EP1944502B1 - Messvorrichtung und Messverfahren für einen Injektor - Google Patents

Messvorrichtung und Messverfahren für einen Injektor Download PDF

Info

Publication number
EP1944502B1
EP1944502B1 EP07000514A EP07000514A EP1944502B1 EP 1944502 B1 EP1944502 B1 EP 1944502B1 EP 07000514 A EP07000514 A EP 07000514A EP 07000514 A EP07000514 A EP 07000514A EP 1944502 B1 EP1944502 B1 EP 1944502B1
Authority
EP
European Patent Office
Prior art keywords
measuring device
injector
flow
damping element
test fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07000514A
Other languages
English (en)
French (fr)
Other versions
EP1944502A1 (de
Inventor
Herbert Frankl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sonplas GmbH
Original Assignee
Sonplas GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sonplas GmbH filed Critical Sonplas GmbH
Priority to EP07000514A priority Critical patent/EP1944502B1/de
Priority to AT07000514T priority patent/ATE426094T1/de
Priority to DE502007000530T priority patent/DE502007000530D1/de
Priority to PCT/EP2007/009990 priority patent/WO2008083791A1/de
Publication of EP1944502A1 publication Critical patent/EP1944502A1/de
Application granted granted Critical
Publication of EP1944502B1 publication Critical patent/EP1944502B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/001Measuring fuel delivery of a fuel injector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/005Measuring or detecting injection-valve lift, e.g. to determine injection timing

Definitions

  • the invention relates to a measuring device for an injector according to the preamble of claim 1.
  • a measuring device for an injector according to the preamble of claim 1.
  • Such a measuring device is designed with a pumping device for acting on the injector with a test fluid, a base body for holding the injector, wherein the base body an injection area for receiving the test fluid discharged from the injector a measuring device for determining the amount of test fluid delivered by the injector and a line for discharging the test fluid discharged from the injector from the injection region, wherein the measuring device has a flow measuring device which is arranged on the line, and wherein a Hydrodämpfungselement is provided for damping the test fluid that flows to the flow meter from the injection area.
  • the invention further relates to a measuring method for an injector according to the preamble of claim 8, wherein the injector is subjected to a test fluid and the amount of test fluid delivered by the injector is measured by means of a flow measuring device located downstream of the injector, the fluid delivered by the injector is damped by a hydraulic damping element which is arranged between the injector and the flow measuring device.
  • Injection meters are known in automotive engineering and play an important role in the development and production of injectors.
  • the metrological detection of an injection quantity is of great importance for the investigation and optimization of combustion processes in internal combustion engines.
  • Injection meters which have a floating, passive piston, which is arranged on the downstream side of the injection valve. This piston is displaced by incoming fuel, recording the displacement. This allows a determination of the total amount of fuel flowing into the piston. Since the piston stroke of the piston is basically limited, the piston must be emptied by a drain valve after a certain measurement time, which can lead to undesirable measurement interruptions.
  • Another injection quantity measuring apparatus for an injector is known from DE 101 04 798 A1 known.
  • the injector is preceded by a measuring head with a measuring chamber and the injector is charged by means of the measuring head.
  • a measure of the injection quantity while a volume change of the measuring chamber is used on the measuring head.
  • continuous operation may be associated with limitations.
  • the DE 33 07 243 A1 discloses a testing device for injection systems.
  • the testing device has a closed housing which is filled with a compressed gas, wherein the liquid emerging from the injection nozzle impinges on the compressed gas.
  • the test device can be designed so that each injection nozzle is assigned a measuring system, which may in particular consist of a displacement meter. Shutters may be arranged around the mouths of the injection nozzles.
  • the DE 42 42 662 A1 describes a device for measuring the injection quantities of injection pumps for internal combustion engines, with an injection nozzle and a volumetric measuring device acted upon by the latter, wherein a splash damping device is arranged between the volume measuring device and the injection nozzle.
  • the spray damping device contains a longitudinally elastic collecting hollow body.
  • From the EP 1 091 197 A2 is a device for continuous measurement of the dynamic fuel consumption of a consumer, which includes a fuel supply line with a pump and a downstream continuously measuring mass flow sensor, preferably Coriolis sensor includes.
  • a discontinuously measuring calibration device for the mass flow sensor which is arranged in series with the mass flow sensor, is provided.
  • the object of the invention is to provide a measuring device and a measuring method for an injector, which allow an injection quantity measurement with particularly high reliability, economy and precision.
  • the measuring device has a flow measuring device, which is arranged on the line, and that a Hydrodämpfungselement is provided for damping the test fluid, which flows to the flow measuring device from the injection region.
  • a first basic idea of the invention can be seen in performing a flow measurement downstream of the injector for determining the injection quantity.
  • the flow measurement can be carried out in particular with at least partially cross-section open discharge line. This allows a continuous injection quantity determination over a longer period.
  • no emptying and / or resetting of such a measuring chamber is required during which the measurement would possibly have to be interrupted and which would in any case be accompanied by a certain disturbance of the measuring operation.
  • no elaborate valve devices and / or spring devices for emptying and / or resetting a measuring chamber are required.
  • the invention makes it possible to work even with low back pressure on the outflow side of the injector.
  • the back pressure downstream of the injector according to the invention can be freely selected, which allows a particularly good replication of the processes prevailing in the combustion chamber and, as a result, enables particularly meaningful injection quantity measurements.
  • a hydrodynamic damping element can reduce volume fluctuations and / or pressure fluctuations on the flow measuring device, which can occur during the time-varying operation of the injector and may possibly influence the flow measuring device. This allows particularly accurate injection quantity measurements even at high operating frequencies for the injector.
  • the hydrodynamic damping element designed in particular for damping the pulse quantities is suitably provided on the discharge line.
  • the hydro-damping element can be provided in the region of the injection region and preferably surround it.
  • the hydro-damping element is designed as a volume-variable memory, in particular as a bellows.
  • a bellows provides a particularly economical and reliable hydrodynamic damping element.
  • a bellows has a particularly low mass, so that a reliable damping is ensured even at high operating frequencies of the injector.
  • a bellows allows a provision of the storage volume alone due to its inherent elasticity without additional return elements, so that a particularly economical measuring device is given.
  • the bellows is suitably closed on one end to limit the damping volume.
  • the bellows is formed as a metal bellows.
  • a particularly high measuring accuracy can be achieved according to the invention in that the flow measuring device is a Coriolis measuring device.
  • a Coriolis measuring device usually a curved tube is vibrated and measured a phase offset on the pipe. Due to this vibration-based measurement, Coriolis measuring devices can be comparatively sensitive to pressure shock, in particular if the pressure surge frequency is in the range of Vibration frequency of the measuring device is located. According to the invention, however, such pressure surges can be damped by the hydrostatic damping element, so that a reliable flow measurement is given even at high operating frequencies of the injector.
  • the resonant frequency of the hydro-damping element is preferably larger, in particular at least an order of magnitude greater, than the operating frequency of the Coriolis measuring device and / or the operating frequency of the injector.
  • other types of flow measuring devices can in principle also be provided, for example an orifice flow measuring device, a magnetically inductive flow meter, a gear counter and / or a measuring turbine.
  • the measuring device has means for determining a quantity of fluid received by the hydrodynamic damping element.
  • the injection quantity can be determined with a particularly high temporal resolution.
  • the hydro-damping element has a dual function.
  • the hydraulic damping element keeps high-frequency pressure fluctuations away from the flow measuring device and thus enables reliable and accurate operation of the flow measuring device.
  • the hydrodynamic damping element serves in addition to the flow measuring device itself for determining the amount of test fluid delivered by the injector.
  • the damping of the test fluid delivered by the injector is accompanied by a change in the amount of fluid absorbed by the hydrodynamic damping element, wherein the hydro-damping element can follow the high-frequency components of the discharged fluid quantity.
  • the associated changes to the hydro-damping element are detected metrologically and used for temporally high-resolution determination of the injection curve.
  • a dynamic equilibrium can be established.
  • fluid continuously flows from the injection area via the line and the flow measuring device.
  • Fast, high-frequency changes in the injection quantity can be detected at the hydro-damping element, which dampens these rapid changes and follows them.
  • the measurement results of the means for determining the amount of fluid taken up by the hydro-damping element and the measurement results of the flow-measuring device are suitably set in a mathematical relationship.
  • the flow measuring device and the means for determining the amount of fluid received by the hydrodynamic damping element are preferably in signal communication with a computing device.
  • the means for determining the quantity of fluid received by the hydrodynamic damping element are designed to determine an elongation of the bellows. Since a bellows usually permits expansion only in one direction, it can be concluded from a change in length of the bellows to a change in volume in its interior.
  • the means may comprise a laser vibrometer, which allows a particularly high measuring frequency and thus a particularly good temporal resolution.
  • the vibrometer may be provided for measurement frequencies that are 100 kHz or more.
  • an inductive odometer may also be provided.
  • an inflow of quantities occurs in the injection region.
  • This inflow of quantities in turn results in a lengthening of the bellows provided as a hydrodynamic element, which can be detected by means of the laser vibrometer and used to determine the injection quantity.
  • the pressure built up in the hydro-damping element is at least partially degraded again via the cross-section open line.
  • a particularly versatile measuring device can be obtained according to the invention in that on the line, in particular on a side facing away from the injection region of the flow measuring device, a counter-pressure generating device is provided.
  • a counter-pressure generating device By means of such a counter-pressure generating device, the outflow velocity can be reduced from the injection region and thus in particular ensured that an injected fluid volume generates a sufficiently large volume change on the hydrodynamic element for a measurement and does not flow off immediately via the line. Furthermore, the damping effect of the damping element can thereby be improved.
  • the counter-pressure generating device is designed as a pressure control valve.
  • An aperture and / or an active counter-pressure generating device may also be provided.
  • the counter-pressure generating device is arranged downstream of the flow measuring device. It is also possible to provide a plurality of counter-pressure generating devices, which can then be arranged both upstream and downstream of the flow-measuring device.
  • a structurally particularly simple and reliable measuring device is given according to the invention in that the bellows, in particular coaxial with the injector, is arranged on the base body.
  • the bellows is arranged so that the fluid flow exiting the injector is directed into the bellows.
  • an injection opening of the injector can be arranged in the interior of the bellows so that the injection area also lies in the interior of the bellows.
  • the test fluid quantity delivered by the injector is measured by means of a flow measuring device which is arranged downstream of the injector, wherein the fluid delivered by the injector is damped by a hydrodynamic damping element which is arranged between the injector and the flow measuring device.
  • the measuring method according to the invention can be carried out in particular with a measuring device according to the invention, whereby the advantages explained in this connection can be achieved.
  • the injector is operated with time-variable flow, in particular periodically.
  • the measuring device according to the invention and the measuring method according to the invention allow a reliable measurement even at high operating frequencies.
  • the amount of test fluid received by the hydrodynamic element is measured with time resolution and corresponding measurement data for determining a time profile of the injection quantity delivered by the injector:
  • a computing device is suitably provided, which also takes into account the measured data of the flow measuring device.
  • the injector can be acted upon, for example, with test fluid under a pressure of about 100 bar.
  • the injector may suitably be operated at a frequency of 20 to 250 Hz.
  • the injection amount is suitably 1.5 to 30 mm 3 per injection and / or 1.5 to 30 mm 3 per ms.
  • As back pressure for example, a pressure of 0.2 to 5 bar can be selected.
  • the flow meter may for example have a dynamics in the 1/10 s range and the means for determining the amount of fluid received by the hydro-damping element has a dynamics in the ⁇ s range.
  • the stroke of the bellows is suitably a few mm.
  • the measuring device according to the invention and the measuring method according to the invention can serve in particular for testing diesel injectors, but also for testing gasoline injectors.
  • the test fluid may be, in particular, a fuel.
  • FIG. 1 A first embodiment of a measuring device according to the invention is in Fig. 1 shown.
  • the measuring device has a pump device 3, by means of which an injector 1 to be measured can be acted upon with test fluid.
  • On the injection side of the injector 1 designed as a bellows hydro-damping element 30 is provided.
  • this hydrodynamic damping element 30 an injection region 12 is formed, into which the injector 1 delivers the fluid supplied by the pumping device 3.
  • a substantially open-flow line 20 is provided, on which a flow measuring device 22 designed as a Coriolis mass flowmeter is arranged, and which opens into a drainage container 29.
  • This elongation which represents a measure of the injected test fluid quantity, is detected by means of a hydrodynamic element 30 provided on the vibrometer 40 and used for injection quantity determination.
  • a high-resolution time profile of the delivered test fluid quantity can be established, with the vibrometer 40 detecting rapid changes in the injection quantity and keeping the hydrodynamic damping element 30 from accompanying fast pressure fluctuations from the flowmeter 22.
  • a pressure control valve 27 back pressure generating device intended between the flow meter 22 and the drain tank 29 .
  • a pressure measuring device 28 is provided on the line 20 between the flow measuring device 22 and the pressure regulating valve 27.
  • a back pressure can be generated downstream of the hydrodynamic damping element 30, which can improve the damping properties of the hydrodynamic damping element 30 and / or can bring about additional elongation of the hydrodynamic damping element 30 formed as a bellows.
  • an adjustable diaphragm 24 can additionally be provided on the line 20 between the injection region 12 and the flow measuring device 22, ie upstream of the flow measuring device 22, which can increase pressure pulses generated during operation of the injector.
  • Fig. 2 shows the sake of clarity in Fig. 1 not shown main body 10 of the measuring device.
  • the main body 10 has a bore 51 which completely penetrates the main body 10. In this bore 51 of the injector 1 is received. End, the bore 51 is formed widened. In the widened region 52 formed thereby, the hydrodynamic element 30 formed as a bellows is received.
  • a fixing ring 55 is provided, which is screwed to the base body 10. This fixing ring 55 surrounds the hydro-damping element 30 and defines this in the widened region 52 of the bore 51 on the base body 10.
  • the line 20 for discharging the fluid from the injector 1 is formed in the region of the base body 10 as a further bore, which extends radially with respect to the injector 1 in the base body 10.
  • the vibrometer 40 emits a laser beam 62, which is directed to the fluid-tight closed end 61 of the hydro-damping element 30, is reflected there and back to the vibrometer 40.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

  • Die Erfindung betrifft eine Messvorrichtung für einen Injektor gemäß dem Oberbegriff des Anspruchs 1. Eine solche Messvorrichtung ist ausgebildet mit einer Pumpeinrichtung zum Beaufschlagen des Injektors mit einem Testfluid, einem Grundkörper zum Haltern des Injektors, wobei am Grundkörper ein Einspritzbereich zur Aufnahme des vom Injektor abgegebenen Testfluides vorgesehen ist, einer Messeinrichtung zum Bestimmen der von dem Injektor abgegebenen Testfluidmenge und einer Leitung zum Abführen des vom Injektor abgegebenen Testfluides vom Einspritzbereich, wobei die Messeinrichtung eine Durchflussmesseinrichtung aufweist, die an der Leitung angeordnet ist, und wobei ein Hydrodämpfungselement zum Bedämpfen des Testfluides vorgesehen ist, das der Durchflussmesseinrichtung aus dem Einspritzbereich zuströmt.
  • Die Erfindung betrifft ferner ein Messverfahren für einen Injektor gemäß dem Oberbegriff des Anspruchs 8, bei dem der Injektor mit einem Testfluid beaufschlagt wird und die vom Injektor abgegebene Testfluidmenge mittels einer Durchflussmesseinrichtung gemessen wird, welche abströmseitig des Injektors angeordnet ist, wobei das vom Injektor abgegebene Fluid von einem Hydrodämpfungselement bedämpft wird, das zwischen dem Injektor und der Durchflussmesseinrichtung angeordnet ist.
  • Einspritzmengenmessgeräte sind in der Kraftfahrzeugtechnik bekannt und spielen bei der Entwicklung und Produktion von Einspritzventilen eine wichtige Rolle. Die messtechnische Erfassung einer Einspritzmenge ist für die Untersuchung und Optimierung von Brennverläufen in Verbrennungskraftmaschinen von großer Bedeutung.
  • Es sind Einspritzmengenmessgeräte bekannt, die einen schwimmenden, passiven Kolben aufweisen, der auf der Abströmseite des Einspritzventils angeordnet ist. Dieser Kolben wird durch zufließenden Kraftstoff verschoben, wobei die Verschiebung aufgezeichnet wird. Dies ermöglicht eine Bestimmung der dem Kolben zugeflossenen Gesamtmenge. Da der Kolbenhub des Kolbens grundsätzlich beschränkt ist, muss der Kolben nach einer gewissen Messzeit durch ein Ablassventil entleert werden, wodurch es zu unerwünschten Messunterbrechungen kommen kann.
  • Eine weitere Einspritzmengenmessvorrichtung für einen Injektor ist aus der DE 101 04 798 A1 bekannt. Bei dieser bekannten Messvorrichtung wird dem Injektor ein Messkopf mit einer Messkammer vorgeschaltet und der Injektor mittels des Messkopfes beschickt. Als Maß für die Einspritzmenge wird dabei eine Volumenänderung der Messkammer am Messkopf herangezogen. Auch hier kann ein kontinuierlicher Betrieb mit Einschränkungen verbunden sein.
  • Die DE 33 07 243 A1 offenbart eine Prüfeinrichtung für Einspritzanlagen. Die Prüfeinrichtung weist ein geschlossenes Gehäuse auf, das mit einem komprimierten Gas gefüllt ist, wobei die aus der Einspritzdüse austretende Flüssigkeit auf das komprimierte Gas trifft. Die Prüfeinrichtung kann so ausgelegt sein, dass jeder Einspritzdüse ein Messsystem zugeordnet ist, das insbesondere aus einem Verdrängungszähler bestehen kann. Um die Mündungen der Einspritzdüsen können Spritzdämpfer angeordnet sein.
  • Die DE 42 42 662 A1 beschreibt eine Vorrichtung zum Messen der Einspritzmengen von Einspritzpumpen für Brennkraftmaschinen, mit einer Einspritzdüse und einer von letzterer beaufschlagten Volumenmesseinrichtung, wobei zwischen Volumenmesseinrichtung und Einspritzdüse eine Spritzdämpfungseinrichtung angeordnet ist. Die Spritzdämpfungseinrichtung enthält dabei einen längselastischen Auffanghohlkörper.
  • Aus der EP 1 091 197 A2 geht eine Vorrichtung zur kontinuierlichen Messung des dynamischen Kraftstoffverbrauchs eines Verbrauchers hervor, die eine Kraftstoffzuleitung mit einer Pumpe und einen nachgeschalteten kontinuierlich messenden Massestromsensor, vorzugsweise Coriolis-Sensor, beinhaltet. Dabei ist eine in Serie mit dem Massestromsensor angeordnete, diskontinuierlich messende Kalibriereinrichtung für den Massestromsensor vorgesehen.
  • Aufgabe der Erfindung ist es, eine Messvorrichtung und ein Messverfahren für einen Injektor anzugeben, die eine Einspritzmengenmessung mit besonders hoher Zuverlässigkeit, Wirtschaftlichkeit und Präzision erlauben.
  • Die Aufgabe wird erfindungsgemäß durch eine Vorrichtung mit den Merkmalen des Anspruchs 1 und ein Verfahren mit den Merkmalen des Anspruchs 8 gelöst. Bevorzugte Ausführungsbeispiele sind in den jeweils abhängigen Ansprüchen angegeben.
  • Bei der erfindungsgemäßen Vorrichtung ist vorgesehen, dass die Messeinrichtung eine Durchflussmesseinrichtung aufweist, die an der Leitung angeordnet ist, und dass ein Hydrodämpfungselement zum Bedämpfen des Testfluides vorgesehen ist, das der Durchflussmesseinrichtung aus dem Einspritzbereich zuströmt.
  • Ein erster Grundgedanke der Erfindung kann darin gesehen werden, zur Einspritzmengenbestimmung eine Durchflussmessung abströmseitig des Injektors durchzuführen. Die Durchflussmessung kann insbesondere bei zumindest teilweise querschnittsoffener Abführleitung durchgeführt werden. Dies ermöglicht eine kontinuierliche Einspritzmengenbestimmung auch über einen längeren Zeitraum. Im Gegensatz zu den vorbekannten Messverfahren mit volumenveränderlicher Messkammer ist insbesondere kein Entleeren und/oder Rückstellen einer solchen Messkammer erforderlich, während dem die Messung gegebenenfalls unterbrochen werden müsste und das in jedem Fall mit einer gewissen Störung des Messbetriebs einhergehen würde. Insbesondere sind somit auch keine aufwändigen Ventileinrichtungen und/oder Federeinrichtungen zum Entleeren und/oder Rückstellen einer Messkammer erforderlich.
  • Da nach der Erfindung abströmseitig des Injektors grundsätzlich keine Rückstelleinrichtung zum Rücksetzen einer Messkammer erforderlich ist, ermöglicht es die Erfindung, auch mit geringem Gegendruck auf der Abströmseite des Injektors zu arbeiten. Grundsätzlich kann der Gegendruck abströmseitig des Injektors nach der Erfindung frei gewählt werden, was eine besonders gute Nachbildung der im Verbrennungsraum herrschenden Vorgänge erlaubt und infolgedessen besonders aussagekräftige Einspritzmengenmessungen ermöglicht.
  • Ein weiterer Grundgedanke der Erfindung kann darin gesehen werden, oberstromig der Durchflussmesseinrichtung, im Strömungsverlauf zwischen dem Injektor und der Durchflussmesseinrichtung, ein Hydrodämpfungselement vorzusehen. Ein solches Hydrodämpfungselement kann Volumenschwankungen und/oder Druckschwankungen an der Durchflussmesseinrichtung reduzieren, die beim zeitlich veränderlichen Betrieb des Injektors auftreten können und unter Umständen die Durchflussmesseinrichtung beeinflussen können. Dies erlaubt besonders genaue Einspritzmengenmessungen auch bei hohen Betriebsfrequenzen für den Injektor. Das insbesondere zur Dämpfung der Impulsmengen ausgebildete Hydrodämpfungselement ist geeigneterweise an der Abführleitung vorgesehen. Beispielsweise kann das Hydrodämpfungselement im Bereich des Einspritzbereiches vorgesehen sein und diesen vorzugsweise umgeben.
  • Besonders zweckmäßig ist es, dass das Hydrodämpfungselement als volumenveränderlicher Speicher, insbesondere als Balg, ausgebildet ist. Durch einen derartigen Balg wird ein besonders wirtschaftliches und zuverlässiges Hydrodämpfungselement zur Verfügung gestellt. Ein Balg weist eine besonders geringe Masse auf, so dass eine zuverlässige Dämpfung auch bei hohen Betriebsfrequenzen des Injektors gewährleistet ist. Darüber hinaus erlaubt ein Balg eine Rückstellung des Speichervolumens allein aufgrund seiner Eigenelastizität ohne zusätzliche Rückstellelemente, so dass eine besonders wirtschaftliche Messvorrichtung gegeben ist. Der Balg ist geeigneterweise zur Begrenzung des Dämpfungsvolumens einseitig stirnseitig verschlossen. Vorzugsweise ist der Balg als Metallbalg ausgebildet.
  • Eine besonders hohe Messgenauigkeit kann nach der Erfindung dadurch erzielt werden, dass die Durchflussmesseinrichtung eine Coriolis-Messeinrichtung ist. Bei einer solchen Coriolis-Messeinrichtung wird in der Regel ein gekrümmtes Rohr in Schwingung versetzt und ein Phasenversatz am Rohr gemessen. Aufgrund dieser schwingungsbasierten Messung können Coriolis-Messeinrichtungen vergleichsweise druckstoßempfindlich sein, insbesondere wenn die Druckstoßfrequenz im Bereich der Schwingungsfrequenz der Messeinrichtung liegt. Nach der Erfindung können derartige Druckstöße jedoch vom Hydrodämpfungselement abgedämpft werden, so dass eine zuverlässige Durchflussmessung auch bei hohen Betriebsfrequenzen des Injektors gegeben ist. Für eine besonders hohe Genauigkeit ist die Resonanzfrequenz des Hydrodämpfungselements vorzugsweise größer, insbesondere zumindest eine Größenordnung größer, als die Betriebsfrequenz der Coriolis-Messeinrichtung und/oder die Betriebsfrequenz des Injektors. Neben einer Coriolis-Messeinrichtung können grundsätzlich auch andere Arten von Durchflussmesseinrichtungen vorgesehen sein, beispielsweise eine Blenden-Durchflussmesseinrichtung, ein magnetisch induktiver Durchflussmesser, ein Zahnradzähler und/oder eine Messturbine.
  • Ein weiterer Aspekt der Erfindung besteht darin, dass die Messeinrichtung Mittel zum Bestimmen einer vom Hydrodämpfungselement aufgenommenen Fluidmenge aufweist. Hierdurch kann die Einspritzmenge mit einer besonders hohen zeitlichen Auflösung bestimmt werden. Gemäß dieser Ausführungsform kommt dem Hydrodämpfungselement eine Doppelfunktion zu. Zum einen hält das Hydrodämpfungselement hochfrequente Druckschwankungen von der Durchflussmesseinrichtung fern und ermöglicht somit einen zuverlässigen und genauen Betrieb der Durchflussmesseinrichtung. Zum anderen dient das Hydrodämpfungselement neben der Durchflussmesseinrichtung selbst zur Bestimmung der von dem Injektor abgegebenen Testfluidmenge. Das Bedämpfen des vom Injektor abgegebenen Testfluides geht mit einer Änderung der vom Hydrodämpfungselement aufgenommenen Fluidmenge einher,
    wobei das Hydrodämpfungselement den hochfrequenten Anteilen der abgegebenen Fluidmenge nachfolgen kann. Die damit einhergehenden Änderungen am Hydrodämpfungselement werden messtechnisch erfasst und zur zeitlich hochaufgelösten Bestimmung des Einspritzverlaufes herangezogen.
  • Beim periodischen Betrieb des Injektors in einer erfindungsgemäßen Messvorrichtung kann sich ein dynamisches Gleichgewicht einstellen. Dabei fließt über die Leitung und die Durchflussmesseinrichtung kontinuierlich Fluid vom Einspritzbereich ab. Schnelle, hochfrequente Änderungen der Einspritzmenge können am Hydrodämpfungselement erfasst werden, welches diese schnellen Änderungen bedämpft und ihnen hierbei nachfolgt.
  • Zur Einspritzmengenbestimmung werden geeigneterweise die Messergebnisse der Mittel zum Bestimmen der vom Hydrodämpfungselement aufgenommenen Fluidmenge und die Messergebnisse der Durchflussmesseinrichtung in eine mathematische Beziehung gesetzt. Vorzugsweise stehen die Durchflussmesseinrichtung und die Mittel zum Bestimmen der vom Hydrodämpfungselement aufgenommenen Fluidmenge hierzu mit einer Recheneinrichtung in Signalverbindung.
  • Sofern das Hydrodämpfungselement als Balg ausgebildet ist, ist es vorteilhaft, dass die Mittel zum Bestimmen der vom Hydrodämpfungselement aufgenommenen Fluidmenge zum Bestimmen einer Längung des Balges ausgebildet sind. Da ein Balg in der Regel eine Expansion nur in einer Richtung zulässt, kann aus einer Längenänderung des Balges auf eine Volumenänderung in seinem Inneren geschlossen werden. Insbesondere können die Mittel ein Laservibrometer aufweisen, das eine besonders hohe Messfrequenz und somit eine besonders gute zeitliche Auflösung zulässt. Beispielsweise kann das Vibrometer für Messfrequenzen vorgesehen sein, die 100 kHz oder mehr betragen. Alternativ oder zusätzlich kann auch ein induktiver Wegmesser vorgesehen sein.
  • Wird beim Betrieb der Messvorrichtung der Injektor geöffnet, so tritt im Einspritzbereich ein Mengenzufluss auf. Dieser Mengenzufluss hat wiederum eine Längung des als Hydrodämpfungselement vorgesehen Balges zur Folge, die mittels des Laservibrometers nachgewiesen und zur Einspritzmengenbestimmung herangezogen werden kann. Der im Hydrodämpfungselement aufgebaute Druck wird zumindest teilweise wieder über die querschnittsoffene Leitung abgebaut.
  • Eine besonders vielseitig einsetzbare Messeinrichtung kann nach der Erfindung dadurch erhalten werden, dass an der Leitung, insbesondere auf einer dem Einspritzbereich abgewandten Seite der Durchflussmesseinrichtung, eine Gegendruckerzeugungseinrichtung vorgesehen ist. Mittels einer solchen Gegendruckerzeugungseinrichtung kann die Abströmgeschwindigkeit aus dem Einspritzbereich reduziert werden und somit insbesondere sichergestellt werden, dass ein eingespritztes Fluidvolumen eine für eine Messung hinreichend große Volumenänderung am Hydrodämpfungselement erzeugt und nicht sofort über die Leitung abfließt. Ferner kann hierdurch die Dämpfungswirkung des Dämpfungselementes verbessert werden.
  • Darüber hinaus erlaubt es eine Gegendruckerzeugungseinrichtung, die beim Betrieb des Injektors im Motor herrschenden Druckverhältnisse nachzubilden.
  • Ein besonders geringer apparativer Aufwand ist nach der Erfindung dadurch gegeben, dass die Gegendruckerzeugungseinrichtung als Druckregelventil ausgebildet ist. Es kann auch eine Blende und/oder eine aktive Gegendruckerzeugungseinrichtung vorgesehen sein.
  • Vorzugsweise ist die Gegendruckerzeugungseinrichtung abströmseitig der Durchflussmesseinrichtung angeordnet. Es können auch mehrere Gegendruckerzeugungseinrichtungen vorgesehen sein, die dann sowohl oberstromig als auch unterstromig der Durchflussmesseinrichtung angeordnet sein können.
  • Eine konstruktiv besonders einfache und zuverlässige Messvorrichtung ist nach der Erfindung dadurch gegeben, dass der Balg, insbesondere koaxial zum Injektor, am Grundkörper angeordnet ist. Vorzugsweise ist der Balg so angeordnet, dass die aus dem Injektor austretende Fluidströmung in den Balg hineingerichtet ist. Insbesondere kann eine Einspritzöffnung des Injektors im Inneren des Balges angeordnet werden, so dass auch der Einspritzbereich im Balginneren liegt.
  • Beim erfindungsgemäßen Messverfahren ist vorgesehen, dass die von dem Injektor abgegebene Testfluidmenge mittels einer Durchflussmesseinrichtung gemessen wird, welche abströmseitig des,Injektors angeordnet ist, wobei das vom Injektor abgegebene Fluid von einem Hydrodämpfungselement bedämpft wird, das zwischen dem Injektor und der Durchflussmesseinrichtung angeordnet ist. Das erfindungsgemäße Messverfahren kann insbesondere mit einer erfindungsgemäßen Messvorrichtung durchgeführt werden, wodurch sich die in diesem Zusammenhang erläuterten Vorteile erzielen lassen.
  • Für eine besonders aussagekräftige Charakterisierung des Injektors ist es vorteilhaft, dass der Injektor mit zeitlich veränderlichem Durchfluss, insbesondere periodisch, betrieben wird. Die erfindungsgemäße Messvorrichtung und das erfindungsgemäße Messverfahren erlauben dabei eine zuverlässige Messung auch bei hohen Betriebsfrequenzen.
  • Nach der Erfindung ist es vorteilhaft, dass die vom Hydrodämpfungselement aufgenommene Testfluidmenge zeitaufgelöst gemessen wird und entsprechende Messdaten zum Bestimmen eines Zeitprofils der von dem Injektor abgegebenen Einspritzmenge herangezogen werden: Hierzu ist geeigneterweise eine Recheneinrichtung vorgesehen, die auch die Messdaten der Durchflussmesseinrichtung berücksichtigt.
  • Beim Betrieb der Messvorrichtung und/oder bei der Durchführung des Messverfahrens kann der Injektor beispielsweise mit Testfluid unter einem Druck von etwa 100 bar beaufschlagt werden. Der Injektor kann geeigneterweise mit einer Frequenz von 20 bis 250 Hz betrieben werden. Die Einspritzmenge beträgt geeigneterweise 1,5 bis 30 mm3 pro Einspritzung und/oder 1,5 bis 30 mm3 pro ms. Als Gegendruck kann beispielsweise ein Druck von 0,2 bis 5 bar gewählt werden. Das Durchflussmessgerät kann beispielsweise eine Dynamik im 1/10 s-Bereich aufweisen und die Mittel zum Bestimmen der vom Hydrodämpfungselement aufgenommenen Fluidmenge eine Dynamik im µs-Bereich. Der Hub des Balges beträgt geeigneterweise einige mm. Die erfindungsgemäße Messvorrichtung und das erfindungsgemäße Messverfahren können insbesondere zur Prüfung von Dieselinjektoren, aber auch zur Prüfung von Benzininjektoren dienen. Bei dem Testfluid kann es sich insbesondere um einen Kraftstoff handeln.
  • Die Erfindung wird nachfolgend anhand bevorzugter Ausführungsbeispiele näher erläutert, die schematisch in den Figuren dargestellt sind. In den Figuren zeigen
  • Fig. 1
    ein schematisches Diagram einer erfindungsgemäßen Messvorrichtung zur Durchführung des erfindungsgemäßen Verfahrens, wobei der Grundkörper der Übersichtlichkeit halber nicht dargestellt ist; und
    Fig. 2
    eine teilweise geschnittene Detailansicht einer erfindungsgemäßen Messvorrichtung im Bereich des Grundkörpers.
  • Gleichwirkende Elemente sind in allen Figuren mit denselben Bezugszeichen gekennzeichnet.
  • Ein erstes Ausführungsbeispiel einer erfindungsgemäßen Messvorrichtung ist in Fig. 1 dargestellt. Die Messvorrichtung weist eine Pumpeinrichtung 3 auf, mittels der ein zu vermessender Injektor 1 mit Testfluid beaufschlagbar ist. Auf der Einspritzseite des Injektors 1 ist ein als Balg ausgebildetes Hydrodämpfungselement 30 vorgesehen. In diesem Hydrodämpfungselement 30 ist ein Einspritzbereich 12 ausgebildet, in den der Injektor 1 das von der Pumpeinrichtung 3 zugeführte Fluid abgibt.
  • Zum Abführen von Fluid aus dem Einspritzbereich 12 ist eine im Wesentlichen strömungsoffene Leitung 20 vorgesehen, an der eine als Coriolis-Massendurchflussmesser ausgebildete Durchflussmesseinrichtung 22 angeordnet ist, und die in einen Abflussbehälter 29 mündet.
  • Öffnet der Injektor 1, so strömt Fluid aus dem Injektor 1 in den Einspritzbereich 12 am Hydrodämpfungselement 30 ein. Die zufließende Fluidmenge wird zunächst vorwiegend vom Hydrodämpfungselement 30 aufgenommen, was mit einer entsprechenden Längenzunahme des als Balg ausgebildeten Hydrodämpfungselementes 30 einhergeht.
  • Diese Längung, die ein Maß für die eingespritzte Testfluidmenge darstellt, wird mittels eines am Hydrodämpfungselement 30 vorgesehenen Vibrometers 40 erfasst und zur Einspritzmengenbestimmung herangezogen.
  • Fließt bei geöffnetem Injektor 1 weiter Fluid in den Einspritzbereich 12 zu, kommt es mit zunehmender Längung des Hydrodämpfungselementes 30 zu einer Druckzunahme im Einspritzbereich 12 und dementsprechend fließt mehr Fluid über die Leitung 20 aus dem Einspritzbereich 12 ab, so dass das Hydrodämpfungselement 30 schließlich einen dynamischen Gleichgewichtszustand einnimmt. Die über die Leitung 20 abfließende Fluidmenge wird dabei mittels der Durchflussmesseinrichtung 22 erfasst. Wird Injektor 1 geschlossen, wird der Einspritzbereich 12 über die Leitung 20 entleert und das Hydrodämpfungselement 30 kehrt in seine Ausgangsstellung zurück, was wiederum mittels des Vibrometers 40 nachgewiesen werden kann.
  • Indem sowohl die Messdaten des Vibrometers 40 als auch die Messdaten der Durchflussmesseinrichtung 22 erfasst werden, kann ein hochaufgelöstes Zeitprofil der abgegebenen Testfluidmenge erstellt werden, wobei das Vibrometer 40 schnelle Änderungen der Einspritzmenge erfasst und das Hydrodämpfungselement 30 damit einhergehende schnelle Druckschwankungen von der Durchflussmesseinrichtung 22 fernhält.
  • Zwischen der Durchflussmesseinrichtung 22 und dem Abflussbehälter 29 ist an der Leitung 20 eine als Druckregelventil 27 ausgebildete Gegendruckerzeugungseinrichtung vorgesehen. Zur Überwachung des Druckregelventils 27 ist an der Leitung 20 zwischen Durchflussmesseinrichtung 22 und Druckregelventil 27 eine Druckmesseinrichtung 28 vorgesehen. Mittels des Druckregelventils 27 kann abströmseitig des Hydrodämpfungselementes 30 ein Gegendruck erzeugt werden, was die Dämpfungseigenschaften des Hydrodämpfungselementes 30 verbessern kann und/oder eine zusätzliche Längung des als Balg ausgebildeten Hydrodämpfungselementes 30 bewirken kann. Um die Effizienz des Dämpfens weiter zu erhöhen, kann darüber hinaus zwischen dem Einspritzbereich 12 und der Durchflussmesseinrichtung 22, also oberstromig der Durchflussmesseinrichtung 22, an der Leitung 20 eine einstellbare Blende 24 vorgesehen sein, die beim Betrieb des Injektors erzeugte Druckpulse erhöhen kann.
  • Fig. 2 zeigt den der Übersichtlichkeit halber in Fig. 1 nicht dargestellten Grundkörper 10 der Messvorrichtung. Der Grundkörper 10 weist eine Bohrung 51 auf, die den Grundkörper 10 vollständig durchdringt. In dieser Bohrung 51 ist der Injektor 1 aufgenommen. Endseitig ist die Bohrung 51 verbreitert ausgebildet. In dem hierdurch gebildeten verbreiterten Bereich 52 ist das als Balg ausgebildete Hydrodämpfungselement 30 aufgenommen. Zum Festlegen des Hydrodämpfungselementes 30 am Grundkörper 10 ist ein Fixierring 55 vorgesehen, der am Grundkörper 10 angeschraubt ist. Dieser Fixierring 55 umgibt das Hydrodämpfungselement 30 und legt dieses im verbreiterten Bereich 52 der Bohrung 51 am Grundkörper 10 fest.
  • Die Leitung 20 zum Ableiten des Fluides vom Injektor 1 ist im Bereich des Grundkörpers 10 als weitere Bohrung ausgebildet, die radial bezüglich dem Injektor 1 im Grundkörper 10 verläuft.
  • Zur Bestimmung der Längung des als Balg ausgebildeten Hydrodämpfungselementes 30 sendet das Vibrometer 40 einen Laserstrahl 62 aus, der auf die fluiddicht abgeschlossene Stirnseite 61 des Hydrodämpfungselementes 30 gerichtet ist, dort reflektiert wird und wieder zum Vibrometer 40 zurückgelangt.

Claims (10)

  1. Messvorrichtung für einen Injektor (1), mit
    - einer Pumpeinrichtung (3) zum Beaufschlagen des Injektors (1) mit einem Testfluid,
    - einem Grundkörper (10) zum Haltern des Injektors (1), wobei am Grundkörper (10) ein Einspritzbereich (12) zur Aufnahme des vom Injektor (1) abgegebenen Testfluides vorgesehen ist,
    - wobei ein Hydrodämpfungselement (30) im Bereich des Einspritzbereichs (12) zum Bedampfen des Testfluides vorgesehen ist, das der Durchflussmesseinrichtung (22) über eine abführende Leitung (20) aus dem Einspritzbereich (12) zuströmt, und
    - wobei die Durchflussmesseinrichtung 22 zum Bestimmen der von dem Injektor (1) abgegebnen Testfluidmenge an der Leitung (20) angeordnet ist,
    dadurch gekennzeichnet,
    dass die Messeinrichtung , neben der Durchflusseinrichtung (22) selbst, Mittel zum Bestimmen einer vom Hydrodämpfungselement (30) aufgenommenen Testfluidmenge aufweist.
  2. Messvorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass das Hydrodämpfungselement (30) als volumenveränderlicher Speicher, insbesondere als Balg, ausgebildet ist.
  3. Messvorrichtung nach einem der der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass die Durchflussmesseinrichtung (22) eine Coriolis-Messeinrichtung ist.
  4. Messvorrichtung nach einem der der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass eine Recheneinrichtung vorgesehen ist, mit der die Durchflussmesseinrichtung (22) und die Mittel zum Bestimmen der vom Hydrodämpfungselement aufgenommenen Fluidmenge in Signalverbindung stehen.
  5. Messvorrichtung nach Anspruch 4,
    dadurch gekennzeichnet,
    dass die Mittel zum Bestimmen der vom Hydrodämpfungselement (30) aufgenommenen Fluidmenge zum Bestimmen einer Längung des Balges ausgebildet sind und insbesondere ein Vibrometer (40) und/oder einen induktiven Wegaufnehmer aufweisen.
  6. Messvorrichtung nach einem der der vorstehenden Ansprüche,
    dadurch gekennzeichnet,
    dass an der Leitung (20), insbesondere auf einer dem Einspritzbereich (12) abgewandten Seite der Durchflussmesseinrichtung (22), eine Gegendruckerzeugungseinrichtung, insbesondere ein Druckregelventil (27) vorgesehen ist.
  7. Messvorrichtung nach einem der der Ansprüche 2 bis 5,
    dadurch gekennzeichnet,
    dass der Balg, insbesondere koaxial zum Injektor (1), am Grundkörper (10) angeordnet ist.
  8. Messverfahren für einen Injektor (1), bei dem
    - der Injektor (1) mit einem Testfluid beaufschlagt wird
    - wobei das vom Injektor (1) abgegebene Fluid im Bereich eines Einspritzbereichs (12) von einem Hydrodämpfungselement (30) bedämpft wird, das abströmseitig zwischen dem Injektor (1) und einer Durchflussmesseinrichtung (22) angeordnet ist, und
    - die von dem Injektor (1) abgegebene Testfluidmenge mittels der Durchflussmesseinrichtung (22) gemessen wird
    dadurch gekennzeichnet,
    dass, neben der Messung der abgegebenen Testfluidmenge mittels der Durchflussmesseinrichtung (22), die vom Hydrodämpfungselement (30) aufgenommene Testfluidmenge gemessen wird.
  9. Verfahren nach Anspruch 8,
    dadurch gekennzeichnet,
    dass der Injektor (1) mit zeitlich veränderlichem Durchfluss, insbesondere periodisch, betrieben wird.
  10. Verfahren nach einem der der vorstehenden Ansprüche 8 oder 9,
    dadurch gekennzeichnet,
    dass die vom Hydrodämpfungselement (30) aufgenommene Testfluidmenge zeitaufgelöst gemessen wird und entsprechende Messdaten zum Bestimmen eines Zeitprofils der von dem Injektor (1) abgegebenen Einspritzmenge herangezogen werden.
EP07000514A 2007-01-11 2007-01-11 Messvorrichtung und Messverfahren für einen Injektor Active EP1944502B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP07000514A EP1944502B1 (de) 2007-01-11 2007-01-11 Messvorrichtung und Messverfahren für einen Injektor
AT07000514T ATE426094T1 (de) 2007-01-11 2007-01-11 Messvorrichtung und messverfahren fur einen injektor
DE502007000530T DE502007000530D1 (de) 2007-01-11 2007-01-11 Messvorrichtung und Messverfahren für einen Injektor
PCT/EP2007/009990 WO2008083791A1 (de) 2007-01-11 2007-11-19 Messvorrichtung und messverfahren für einen injektor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP07000514A EP1944502B1 (de) 2007-01-11 2007-01-11 Messvorrichtung und Messverfahren für einen Injektor

Publications (2)

Publication Number Publication Date
EP1944502A1 EP1944502A1 (de) 2008-07-16
EP1944502B1 true EP1944502B1 (de) 2009-03-18

Family

ID=38139757

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07000514A Active EP1944502B1 (de) 2007-01-11 2007-01-11 Messvorrichtung und Messverfahren für einen Injektor

Country Status (4)

Country Link
EP (1) EP1944502B1 (de)
AT (1) ATE426094T1 (de)
DE (1) DE502007000530D1 (de)
WO (1) WO2008083791A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010002898A1 (de) * 2010-03-16 2011-09-22 Robert Bosch Gmbh Verfahren und Vorrichtung zur Bewertung eines Einspritzorgans
DE102011100029C5 (de) 2011-04-29 2016-10-13 Horiba Europe Gmbh Vorrichtung zum Messen eines Kraftstoffflusses und Kalibriervorrichtung dafür
CN110763501B (zh) * 2019-12-26 2020-04-17 胜利油田新大管业科技发展有限责任公司 一种抽油机试验载荷模拟装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3307243A1 (de) * 1983-03-02 1984-09-06 Robert Bosch Gmbh, 7000 Stuttgart Pruefeinrichtung fuer einspritzanlagen
DE4242662C2 (de) * 1992-12-17 2003-10-09 Bosch Gmbh Robert Vorrichtung zum Messen der Einspritzmengen von Einspritzpumpen
ATE344919T1 (de) * 1999-10-06 2006-11-15 Avl List Gmbh Vorrichtung zur kontinuierlichen messung des dynamischen kraftstoffverbrauchs eines verbrauchers
DE10104798B4 (de) * 2001-02-02 2008-12-24 Sonplas Gmbh Messvorrichtung und Verfahren zur Bestimmung einer von einem Ventil abgegebenen Einspritzmenge eines Fluids und/oder eines Einspritzmengenverlaufs

Also Published As

Publication number Publication date
EP1944502A1 (de) 2008-07-16
ATE426094T1 (de) 2009-04-15
WO2008083791A1 (de) 2008-07-17
DE502007000530D1 (de) 2009-04-30

Similar Documents

Publication Publication Date Title
EP1561029B2 (de) Verfahren und vorrichtung zur messung der einspritzrate eines einspritzventils für flüssigkeiten
DE10331228B3 (de) Vorrichtung zur Messung von zeitlich aufgelösten volumetrischen Durchflußvorgängen
EP2179169B1 (de) Vorrichtung und verfahren zur überprüfung einer brennstoffeinspritzdüse
EP2513612B1 (de) Verfahren zum betreiben eines coriolis-massendurchflussmessgeräts sowie coriolis-massendurchflussmessgerät
EP1477678B2 (de) Störungsfrüherkennung an Pumpenventilen
EP3298266B1 (de) Vorrichtung zur messung der einspritzrate sowie messverfahren
DE102009045372A1 (de) Durchflussmessanordnung und Verfahren zu deren Funktionsüberwachung
EP3234548B1 (de) Messanordnung und verfahren zum messen der dichte von fliessfähigen medien
WO2008095836A2 (de) Verfahren und vorrichtung zur kontinuierlichen messung eines dynamischen fluidverbrauchs
DE19625947C1 (de) Verfahren zur Störungsfrüherkennung an Pumpen sowie entsprechende Vorrichtung
DE4423168A1 (de) Massendurchflußmeßgerät
DE102009003020A1 (de) Laufzeitmessungskorrektur bei einem Strömungssensor
EP1944502B1 (de) Messvorrichtung und Messverfahren für einen Injektor
DE102008040628A1 (de) Verfahren und Vorrichtung zur Messung der mit einem Einspritzventil eingespritzten Flüssigkeitsmenge
EP1601945B1 (de) Verfahren, vorrichtung und computerprogramm zum messen der leckage von einspritzsystemen, insbesondere für brennkraftmaschinen von kraftfahrzeugen
EP1954938B1 (de) Verfahren und vorrichtung zur messung der einspritzmenge und der einspritzrate eines einspritzventils für flüssigkeiten
EP0962750B1 (de) Verfahren zum Ermitteln des Treibstoffverbrauches bzw. des Betriebszustandes von Verbrennungskraftmaschinen
WO2015197252A1 (de) Verfahren und vorrichtung zur charakterisierung eines injektors
DE102008016296A1 (de) Verfahren zum Bestimmen einer Menge eines strömenden Mediums
WO2011113659A1 (de) Verfahren und vorrichtung zur bewertung eines einspritzorgans
WO2017102292A1 (de) Verfahren und vorrichtung zur bestimmung der einspritzrate eines einspritzventils
DE4205453C2 (de) Einrichtung zum Messen von hydraulischen Durchflußmengen und Leckagen an einem Prüfling
DE3806129C2 (de)
AT505035B1 (de) Vorrichtung und verfahren zur vermessung von strömungswiderständen
DE3916418C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070208

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007000530

Country of ref document: DE

Date of ref document: 20090430

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090827

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090629

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090718

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090618

26N No opposition filed

Effective date: 20091221

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100223

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100129

Year of fee payment: 4

BERE Be: lapsed

Owner name: SONPLAS G.M.B.H.

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100131

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110111

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100131

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007000530

Country of ref document: DE

Effective date: 20110802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100111

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090318

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120126

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110802

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 426094

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130131