Box angeordnet bzw. die Sensoren sind in der Box angeordnet, wobei diese Box direkt am Lastaufnahmemittel, nämlich am Greifer 5 angeordnet ist, so wie in der Fig. 2 dargestellt. Zusätzlich dargestellt in der Fig. 3 sind hier die entsprechenden jeweiligen drei Achsen, nämlich die X-Achse, die Y-Achse sowie die Z-Achse. Die vom Inertialsystem gemessenen Daten werden vzw. per Funk an das Steuersystem 14 übermittelt. Für jede der möglichen Pendelachsen, hier vzw. der drei Achsen des Inertialsystems wird permanent für die jeweilige Achse die gemessene Drehgeschwindigkeit um diese Achse und/oder die vektorielle Beschleunigung in Richtung dieser Achse mit Hilfe des dieser Achse zugeordneten Gyroskops bzw. des dieser Achse zugeordneten Beschleunigungsmessers ermittelt.The inertial navigation system 21 embodied as an inertial system is here arranged in a kind of box or the sensors are arranged in the box, this box being arranged directly on the load receiving means, namely on the gripper 5, as in FIG Fig. 2 shown. Additionally shown in the Fig. 3 Here are the corresponding respective three axes, namely the X-axis, the Y-axis and the Z-axis. The data measured by the inertial system are vzw. transmitted by radio to the control system 14. For each of the possible pendulum axles, here vzw. The three axes of the inertial system are permanently determined for the respective axis, the measured rotational speed about this axis and / or the vectorial acceleration in the direction of this axis using the gyro associated with this axis or the accelerometer associated with this axis.

Mit dem so ausgebildeten Trägheitsnavigationssystems 21 ist es möglich die Position und Lage des Lastaufnahmemittels, nämlich des Greifers 5 im Raum durch die entsprechende Integration der Messdaten, also vzw. die aktuelle Position und Lage des Greifers 5 im Raum zu bestimmen. Es werden also die jeweiligen Beschleunigungsvektoren der jeweiligen Achsen (X-, Y- und Z-Achse) ermittelt, so dass der resultierende Beschleunigungsvektor entsprechend bestimmbar ist, wobei zusätzlich und zeitgleich auch die "Drehrate" des Greifers 5 aus den einzelnen Winkelgeschwindigkeiten um die einzelnen Achsen ermittelbar ist, nämlich mit Hilfe der jeweiligen Messdaten der orthogonalen Gyroskope.With the thus formed inertial navigation system 21, it is possible the position and position of the load receiving means, namely the gripper 5 in space by the corresponding integration of the measured data, ie vzw. to determine the current position and position of the gripper 5 in space. Thus, the respective acceleration vectors of the respective axes (X-, Y- and Z-axis) are determined, so that the resulting acceleration vector can be determined accordingly, wherein additionally and simultaneously the "rate of turn" of the gripper 5 from the individual angular velocities to the individual Axes can be determined, namely with the help of the respective measured data of orthogonal gyroscopes.

Mit dem so ausgebildeten Trägheitsnavigationssystem 21 und den hier vom Inertialsystem gewonnen Messwerten kann daher die Position des Lastaufnahmemittels, nämlich des Greifers 5 im Raum durch Integration (einfache Integration bei Drehgeschwindigkeitswerten, zweifache Integration bei Beschleunigungswerten) über die aktuell gewonnenen Messdaten berechnet werden. Hierzu wird vzw. mit Hilfe des Steuersystems 14 für eine bestimmte Position des Lastaufnahmemittels, also des Greifers 5 in seiner Ruhelage ein Bezugspunkt für das kinematische System definiert. Dies geschieht vzw. auch in Ruhelage des Schlittens 10 bzw. des Fahrwerkes 12.With the thus formed inertial navigation system 21 and the measured values obtained here from the inertial system, therefore, the position of the load receiving means, namely the gripper 5 in space, can be calculated by integration (simple integration with rotational speed values, dual integration with acceleration values) via the currently obtained measurement data. For this purpose vzw. with the help of the control system 14 for a particular position of the load receiving means, so the gripper 5 in its rest position, a reference point defined for the kinematic system. This happens vzw. also in rest position of the carriage 10 and der Fahrwerkes 12.

Bei einer beginnenden Bewegung des Greifers 5 werden dann die aktuellen Messdaten dem Steuersystem 14 übermittelt, so dass die aktuelle Position des Greifers 5 im Raum über die entsprechende Integration der Messdaten, insbesondere die Pendelauslenkung entsprechend berechenbar ist und das Steuersystem 14 hier eine Pendelauslenkung bzw. Pendelbewegung des Greifers 5 entsprechend kompensieren kann, da das als Inertialsystem ausgebildete Trägheitsnavigationssystem 21 jederzeit und permanent die entsprechenden Messdaten an das Steuersystem 14 übermittelt und auch die Bewegung bzw. Position des Schlittens 10 dem Steuersystem 14 immer bekannt ist, so dass dann die aktuelle Position des Greifers 5 aufgrund der entsprechenden Integration der permanent übermittelten Messdaten und die Anpassung der Koordinaten im Raum dessen Position jederzeit berechnet wird. Dies hat den großen Vorteil, dass das ganze kinematische System ohne ein Bilderfassungssystem arbeiten kann und schlechte Wetterverhältnisse, nämlich schlechte Sicht dieses nicht beeinflussen können. Ja im Gegenteil, Pendelauslenkungen hervorgerufen durch Windkräfte können sofort kompensiert werden.At an incipient movement of the gripper 5 then the current measurement data are transmitted to the control system 14, so that the current position of the gripper 5 in space on the corresponding integration of the measurement data, in particular the pendulum deflection is calculated accordingly and the control system 14 here a pendulum deflection or pendulum motion of the gripper 5, since the inertial navigation system 21 embodied as an inertial system constantly and permanently transmits the corresponding measurement data to the control system 14 and the movement or position of the carriage 10 is always known to the control system 14, so that then the current position of the gripper 5 due to the corresponding integration of the permanently transmitted measurement data and the adaptation of the coordinates in the space whose position is calculated at any time. This has the great advantage that the whole kinematic system can work without an imaging system and bad weather conditions, namely poor visibility can not influence this. On the contrary, pendulum deflections caused by wind forces can be compensated immediately.

Zusätzlich ist von Vorteil, dass auch eine rotatorische Bewegung des Greifers 5, einerseits eine im wesentlichen kreisende Bewegung des Greifers 5 im Raum aber auch eine kreisende Bewegung Greifers 5 im wesentlichen um seine eigene vertikale Achse ermittelbar ist. Dies hat den besonderen Vorteil, dass auch eine derartige rotatorische Bewegung des Greifers 5 durch das Steuersystem 14 verringerbar bzw. kompensierbar ist. Eine derartige rotatorische Bewegung des Greifers 5 ist dadurch kompensierbar bzw. vzw. stoppbar, wenn der Greifer 5 genau in dem Moment seines ermittelten "Nulldurchganges" mit dem Material 3 vzw. mit dem Schüttgut 3a in Kontakt bringbar ist, so dass diese rotatorische Bewegung so gestoppt wird. Bei der bekannten Bewegung des Schlittens 10 bzw. des Fahrwerks 12 ist auch der sich mitverlagernde "Nulldurchgang" einer Pendelbewegung ermittelbar, weil dieser Nullpunkt auch bei einer Pendelbewegung bei den bekannten Bewegungen des Systems (Schlitten 10, Fahrwerk 12, Seilelement 6) in X-, Y- bzw. Z-Richtung berechnet wird und bzgl. des Greifers 5 somit eine kontinuierliche Kompensation der Pendelbewegung bzgl. dieses Nullpunktes über das Steuersystem 14 ermöglicht ist. Das oben beschriebene System hat daher die Vorteile, dass eine direkte und kontinuierliche Messung des Pendelwinkels ermöglicht wird, ohne dass ein Sichtkontakt zum Lastaufnahmemittel, also zum Greifer 5 notwendig ist. Weiterhin können die oben beschriebenen Rotationsbewegungen des Greifers 5 bestimmt und verringert bzw. kompensiert werden.In addition, it is advantageous that also a rotary movement of the gripper 5, on the one hand a substantially circular movement of the gripper 5 in space but also a circular movement gripper 5 is substantially determined about its own vertical axis. This has the particular advantage that even such a rotary movement of the gripper 5 by the control system 14 can be reduced or compensated. Such a rotary movement of the gripper 5 is thereby compensated or vzw. Stoppbar when the gripper 5 vzw in the moment of his determined "zero crossing" with the material 3. can be brought into contact with the bulk material 3a, so that this rotational movement is stopped. In the known movement of the carriage 10 and the chassis 12 and the mitverlagernde "zero crossing" of a pendulum motion can be determined, because this zero point even with a pendulum motion in the known movements of the system (carriage 10, chassis 12, cable element 6) in X- , Y- or Z-direction is calculated and with respect. of the gripper 5 thus a continuous compensation of the pendulum movement with respect. This zero point on the control system 14 is made possible. The system described above therefore has the advantages that a direct and continuous measurement of the pendulum angle is made possible without a visual contact with the load receiving means, so the gripper 5 is necessary. Furthermore, the above-described rotational movements of the gripper 5 can be determined and reduced or compensated.

Insbesondere ermöglicht das oben beschriebene System vzw. zusätzlich eine kontinuierliche Prüfung der Messdaten durch den Vergleich der über die Beschleunigungsmesser und/oder Drehgeschwindigkeitsmesser (Gyroskope) integrierten Positionen des Greifers 5 mit einer aus dem Pendelwinkel und der Position des Schlittens 10 ermittelten Position des Greifers 5. Im Ergebnis werden über die Integration der Messdaten des als Inertialsystems ausgebildeten Trägheitsnavigationssystem 21 permanent die Lage und Position des Greifers 5 bestimmt, wobei permanent auch die Umkehrpunkte der Pendel- und/oder Rotationsbewegung des Greifers 5 bestimmbar sind und dann eine Kompensation der Bewegungen des Greifers 5 bzgl. seiner Ruhelage ermöglicht ist.In particular, the system described above vzw. additionally, a continuous check of the measured data by comparing the positions of the gripper 5 integrated via the accelerometers and / or rotary gyroscopes with a position of the gripper 5 determined from the pendulum angle and the position of the carriage 10. As a result, the integration of the measured data designed as an inertial inertial system 21 permanently determines the position and position of the gripper 5, wherein the reversal points of the pendulum and / or rotational movement of the gripper 5 are permanently determined and then a compensation of the movements of the gripper 5 respect. Its rest position is possible.

Durch die direkte Einwirkung des Steuersystems 14 nach der erfassten Pendelbewegung des Greifers 5 kann nun mit Hilfe der Auswerte- bzw. Recheneinheit 14a/14b des Steuersystems 14 und mit Hilfe eines in der Speichereinheit 14c gespeicherten Computerprogramms, das die entsprechenden physikalischen Einwirkungen sowie die tatsächlich vorgegebenen spezifischen Geometrien und Kräfte berücksichtigt, die Pendelbewegung des Greifers 5 vzw. ausgeglichen werden. Vzw. über eine Kraftmessung am Seilelement 6 wird zusätzlich auch das Gewicht des sich im Greifer 5 befindenden Schüttgutes 3a bestimmt und an das Steuersystem 14 übermittelt, wie vzw. auch die aktuelle Höhe des Greifers 5 (über die eingestellte Seillänge des Seilelementes 6), so dass dem Steuersystem 14 zusätzlich auch alle wesentlichen Parameter für die Überprüfung der Messdaten des Trägheitsnavigationssystems 21 - wie bereits oben erwähnt - zur Verfügung stehen. Problematisch kann sein, dass die Messergebnisse des als Inertialsystems ausgeführten Trägheitsnavigationssystems 21 einen mit der Zeit t stetig wachsenden Fehler aufweisen. Der Grund hierfür liegt in möglichen vorhandenen Messfehlern der Beschleunigungsmesser bzw. der Gyroskope, die sich durch die Integration mit der Zeit immer stärker auswirken. Diese Ungenauigkeit (Drift/Bias) kann nun aber durch die Stützung des Systems eliminiert werden. Dadurch, dass permanent die Umkehrpunkte der Pendel- und der Rotationsbewegungen bestimmt bzw, ermittelt werden und diese Bewegungen/Schwingungen ja um die Ruhelage/Nullpunkt erfolgen, kann nunmehr eine Stützung der Messdaten in Richtung dieses Nullpunktes erfolgen, weil der Nullpunkt der Pendelbewegung bei bekannter Bewegung des Schlittens 10 und/oder des Fahrwerkes 12 ebenfalls berechnet werden kann. Anderes ausgedrückt, die aufgrund der zuvor beschriebenen systeminhärenten Drift des Trägheitsnavigationssystems 21 sich möglicherweise verändernden Messdaten können in Richtung des berechneten Nullpunktes/Nulldurchganges der Pendelbewegungen immer permanent entsprechend gestützt werden. Das ansonsten bisher im Stand der Technik bekannte Stützen eines derartigen System bspw. eine Stützung nur durch die Erdbeschleunigung bzw. eine Stützung nur durch ein externes Navigationssystem, wäre in dem oben beschriebenen Anwendungsfall für den Greifer 5 nicht zielführend. Jedoch aufgrund der Bestimmung der aktuellen Umkehrpunkte der Pendel- und/oder Rotationsbewegungen kann das Inertialsystem bzw. können die entsprechenden Messdaten nunmehr auch in Richtung der ermittelten Nullpunktlage entsprechend gestützt werden, d.h. die vom Inertialsystem ermittelten Messdaten entsprechend "korrigiert" werden, nämlich um eine mögliche systeminhärente Drift zu eliminieren.By the direct action of the control system 14 after the detected pendulum movement of the gripper 5 can now with the help of the evaluation or arithmetic unit 14a / 14b of the control system 14 and with the aid of a stored in the memory unit 14c computer program, the corresponding physical effects and the actual predetermined considered specific geometries and forces, the pendulum movement of the gripper 5 vzw. be compensated. Vzw. In addition, the weight of the bulk material 3 a located in the gripper 5 is determined via a force measurement on the cable element 6 and transmitted to the control system 14, as vzw. Also, the current height of the gripper 5 (over the set rope length of the cable element 6), so that the control system 14 in addition also all the essential parameters for checking the measurement data of the inertial navigation system 21 - as already mentioned above - are available. It may be problematic that the measurement results of the inertial navigation system 21, which is designed as an inertial system, have an error which increases steadily with time t. The reason for this lies in possible existing ones Measuring errors of the accelerometers or gyroscopes, which are increasingly affected by integration with time. This inaccuracy (drift / bias) can now be eliminated by supporting the system. The fact that the reversal points of the pendulum and the rotational movements are permanently determined or determined and these movements / vibrations yes to the rest position / zero point, now support of the measured data can take place in the direction of this zero point, because the zero point of the pendulum motion in a known movement the carriage 10 and / or the chassis 12 can also be calculated. In other words, the possibly changing measurement data due to the above-described systemic inherent drift of the inertial navigation system 21 can always be permanently supported correspondingly in the direction of the calculated zero point / zero crossing of the oscillatory movements. The supports otherwise known in the prior art of such a system, for example, a support only by the acceleration of gravity or a support only by an external navigation system, would not be effective in the application described above for the gripper 5. However, due to the determination of the current reversal points of the pendulum and / or rotational movements, the inertial system or the corresponding measurement data can now be supported correspondingly in the direction of the determined zero point position, ie the measurement data determined by the inertial system can be correspondingly "corrected", namely by one possible to eliminate system inherent drift.

Die Möglichkeit einer weiteren sensorischen Erfassung der Position des Greifers 5 ist in Fig. 4 dargestellt. Fig. 4 zeigt den Schlitten 10, die Umlenkrolle 11 für das Seilelement 6 zum Heben und Senken des Greifers 5 sowie die Seilelemente 22 und 23 (Führungsseile) zum Bewegen des Schlittens 10 entlang des Auslegers 7. Bei einer hier dargestellten Pendelauslenkung des Greifers 5, dargestellt durch den Winkel ϕ, entsteht im Bereich des Schlittens 10 eine entsprechende resultierende Kraft FRes. Die horizontale Komponente dieser Kraft ist Fhorizontal, wobei die Seillast des Seilelementes 6 hier mit Flast angegeben ist. Die horizontale Komponente der resultierenden Kraft FRes, also der horizontale Anteil Fhorizontal muss von den Führungsseilen des Schlittens 10 aufgebracht werden. Für den Fall, dass der Schlitten 10 unbeschleunigt ist gilt: Fhorizontal = FSee - FLand. Da die Seillast des Seilelementes 6 FLast bereits gemessen worden ist und dem Steuersystem 14 zur Verfügung steht, werden nunmehr zusätzlich die entsprechenden Kräfte an den Seilelementen 22 und 23 des Schlittens 10 vzw. mit Kraftdosen ermittelt. In dem in Fig. 4 dargestellten Fall ist eine Messung der Pendelauslenkung des Greifers 5 nun zumindest in Bewegungsrichtung des Schlittens 10 (X-Richtung) möglich, insbesondere weil ja auch die Seillänge des Seilelementes 6 bzw. der jeweilige Drehwinkel der Seiltrommel und damit die spezifische Höhe des Greifers 5 bekannt ist. Um auch eine Auslenkung in Richtung der Kaimauer 13, also in Z-Richtung messen zu können sowie mögliche Torsionswinkel des Greifers 5 messen zu können, kann das Lager der Umlenkrolle 11 mit einem Momentensensor ausgerüstet werden. Bei dem dann in Fig. 4 dargestellten Anwendungsfall kann auch mit der entsprechenden Kraftmessung der Seilelemente 6, 22 bzw. 23 bzw. der entsprechenden Momentmessung an der Umlenkrolle 11 auf eine entsprechende Pendelauslenkung und/oder Pendelbewegung des Greifers 5 rückgeschlossen, nämlich mit Hilfe einer Auswerteeinheit/Recheneinheit 14a, 14b des Steuersystems 14 diese berechnet werden. Die am Schlitten 10 angreifenden Seilkräfte werden über Kraftsensoren ermittelt, wobei zusätzlich vzw. an den hier erforderlichen Umlenkrollen der Seilelemente Momentsensoren angeordnet sind, so dass die Pendelauslenkung des Greifers 5 im Ergebnis mit Hilfe der ermittelten Werte und der Auswerteeinheit/Recheneinheit 14a, 14b des Steuersystems 14 ermittelt werden kann. Über das im Steuersystem 14 abgespeicherte entsprechende Programm, kann dann mit Hilfe der Steuerbefehle bzw. Ansteuerung der einzelnen Aktuatoren, wie oben beschrieben, wiederum die Pendelauslenkung des Greifers 5 kompensiert bzw. verringert werden, nämlich über eine entsprechende automatische Ansteuerung des Schlittens 10, des Fahrwerks 12 und/oder der Veränderung der Höhe des Greifers 5.The possibility of a further sensory detection of the position of the gripper 5 is in Fig. 4 shown. Fig. 4 shows the carriage 10, the guide roller 11 for the cable element 6 for raising and lowering the gripper 5 and the cable elements 22 and 23 (guide cables) for moving the carriage 10 along the boom 7. In a pendulum deflection of the gripper 5 shown here, represented by the Angle φ, arises in the region of the carriage 10, a corresponding resultant force F Res . The horizontal component of this force is F horizontal, the rope load of the cable element 6 is here indicated with F last . The horizontal component of the resultant force F Res, ie the horizontal component F horizontal, must be applied by the guide cables of the carriage 10. In the case that the carriage 10 is unaccelerated: F horizontal = F lake - F country . Because the Rope load of the cable element 6 F load has already been measured and the control system 14 is available, now in addition the corresponding forces on the cable elements 22 and 23 of the carriage 10 vzw. determined with power cans. In the in Fig. 4 illustrated case, a measurement of the pendulum deflection of the gripper 5 is now possible at least in the direction of movement of the carriage 10 (X direction), in particular because the rope length of the cable element 6 or the respective angle of rotation of the cable drum and thus the specific height of the gripper 5 is known , In order to be able to measure a deflection in the direction of the quay wall 13, ie in the Z direction and to be able to measure possible torsion angles of the gripper 5, the bearing of the deflection roller 11 can be equipped with a moment sensor. At that then in Fig. 4 illustrated application can also be deduced with the corresponding force measurement of the cable elements 6, 22 and 23 and the corresponding moment measurement on the guide roller 11 to a corresponding pendulum deflection and / or oscillating movement of the gripper 5, namely with the aid of an evaluation / calculation unit 14a, 14b of the control system 14 these are calculated. The forces acting on the carriage 10 rope forces are determined by force sensors, in addition vzw. Moments sensors are arranged on the deflection rollers of the cable elements required here so that the pendulum deflection of the gripper 5 can be determined as a result with the aid of the determined values and the evaluation unit / arithmetic unit 14a, 14b of the control system 14. About the corresponding program stored in the control system 14, then the pendulum deflection of the gripper 5 can be compensated or reduced by means of the control commands or control of the individual actuators, as described above, namely via a corresponding automatic control of the carriage 10, the chassis 12 and / or the change in the height of the gripper 5.

Weiterhin kann die Vorrichtung 1 in vorteilhafter Weise nun zusätzlich so ausgebildet sein, so dass nämlich auch noch die genaue Position des Schiffes 2 und/oder der Luke 15 bzw. der Lukenränder ebenfalls noch sensorisch erfassbar ist. Dies wird vzw. über ein weiteres Bilderfassungssystem, vzw. über einen Laserscanner 24 realisiert, der insbesondere als 3D-Laserscanner ausgebildet ist.Furthermore, the device 1 can advantageously be additionally configured in this way, so that in fact the exact position of the ship 2 and / or the hatch 15 or the hatch edges can also be sensed. This is vzw. via another image acquisition system, vzw. realized via a laser scanner 24, which is designed in particular as a 3D laser scanner.

Im bevorzugten Fall ist der Laserscanner 24 an dem ersten Ausleger 7 über dem Bereich der Luke 15 angeordnet. Vzw. ist mit Hilfe des Laserscanners 24 dann die genaue Position des Schiffes 2 und der Luke 15 sensorisch erfassbar. Dies hat zunächst den Vorteil, dass ein "Notstop" durchgeführt werden kann, wenn nämlich die Auswerteeinheit 14a des Steuersystem 14 ermittelt, dass eine aktuelle Pendelbewegung des Greifers 5 im weiteren Betrieb zu einer Kollision mit dem Lukenrand der Luke 15 oder mit einem Schiffsaufbau des Schiffes 4 führen würde. Die Auswerteeinheit 14a bzw. Recheneinheit 14b ermittelt dies aus den vom Laserscanner 24 bzw. von der sensorischen Erfassung der Position des Greifers 5 übermittelten Daten.In the preferred case, the laser scanner 24 is arranged on the first arm 7 above the area of the hatch 15. Vzw. is using the laser scanner 24 then the exact position of the ship 2 and the hatch 15 sensed. This initially has the advantage that an "emergency stop" can be carried out, namely when the evaluation unit 14a of the control system 14 determines that a current pendulum movement of the gripper 5 in further operation to a collision with the hatch edge of the hatch 15 or with a ship body of the ship 4 would lead. The evaluation unit 14a or computing unit 14b determines this from the data transmitted by the laser scanner 24 or by the sensory detection of the position of the gripper 5.

In einer weiteren vorteilhaften Ausgestaltung wird zusätzlich mit dem Laserscanner 24 die aktuelle Verteilung der Ladung, also des Schüttgutes 3a innerhalb des Laderaumes 2 gescannt. Dies hat den Vorteil, dass der Böschungswinkel des im Laderaum 2 lagernden Schüttgutes 3a ermittelbar ist und auch wieder im Zusammenhang mit der ermittelten Pendelauslenkung des Greifers 5 bzw. deren Kompensation eine Kollision des Greifers 5 mit einer Böschung des Schüttgutes 3 vermieden werden kann, so dass ein Verschütten des Greifers 5 vermieden ist.In a further advantageous embodiment, in addition to the laser scanner 24, the current distribution of the charge, that is the bulk material 3a within the cargo space 2 is scanned. This has the advantage that the slope angle of the stored in the hold 2 bulk material 3a can be determined and again in connection with the determined pendulum deflection of the gripper 5 and their compensation collision of the gripper 5 can be avoided with a slope of the bulk material 3, so that Spilling of the gripper 5 is avoided.

Mit den hier dargestellten Komponenten des Steuersystems 14 ist nun ein automatisches Verfahren zur Verringerung und/oder Kompensierung der Pendelauslenkung des Greifers 5 realisierbar. Hierzu wird die Position des Greifers 5 vzw. kontinuierlich sensorisch erfasst, so dass eine Pendelbewegung des Greifers 5 ermittelt wird und dann durch eine automatische Ansteuerung des Greifers 5 bzw. der einzelnen Aktuatoren (Schlitten 10, Fahrwerk 12 etc.) diese Pendelbewegung im wesentlichen kompensiert und/oder verringert wird. Hierzu wird vzw. die aktuelle Bewegung des Schlittens 10 entsprechend gesteuert, die diese auf den Greifer 5 über das Seilelement 6 im wesentlichen parallel zur jeweiligen Bewegungsrichtung des Schlittens 10 überträgt (X-Richtung). Zusätzlich kann aber auch über das Fahrwerk 12 der Vorrichtung 1 ein Kompensationsausgleich in Z-Richtung erfolgen, also das Fahrwerk 12 über das Steuersystem 14 entsprechend zur Kompensation der Pendelbewegung des Greifers 5 angesteuert werden. Schließlich ist denkbar, dass die aktuelle spezifische Höhe des Greifers 5 (in Y-Richtung) verändert wird, insbesondere auch die aktuelle Ladung des Greifers 5 mit Schüttgut 3 über eine entsprechende Kraftmessung am Seilelement 6 ermittelt wird und über eine entsprechende aktuelle Höhenverstellung des Greifers 5 die Pendelbewegung verringert bzw. kompensiert wird. Hierzu werden die einzelnen Kompenenten über das Steuersystem 14 angesteuert.With the components of the control system 14 shown here, an automatic method for reducing and / or compensating the pendulum deflection of the gripper 5 is now feasible. For this purpose, the position of the gripper 5 vzw. continuously sensory detected, so that a pendulum movement of the gripper 5 is determined and then compensated by an automatic control of the gripper 5 and the individual actuators (slide 10, chassis 12, etc.) this oscillating motion substantially and / or is reduced. For this purpose vzw. the current movement of the carriage 10 controlled accordingly, which transmits them to the gripper 5 via the cable element 6 substantially parallel to the respective direction of movement of the carriage 10 (X direction). In addition, however, a compensating compensation in the Z direction can also take place via the running gear 12 of the device 1, that is to say the running gear 12 can be controlled via the control system 14 in accordance with the compensation of the oscillating movement of the gripper 5. Finally, it is conceivable that the current specific height of the Gripper 5 (in the Y direction) is changed, in particular, the current load of the gripper 5 is determined with bulk material 3 via a corresponding force measurement on the cable element 6 and a corresponding current height adjustment of the gripper 5, the pendulum motion is reduced or compensated. For this purpose, the individual components are controlled via the control system 14.

Für die sensorische Erfassung der aktuellen Position des Greifers 5 ist hier ein Trägheitsnavigationssystem 21 vorgesehen, das die translatorischen und/oder rotatorischen Beschleunigungen des Greifers 5 mit Hilfe der Sensoren des Trägheitsnavigationssystem 21 ermittelt, wobei die ermittelten Daten an das Steuersystem 14 übertragen werden. Hier werden mit Hilfe einer Auswerteeinheit 14a diese Daten ausgewertet und die aktuelle Position des Greifers 5 bzw. dessen Bewegungsbahn berechnet, so das basierend hierauf dann über die entsprechende Ansteuerung des Fahrwerks 12, des Schlittens 10 und/oder der Höhe des Greifers 5 dann die Kompensation oder Verringerung der Pendelbewegung erfolgen kann.For the sensory detection of the current position of the gripper 5, an inertial navigation system 21 is provided here, which determines the translational and / or rotational accelerations of the gripper 5 with the aid of the sensors of the inertial navigation system 21, the determined data being transmitted to the control system 14. Here, these data are evaluated with the aid of an evaluation unit 14a and the current position of the gripper 5 or its trajectory calculated, then based on the corresponding control of the chassis 12, the carriage 10 and / or the height of the gripper 5 then the compensation or reduction of the pendulum movement can take place.

Zwar ist auch denkbar, dass die Ladungsverteilung des Schüttgutes 3 innerhalb des Laderaumes durch das Herablassen des Greifers 5 an unterschiedlichen Stellen innerhalb des Bereiches der Luke 15 taktil ermittelt und in der Speichereinheit 14c des Steuersystems 14 abgespeichert wird, vzw. wird aber zur Ermittlung der Verteilung des Schüttgutes 3 ein entsprechender Laserscanner 24 eingesetzt.Although it is also conceivable that the charge distribution of the bulk material 3 within the cargo space by the lowering of the gripper 5 at different locations within the area of the hatch 15 tactile determined and stored in the memory unit 14 c of the control system 14, vzw. However, a corresponding laser scanner 24 is used to determine the distribution of the bulk material 3.

Über das Zusammenwirken der verschiedenen Komponenten werden entscheidende Vorteile erzielt, insbesondere die Betriebskosten verringert und Kollisionen des Greifers 5 vermieden. Insbesondere ist die aktuelle Position des Greifers 5 jederzeit zu ermitteln, so dass vzw. der Entladevorgang auch durch schlechte Sichtverhältnisse nicht beeinträchtigt ist, wodurch entscheidende Kosteneinsparungen bei den Betriebskosten realisierbar sind.On the interaction of the various components decisive advantages are achieved, in particular reduced operating costs and collisions of the gripper 5 avoided. In particular, the current position of the gripper 5 is to be determined at any time, so that vzw. the unloading process is not affected by poor visibility, whereby crucial cost savings in operating costs can be realized.

Weitere Aspekte sind:Other aspects are:

Das Verfahren zum Be- und/oder Entladen eines Laderaumes (2) bzw. Lagerraumes mit Material (3), insbesondere zum Be- und/oder Entladen eines Laderaumes (2) eines Schiffes (4) mit Schüttgut (3a), vzw. mit Kohle oder Erz, oder mit Containern, arbeitet vzw. mit der Vorrichtung (1, 1a).The method for loading and / or unloading a loading space (2) or storage space with material (3), in particular for loading and / or unloading a loading space (2) of a ship (4) with bulk material (3a), vzw. with coal or ore, or with containers, works vzw. with the device (1, 1a).

Mit mindestens einem Greifer (5) wird das zu transportierende Material (3), vzw. das Schüttgut (3a) oder der Container, aufgenommen und/oder abgegeben, wobei die Position des Greifers (5) gesteuert wird, nämlich die Position des Greifers (5) zumindest in vertikaler und/oder horizontaler Richtung verändert wird, wobei der Greifer (5) an mindestens einem Seilelement (6) hängt und die Bewegungen des Greifers (5) in vertikaler und/oder horizontaler Richtung und/oder die Bewegungen zum Aufnehmen und/oder zur Abgabe des Materials (3) gesteuert werden, wobei die Position des Greifers (5) sensorisch erfasst wird und eine Pendelbewegung und/oder eine Pendelauslenkung des Greifers (5) ermittelt wird und dann durch eine entsprechende Ansteuerung im wesentlichen kompensiert und/oder verringert wird, und wobei die Position des Greifers (5) mit Hilfe eines Trägheitsnavigationssystemes (21) ermittelt wird.With at least one gripper (5), the material to be transported (3), vzw. the bulk material (3a) or the container, received and / or delivered, wherein the position of the gripper (5) is controlled, namely the position of the gripper (5) is changed at least in the vertical and / or horizontal direction, wherein the gripper (5 ) on at least one cable element (6) and the movements of the gripper (5) in the vertical and / or horizontal direction and / or the movements for receiving and / or delivery of the material (3) are controlled, wherein the position of the gripper ( 5) is sensory detected and a pendulum movement and / or a pendulum deflection of the gripper (5) is determined and then substantially compensated and / or reduced by a corresponding control, and wherein the position of the gripper (5) by means of an inertial navigation system (21 ) is determined.

Die translatorischen und/oder rotatorischen Beschleunigungen des Greifers (5) werden mit Hilfe der Sensoren des Trägheitsnavigationssystems (21) ermittelt. Die vom Trägheitsnavigationssystem (21) ermittelten Daten werden an das Steuersystem (14) übermittelt. Das Steuersystem (14) wertet mit Hilfe einer Auswerteeinheit (14a) die vom Trägheitsnavigationssystem (21) übermittelten Daten aus und ermittelt die Position des Greifers (5) und/oder berechnet mit Hilfe einer Recheneinheit (14b) dessen Bewegungsbahn.The translatory and / or rotational accelerations of the gripper (5) are determined by means of the sensors of the inertial navigation system (21). The data determined by the inertial navigation system (21) are transmitted to the control system (14). The control system (14) uses an evaluation unit (14a) to evaluate the data transmitted by the inertial navigation system (21) and determines the position of the gripper (5) and / or calculates its trajectory using a computer unit (14b).

Das Trägheitsnavigationssystem ist als dreiachsiges Inertialsystem ausgeführt, das orthogonale Gyroskope und Beschleunigungsmesser aufweist, so dass für jede der relevanten Pendelachsen permanent die für die jeweilige Achse gemessene Drehgeschwindigkeit um diese Achse und/oder die vektorielle Beschleunigung in Richtung dieser Achse ermittelbar ist. Die vom Inertialsystem gemessenen Daten werden per Funk an das Steuersystem übermittelt.The inertial navigation system is designed as a three-axis inertial system having orthogonal gyroscopes and accelerometers, so that for each of the relevant pendulum axes permanently measured for the respective axis rotational speed about this axis and / or the vectorial acceleration in the direction of this axis can be determined. The data measured by the inertial system are transmitted by radio to the control system.

Für eine bestimmte Position des Greifers in seiner Ruhelage wird der Bezugspunkt/Nullpunkt des kinematischen Systems definiert. Die aktuelle Position des Greifers und/oder die Pendelbewegung,Pendelauslenkung und/oder der Pendelwinkel wird kontinuierlich ermittelt. Zusätzlich wird eine rotatorische Bewegung des Greifers, nämlich eine kreisende Bewegung des Greifers im Raum und/oder eine kreisende Bewegung des Greifers im wesentlichen um seine eigene vertikale Achse ermittelt.For a certain position of the gripper in its rest position, the reference point / zero point of the kinematic system is defined. The current position of the gripper and / or the pendulum motion, pendulum deflection and / or the pendulum angle is determined continuously. In addition, a rotational movement of the gripper, namely a circular movement of the gripper in space and / or a circular movement of the gripper is determined substantially about its own vertical axis.

Die Bewegungen des Schlittens (10) auf den Greifer (5) über das Seilelement (6) werden im wesentlichen parallel zur jeweiligen Bewegungsrichtung des Schlittens (10) (in X-Richtung) übertragen. Ein Ausleger (7) ist im wesentlichen horizontal an mindestens einem Stützpfeiler (9) angeordnet ist, wobei der Stützpfeiler (9) auf einem Untergrund bewegt wird, nämlich im wesentlichen in eine um 90 Grad zur Bewegungsrichtung des Schlittens (10) versetzte Richtung (Z-Richtung) bewegt wird. Die im wesentlichen in vertikaler Richtung (Y-Richtung) verlaufenden Bewegungen des Greifers (5) und/oder die Öffnungs- und Schließbewegungen des Greifers (5) werden über Seilelemente gesteuert.The movements of the carriage (10) on the gripper (5) via the cable element (6) are transmitted substantially parallel to the respective direction of movement of the carriage (10) (in the X direction). A boom (7) is arranged substantially horizontally on at least one supporting pillar (9), wherein the supporting pillar (9) is moved on a ground, namely substantially in a 90 degrees to the direction of movement of the carriage (10) offset direction (Z Direction) is moved. The substantially in the vertical direction (Y-direction) extending movements of the gripper (5) and / or the opening and closing movements of the gripper (5) are controlled by cable elements.

Der Schlitten (10) wird mit Seilelementen (22, 23) angetrieben. Mit Hilfe des Steuersystems (14) werden die Bewegungen des Schlittens (10) und/oder des Stützpfeilers (9) sowie die Auf- und Abbewegung des Greifers (5) gesteuert.The carriage (10) is driven by cable elements (22, 23). With the aid of the control system (14), the movements of the carriage (10) and / or the support pillar (9) and the up and down movement of the gripper (5) are controlled.

Bei bekannter Bewegung des Schlittens (10) und/oder des Fahrwerkes (12) und/oder des Seilelementes (6) ist der sich mit verlagernde Nullpunkt der Pendelbewegung ermittelbar.With known movement of the carriage (10) and / or the chassis (12) and / or the cable element (6) can be determined with displaced zero point of the pendulum movement.

Die Umkehrpunkte der Pendelbewegungen des Greifers (5) werden ermittelt sowie der aktuelle Nullpunkt des Greifers (5) bei der bekannten Position bzw. Bewegung des Schlittens (10) und/oder des Fahrwerkes (12) wird berechnet, so dass eine mögliche inhärente Drift des Trägheitsnavigationssystems (21) dadurch eliminierbar ist, dass das Trägheitsnavigationssystem (21) in Richtung auf diesen Nullpunkt des Greifers (5) gestützt wird.The reversal points of the pendulum movements of the gripper (5) are determined and the current zero point of the gripper (5) in the known position or movement of the carriage (10) and / or the chassis (12) is calculated, so that a possible inherent drift of Inertial navigation system (21) is eliminable in that the inertial navigation system (21) is supported towards this zero point of the gripper (5).

Die aktuelle Position des Greifers (5), nämlich die Pendelauslenkung des Greifers (5) in allen seinen Pendelachsen und/oder die Rotation des Greifers (5) wird ermittelt.The current position of the gripper (5), namely the pendulum deflection of the gripper (5) in all its pendulum axes and / or the rotation of the gripper (5) is determined.

Die genaue Position des Schiffes (4) und/oder einer Luke (15) wird sensorisch erfasst.The exact position of the ship (4) and / or a hatch (15) is detected by sensors.

Das Bilderfassungssystem ermittelt mit einem Laserscanner (24) die aktuelle Verteilung der Ladung des Schüttgutes (3) innerhalb des Laderaumes (2). Der Böschungswinkel des im Laderaumes (2) lagernden Schüttgutes (3) wird ermittelt.The image acquisition system determines with a laser scanner (24) the current distribution of the charge of the bulk material (3) within the hold (2). The slope angle of the bulk material (3) stored in the loading space (2) is determined.

Eine rotatorische Bewegung des Greifers wird dadurch kompensiert bzw. gestoppt wird, dass der Greifer genau in dem Moment seines ermittelten Nulldurchganges mit dem Schüttgut (3a) in Kontakt bringbar ist.A rotary movement of the gripper is compensated or stopped in that the gripper can be brought into contact with the bulk material (3a) precisely at the moment of its determined zero crossing.

Die Daten des Trägheitsnavigationssystemes (21) und/oder die Daten des Bilderfassungssystems werden an das Steuersystem (14) übermittelt, wobei hieraus die Pendelbewegung bzw. die Pendelauslenkung des Greifers (5) mit Hilfe der Auswerteeinheit (14a) ermittelt wird, wobei dann über die Recheneinheit (14a) des Steuersystems (14) die kinematischen Abläufe errechnet und vom Steuersystem (14) die entsprechenden Steuerbefehle zur Kompensation und/oder Verringerung der Pendelauslenkung des Greifers (5) ermittelt werden und wobei der Schlitten (10), das Fahrwerk (12) und/oder die Höhe des Greifers (5) automatisch entsprechend angesteuert, nämlich entsprechend bewegt bzw. verstellt wird. Mit Hilfe eines Laserscanners (24) wird die aktuelle Verteilung des Schüttgutes (3a) im Laderaum (2) ermittelt, wobei die vom Laserscanner (24) ermittelten Daten an das Steuersystem (14) übertragen werden, wobei die Auswerte- und/oder Recheneinheit (14a bzw. 14b), die Böschungswinkel des Schüttgutes (3) errechnet und in Abhängigkeit des jeweiligen spezifischen Schüttgutes (3) und der hierfür in der Speichereinheit (14c) abgespeicherten Parameter kritische Böschungswinkel des Schüttgutes (3) erfasst werden.The data of the inertial navigation system (21) and / or the data of the image acquisition system are transmitted to the control system (14), from which the pendulum motion or the pendulum deflection of the gripper (5) by means of the evaluation unit (14a) is determined, in which case Arithmetic unit (14a) of the control system (14) calculates the kinematic sequences and the control system (14) the corresponding control commands for compensation and / or reduction of the pendulum deflection of the gripper (5) are determined and wherein the carriage (10), the chassis (12). and / or the height of the gripper (5) automatically controlled accordingly, namely moved accordingly or adjusted. The current distribution of the bulk material (3a) in the loading space (2) is determined with the aid of a laser scanner (24), wherein the data determined by the laser scanner (24) are transmitted to the control system (14), wherein the evaluation and / or arithmetic unit ( 14a and 14b), the angle of repose of the bulk material (3) is calculated and detected as a function of the respective specific bulk material (3) and the stored in the memory unit (14c) parameters critical slope angle of the bulk material (3).

Mit Hilfe des Laserscanners (24) ist der Umgebungsbereich des Schiffes (2) und/oder einer Luke (15) ermittelbar, wobei bei kritischen Pendelbewegungen und/oder Pendelauslenkungen des Greifers (5) im automatischen Betrieb ein "Notstop" realisiert wird.With the help of the laser scanner (24), the environment of the ship (2) and / or a hatch (15) can be determined, with critical oscillations and / or pendulum deflections of the gripper (5) in automatic operation an "emergency stop" is realized.

Bezugszeichenliste:LIST OF REFERENCE NUMBERS

11
Vorrichtungcontraption
1a1a
EntladebrückeEntladebrücke
22
Laderaumhold
33
Materialmaterial
3a3a
Schüttgutbulk
44
Schiffship
55
Greifergrab
66
Seilelementcable element
77
erster Auslegerfirst boom
88th
zweiter Auslegersecond boom
99
Stützpfeilerbuttress
1010
Schlittencarriage
1111
Umlenkrolleidler pulley
1212
Fahrwerklanding gear
1313
Kaimauerquay wall
1414
Steuersystemcontrol system
14a14a
Auswerteeinheitevaluation
14b14b
Recheneinheitcomputer unit
14c14c
Speichereinheitstorage unit
1515
Lukehatch
1616
Trichterfunnel
1717
Förderbandconveyor belt
1818
Förderbandconveyor belt
1919
Haldeheap
2020
Steuerkanzelcontrol pulpit
2121
TrägheitsnavigationssystemInertial navigation system
2222
Seilelementerope elements
2323
Seilelementerope elements
2424
Laserscannerlaser scanner
AA
Pfeilarrow
BB
Pfeilarrow
CC
Pfeilarrow

Claims (29)

  1. Method for loading and/or unloading material (3) into and/or from a cargo hold (2) or storage space, especially for loading and/or unloading bulk material (3a), preferably coal or ore, or containers into and/or from a hold (2) of a ship (4), wherein the material (3) to be transported, preferably the bulk material (3a), or the container is picked up and/or discharged by at least one grab (5), wherein the position of the grab (5) is controlled, to be specific the position of the grab (5) is changed at least in the vertical and/or horizontal direction(s), wherein the grab (5) is suspended on at least one cable element (6) and the movements of the grab (5) in the vertical and/or horizontal direction(s) and/or the movements for picking up and/or discharging the material (3) are controlled, wherein the position of the grab (5) is detected by sensors and a pendular movement and/or a pendular deflection of the grab (5) is determined and then substantially compensated and/or reduced by appropriate activation, wherein the position of the grab (5) is determined with the aid of an inertial navigation system (21), characterized in that the reversal points of the pendular movements of the grab (5) are permanently determined and the zero point of the grab (5) at a given time, preferably in respect of the known position or movement of the carriage (10) and/or the running gear (12), is calculated by the permanent determination of the reversal points of the pendular and/or rotational movements, so that a possible inherent drift of the inertial navigation system (21) can be eliminated by the inertial navigation system (21) being permanently supported in the direction of this zero point of the grab (5).
  2. Method according to Claim 1, characterized in that the translational and/or rotational accelerations of the grab (5) are determined with the aid of the sensors of the inertial navigation system (21) and in that the data determined by the inertial navigation system (21) are transmitted to a control system (14) and in that the control system (14) evaluates with the aid of an evaluating unit (14a) the data transmitted from the inertial navigation system (21) and determines the position of the grab (5) and/or calculates its path of movement with the aid of a computing unit (14b).
  3. Method according to either of Claims 1 and 2, characterized in that the inertial navigation system (21) is designed as an inertial system that has orthogonal gyroscopes and accelerometers, so that, for each of the relevant pendulum axes, the rotational speed measured for the respective axis about this axis and/or the vectorial acceleration in the direction of this axis can be permanently determined.
  4. Method according to Claim 3, characterized in that the data measured by the inertial system are transmitted by radio to the control system (14).
  5. Method according to one of Claims 1 to 4, characterized in that the reference point/zero point of the kinematic system is defined for a specific position of the grab (5) in its position of rest.
  6. Method according to one of Claims 1 to 5, characterized in that the position of the grab (5) at a given time and/or the pendular movement, pendular deflection and/or the pendular angle is determined continuously and in that in addition a rotational movement of the grab (5), to be specific a circling movement of the grab in space and/or a circling movement of the grab (5) substantially about its own vertical axis, is determined.
  7. Method according to one of Claims 1 to 6, characterized in that the movements of a carriage (10) are transferred to the grab (5) by way of the cable element (6) substantially parallel to the respective direction of movement of the carriage (10) (in the X direction) and in that an extension arm (7) is arranged substantially horizontally on at least one supporting pillar (9) and in that the supporting pillar (9) is moved on a base, to be specific is moved substantially in a direction offset by 90 degrees in relation to the direction of movement of the carriage (10) (Z direction).
  8. Method according to one of Claims 1 to 7, characterized in that the movements of the grab (5) substantially in the vertical direction (Y direction) and/or the opening and closing movements of the grab (5) are controlled by way of cable elements and in that the carriage (10) is driven by cable elements (22, 23).
  9. Method according to either of Claims 7 and 8, characterized in that the movements of the carriage (10) and/or of the supporting pillar (9) and also the movement up and down of the grab (5) are controlled with the aid of the control system (14).
  10. Method according to one of Claims 1 to 9, characterized in that, with a known movement of the carriage (10) and/or of the running gear (12) and/or of the cable element (6), the concomitantly shifting zero point of the pendular movement can be determined.
  11. Method according to one of Claims 1 to 10, characterized in that the position of the grab (5) at a given time, to be specific the pendular deflection of the grab (5) in all of its pendulum axes and/or the rotation of the grab (5), is determined.
  12. Method according to one of Claims 1 to 11, characterized in that the exact position of the ship (4) and/or of a hatchway (15) is detected by sensors and in that an image acquisition system arranged on the first extension arm (7) determines with a laser scanner (24) the distribution of the cargo of bulk material (3) at a given time within the cargo hold (2), and in that the angle of slope of the bulk material (3) stored in the cargo hold (2) is determined.
  13. Method according to one of Claims 1 to 12, characterized in that a rotational movement of the grab (5) is compensated or stopped by the grab (5) being able to be brought into contact with the bulk material (3a) precisely at the moment of its determined zero crossing.
  14. Method according to either of Claims 12 and 13, characterized in that the data of the inertial navigation system (21) and/or the data of the image acquisition system are transmitted to the control system (14), in that the pendular movement or the pendular deflection of the grab (5) is determined from these data with the aid of the evaluating unit (14a), and in that the kinematic sequences are then calculated by way of the computing unit (14a) of the control system (14) and the appropriate control commands to compensate for and/or reduce the pendular deflection of the grab (5) are determined by the control system (14) and in that the carriage (10), the running gear (12) and/or the height of the grab (5) is/are correspondingly automatically activated, to be specific correspondingly moved or adjusted.
  15. Method according to one of Claims 12 to 14, characterized in that the distribution of the bulk material (3a) at a given time in the cargo hold (2) is determined with the aid of a laser scanner (24), in that the data determined by the laser scanner (24) are transmitted to the control system (14), in that the evaluating unit (14a) and/or computing unit (14b) calculates the angles of slope of the bulk material (3) and determines critical angles of slope of the bulk material (3) on the basis of the respective specific bulk material (3) and the parameters stored for it in the memory unit (14c).
  16. Method according to Claim 15, characterized in that the surrounding area of the ship (2) and/or of a hatchway (15) can be determined with the aid of the laser scanner (24) and in that an "emergency stop" is executed during automatic operation in the event of critical pendular movements and/or pendular deflections of the grab (5).
  17. Device (1), operating on the basis of one of method claims, Claims 1 to 16, in particular an unloading gantry (1a) for loading and/or unloading material (3) into and/or from a cargo hold (2) or storage space, especially for loading and/or unloading bulk material (3a), preferably coal or ore, or containers into and/or from a hold (2) of a ship (4), wherein at least one grab (5) for picking up and discharging the material (3) to be transported, preferably the bulk material (3a) or the container, is provided, wherein the position of the grab (5) can be controlled, to be specific the position of the grab (5) can be changed at least in the vertical and/or horizontal direction(s), wherein the grab (5) is connected to at least one cable element (6) and wherein the movements of the grab (5) in the vertical and/or horizontal direction(s) and/or the movements for picking up and/or discharging the material (3) can be controlled with the aid of a provided control system (14), wherein the position of the grab (5) can be detected by sensors, so that a pendular movement and/or pendular deflection of the grab (5) can be determined and can be substantially compensated and/or reduced by appropriate activation, wherein an inertial navigation system (21) is provided to determine the position of the grab (5) and the inertial navigation system (21) is arranged on the grab (5), and wherein the inertial navigation system (21) is designed as an inertial system, characterized in that the zero point/zero crossing of the grab (5) can be determined by the permanent determination of the reversal points of the pendular and/or rotational movements and in that a possible inherent drift of the inertial navigation system (21) can be substantially eliminated by permanent support of the measurement data in the direction of this zero point of the grab (5).
  18. Device according to Claim 17, characterized in that the inertial navigation system (21) has sensors for determining the translational and/or rotational accelerations of the grab (5) and in that the data determined by the inertial navigation system (21) can be transmitted, preferably by radio, to a control system (14) and/or in that the control system (14) has an evaluating unit (14a) for evaluating the data transmitted from the inertial navigation system (21) and for determining the position of the grab (5).
  19. Device according to either of Claims 17 and 18, characterized in that the inertial navigation system (21) is configured as a three-axis inertial system.
  20. Device according to Claim 19, characterized in that the sensor equipment of the inertial system comprises gyroscopes and accelerometers and in that, for each of the axes of the inertial system, the rotational speed measured for the respective axis about this axis and/or the vectorial acceleration in the direction of this axis can be permanently determined.
  21. Device according to one of Claims 17 to 20, characterized in that the control system (14) defines the reference point of the kinematic system for a specific position of the grab (5) in its rest position and in that the position of the grab (5) at a given time and/or the pendular movement, pendular deflection and/or the pendular angle can be determined continuously and/or in that in addition a rotational movement of the grab, to be specific a circling movement of the grab in space and/or a circling movement of the grab (5) substantially about its own vertical axis, can be determined.
  22. Device according to Claim 21, characterized in that the device (1, 1a) has at least one extension arm (7, 8) and a carriage (10) is arranged movably along the extension arm (7) and in that the carriage (10) and the grab (5) are connected by way of the cable element (6).
  23. Device according to Claim 22, characterized in that the extension arm (7, 8) is arranged substantially horizontally and at least one substantially vertically arranged supporting pillar (9) is provided and in that the supporting pillar (9) is arranged movably on a base and can be moved substantially in a direction offset by 90 degrees in relation to the direction of movement of the carriage (10) and/or a control station (20) is provided.
  24. Device according to either of Claims 22 and 23, characterized in that the carriage (10) and the supporting pillar or pillars (9) has/have a running gear (12) and in that the carriage (10) can be driven by cable elements.
  25. Device according to one of Claims 22 to 24, characterized in that, with a known movement of the carriage (10) and/or of the running gear (12) and/or of the cable element (6), the concomitantly shifting zero point of the pendular movement can be determined.
  26. Device according to one of Claims 17 to 25, characterized in that the movements of the grab (5), to be specific the movements of the grab (5) substantially in the vertical direction, and the opening and closing movements of the grab (5) can be controlled by way of cable elements.
  27. Device according to one of Claims 17 to 26, characterized in that the cargo hold (2) is formed in a ship (4) and is accessible for the grab (5), in that the exact position of the ship (4) and/or of a hatchway (15) can be detected by sensors with the aid of an image acquisition system arranged on the first extension arm (7).
  28. Device according to Claim 27, characterized in that the image acquisition system has at least one laser scanner (24), to be specific that the laser scanner (24) is designed as a 3D laser scanner, and in that the distribution of the bulk material (3a) at a given time within the cargo hold (2) can be determined.
  29. Device according to one of Claims 17 to 28, characterized in that a rotational movement of the grab (5) can be compensated or stopped by the grab (5) being able to be brought into contact with the material (3) precisely at the moment of its determined zero crossing.
EP08006281.3A 2005-02-11 2006-02-10 Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space Not-in-force EP1958915B8 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200520002315 DE202005002315U1 (en) 2005-02-11 2005-02-11 Bulk grain cargo loading/unloading system has bucket grab position continually monitored by sensor
EP06706858A EP1851157A2 (en) 2005-02-11 2006-02-10 Device and method for loading and/or unloading a cargo space or storage space

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
EP06706858.5 Division 2006-02-10
EP06706858A Division EP1851157A2 (en) 2005-02-11 2006-02-10 Device and method for loading and/or unloading a cargo space or storage space

Publications (4)

Publication Number Publication Date
EP1958915A2 EP1958915A2 (en) 2008-08-20
EP1958915A3 EP1958915A3 (en) 2012-08-15
EP1958915B1 true EP1958915B1 (en) 2016-01-27
EP1958915B8 EP1958915B8 (en) 2016-06-08

Family

ID=34684208

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08006281.3A Not-in-force EP1958915B8 (en) 2005-02-11 2006-02-10 Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space
EP06706858A Withdrawn EP1851157A2 (en) 2005-02-11 2006-02-10 Device and method for loading and/or unloading a cargo space or storage space

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP06706858A Withdrawn EP1851157A2 (en) 2005-02-11 2006-02-10 Device and method for loading and/or unloading a cargo space or storage space

Country Status (3)

Country Link
EP (2) EP1958915B8 (en)
DE (1) DE202005002315U1 (en)
WO (1) WO2006084739A2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005002315U1 (en) * 2005-02-11 2005-06-16 Isam Ag Bulk grain cargo loading/unloading system has bucket grab position continually monitored by sensor
DE102007027536B4 (en) 2007-06-15 2010-07-08 Gottwald Port Technology Gmbh Floating unloading device for bulk material
DE102007041692A1 (en) * 2007-09-03 2009-03-05 Siemens Ag Control device for damping oscillations of a cable-guided load
DE502008001820D1 (en) * 2008-04-18 2010-12-30 Siemens Ag Method for damping oscillations of a bulk material load guided by a crane, control program and crane automation system
JP4897103B1 (en) * 2011-05-25 2012-03-14 有限会社寺岡商事 Bucket crane with conveyor
CN102229392A (en) * 2011-06-23 2011-11-02 三一集团有限公司 Lighterage operation bridge type loading and unloading ship machine
DE102013011718A1 (en) * 2013-07-15 2015-01-15 Isam Ag Method for controlling a container bridge for loading or unloading, in particular of the loading space, of a ship or control system for controlling a container bridge or container bridge with control system
CN103407883B (en) * 2013-08-22 2015-09-02 泰富重工制造有限公司 Ship unloaders control system and control method
CN103499322A (en) * 2013-10-12 2014-01-08 北京冶联科技有限公司 Measuring method for coal storage of coal yard
AU2015262041B2 (en) * 2014-05-19 2019-09-12 Nautilus Minerals Singapore Pte Ltd Seafloor haulage system
CN104386507A (en) * 2014-12-17 2015-03-04 天津港远航矿石码头有限公司 Nine-step linkage ship unloading method
DE102016001684A1 (en) * 2016-02-12 2017-08-17 Liebherr-Werk Biberach Gmbh Method for monitoring at least one crane
CN105565165B (en) * 2016-03-04 2016-09-14 江苏聚业机械装备股份有限公司 Fully-automatic intelligent harbor crane grabs coal system and method
WO2017190801A1 (en) * 2016-05-06 2017-11-09 Applied Materials Italia S.R.L. Apparatus for aligning a solar cell element, system for use in the manufacture of a solar cell arrangement, and method for aligning a solar cell element
DE102018005068A1 (en) 2018-06-26 2020-01-02 Liebherr-Components Biberach Gmbh Crane and method for controlling such a crane
CN110723565A (en) * 2018-10-15 2020-01-24 党琪 Automatic bulk cargo boxing system and method suitable for railway transportation
CN109975173B (en) * 2019-04-28 2023-04-25 深圳国技仪器有限公司 Automatic accumulation factor test system
CN110562729A (en) * 2019-08-29 2019-12-13 武汉奋进智能机器有限公司 Fermented grain discharging system and method
CN110817490A (en) * 2019-11-15 2020-02-21 中冶宝钢技术服务有限公司 Grab ship unloader and operation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5392935A (en) * 1992-10-06 1995-02-28 Obayashi Corporation Control system for cable crane
DE4238795A1 (en) * 1992-11-17 1993-07-01 Edgar Von Dipl Ing Hinueber Damping pendulum movement of hanging loads on crane - using microprocessor to control crane movement and load cable length using sensor input of cable angular velocity and acceleration
FR2704847A1 (en) * 1993-05-05 1994-11-10 Bertin & Cie Process and device for limiting the swing of a load suspended from a motorised support
AUPN681195A0 (en) * 1995-11-24 1995-12-21 Patrick Stevedores Holdings Pty Limited Container handling crane
DE19756875A1 (en) * 1997-12-19 1999-07-01 Siemens Ag Loading system for loading a means of transport with bulk goods
DE19947739A1 (en) * 1999-10-05 2001-04-12 Froelich Karin Method and device for loading bulk materials into travelling containers like vehicles determines the size of a container to ensure even loading and to determine the specific dumping procedure in advance.
DE10064182A1 (en) * 2000-10-19 2002-05-08 Liebherr Werk Nenzing Crane or excavator for handling a load suspended from a load rope with load swing damping
US7289875B2 (en) * 2003-11-14 2007-10-30 Siemens Technology-To-Business Center Llc Systems and methods for sway control
DE202005002315U1 (en) * 2005-02-11 2005-06-16 Isam Ag Bulk grain cargo loading/unloading system has bucket grab position continually monitored by sensor

Also Published As

Publication number Publication date
DE202005002315U1 (en) 2005-06-16
EP1958915B8 (en) 2016-06-08
WO2006084739A3 (en) 2006-11-02
WO2006084739A2 (en) 2006-08-17
EP1958915A2 (en) 2008-08-20
EP1851157A2 (en) 2007-11-07
EP1958915A3 (en) 2012-08-15

Similar Documents

Publication Publication Date Title
EP1958915B1 (en) Device for loading and/or unloading a cargo hold or storage space and method for loading and/or unloading a cargo hold or storage space
DE10251910B4 (en) container crane
DE60208952T2 (en) Cranes and methods for controlling the crane
EP3408208B1 (en) Crane, and method for controlling such a crane
EP0342655A2 (en) Crane installation for a container
EP3409636B1 (en) Method for damping torsional vibrations of a load-bearing element of a lifting device
DE4423797C2 (en) Device for the precise positioning and stacking of containers
EP2422018A1 (en) Mobile working machine comprising a position control device of a working arm and method for controlling the position of a working arm of a mobile working machine
EP4013713B1 (en) Crane and method for controlling such a crane
EP2465807B1 (en) Method and device for positioning a suspended crane load
DE102012213604A1 (en) Loading device for containers and method for their operation
DE102012003650B4 (en) Method and device for supervised vertical lifting of a standard container
EP3740376B1 (en) Method for unpacking a 3d printed part
DE4025749A1 (en) Automatic operation of revolving crane without load swings - involves controlled timing of grab acceleration and retardation adjusted to period of natural frequency of oscillation
DE102013011718A1 (en) Method for controlling a container bridge for loading or unloading, in particular of the loading space, of a ship or control system for controlling a container bridge or container bridge with control system
DE102019205329A1 (en) Device for controlling a load hanging on a line
DE19502421C2 (en) Method and device for transporting a load
DE19725315C2 (en) Crane, especially steel mill crane
DE10019373A1 (en) Device for controling machine part has three accelerometers mounted on machine part so that they detect acceleration of machine part in three mutually perpendicular directions.
EP2832585B1 (en) Raising loading platform and method for controlling the same
DE102022103283A1 (en) crane
WO2021099374A1 (en) Construction and/or material-handling machine
DE102017110006B4 (en) External winch for a helicopter with devices for stabilizing an external load attached to the external winch, and helicopters with such an external winch
DE102007050823A1 (en) Mobile loader and unloader for e.g. loading bulk material from ship in inland harbor/port, has front arm pivoted in lifting and lowering manner, where unloading device is arranged on front arm and moved in longitudinal direction
DE102005002192B4 (en) Method for operating a crane installation, in particular a container crane, and crane installation, in particular a container crane

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1851157

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: B66C 13/06 20060101AFI20120710BHEP

Ipc: B66C 13/46 20060101ALI20120710BHEP

17P Request for examination filed

Effective date: 20130215

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20140303

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150731

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AC Divisional application: reference to earlier application

Ref document number: 1851157

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 772585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006014735

Country of ref document: DE

GRAT Correction requested after decision to grant or after decision to maintain patent in amended form

Free format text: ORIGINAL CODE: EPIDOSNCDEC

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ISAM AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: NL

Ref legal event code: FP

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ISAM AKTIENGESELLSCHAFT, DE

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160428

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160527

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160527

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006014735

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160229

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160427

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 772585

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160210

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060210

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160210

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160127

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006014735

Country of ref document: DE

Representative=s name: HUEBSCH, KIRSCHNER & PARTNER, PATENTANWAELTE U, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220221

Year of fee payment: 17

Ref country code: DE

Payment date: 20220105

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220216

Year of fee payment: 17

Ref country code: FR

Payment date: 20220221

Year of fee payment: 17

Ref country code: BE

Payment date: 20220216

Year of fee payment: 17

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230523

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006014735

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230301

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230228

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230210

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230228