EP1950427A1 - Hydraulikzylinderanordnung - Google Patents

Hydraulikzylinderanordnung Download PDF

Info

Publication number
EP1950427A1
EP1950427A1 EP08000711A EP08000711A EP1950427A1 EP 1950427 A1 EP1950427 A1 EP 1950427A1 EP 08000711 A EP08000711 A EP 08000711A EP 08000711 A EP08000711 A EP 08000711A EP 1950427 A1 EP1950427 A1 EP 1950427A1
Authority
EP
European Patent Office
Prior art keywords
brake body
rod
hydraulic cylinder
cylinder
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08000711A
Other languages
English (en)
French (fr)
Inventor
Edgar Freitag
Jan Deichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Freudenberg KG
Original Assignee
Carl Freudenberg KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP07000870A external-priority patent/EP1947351A1/de
Application filed by Carl Freudenberg KG filed Critical Carl Freudenberg KG
Priority to EP08000711A priority Critical patent/EP1950427A1/de
Priority to DE200820014461 priority patent/DE202008014461U1/de
Publication of EP1950427A1 publication Critical patent/EP1950427A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/08Characterised by the construction of the motor unit
    • F15B15/14Characterised by the construction of the motor unit of the straight-cylinder type
    • F15B15/16Characterised by the construction of the motor unit of the straight-cylinder type of the telescopic type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/26Locking mechanisms
    • F15B15/261Locking mechanisms using positive interengagement, e.g. balls and grooves, for locking in the end positions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B15/00Fluid-actuated devices for displacing a member from one position to another; Gearing associated therewith
    • F15B15/20Other details, e.g. assembly with regulating devices
    • F15B15/26Locking mechanisms
    • F15B15/262Locking mechanisms using friction, e.g. brake pads

Definitions

  • the invention relates to a hydraulic cylinder assembly having at least one cylinder and at least one rod slidably disposed in the cylinder.
  • Hydraulic cylinder arrangements are used inter alia in conveyor technology to lift loads.
  • loads are lifted by means of a lifting carriage, which in turn is actuated by a hydraulic cylinder arrangement.
  • This hydraulic cylinder assembly performs telescopic movements by which the lifting carriage is raised or lowered.
  • the actuation of the hydraulic cylinder assembly is effected by a hydraulic drive.
  • the pressure generated by the hydraulic drive can be reduced, whereby the lifting can inadvertently lower.
  • the hydraulic cylinder assemblies also consist of several nested or parallel cylinders arranged. Here it is necessary that the correct exit order is observed.
  • a hydraulic cylinder assembly in which a brake body between the cylinder and rod is arranged, wherein the brake body is mounted in a groove which is located in the cylinder.
  • the brake body is deformable so that a braking force can be generated, which is opposite to the direction of movement of the rod.
  • the brake body is always on the rod and then generates an increased braking force when the direction of movement of the rod is reversed.
  • the brake body is arranged on the rod and in the cylinder at least one recess is provided, into which the brake body engages in at least one end position.
  • an effect of the brake body results only in one of the end positions, ie at the bottom and top dead center.
  • In these two positions of the brake body engages positively into the recesses associated with the two end positions and blocks the movement of the rod when reversing the direction of movement. The movement is only possible when a breakaway force is exceeded, which is required in order to move the brake body from the recess can.
  • Between the two end positions of the brake body is not engaged with the cylinder, whereby a low-friction operation of the rod is possible.
  • the brake body is so between rod, also referred to as piston, and cylinder arranged that the brake body exerts a normal force on the cylinder and the rod which is greatest when the relative movement of the rod to the cylinder reverses.
  • the brake body is applied to the rod and is supported on the cylinder.
  • the brake body generates a normal force which in turn generates a frictional force. This prevents the rod unintentionally moving independently in the cylinder.
  • the brake body is configured such that the normal force exerted on the rod changes as the direction of movement of the rod with respect to the cylinder reverses. It is also conceivable and within the scope of the invention that the brake body is assigned to the cylinder and the recess is arranged in the rod. This also applies accordingly to the embodiments described in the subclaims.
  • the recess may be associated with an annular projection.
  • the recess is radially spaced from the cylinder wall and arranged closer to the center line.
  • the reason of the recess thus has a smaller diameter than the cylinder wall.
  • the recess may be formed as a groove.
  • This groove can be made rectangular or rounded.
  • at least one wall of the recess can extend at an angle of less than 45 °. Due to the course of the wall, the breakaway force, which is required to move the brake body from the recess, so that the rod relative to the cylinder can leave the end position. Runs the groove wall at an angle of less than 45 °, in particular at an angle of 30 ° results in an advantageous value of the holding or breakout force.
  • the walls delimiting the projection in the axial direction may extend at an angle which is smaller than the angle of one of the walls of the recess. This angle determines the force required to reach the plateau of the projection and the recess arranged here. This angle is preferably about 20 °. The angle should be smaller than the angle of the wall of the recess, so as to ensure that the brake body safely reaches the recess and the end position is fully reached.
  • the cylinder may be arranged a groove-shaped bearing in which the brake body is arranged.
  • the groove walls may be formed perpendicular or inclined.
  • the width of the bearing can be chosen so that the brake body can move in the camp.
  • the brake body can be tiltably arranged in the camp.
  • the brake body rests against a wall of the bearing when the rod moves in one direction. If the rod changes direction of movement, the brake body tilts in the bearing and the brake body then lies against the bearing other wall of the groove.
  • the force exerted by the brake body normal force is equal in the two end positions when the brake body is applied to the walls of the groove, and the normal force is greatest when the brake body has the same distance from both walls. Here, therefore, the friction force and thus the braking effect are greatest. In the two end positions, the frictional force is the lowest.
  • the brake body may be annular. Here, the brake body surrounds the rod completely and it results over the circumference of the piston a uniform braking effect.
  • the brake body may be resilient. As a result, the brake body can deform reversibly and produce a dependent on the deformation of the material normal force.
  • a material for example, a resilient metal and / or a spring-like design into consideration.
  • the brake body can be oval or mushroom-shaped as viewed in cross-section.
  • the brake body is compressed at each tip over, the upsetting in the center position of the brake body, when it is equidistant from both walls, is greatest. This results in a larger normal force than in the two end positions.
  • recesses extending over the circumference are provided on both flanks.
  • the brake body in the flanks softer and thus more flexible.
  • the normal force is directed through the flank area of the brake body. Since the brake body is softer here, the normal force and thus the friction force are smaller and the efficiency of Hydraulikzyklinder arrangement increases.
  • the brake body may consist of an elastomeric material.
  • Elastomeric materials are resilient and easy and inexpensive to produce. Suitable elastomeric materials are, for example, polyurethanes which are particularly resistant to wear in this application.
  • the brake body can also be constructed of different elastomers with different hardnesses. A production of such brake body can be done in two-component injection molding. In this case, it is possible for the portion of the brake body which slidably bears against the piston to be made of a harder, more wear-resistant material and the other portion, which is not subjected to friction, to be made of a flexible material. Elastomeric materials often have a high coefficient of friction, so that elastomeric brake bodies are particularly effective.
  • each cylinder may be slidably inserted into each other, each cylinder having a brake body. With this arrangement, the stroke of the hydraulic cylinder assembly increases. By definition, the respective smaller cylinder forms the above-described rod.
  • the brake body assigned to the cylinder with the smallest diameter can be designed such that it exerts the smallest normal force and that the normal force of the brake body assigned to the larger cylinders increases.
  • the design of the brake body can be made such that the smaller cylinder associated brake body is softer than each next larger. As a result, it can be ensured that, when the cylinders are extended, the cylinder with the smallest diameter and finally the cylinder with the second largest diameter extends first. This controlled extension sequence is particularly advantageous in terms of the stability of the arrangement.
  • FIG. 1 shows a hydraulic cylinder assembly 1 with three cylinders 2, 2 ', 2 "and a rod 3 slidably mounted in the cylinder 2, with the cylinders 2 and 2' acting as a rod at the same time in the region of the cylinder head 6, a groove-shaped bearing 5 with inclined groove walls 7.
  • a groove-shaped bearing 5 with inclined groove walls 7.
  • the brake body 4 consists of a resilient elastomeric material. The diameter of the brake body 4 is selected so that the voltage applied to the rod 3 with the bias and the width of the bearing is selected so that the brake body 4 is tiltable. Due to the bias of the brake body 4 exerts a normal force on the rod 3 from which a frictional force results.
  • the brake bodies 4, 4 ', 4 " are designed such that the brake body 4 assigned to the cylinder 2 with the smallest diameter exerts the lowest normal force and the largest normal force exerts the brake body 4" assigned to the cylinder 2 "with the largest diameter
  • FIG. 2 shows an arrangement 1 according to FIG. 1 , Wherein the brake body 4 is mushroom-shaped in this embodiment.
  • the brake body 4 has on its two flanks 10 recesses 11.
  • the brake body 4 is made of an elastomeric material, in this embodiment of a polyurethane. In this case, the brake body 4 is formed in two parts and both parts have polyurethanes with different properties.
  • the rod 3 facing portion 12 consists of a resilient polyurethane with a high coefficient of friction and a hardness which is between 90 and 94 Shore.
  • the cylinder 2 facing portion 13 is made of a polyurethane with high rigidity; The hardness is greater than 94 Shore. In principle, the material of the section 13 is harder than that of the section 12.
  • the brake body 4 is formed in one piece and was produced by means of 2-component injection molding.
  • the contact surface assigned to the rod 3 is rounded in cross-section, so that a large Contact surface results.
  • the bearing 5 has in this embodiment, a V-shaped groove bottom and vertical groove walls 7, 7 '.
  • the brake body 4 is tiltably arranged in this bearing 5.
  • FIG. 3 shows the brake body 4 according to FIG. 2 during the change of direction of the piston 2.
  • the brake body 4 is located in the middle position between the two groove walls 7, 7 '. In this position, the brake body 4 is the most compressed and the frictional force resulting from the normal force is greatest.
  • the rod 3 of the associated contact surface of the brake body 4 is deformed, so that increases the contact area. In this position, the resistance of the brake body 4 is greatest. If the brake body 4 tilts over this position, the frictional force drops rapidly.
  • FIG. 4 shows the brake body 4 according to the Figures 2 and 3 in the other end position. In this position, the brake body 4 remains until the next change of direction.
  • FIG. 5 shows a hydraulic cylinder assembly 1 with a cylinder 2 and a slidably mounted in the cylinder 2 rod 3.
  • two groove-shaped bearings 5 are introduced, in each of which an annular brake body 4 is arranged.
  • 17 recesses 15 are introduced in the form of a groove in the region of the two end positions 16.
  • the recess 15 is assigned to an annular projection 18 through which the cross section of the inner cylinder wall of the cylinder 2 tapers.
  • each of these recesses 15 engages one of the two brake body 4 in the respective end position 16, 17 a.
  • Each brake body 4 in this case has a certain orientation, in which the brake body 4 after leaving the Recess 15 returns automatically. This orientation is chosen so that the brake body 4 can easily slide over the projection.
  • the rod 3 is fully retracted into the cylinder 2 and the rod 3 is thus the bottom dead center associated end position 16.
  • the brake body 4 engages in the recess 15 and prevents unintentional extension of the Rod 3.
  • the wall of the recess 15 extends at an angle which is smaller than 45 ° with respect to the cylinder axis. In this embodiment, the angle is 30 °.
  • the cross-section changing wall 19 of the projection 18 extends at an angle with respect to the cylinder axis which is less than the angle of the groove wall.
  • the brake body 4 consists of a resilient elastomeric material.
  • the diameter of the brake body 4 is chosen so that it engages with bias in the recess 15.
  • the width of the bearing 5 is chosen so that the brake body 4 is tiltable. Due to the bias of the brake body 4 exerts a normal force on the rod 3 from which a frictional force results. If the direction of movement of the rod 3 reverses relative to the cylinder 2, the brake body 4 tilts from a groove wall 7 in the direction of the other groove wall 7 '. In this case, the brake body 4 is compressed and the normal force increases, whereby the friction force increases. The normal force is greatest when the brake body 4 is between the groove walls 7, 7 '; in this position, the brake body 4 is the most compressed.
  • the hydraulic cylinder assembly 1 described here is particularly suitable for arrangements in which the hydraulic cylinders are arranged parallel to each other.
  • FIG. 6 shows the hydraulic cylinder assembly 1 during a starting operation.
  • the brake body 4 tilts in the bearing 5.
  • the brake body 4 but continues to engage in the recess 15 and thus prevents premature extension of the rod 3. Only after overcoming another breakout force of the brake body 4 is made of the Recess 15 is released and the rod 3 can move axially in the cylinder 2.
  • FIG. 7 shows a position in which the rod 3 is located between the end positions 16, 17 of the cylinder 2 and in which the brake body 4 is not in engagement with a recess 15. In this position, the brake body 4 is not on the cylinder wall of the cylinder 2, whereby no friction losses.
  • FIG. 8 shows the position at which the rod 3 is in the other end position 17 of the cylinder 2. In this position, a brake body 4 engages in the recess 15 associated with the other end position 17.
  • FIG. 9 shows an embodiment of a brake body 4.
  • the brake body 4 has a polygonal basic shape and consists of two different materials.
  • the brake body 4 may be composed of different elements or formed as a 2-K injection molded part.
  • the bearing 5 associated portion consists of a more elastic material than the recess 15 associated portion, which in turn consists of a harder material.
  • This section has two slopes 20, 21, of which a first slope 20 points in the direction of the end position 16 and the second slope 21 points in the opposite direction. In this case, the first slope 20 is at a steeper angle than the second slope 21 with respect to the cylinder axis.
  • the angles may be selected such that the angle of the first slope 20 corresponds to the angle of the cross-section-changing wall of the projection 18 and the angle of the second Sloping the angle of the wall of the recess 15 corresponds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Braking Arrangements (AREA)

Abstract

Hydraulikzylinderanordnung (1) mit zumindest einem Zylinder (2) und zumindest einer in dem Zylinder (2) gleitbeweglich angeordneten Stange (3), wobei zumindest ein Bremskörper (4) zwischen Stange (3) und Zylinder (2) angeordnet ist und wobei der Bremskörper (4) auf der Stange (3) angeordnet ist und in dem Zylinder (2) zumindest eine Ausnehmung (15) vorgesehen ist, in die der Bremskörper (4) in zumindest einer Endlage (16, 17) eingreift.

Description

    Technisches Gebiet
  • Die Erfindung betrifft eine Hydraulikzylinderanordnung mit zumindest einem Zylinder und zumindest einer in dem Zylinder gleitbeweglich angeordneten Stange.
  • Stand der Technik
  • Hydraulikzylinderanordnungen werden unter anderem in der Fördertechnik eingesetzt, um Lasten anzuheben. Beispielsweise werden bei einem Gabelstapler Lasten mittels eines Hubschlittens angehoben, der wiederum durch eine Hydraulikzylinderanordnung betätigt wird. Diese Hydraulikzylinderanordnung führt teleskopartige Bewegungen aus durch die der Hubschlitten angehoben oder abgesenkt wird. Die Betätigung der Hydraulikzylinderanordnung erfolgt durch einen Hydraulikantrieb. Insbesondere während einer Betriebsunterbrechung kann der durch den Hydraulikantrieb erzeugte Druck nachlassen, wodurch sich der Hubschlitten ungewollt senken kann. Häufig bestehen die Hydraulikzylinderanordnungen auch aus mehreren ineinander gesteckten oder parallel zueinander angeordneten Zylindern. Hier ist es erforderlich, dass die richtige Ausfahrreihenfolge eingehalten wird. Aus der DE 10 2005 017 887 A1 ist eine Hydraulikzylinderanordnung bekannt, bei der ein Bremskörper zwischen Zylinder und Stange angeordnet ist, wobei der Bremskörper in einer Nut gelagert ist, die sich in dem Zylinder befindet. Der Bremskörper ist so verformbar, dass eine Bremskraft erzeugbar ist, die der Bewegungsrichtung der Stange entgegengesetzt ist. Dabei liegt der Bremskörper stets an der Stange an und erzeugt dann eine erhöhte Bremskraft wenn sich die Bewegungsrichtung der Stange umkehrt.
  • Darstellung der Erfindung
  • Der Erfindung liegt die Aufgabe zugrunde, die richtige Ausfahrreihenfolge mehrerer parallel oder in Reihe geschalteter Hydraulikzylinder zu gewährleisten.
  • Diese Aufgabe wird mit den Merkmalen von Anspruch 1 gelöst. Auf vorteilhafte Ausgestaltungen nehmen die Unteransprüche Bezug.
  • Zur Lösung der Aufgabe ist der Bremskörper auf der Stange angeordnet und in dem Zylinder ist zumindest eine Ausnehmung vorgesehen, in die der Bremskörper in zumindest einer Endlage eingreift. Somit ergibt sich eine Wirkung des Bremskörpers nur in einer der Endlagen, also an dem unteren und oberen Totpunkt. In diesen beiden Lagen greift der Bremskörper formschlüssig in die den beiden Endlagen zugeordneten Ausnehmungen ein und blockiert die Bewegung der Stange beim Umkehren der Bewegungsrichtung. Die Bewegung ist erst möglich, wenn eine Losbrechkraft überschritten ist, die erforderlich ist, um den Bremskörper aus der Ausnehmung bewegen zu können. Zwischen den beiden Endlagen befindet sich der Bremskörper nicht im Eingriff mit dem Zylinder, wodurch ein reibungsarmes Verfahren der Stange möglich ist. Da nach dem Losbrechen der Bremseinrichtung die richtige Ausfahrreihenfolge gewährleistet ist, ist ein Eingreifen der Bremskörper während des Verfahrens auch nicht notwendig. Ein weiterer Vorteil der erfindungsgemäßen formschlüssigen Lösung liegt auch in der definierten Wirkung der Bremskörper und dies auch nur in den Endlagen. Bei einer reibungsbasierten Lösung ist nachteilig, dass die Wirkung der Bremse von einer Vielzahl von Parametern abhängig ist. So ist die Bremswirkung beispielsweise von der Temperatur und dem verwendeten Schmiermittel abhängig und kann dadurch variieren. Die erfindungsgemäße Lösung weist dagegen eine definierte Bremswirkung auf, die weitgehend unabhängig von der Temperatur und dem eingesetzten Schmiermittel ist. Dabei ist der Bremskörper so zwischen Stange, auch als Kolben bezeichnet, und Zylinder angeordnet, dass der Bremskörper eine Normalkraft auf den Zylinder und die Stange ausübt die dann am größten ist, wenn sich die relative Bewegung der Stange gegenüber dem Zylinder umkehrt. Dabei liegt der Bremskörper an der Stange an und stützt sich an dem Zylinder ab. Dabei erzeugt der Bremskörper eine Normalkraft die wiederum eine Reibungskraft erzeugt. Diese verhindert, dass sich die Stange ungewollt selbständig in dem Zylinder bewegt. Der Bremskörper ist so ausgestaltet, dass sich die auf die Stange ausgeübte Normalkraft verändert, wenn sich die Bewegungsrichtung der Stange gegenüber dem Zylinder umkehrt. Es ist auch denkbar und im Rahmen der Erfindung, dass der Bremskörper dem Zylinder zugeordnet ist und die Ausnehmung in der Stange angeordnet ist. Das gilt entsprechend auch für die in den Unteransprüchen beschriebenen Ausgestaltungen.
  • Die Ausnehmung kann einem ringförmigen Vorsprung zugeordnet sein. Dadurch ist die Ausnehmung gegenüber der Zylinderwand radial beabstandet und näher zur Mittellinie angeordnet. Der Grund der Ausnehmung weist also einen kleineren Durchmesser auf als die Zylinderwand. Hierbei ist vorteilhaft, dass der Bremskörper nur im Bereich des Vorsprungs und der Ausnehmung im Eingriff mit dem Zylinder steht und beim Verfahren die übrige Zylinderwand nicht berührt. Dadurch ergibt sich eine weitere Minderung der Reibung, insbesondere in dem Bereich zwischen den Endlagen, da hier der Bremskörper keine Funktion hat. Nur in den beiden Endlagen greift der Bremskörper ein und sichert hier die Einhaltung der Ausfahrreihenfolge.
  • Die Ausnehmung kann als Nut ausgebildet sein. Diese Nut kann rechteckig oder verrundet ausgeführt sein. Dabei kann zumindest eine Wand der Ausnehmung unter einem Winkel von weniger als 45° verlaufen. Durch den Verlauf der Wand bestimmt sich die Losbrechkraft, die erforderlich ist, um den Bremskörper aus der Ausnehmung zu bewegen, damit die Stange gegenüber dem Zylinder die Endlage verlassen kann. Verläuft die Nutwand unter einem Winkel von weniger als 45°, insbesondere unter einem Winkel von 30° ergibt sich ein vorteilhafter Wert der Halte- bzw. Losbrechkraft.
  • Die den Vorsprung in axialer Richtung begrenzenden Wände können unter einem Winkel verlaufen, der kleiner ist als der Winkel eines der Wände der Ausnehmung. Durch diesen Winkel bestimmt sich die Kraft, die erforderlich ist, um das Plateau des Vorsprungs und die hier angeordnete Ausnehmung erreichen zu können. Dieser Winkel beträgt vorzugsweise etwa 20°. Der Winkel sollte kleiner sein als der Winkel der Wand der Ausnehmung, damit gewährleistet ist, dass der Bremskörper sicher die Ausnehmung erreicht und die Endlage vollständig erreicht wird.
  • In dem Zylinder kann ein nutförmiges Lager angeordnet sein, in dem der Bremskörper angeordnet ist. Die Nutwände können senkrecht oder geneigt ausgebildet sein. Die Breite des Lagers kann so gewählt sein, dass sich der Bremskörper in dem Lager bewegen kann.
  • Der Bremskörper kann kippbeweglich in dem Lager angeordnet sein. Der Bremskörper liegt dabei an einer Wand des Lagers an, wenn sich die Stange in eine Richtung bewegt. Wechselt die Stange die Bewegungsrichtung kippt der Bremskörper in dem Lager und der Bremskörper liegt anschließend an der anderen Wand der Nut an. Die durch den Bremskörper ausgeübte Normalkraft ist in den beiden Endlagen, wenn der Bremskörper an den Wänden der Nut anliegt, gleich groß und die Normalkraft ist am größten, wenn der Bremskörper den gleichen Abstand von beiden Wänden aufweist. Hier sind demnach auch die Reibungskraft und damit die Bremswirkung am größten. In den beiden Endlagen ist die Reibungskraft am geringsten.
  • Der Bremskörper kann ringförmig ausgebildet sein. Hierbei umgibt der Bremskörper die Stange vollständig und es ergibt sich über den Umfang des Kolbens eine gleichmäßige Bremswirkung.
  • Der Bremskörper kann federelastisch ausgebildet sein. Dadurch kann sich der Bremskörper reversibel verformen und eine von der Verformung des Materials abhängige Normalkraft erzeugen. Als Material kommen beispielsweise ein federelastisches Metall und/oder eine federartige Ausgestaltung in Betracht.
  • Der Bremskörper kann im Querschnitt betrachtet oval oder pilzförmig ausgebildet sein. Dabei wird der Bremskörper bei jedem Umkippen gestaucht, wobei das Stauchen in der Mittelposition des Bremskörpers, wenn er von beiden Wänden gleich weit entfernt ist, am größten ist. Dadurch ergibt sich eine größere Normalkraft als in den beiden Endlagen. Bei der pilzförmigen Ausgestaltung sind an den beiden Flanken über den Umfang verlaufende Ausnehmungen vorhanden. Dadurch ist der Bremskörper im Bereich der Flanken weicher und damit flexibler. Wenn sich der Bremskörper in den Endlagen befindet wird die Normalkraft durch den Flankenbereich des Bremskörpers geleitet. Da der Bremskörper hier weicher ist, sind die Normalkraft und damit die Reibungskraft kleiner und der Wirkungsgrad der Hydraulikzyklinder-Anordnung steigt.
  • Der Bremskörper kann aus einem elastomeren Material bestehen. Elastomere Materialien sind federelastisch sowie einfach und kostengünstig herstellbar. Als elastomere Materialien kommen beispielsweise Polyurethane in Betracht welche in dieser Anwendung besonders verschleißfest sind. Der Bremskörper kann auch aus verschiedenen Elastomeren mit unterschiedlichen Härten aufgebaut sein. Eine Fertigung derartiger Bremskörper kann im Zweikomponenten-Spritzguss erfolgen. Hierbei ist es möglich, den Abschnitt des Bremskörpers der gleitend an dem Kolben anliegt, aus einem härteren, verschleißfesteren Material und den anderen Abschnitt, der keiner Reibung unterworfen ist, aus einem flexiblen Material zu fertigen. Elastomere Materialien weisen häufig einen hohen Reibwert auf, so dass elastomere Bremskörper besonders effektiv sind.
  • Mehrere Zylinder können gleitbeweglich ineinander gesteckt sein, wobei jeder Zylinder einen Bremskörper aufweist. Bei dieser Anordnung vergrößert der Hub der Hydraulikzylinderanordnung. Der jeweils kleinere Zylinder bildet dabei definitionsgemäß die oben beschriebene Stange.
  • Der dem Zylinder mit dem kleinsten Durchmesser zugeordnete Bremskörper kann so ausgelegt sein, dass er die kleinste Normalkraft ausübt und dass die Normalkraft der den größeren Zylindern zugeordneten Bremskörper ansteigt. Die Auslegung der Bremskörper kann derart erfolgen, dass der dem kleineren Zylinder zugeordnete Bremskörper weicher ist als der jeweils nächst größere. Dadurch kann sichergestellt werden, dass beim Ausfahren der Zylinder zuerst der Zylinder mit dem kleinsten Durchmesser und zuletzt der Zylinder mit dem zweitgrößten Durchmesser ausfährt. Diese geregelte Ausfahrfolge ist in Bezug auf die Stabilität der Anordnung besonders vorteilhaft.
  • Kurzbeschreibung der Zeichnung
  • Einige Ausführungsbeispiele der erfindungsgemäßen Hydraulikzylinderanordnung werden nachfolgend anhand der Figuren näher erläutert. Diese zeigen, jeweils schematisch:
  • Fig. 1
    eine Hydraulikzylinderanordnung mit mehreren Zylindern die jeweils mit Bremskörpers ausgerüstet sind;
    Fig. 2
    einen pilzförmigen Bremskörper in einer Endlage;
    Fig. 3
    einen pilzförmigen Bremskörper in der Mittellage;
    Fig. 4
    einen pilzförmigen Bremskörper in der anderen Endlage;
    Fig. 5
    eine Hydraulikzylinderanordnung in einer ersten Endlage, bei der der Bremskörper in eine Ausnehmung eingreift;
    Fig. 6
    die Hydraulikzylinderanordnung gemäß Figur 5 zwischen den Endlagen;
    Fig. 7
    die Hydraulikzylinderanordnung gemäß Figur 5 vor der zweiten Endlage;
    Fig. 8
    die Hydraulikzylinderanordnung gemäß Figur 5 in der zweiten Endlage;
    Fig. 9
    eine Ausgestaltung eines Bremskörpers.
    Ausführung der Erfindung
  • Figur 1 zeigt eine Hydraulikzylinderanordnung 1 mit drei Zylindern 2, 2', 2" und einer in dem Zylinder 2 gleitbeweglich angeordneten Stange 3, wobei die Zylinder 2 und 2' gleichzeitig als Stange fungieren. In den Zylindern 2, 2', 2" befindet sich jeweils im Bereich des Zylinderkopfes 6 ein nutförmiges Lager 5 mit geneigten Nutwänden 7. In dem Lager 5 befindet sich ein ringförmig und rotationssymmetrisch ausgebildeter Bremskörper 4 mit ovalem Querschnitt. Der Bremskörper 4 besteht aus einem federelastischen elastomeren Material. Der Durchmesser des Bremskörpers 4 ist so gewählt, dass der mit Vorspannung an der Stange 3 anliegt und die Breite des Lagers ist so gewählt, dass der Bremskörper 4 kippbeweglich ist. Durch die Vorspannung übt der Bremskörper 4 eine Normalkraft auf der Stange 3 aus der eine Reibungskraft resultiert. Kehrt sich die Bewegungsrichtung der Stange 3 gegenüber dem Zylinder 2 um, kippt der Bremskörper 4 von einer Nutwand 7 in Richtung auf die andere Nutwand 7'. Dabei wird der Bremskörper 4 gestaucht und die Normalkraft steigt an, wodurch auch die Reibungskraft ansteigt. Die Normalkraft ist am größten, wenn sich der Bremskörper 4 zwischen den Nutwänden 7, 7' befindet; in dieser Position wird der Bremskörper 4 am meisten gestaucht. Die Bremskörper 4, 4', 4" sind so ausgelegt, dass der dem Zylinder 2 mit dem kleinsten Durchmesser zugeordnete Bremskörper 4 die geringste Normalkraft ausübt und der dem Zylinder 2" mit dem größten Durchmesser zugeordnete Bremskörper 4" die größte Normalkraft ausübt. Dies kann durch die Werkstoffwahl erreicht werden oder durch konstruktive Maßnahmen. Durch diese Ausgestaltung ist die Ausfahrfolge der Hydraulikzylinderanordnung 1 sicher gestellt, so dass zunächst die Stange 3, anschließend die Zylinder 2, 2' und 2" ausfahren. Das Lager 5 und der in dem Lager 5 angeordnete Bremskörper befinden sich zwischen der Primär- und Sekundärdichtung 8, 9, so dass der Bremskörper 4 gegen Verschmutzung und zu hohe Drücke geschützt ist.
  • Figur 2 zeigt eine Anordnung 1 gemäß Figur 1, wobei der Bremskörper 4 in dieser Ausgestaltung pilzförmig ausgebildet ist. Der Bremskörper 4 weist an seinen beiden Flanken 10 Ausnehmungen 11 auf. Der Bremskörper 4 besteht aus einem elastomeren Material, in dieser Ausgestaltung aus einem Polyurethan. Dabei ist der Bremskörper 4 zweiteilig ausgebildet und beide Teile weisen Polyurethane mit voneinander abweichenden Eigenschaften auf. Der der Stange 3 zugewandte Abschnitt 12 besteht aus einem federelastischen Polyurethan mit einem hohen Reibwert und einer Härte die zwischen 90 und 94 Shore liegt. Der dem Zylinder 2 zugewandte Abschnitt 13 besteht aus einem Polyurethan mit hoher Steifigkeit; die Härte ist größer als 94 Shore. Grundsätzlich ist der Werkstoff des Abschnitts 13 härter als der des Abschnitts 12. Der Bremskörper 4 ist einstückig ausgebildet und wurde mittels 2-Komponenten-Spritzguss hergestellt. Die der Stange 3 zugeordnete Berührfläche ist im Querschnitt betrachtet abgerundet, so dass sich eine große Kontaktfläche ergibt. Das Lager 5 weist in dieser Ausgestaltung einen V-förmigen Nutgrund sowie senkrechte Nutwände 7, 7' auf. Der Bremskörper 4 ist kippbeweglich in diesem Lager 5 angeordnet.
  • Figur 3 zeigt den Bremskörper 4 gemäß Figur 2 während des Richtungswechsels des Kolbens 2. Der Bremskörper 4 befindet sich in der Mittellage zwischen den beiden Nutwänden 7, 7'. In dieser Position wird der Bremskörper 4 am meisten gestaucht und die aus der Normalkraft resultierenden Reibkraft ist am größten. Die der Stange 3 zugeordnete Berührfläche des Bremskörpers 4 wird verformt, so dass sich die Berührungsfläche vergrößert. In dieser Stellung ist der Widerstand des Bremskörpers 4 am größten. Kippt der Bremskörper 4 über diese Position hinweg, sinkt die Reibkraft schnell ab.
  • Figur 4 zeigt den Bremskörper 4 gemäß der Figuren 2 und 3 in der anderen Endlage. In dieser Position bleibt der Bremskörper 4 bis zum nächsten Richtungswechsel.
  • Figur 5 zeigt eine Hydraulikzylinderanordnung 1 mit einem Zylinder 2 und einer in dem Zylinder 2 gleitbeweglich angeordneten Stange 3. In die Stange 3 sind benachbart zueinander zwei nutförmige Lager 5 eingebracht, in der jeweils ein ringförmiger Bremskörper 4 angeordnet ist. In dem Zylinder 2 sind im Bereich der beiden Endlagen 16, 17 Ausnehmungen 15 in Form einer Nut eingebracht. Die Ausnehmung 15 ist dabei einem ringförmigen Vorsprung 18 zugeordnet durch den sich der Querschnitt der inneren Zylinderwand des Zylinders 2 verjüngt. In diese Ausnehmungen 15 greift jeweils einer der beiden Bremskörper 4 in der jeweiligen Endlage 16, 17 ein. Es sind immer die Bremskörper 4 und Ausnehmungen 15 einander zugeordnet, die am nächsten zueinander angeordnet sind. Jeder Bremskörper 4 weist dabei eine bestimmte Ausrichtung auf, in die der Bremskörper 4 nach dem Verlassen der Ausnehmung 15 selbstständig zurückkehrt. Diese Ausrichtung ist so gewählt, dass der Bremskörper 4 leicht über den Vorsprung gleiten kann. In der in dieser Figur gezeigten Position ist die Stange 3 vollständig in den Zylinder 2 eingefahren und die Stange 3 befindet sich somit der dem unteren Totpunkt zugeordneten Endlage 16. In dieser Position greift der Bremskörper 4 in die Ausnehmung 15 ein und verhindert ein unbeabsichtigtes Ausfahren der Stange 3. Die Wand der Ausnehmung 15 verläuft unter einem Winkel der in Bezug auf die Zylinderachse kleiner ist als 45°. In dieser Ausführung beträgt der Winkel 30°. Die querschnittsverändernde Wand 19 des Vorsprungs 18 verläuft in Bezug auf die Zylinderachse unter einem Winkel der geringer ist als der Winkel der Nutwand. Dieser Winkel beträgt in dieser Ausführung 20°. Der Bremskörper 4 besteht aus einem federelastischen elastomeren Material. Der Durchmesser des Bremskörpers 4 ist so gewählt, dass er mit Vorspannung in die Ausnehmung 15 eingreift. Die Breite des Lagers 5 ist so gewählt, dass der Bremskörper 4 kippbeweglich ist. Durch die Vorspannung übt der Bremskörper 4 eine Normalkraft auf der Stange 3 aus der eine Reibungskraft resultiert. Kehrt sich die Bewegungsrichtung der Stange 3 gegenüber dem Zylinder 2 um, kippt der Bremskörper 4 von einer Nutwand 7 in Richtung auf die andere Nutwand 7'. Dabei wird der Bremskörper 4 gestaucht und die Normalkraft steigt an, wodurch auch die Reibungskraft ansteigt. Die Normalkraft ist am größten, wenn sich der Bremskörper 4 zwischen den Nutwänden 7, 7' befindet; in dieser Position wird der Bremskörper 4 am meisten gestaucht. Die hier beschriebene Hydraulikzylinderanordnung 1 eignet sich insbesondere auch bei Anordnungen bei denen die Hydraulikzylinder parallel zueinander angeordnet sind.
  • Figur 6 zeigt die Hydraulikzylinderanordnung 1 während eines Anfahrvorgangs. Nachdem die Stange 3 mit Druck beansprucht wurde, kippt der Bremskörper 4 in dem Lager 5. Der Bremskörper 4 greift aber weiterhin in die Ausnehmung 15 ein und verhindert so ein vorzeitiges Ausfahren der Stange 3. Erst nach Überwinden einer weiteren Losbrechkraft wird der Bremskörper 4 aus der Ausnehmung 15 gelöst und die Stange 3 kann sich in dem Zylinder 2 axial bewegen.
  • Figur 7 zeigt eine Position bei der sich die Stange 3 zwischen den Endlagen 16, 17 des Zylinders 2 befindet und bei der die Bremskörper 4 nicht in Eingriff mit einer Ausnehmung 15 stehen. In dieser Position liegt der Bremskörper 4 nicht an der Zylinderwand des Zylinders 2 an, wodurch keine Reibungsverluste entstehen.
  • Figur 8 zeigt die Position bei der sich die Stange 3 in der anderen Endlage 17 des Zylinders 2 befindet. In dieser Position greift ein Bremskörper 4 in die der anderen Endlage 17 zugeordneten Ausnehmung 15 ein.
  • Figur 9 zeigt eine Ausgestaltung eines Bremskörpers 4. In dieser Ausgestaltung weist der Bremskörper 4 eine mehreckige Grundform auf und besteht aus zwei verschiedenen Werkstoffen. Dazu kann der Bremskörper 4 aus verschiedenen Elementen zusammengesetzt oder als 2-K Spritzgussteil ausgebildet sein. Der dem Lager 5 zugeordnete Abschnitt besteht aus einem elastischeren Werkstoff als der der Ausnehmung 15 zugeordnete Abschnitt, der wiederum aus einem härteren Werkstoff besteht. Dieser Abschnitt weist zwei Schrägen 20,21 auf, von denen eine erste Schräge 20 in Richtung der Endlage 16 weist und die zweite Schräge 21 in die entgegengesetzte Richtung weist. Dabei verläuft die erste Schräge 20 in Bezug auf die Zylinderachse unter einem steileren Winkel als die zweite Schräge 21. Die Winkel können dabei so gewählt sein, dass der Winkel der ersten Schräge 20 dem Winkel der querschnittsverändernden Wand des Vorsprungs 18 entspricht und der Winkel der zweiten Schräge dem Winkel der Wand der Ausnehmung 15 entspricht.

Claims (10)

  1. Hydraulikzylinderanordnung (1) mit zumindest einem Zylinder (2) und zumindest einer in dem Zylinder (2) gleitbeweglich angeordneten Stange (3), wobei zumindest ein Bremskörper (4) zwischen Stange (3) und Zylinder (2) angeordnet ist, dadurch gekennzeichnet, dass der Bremskörper (4) auf der Stange (3) angeordnet ist und in dem Zylinder (2) zumindest eine Ausnehmung (15) vorgesehen ist, in die der Bremskörper (4) in zumindest einer Endlage (16, 17) eingreift.
  2. Hydraulikzylinderanordnung nach Anspruch 1, dadurch gekennzeichnet, dass die Ausnehmung (15) einem ringförmigen Vorsprung (18) zugeordnet ist.
  3. Hydraulikzylinderanordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Ausnehmung (15) als Nut ausgebildet ist.
  4. Hydraulikzylinderanordnung nach Anspruch 3, dadurch gekennzeichnet, dass zumindest eine Wand der Ausnehmung (15) unter einem Winkel von weniger als 45° verläuft.
  5. Hydraulikzylinderanordnung nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die den Vorsprung (18) in axialer Richtung begrenzenden Wände unter einem Winkel verlaufen der kleiner ist als der Winkel eines der Wände der Ausnehmung (15).
  6. Hydraulikzylinderanordnung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass in der Stange (2) ein nutförmiges Lager (5) angeordnet ist, in das der Bremskörper (4) angeordnet ist.
  7. Hydraulikzylinderanordnung nach Anspruch 6, dadurch gekennzeichnet, dass der Bremskörper (4) kippbeweglich in dem Lager (5) angeordnet ist.
  8. Hydraulikzylinderanordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Bremskörper (4) ringförmig ausgebildet ist.
  9. Hydraulikzylinderanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Bremskörper (4) federelastisch ausgebildet ist.
  10. Hydraulikzylinderanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Bremskörper (4) aus einem elastomeren Material besteht.
EP08000711A 2007-01-17 2008-01-16 Hydraulikzylinderanordnung Withdrawn EP1950427A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP08000711A EP1950427A1 (de) 2007-01-17 2008-01-16 Hydraulikzylinderanordnung
DE200820014461 DE202008014461U1 (de) 2007-01-17 2008-01-16 Hydraulikzylinderanordnung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP07000870A EP1947351A1 (de) 2007-01-17 2007-01-17 Hydraulikzylinderanordnung
EP08000711A EP1950427A1 (de) 2007-01-17 2008-01-16 Hydraulikzylinderanordnung

Publications (1)

Publication Number Publication Date
EP1950427A1 true EP1950427A1 (de) 2008-07-30

Family

ID=39551660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08000711A Withdrawn EP1950427A1 (de) 2007-01-17 2008-01-16 Hydraulikzylinderanordnung

Country Status (2)

Country Link
EP (1) EP1950427A1 (de)
DE (1) DE202008014461U1 (de)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE451459C (de) * 1926-11-30 1927-10-20 Johann Schlagehauf Druckfluessigkeitspresse mit mehreren gleichachig ineinander angeordneten Zylindern
US4471944A (en) * 1980-06-05 1984-09-18 Gerard Leray Telescopic jack
EP0433955A1 (de) * 1989-12-21 1991-06-26 Pacoma Hydraulik Gmbh Verriegelbarer Hydraulikzylinder
EP1604119A1 (de) * 2003-03-17 2005-12-14 HR Textron Inc. Hydraulisches verriegelungsstellglied
DE102005017887A1 (de) 2005-04-19 2006-10-26 Linde Ag Einrichtung zur Sicherung der Bewegungsreihenfolge einer Mehrzahl von hydraulischen Zylindern

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE451459C (de) * 1926-11-30 1927-10-20 Johann Schlagehauf Druckfluessigkeitspresse mit mehreren gleichachig ineinander angeordneten Zylindern
US4471944A (en) * 1980-06-05 1984-09-18 Gerard Leray Telescopic jack
EP0433955A1 (de) * 1989-12-21 1991-06-26 Pacoma Hydraulik Gmbh Verriegelbarer Hydraulikzylinder
EP1604119A1 (de) * 2003-03-17 2005-12-14 HR Textron Inc. Hydraulisches verriegelungsstellglied
DE102005017887A1 (de) 2005-04-19 2006-10-26 Linde Ag Einrichtung zur Sicherung der Bewegungsreihenfolge einer Mehrzahl von hydraulischen Zylindern

Also Published As

Publication number Publication date
DE202008014461U1 (de) 2009-01-22

Similar Documents

Publication Publication Date Title
DE102019212966A1 (de) Dämpfventileinrichtung mit progressiver Dämpfkraftkennlinie
DE3526699C2 (de) Hochdruckfluiddichtung
EP2397727B1 (de) Mehrteiliger Ventilteller
WO2015128142A2 (de) Schwingungsdämpfer mit einem endanschlag
EP3087296B1 (de) Dichtring
EP1715194A2 (de) Hydraulische Zylindereinheit
EP0557579A1 (de) Dichtungsanordnung
DE102013011469A1 (de) Führungseinrichtung für eine Schwimmsattel-Scheibenbremse
DE102015103112A1 (de) Werkzeugschieber
EP1611380B1 (de) Dichtungsanordnung
EP2307770A1 (de) Dichtungsanordnung mit profildichtung
DE1555387B2 (de) Druckminderer fuer hydraulische fahrzeug-bremsanlagen
DE4126897A1 (de) Hydraulisches klemmsystem
EP3325855B1 (de) Kolbenring
DE19706059C2 (de) Schieberventil
EP1950427A1 (de) Hydraulikzylinderanordnung
DE102014013992A1 (de) Kolben eines fluidbetätigten Linearantriebes und zugehöriger Linearantrieb
CH704934A2 (de) Vakuumventil-Balg.
EP3663602B1 (de) Feststelleinrichtung
DE102007008261A1 (de) Hochdruckpumpe zur Förderung von Kraftstoff mit einer verbesserten Führung des Pumpenkolbens
DE202009010326U1 (de) Anordnung zur Abdichtung von Leitungen, Armaturen oder Aggregaten
DE102019202130B4 (de) Dichtungsanordnung
EP2748042B1 (de) Anordnung zur kolbenstangenseitigen abdichtung eines geberzylinders
EP1907708B1 (de) Betätigungszylinder
EP3555503B1 (de) Vorrichtung zur abdichtung eines gegenstands

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

AKX Designation fees paid
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090203

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8566