EP1939412A1 - Heat exchanger for cooling fission gas - Google Patents

Heat exchanger for cooling fission gas Download PDF

Info

Publication number
EP1939412A1
EP1939412A1 EP07033540A EP07033540A EP1939412A1 EP 1939412 A1 EP1939412 A1 EP 1939412A1 EP 07033540 A EP07033540 A EP 07033540A EP 07033540 A EP07033540 A EP 07033540A EP 1939412 A1 EP1939412 A1 EP 1939412A1
Authority
EP
European Patent Office
Prior art keywords
heat exchanger
gas
water
subspace
lying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP07033540A
Other languages
German (de)
French (fr)
Other versions
EP1939412B1 (en
Inventor
Carsten Birk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Borsig GmbH
Original Assignee
Borsig GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borsig GmbH filed Critical Borsig GmbH
Publication of EP1939412A1 publication Critical patent/EP1939412A1/en
Application granted granted Critical
Publication of EP1939412B1 publication Critical patent/EP1939412B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/18Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters
    • F01K3/188Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having heaters using heat from a specified chemical reaction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1838Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines the hot gas being under a high pressure, e.g. in chemical installations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/18Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being a hot gas, e.g. waste gas such as exhaust gas of internal-combustion engines
    • F22B1/1884Hot gas heating tube boilers with one or more heating tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/40Arrangements of partition walls in flues of steam boilers, e.g. built-up from baffles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B9/00Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body
    • F22B9/10Steam boilers of fire-tube type, i.e. the flue gas from a combustion chamber outside the boiler body flowing through tubes built-in in the boiler body the boiler body being disposed substantially horizontally, e.g. at the side of the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • F28D7/0083Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium
    • F28D7/0091Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids with units having particular arrangement relative to a supplementary heat exchange medium, e.g. with interleaved units or with adjacent units arranged in common flow of supplementary heat exchange medium the supplementary medium flowing in series through the units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/20C2-C4 olefins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/0075Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for syngas or cracked gas cooling systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates
    • F28F2009/222Particular guide plates, baffles or deflectors, e.g. having particular orientation relative to an elongated casing or conduit
    • F28F2009/226Transversal partitions

Definitions

  • the invention relates to a heat exchanger for cooling cracked gas having the features of the preamble of claim 1.
  • pyrolysis or ethylene cracking furnaces form the key components for the production of the raw materials ethylene, propylene, butadiene and others for the plastics industry.
  • the starting materials used are saturated hydrocarbons, mainly ethane, propane, butane, natural gas, naphtha or gas oil.
  • the conversion of the saturated into the unsaturated hydrocarbons takes place in the cans of the cracking furnace, namely at inlet temperatures of 500 - 680 ° C and outlet temperatures of 775 - 875 ° C in a pressure range of 1.5-5 bar.
  • the unsaturated hydrocarbons In downstream cracked gas coolers at the outlet of the cracking furnace, the unsaturated hydrocarbons, the so-called cracking gases, from 775 to 875 ° C with the formation of high or low pressure steam to about 350 to 450 ° C cooled.
  • the "cooling water” has boiling temperature at a corresponding pressure. The cooling takes place due to the phase transition from liquid to gaseous.
  • the steam is in the ethylene plant z. B. used for steam turbines.
  • the cooling of the fission gas to form steam is carried out either in single-stage systems, with the complete cooling to about 350 - 450 ° C takes place in a single quench cooler or in two-stage systems in which a gradual cooling takes place in two successive split gas coolers; z. B. in the first step from 875 ° C to 550 ° C and in the second step from 550 ° C to 350 ° C.
  • the quench cooler have the corresponding designation primary and secondary radiator.
  • a fission gas cooler is known in which the fission gas is cooled by steam in a first cooling stage representing an evaporator and by steam in a second cooling stage representing a superheater.
  • an additional cooler is to be connected downstream of the quench cooler, in which the cracked gas is further cooled down by feed water.
  • the evaporator and the superheater are arranged in a common shell and separated by a partition, which prevents overflow of the cooling medium from one cooling stage to the other.
  • the invention has for its object to make the generic, two subspaces within a common shell comprehensive heat exchanger for cooling fission gas such that the cooling is reduced within the lying on the gas outlet side of the quenching gas subspace more effective and the apparatus design.
  • the lying on the gas inlet side of the fission gas subspace of the heat exchanger serves as an evaporator and cools the cracking gas to near the boiling point of the boiling water. Subsequently, the cracked gas passes into the lying on the gas outlet side of the fission gas and serving as a preheater subspace, where the fission gas is further cooled by the cooler feed water well below the boiling temperature of the water. As a result, the cooling of the fission gas is total more effective.
  • the heating feed water is either fed to the steam drum, where it is heated to boiling temperature, or it flows directly through the acting as a "leaking" tubesheet bulkhead in the evaporator section.
  • the intentionally permeable to the cooling medium partition wall ensures a pressure equalization between the subspaces.
  • the combination of evaporator and preheater is reduced to a common aggregate apparatus design of the quench cooling by the previously separate feedwater is integrated into the evaporator, thereby eliminating a complete cooler within the cooling row and the fission gas line between the evaporator and the feedwater and shorter Pipes to the steam drum are possible.
  • the heat exchanger shown serves to cool cracked gas in an ethylene plant.
  • the heat exchanger consists of a tube bundle of straight heat exchanger tubes 1, which are held in each case a tube plate 2, 3 on both sides of the tube bundle. In the drawing, for the sake of clarity, only some of the heat exchanger tubes 1 are shown.
  • Each tube plate 2, 3 is penetrated by holes in each one of the heat exchanger tubes 1 is inserted and welded by a weld with the tube plate 2, 3.
  • the tube bundle is enclosed by an outer jacket 4 which, together with the respective tube plates 2, 3, delimits an interior through which a cooling medium flows.
  • the tube plates 2, 3 is followed on the gas inlet side and on the gas outlet side in each case an end chamber, the inlet chamber 5 and the outlet chamber 6 at.
  • the inlet chamber 5 and the outlet chamber 6 are each provided with a nozzle for supplying or discharging the fission gas. All parts of the heat exchanger are made of a heat-resistant steel.
  • the hot gap gas introduced through the inlet chamber 5 impinges on the tube plate 2 and flows through the bores of the tube plate 2 into the heat exchanger tubes 1 and leaves the cooled region of the heat exchanger through the tube plate 3 at the other end.
  • the outlet chamber 6 the cooled cleavage gas is removed.
  • the arrows indicate the flow direction.
  • the interior of the heat exchanger is divided by a partition wall 7 into two subspaces 8, 9, so that two cooling sections have formed within the heat exchanger, each of which is acted upon by its own cooling medium and serve as the evaporator section or preheater section.
  • the lying on the gas inlet side of the fission gas subspace 8 of the horizontally disposed heat exchanger is provided on the bottom with multiple feed nozzle 10 and on the top with a plurality of Ab arrangementsstutzen 11 for a cooling medium.
  • the cooling medium is boiling, high-pressure water, which is one of the separation of water and steam serving water / steam drum 12 is removed.
  • a supply line 13 is connected to the supply nozzle 10, which starts from the water chamber 14 of the water / steam drum 12.
  • the discharge pipe 11 are connected to discharge lines 15 which open at a different location in the water space 14 of the water / steam drum 12 and the heat exchange with the Dissipate fission gas generated saturated steam.
  • the steam separated in the water / steam drum 12 is discharged via a steam pipe 17 extending from the steam space 16 of the water / steam drum 12.
  • the lying on the gas outlet side space 9 of the horizontally disposed heat exchanger is provided at the bottom with one or more feed port 18 in the vicinity of the tube sheet 3 and at the top with one or more discharge port 19 in the vicinity of the partition 7.
  • Feed water is fed into the subspace 9 via the feed connection 18.
  • baffles 20 are spaced from each other and arranged in parallel and below and above offset from each other, which act as baffles and lead the feed water in countercurrent to the fission gas through the subspace 9.
  • the feed water is preheated in heat exchange with the cracking gas and passed through a connected to the discharge port 19 discharge line 21 into the water space 14 of the water / steam drum 12.
  • the combination of evaporator section and preheater section to a common heat exchanger unit shortens the inlets and outlets between the heat exchanger and the water / steam drum 12. This arrangement makes it possible for the water / steam drum 12 directly on the jacket 4 of the heat exchanger to assemble. This creates a compact unit through which piping and the times for their installation can be saved.
  • the partition 7 between the two subspaces 8, 9 is a non-structural component, which only has the task to keep the currents in the subspaces 8, 9 apart.
  • the partition wall 7 is provided with bores 22 whose diameter is slightly larger than the outer diameter of the heat exchanger tubes 1, so that the heat exchanger tubes 1 are guided through the partition wall 7 with clearance 23 therethrough.
  • the outer diameter of the partition wall 7 is less than the inner diameter of the jacket 4, so that in the installed state, a gap 24 between partition 7 and jacket 4 is made.
  • the partition wall 7 can be pushed into the jacket 4 with the tube bundle consisting of the heat exchanger tubes 1.
  • the gap 24 between the partition wall 7 and the jacket 4th a few millimeters, for example 2 mm, and the clearance 23 between the heat exchanger tubes 1 and the bores 22 in the partition wall 7 less than 1 mm, z. B. 0.6 mm. 2, the gap 24 and the game 23 are disproportionately large.
  • the partition 7 thus acts as a "leaking" tube sheet.
  • the feed water is supplied to the lying on the gas outlet side space 9 via pumps and is under a pressure that is slightly fluctuating or always higher than the pressure in the lying on the gas inlet side subspace 8. It is usually therefore always a pressure difference.
  • This pressure difference is compensated for by the fact that water from the subspace 9 located on the gas outlet side passes through the intentionally leaky separating wall 7 into the subspace 8 located on the gas inlet side.
  • the leaking from the lying on the gas outlet side space 9 leaking vaporizes in the lying on the gas inlet side compartment 8 and also passes into the water / steam drum 12th

Abstract

The heat exchanger for cooling of a cracking gas in an ethylene plant, comprises heat exchanger tubes (1), which are inserted at its ends in tube plates (2, 3) and are surrounded by a jacket (4), and end chambers (5, 6) intended for feeding and exhaust of the gas. The cracking gas flows through the heat exchanger. The end chambers are limited at both end faces by the tube disk. Water as a cool medium flows through the interior of the exchanger, which is separated by a separator (7) into two subspaces lying one behind the other in flow direction of the cracking gas. The heat exchanger for cooling of a cracking gas in an ethylene plant, comprises heat exchanger tubes (1), which are inserted at its ends in tube plates (2, 3) and are surrounded by a jacket (4), and end chambers (5, 6) intended for feeding and exhaust of the gas. The cracking gas flows through the heat exchanger. The end chambers are limited at both end faces by the tube disk. Water as a cool medium flows through the interior of the exchanger, which is separated by a separator (7) into two subspaces lying one behind the other in flow direction of the cracking gas. The separator is extended perpendicularly to the exchanger tubes. The subspaces are provided with a supply- and removal connection for the cooling medium. A boiling- and feeding water flow through the subspace and other subspace lying on the gas entrance side. The subspaces are connected over a supply- and removal line with water/stream drum. The cooling medium permeates the separator between the two subspaces for passages. The pressure of the feeding water is larger than the pressure of the boiling water. The separator is formed as a non-supporting component. An opening is present between the outer circumference of the separator and the inner diameter of the jacket. The exchanger tubes are implemented with clearance though the openings in the separator.

Description

Die Erfindung betrifft einen Wärmetauscher zur Kühlung von Spaltgas mit den Merkmalen des Oberbegriffes des Anspruches 1.The invention relates to a heat exchanger for cooling cracked gas having the features of the preamble of claim 1.

Pyrolyse- oder Ethylen-Spaltöfen bilden innerhalb einer Ethylenanlage die Schlüsselkomponenten zur Herstellung der Grundstoffe Ethylen, Propylen, Butadien und andere für die Kunststoff-Industrie. Als Ausgangsstoffe werden gesättigte Kohlenwasserstoffe, hauptsächlich Ethan, Propan, Butan, Erdgas, Naphta oder Gasöl verwendet. Die Umwandlung der gesättigten in die ungesättigten Kohlenwasserstoffe findet in den Spaltrohren des Spaltofens statt, und zwar bei Eintrittstemperaturen von 500 - 680°C und Austrittstemperaturen von 775 - 875°C in einem Druckbereich von 1,5-5 bar.Within an ethylene plant, pyrolysis or ethylene cracking furnaces form the key components for the production of the raw materials ethylene, propylene, butadiene and others for the plastics industry. The starting materials used are saturated hydrocarbons, mainly ethane, propane, butane, natural gas, naphtha or gas oil. The conversion of the saturated into the unsaturated hydrocarbons takes place in the cans of the cracking furnace, namely at inlet temperatures of 500 - 680 ° C and outlet temperatures of 775 - 875 ° C in a pressure range of 1.5-5 bar.

In nachgeschalteten Spaltgaskühlern am Austritt des Spaltofens werden die ungesättigten Kohlenwasserstoffe, die sogenannten Spaltgase, von 775 - 875°C unter Bildung von Hoch- oder Niederdruckdampf auf ca. 350 - 450 °C abgekühlt. Das "Kühlwasser" hat hierbei Siedetemperatur bei einem entsprechenden Druck. Die Kühlung findet aufgrund des Phasenüberganges von flüssig nach gasförmig statt. Der Dampf wird in der Ethylenanlage z. B. für Dampfturbinen genutzt.In downstream cracked gas coolers at the outlet of the cracking furnace, the unsaturated hydrocarbons, the so-called cracking gases, from 775 to 875 ° C with the formation of high or low pressure steam to about 350 to 450 ° C cooled. The "cooling water" has boiling temperature at a corresponding pressure. The cooling takes place due to the phase transition from liquid to gaseous. The steam is in the ethylene plant z. B. used for steam turbines.

Die Abkühlung des Spaltgases unter Bildung von Dampf geschieht entweder in einstufigen Systemen, wobei die vollständige Abkühlung auf ca. 350 - 450 °C in nur einem Spaltgaskühler stattfindet oder in zweistufigen Systemen, bei denen in zwei hintereinander geschalteten Spaltgaskühlern eine schrittweise Abkühlung erfolgt; z. B. im ersten Schritt von 875 °C auf 550 °C und im zweiten Schritt von 550 °C auf 350° C. Die Spaltgaskühler haben die entsprechende Bezeichnung Primär-und Sekundär-Kühler.The cooling of the fission gas to form steam is carried out either in single-stage systems, with the complete cooling to about 350 - 450 ° C takes place in a single quench cooler or in two-stage systems in which a gradual cooling takes place in two successive split gas coolers; z. B. in the first step from 875 ° C to 550 ° C and in the second step from 550 ° C to 350 ° C. The quench cooler have the corresponding designation primary and secondary radiator.

Zusätzlich erfolgt eine weitere Abkühlung des Spaltgases in Kesselwasserspeisevorwärmern sowohl im einstufigem als auch im zweistufigen System. Hierbei wird kein Dampf mehr erzeugt, sondern das "Kühlwasser", das Kesselspeisewasser, wird für die Primär- und Sekundärkühler möglichst nahe der Siedetemperatur vorgewärmt. Die Zufuhr des vorgewärmten Kesselspeisewassers zu den Primär- und Sekundärspaltgaskühlern erfolgt indirekt über eine Dampftrommel, in der das Kesselspeisewasser auf Siedetemperatur erhitzt wird.In addition, further cooling of the cracked gas in boiler water feed preheaters takes place both in the single-stage and in the two-stage system. Here, no more steam is generated, but the "Cooling water", the boiler feed water, is preheated as close as possible to the boiling temperature for the primary and secondary coolers. The feed of the preheated boiler feed water to the primary and secondary slit gas coolers takes place indirectly via a steam drum in which the boiler feed water is heated to boiling temperature.

Aus der EP 0 272 378 B1 ist ein Spaltgaskühler bekannt, bei dem das Spaltgas in einer ersten, einen Verdampfer darstellenden Kühlstufe durch siedendes Wasser und in einer zweiten, einen Überhitzer darstellenden Kühlstufe durch Dampf gekühlt wird. Wie üblich ist dem Spaltgaskühler ein zusätzlicher Kühler nachzuschalten, in dem das Spaltgas durch Speisewasser weiter heruntergekühlt wird. Bei einer Variante des aus der EP 0 272 378 B1 bekannten Spaltgaskühlers sind der Verdampfer und der Überhitzer in einem gemeinsamen Mantel angeordnet und durch eine Tennwand voneinander getrennt, die ein Überströmen des Kühlmediums von einer Kühlstufe in die andere verhindert.From the EP 0 272 378 B1 For example, a fission gas cooler is known in which the fission gas is cooled by steam in a first cooling stage representing an evaporator and by steam in a second cooling stage representing a superheater. As usual, an additional cooler is to be connected downstream of the quench cooler, in which the cracked gas is further cooled down by feed water. In a variant of the from EP 0 272 378 B1 known quench cooler, the evaporator and the superheater are arranged in a common shell and separated by a partition, which prevents overflow of the cooling medium from one cooling stage to the other.

Der Erfindung liegt die Aufgabe zugrunde, den gattungsgemäßen, zwei Teilräume innerhalb eines gemeinsamen Mantels umfassenden Wärmetauschers zum Kühlen von Spaltgas derart zu gestalten, dass die Kühlung innerhalb des auf der Gasaustrittsseite des Spaltgases liegenden Teilraumes effektiver und der apparative Aufbau reduziert wird.The invention has for its object to make the generic, two subspaces within a common shell comprehensive heat exchanger for cooling fission gas such that the cooling is reduced within the lying on the gas outlet side of the quenching gas subspace more effective and the apparatus design.

Die Aufgabe wird bei einem gattungsgemäßen Wärmetauscher erfindungsgemäß durch die kennzeichnenden Merkmale des Anspruches 1 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind Gegenstand der Unteransprüche.The object is achieved according to the invention in a generic heat exchanger by the characterizing features of claim 1. Advantageous embodiments of the invention are the subject of the dependent claims.

Der auf der Gaseintrittseite des Spaltgases liegende Teilraum des Wärmetauschers dient als Verdampfer und kühlt das Spaltgas bis nahe an die Siedetemperatur des siedenden Wassers ab. Anschließend gelangt das Spaltgas in den auf der Gasaustrittsseite des Spaltgases liegenden und als Vorwärmer dienenden Teilraum, wo das Spaltgas durch das kühlere Speisewasser deutlich unter die Siedetemperatur des Wassers weiter abgekühlt wird. Dadurch wird die Kühlung des Spaltgases insgesamt effektiver. Das sich dabei erwärmende Speisewasser wird entweder der Dampftrommel zugeführt, wo es auf Siedetemperatur erhitzt wird, oder es strömt direkt durch die wie ein "leckender" Rohrboden wirkende Trennwand in den Verdampferabschnitt. Die für das Kühlmedium absichtlich durchlässig gestaltete Trennwand sorgt für einen Druckausgleich zwischen den Teilräumen.The lying on the gas inlet side of the fission gas subspace of the heat exchanger serves as an evaporator and cools the cracking gas to near the boiling point of the boiling water. Subsequently, the cracked gas passes into the lying on the gas outlet side of the fission gas and serving as a preheater subspace, where the fission gas is further cooled by the cooler feed water well below the boiling temperature of the water. As a result, the cooling of the fission gas is total more effective. The heating feed water is either fed to the steam drum, where it is heated to boiling temperature, or it flows directly through the acting as a "leaking" tubesheet bulkhead in the evaporator section. The intentionally permeable to the cooling medium partition wall ensures a pressure equalization between the subspaces.

Außerdem wird durch die Zusammenfassung von Verdampfer und Vorwärmer zu einem gemeinsamen Aggregat der apparative Aufbau der Spaltgaskühlung reduziert, indem der bisher separate Speisewasservorwärmer in den Verdampfer integriert wird, wodurch ein kompletter Kühler innerhalb der Abkühlungsreihe sowie die Spaltgasleitung zwischen dem Verdampfer und dem Speisewasservorwärmer entfallen und kürzere Rohrleitungen zur Dampftrommel möglich werden.In addition, the combination of evaporator and preheater is reduced to a common aggregate apparatus design of the quench cooling by the previously separate feedwater is integrated into the evaporator, thereby eliminating a complete cooler within the cooling row and the fission gas line between the evaporator and the feedwater and shorter Pipes to the steam drum are possible.

Durch den Wegfall der Verbindung Verdampfer zum Vorwärmer entfallen die gasseitigen Druckverluste, welche sonst durch Rohrausströmung Verdampfer und Rohreinströmung Vorwärmer sowie durch die Strömungen in der Gasaustrittskammer und der. Gaseintrittskammer verursacht worden wären. Dadurch wird der gesamte Druckverlust des Spaltgases im Kühler reduziert, was sowohl die Ausbeute an Ethylen, Propylen, Butadien und andere im Spaltgas erhöht, als auch die Laufzeit des Kühlers verlängert.By eliminating the connection evaporator to the preheater eliminates the gas side pressure losses, which otherwise by tube outflow evaporator and tube inflow preheater and by the currents in the gas outlet chamber and the. Gas inlet chamber would have been caused. Thereby, the total pressure loss of the cracking gas in the cooler is reduced, which increases both the yield of ethylene, propylene, butadiene and others in the cracking gas, as well as extends the life of the cooler.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im Folgenden näher erläutert. Es zeigen:

  • Fig. 1 schematisch den Längsschnitt durch einen Wärmetauscher zum Kühlen von Spaltgas und
  • Fig. 2 den Schnitt II - II nach Fig. 1.
An embodiment of the invention is illustrated in the drawing and will be explained in more detail below. Show it:
  • Fig. 1 shows schematically the longitudinal section through a heat exchanger for cooling cracked gas and
  • 2 shows the section II - II of FIG. 1st

Der gezeigte Wärmetauscher dient zum Kühlen von Spaltgas in einer Ethylenanlage. Der Wärmetauscher besteht aus einem Rohrbündel aus geraden Wärmetauscherrohren 1, die in jeweils einer Rohrplatte 2, 3 zu beiden Seiten des Rohrbündels gehalten sind. In der Zeichnung sind der Übersichtlichkeit wegen nur einige der Wärmetauscherrohre 1 dargestellt. Jede Rohrplatte 2, 3 ist von Bohrungen durchdrungen, in die jeweils eines der Wärmetauscherrohre 1 eingesetzt und durch eine Schweißnaht mit der Rohrplatte 2, 3 verschweißt ist. Das Rohrbündel ist von einem äußeren Mantel 4 umschlossen, der zusammen mit den jeweiligen Rohrplatten 2, 3 einen von einem Kühlmedium durchflossenen Innenraum begrenzt.The heat exchanger shown serves to cool cracked gas in an ethylene plant. The heat exchanger consists of a tube bundle of straight heat exchanger tubes 1, which are held in each case a tube plate 2, 3 on both sides of the tube bundle. In the drawing, for the sake of clarity, only some of the heat exchanger tubes 1 are shown. Each tube plate 2, 3 is penetrated by holes in each one of the heat exchanger tubes 1 is inserted and welded by a weld with the tube plate 2, 3. The tube bundle is enclosed by an outer jacket 4 which, together with the respective tube plates 2, 3, delimits an interior through which a cooling medium flows.

An die Rohrplatten 2, 3 schließt sich auf der Gaseintrittsseite und auf der Gasaustrittsseite jeweils eine Endkammer, die Eintrittskammer 5 und die Austrittskammer 6 an. Die Eintrittskammer 5 und die Austrittskammer 6 sind jeweils mit einem Stutzen zur Zuführung oder Abführung des Spaltgases versehen. Alle Teile des Wärmetauschers sind aus einem warmfesten Stahl gefertigt.To the tube plates 2, 3 is followed on the gas inlet side and on the gas outlet side in each case an end chamber, the inlet chamber 5 and the outlet chamber 6 at. The inlet chamber 5 and the outlet chamber 6 are each provided with a nozzle for supplying or discharging the fission gas. All parts of the heat exchanger are made of a heat-resistant steel.

Das durch die Eintrittskammer 5 herangeführte, heiße Spaltgas trifft auf die Rohrplatte 2 und strömt durch die Bohrungen der Rohrplatte 2 in die Wärmetauscherrohre 1 und verlässt durch die Rohrplatte 3 am anderen Ende den gekühlten Bereich des Wärmetauschers. Über die Austrittskammer 6 wird das abgekühlte Spaltgas abgeführt. Die gezeigten Pfeile geben die Strömungsrichtung an.The hot gap gas introduced through the inlet chamber 5 impinges on the tube plate 2 and flows through the bores of the tube plate 2 into the heat exchanger tubes 1 and leaves the cooled region of the heat exchanger through the tube plate 3 at the other end. About the outlet chamber 6, the cooled cleavage gas is removed. The arrows indicate the flow direction.

Der Innenraum des Wärmetauschers ist durch eine Trennwand 7 in zwei Teilräume 8, 9 aufgeteilt, so dass innerhalb des Wärmetauschers zwei Kühlabschnitte entstanden sind, die jeweils mit einem eigenen Kühlmedium beaufschlagt werden und als Verdampferabschnitt bzw. als Vorwärmerabschnitt dienen.The interior of the heat exchanger is divided by a partition wall 7 into two subspaces 8, 9, so that two cooling sections have formed within the heat exchanger, each of which is acted upon by its own cooling medium and serve as the evaporator section or preheater section.

Der auf der Gaseintrittsseite des Spaltgases liegende Teilraum 8 des liegend angeordneten Wärmetauschers ist auf der Unterseite mit mehreren Zuführungsstutzen 10 und auf der Oberseite mit mehreren Abführungsstutzen 11 für ein Kühlmedium versehen. Als Kühlmedium dient siedendes, unter hohem Druck stehendes Wasser, das einer der Trennung von Wasser und Dampf dienenden Wasser/Dampf-Trommel 12 entnommen wird. Dazu ist an die Zuführungsstutzen 10 eine Zuführungsleitung 13 angeschlossen, die von dem Wasserraum 14 der Wasser/Dampf-Trommel 12 ausgeht. Die Abführungsstutzen 11 sind mit Abführungsleitungen 15 verbunden, die an einer anderen Stelle in den Wasserraum 14 der Wasser/Dampf-Trommel 12 einmünden und den im Wärmetausch mit dem Spaltgas erzeugten Sattdampf abführen. Der in der Wasser/Dampf-Trommel 12 abgetrennte Dampf wird über eine von dem Dampfraum 16 der Wasser/Dampf-Trommel 12 ausgehenden Dampfleitung 17 abgeführt.The lying on the gas inlet side of the fission gas subspace 8 of the horizontally disposed heat exchanger is provided on the bottom with multiple feed nozzle 10 and on the top with a plurality of Abführungsstutzen 11 for a cooling medium. The cooling medium is boiling, high-pressure water, which is one of the separation of water and steam serving water / steam drum 12 is removed. For this purpose, a supply line 13 is connected to the supply nozzle 10, which starts from the water chamber 14 of the water / steam drum 12. The discharge pipe 11 are connected to discharge lines 15 which open at a different location in the water space 14 of the water / steam drum 12 and the heat exchange with the Dissipate fission gas generated saturated steam. The steam separated in the water / steam drum 12 is discharged via a steam pipe 17 extending from the steam space 16 of the water / steam drum 12.

Der auf der Gasaustrittsseite liegende Teilraum 9 des liegend angeordneten Wärmetauschers ist an der Unterseite mit einem oder mehreren Zuführungsstutzen 18 in der Nähe des Rohrbodens 3 und an der Oberseite mit einem oder mehreren Abführungsstutzen 19 in der Nähe der Trennwand 7 versehen. Über den Zuführungsstutzen 18 wird Speisewasser in den Teilraum 9 eingespeist. In dem Teilraum 9 sind Umlenkbleche 20 voneinander beabstandet und parallel und unten und oben versetzt zueinander angeordnet, die als Schikanen wirken und das Speisewasser im Gegenstrom zu dem Spaltgas durch den Teilraum 9 führen. Das Speisewasser wird im Wärmetausch mit dem Spaltgas vorgewärmt und über eine an den Abführungsstutzen 19 angeschlossene Abführungsleitung 21 in den Wasserraum 14 der Wasser/Dampf-Trommel 12 geleitet.The lying on the gas outlet side space 9 of the horizontally disposed heat exchanger is provided at the bottom with one or more feed port 18 in the vicinity of the tube sheet 3 and at the top with one or more discharge port 19 in the vicinity of the partition 7. Feed water is fed into the subspace 9 via the feed connection 18. In the subspace 9 baffles 20 are spaced from each other and arranged in parallel and below and above offset from each other, which act as baffles and lead the feed water in countercurrent to the fission gas through the subspace 9. The feed water is preheated in heat exchange with the cracking gas and passed through a connected to the discharge port 19 discharge line 21 into the water space 14 of the water / steam drum 12.

Die Zusammenfassung von Verdampferabschnitt und Vorwärmerabschnitt zu einem gemeinsamen Wärmetauscher-Aggregat verkürzt die Zu- und Abführungen zwischen dem Wärmetauscher und der Wasser/Dampf-Trommel 12. Diese Anordnung macht es möglich, die Wasser/Dampf-Trommel 12 direkt auf dem Mantel 4 des Wärmetauschers zu montieren. Dadurch entsteht eine kompakte Baueinheit, durch die Rohrleitungen sowie die Zeiten zu deren Montage eingespart werden können.The combination of evaporator section and preheater section to a common heat exchanger unit shortens the inlets and outlets between the heat exchanger and the water / steam drum 12. This arrangement makes it possible for the water / steam drum 12 directly on the jacket 4 of the heat exchanger to assemble. This creates a compact unit through which piping and the times for their installation can be saved.

Die Trennwand 7 zwischen den beiden Teilräumen 8, 9 ist ein nichttragendes Bauteil, das lediglich die Aufgabe hat, die Strömungen in den Teilräumen 8, 9 auseinander zu halten. Die Trennwand 7 ist mit Bohrungen 22 versehen, deren Durchmesser geringfügig größer ist als der Außendurchmesser der Wärmetauscherrohre 1, so dass die Wärmetauscherrohre 1 durch die Trennwand 7 mit Spiel 23 hindurch geführt sind. Der Außendurchmesser der Trennwand 7 ist geringer als der Innendurchmesser des Mantels 4, so dass im eingebauten Zustand ein Spalt 24 zwischen Trennwand 7 und Mantel 4 besteht. Die Trennwand 7 kann mit dem aus den Wärmetauscherrohren 1 bestehenden Rohrbündel in den Mantel 4 hinein geschoben werden. Bei einem Wärmetauscher üblicher Größe beträgt der Spalt 24 zwischen der Trennwand 7 und dem Mantel 4 wenige Millimetern, beispielsweise 2 mm, und das Spiel 23 zwischen den Wärmetauscherrohren 1 und den Bohrungen 22 in der Trennwand 7 weniger als 1 mm, z. B. 0,6 mm. In der Fig. 2 sind der Spalt 24 und das Spiel 23 überproportional groß dargestellt.The partition 7 between the two subspaces 8, 9 is a non-structural component, which only has the task to keep the currents in the subspaces 8, 9 apart. The partition wall 7 is provided with bores 22 whose diameter is slightly larger than the outer diameter of the heat exchanger tubes 1, so that the heat exchanger tubes 1 are guided through the partition wall 7 with clearance 23 therethrough. The outer diameter of the partition wall 7 is less than the inner diameter of the jacket 4, so that in the installed state, a gap 24 between partition 7 and jacket 4 is made. The partition wall 7 can be pushed into the jacket 4 with the tube bundle consisting of the heat exchanger tubes 1. In a heat exchanger of conventional size, the gap 24 between the partition wall 7 and the jacket 4th a few millimeters, for example 2 mm, and the clearance 23 between the heat exchanger tubes 1 and the bores 22 in the partition wall 7 less than 1 mm, z. B. 0.6 mm. 2, the gap 24 and the game 23 are disproportionately large.

Der Spalt 24 zwischen der Trennwand 7 und dem Mantel 4 sowie das Spiel 23 zwischen dem Umfang der Wärmetauscherrohre 1 und den Bohrungen 22 in der Trennwand 7 bewirken, dass die Trennwand 7 durchlässig ist für den Durchtritt des jeweiligen Kühlmediums von dem einem Teilraum 8, 9 in den anderen. Die Trennwand 7 wirkt damit wie ein "leckender" Rohrboden.The gap 24 between the partition wall 7 and the jacket 4 and the clearance 23 between the circumference of the heat exchanger tubes 1 and the holes 22 in the partition 7 cause the partition 7 is permeable to the passage of the respective cooling medium of a subspace 8, 9th in the others. The partition 7 thus acts as a "leaking" tube sheet.

Das Speisewasser wird dem auf der Gasaustrittsseite liegenden Teilraum 9 über Pumpen zugeführt und steht unter einem Druck, der zwar leicht schwankend oder immer höher ist als der Druck in dem auf der Gaseintrittsseite liegenden Teilraum 8. Es herrscht in der Regel also immer ein Druckunterschied. Dieser Druckunterschied wird dadurch ausgeglichen, dass Wasser aus dem auf der Gasaustrittsseite liegenden Teilraum 9 durch die bewusst undicht gehaltene Trennwand 7 in den auf der Gaseintrittsseite liegenden Teilraum 8 übertritt. Das aus dem auf der Gasaustrittsseite liegenden Teilraum 9 austretende Leckwasser verdampft in dem auf der Gaseintrittsseite liegenden Teilraum 8 und gelangt ebenfalls in die Wasser/Dampf-Trommel 12.The feed water is supplied to the lying on the gas outlet side space 9 via pumps and is under a pressure that is slightly fluctuating or always higher than the pressure in the lying on the gas inlet side subspace 8. It is usually therefore always a pressure difference. This pressure difference is compensated for by the fact that water from the subspace 9 located on the gas outlet side passes through the intentionally leaky separating wall 7 into the subspace 8 located on the gas inlet side. The leaking from the lying on the gas outlet side space 9 leaking vaporizes in the lying on the gas inlet side compartment 8 and also passes into the water / steam drum 12th

Claims (5)

Wärmetauscher zur Kühlung von Spaltgas in einer Ethylenanlage, bei dem von dem Spaltgas durchströmte Wärmetauscherrohre (1) an ihren jeweiligen Enden in jeweils eine Rohrplatte (2, 3) eingesetzt und von einem Mantel (4) umgeben sind, an dessen beiden Stirnseiten je eine teilweise durch eine der Rohrplatten (2, 3) begrenzte Endkammer (5, 6) für die Zuführung und die Abführung des Spaltgases vorgesehen ist, bei dem der von dem Mantel (4) umschlossene Innenraum des Wärmetauschers von Wasser als Kühlmedium durchströmt und durch eine senkrecht zu den Wärmetauscherrohren (1) verlaufende und von den Wärmetauscherrohren (1) durchdrungene Trennwand (7) in zwei in Strömungsrichtung des Spaltgases hintereinander liegende Teilräume (8, 9) aufgeteilt ist, die mit jeweils eigenen Zuführungsstutzen (10, 18) und Abführungsstutzen (11, 19) für das Kühlmedium versehen sind, und bei dem der auf der Gaseintrittsseite des Spaltgases liegende Teilraum (8) von siedendem Wasser durchströmt ist und der Teilraum (8) über eine Zuführungsleitung (13) und Abführungsleitungen (15) mit einer Wasser/Dampf-Trommel (12) verbunden ist, dadurch gekennzeichnet, dass der auf der Gasaustrittsseite des Spaltgases liegende Teilraum (9) von Speisewasser durchströmt ist, dass der Teilraum (9) über eine Abführungsleitung (21) mit der Wasser/Dampf-Trommel (12) verbunden ist und dass die Trennwand (7) zwischen den beiden Teilräumen (8, 9) für den Durchtritt des im Inneren des Wärmetauschers strömenden Kühlmediums durchlässig ist.Heat exchanger for cooling cracked gas in an ethylene plant, used in the heat exchanger tubes (1) flowed through by the gap gas at their respective ends in a respective tube plate (2, 3) and surrounded by a jacket (4), at the two end faces each one partially through one of the tube plates (2, 3) limited end chamber (5, 6) is provided for the supply and discharge of the quenching gas, in which of the jacket (4) enclosed interior of the heat exchanger flows through water as a cooling medium and by a perpendicular to the dividing wall (7) extending through the heat exchanger tubes (1) and penetrated by the heat exchanger tubes (1) is divided into two subspaces (8, 9) arranged one behind the other in the flow direction of the quenching gas, each having its own feed connection (10, 18) and discharge connection (11, 19) are provided for the cooling medium, and in which the lying on the gas inlet side of the fission gas subspace (8) flows through boiling water is and the subspace (8) via a feed line (13) and discharge lines (15) with a water / steam drum (12) is connected, characterized in that the lying on the gas outlet side of the quenching gas subspace (9) is flowed through by feedwater in that the partial space (9) is connected to the water / steam drum (12) via a discharge line (21) and that the dividing wall (7) between the two partial spaces (8, 9) for the passage of the inside of the heat exchanger Cooling medium is permeable. Wärmetauscher nach Anspruch 1, dadurch gekennzeichnet, dass der Druck des Speisewassers in dem auf der Gasaustrittsseite des Spaltgases liegenden Teilraum (9) größer ist als der Druck des siedenden Wassers in dem auf der Gaseintrittsseite des Spaltgases liegenden Teilraum (8).Heat exchanger according to claim 1, characterized in that the pressure of the feedwater in the lying on the gas outlet side of the quenching gas subspace (9) is greater than the pressure of the boiling water in the lying on the gas inlet side of the quenching gas subspace (8). Wärmetauscher nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Trennwand (7) als ein nichttragendes Bauteil ausgebildet ist.Heat exchanger according to claim 1 or 2, characterized in that the partition wall (7) is designed as a non-load-bearing component. Wärmetauscher nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass zwischen dem Außenumfang der Trennwand (7) und dem Innendurchmesser des Mantels (4) ein Spalt (24) besteht.Heat exchanger according to one of claims 1 to 3, characterized in that between the outer periphery of the partition wall (7) and the inner diameter of the jacket (4), there is a gap (24). Wärmetauscher nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die von dem Spaltgas durchströmten Wärmetauscherrohre (1) mit Spiel (23) durch Bohrungen (22) in der Trennwand (7) hindurchgeführt sind.Heat exchanger according to one of claims 1 to 4, characterized in that the heat flow through the gap of the heat exchanger tubes (1) with clearance (23) through holes (22) in the partition wall (7) are passed.
EP07033540A 2006-11-24 2007-11-02 Heat exchanger for cooling fission gas Active EP1939412B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006055973A DE102006055973A1 (en) 2006-11-24 2006-11-24 Heat exchanger for cooling cracked gas

Publications (2)

Publication Number Publication Date
EP1939412A1 true EP1939412A1 (en) 2008-07-02
EP1939412B1 EP1939412B1 (en) 2010-10-13

Family

ID=39326389

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07033540A Active EP1939412B1 (en) 2006-11-24 2007-11-02 Heat exchanger for cooling fission gas

Country Status (6)

Country Link
US (1) US7784433B2 (en)
EP (1) EP1939412B1 (en)
JP (1) JP5368694B2 (en)
AT (1) ATE484653T1 (en)
DE (2) DE102006055973A1 (en)
ES (1) ES2351522T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018002086A1 (en) * 2018-03-09 2019-09-12 Borsig Gmbh quench

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2174075B1 (en) * 2007-07-05 2011-09-21 IB.Ntec Thermodynamic system employing a device for producing heat by passing a fluid at pressure through a plurality of tubes
CN101769658B (en) * 2009-12-17 2012-12-12 中国石油化工股份有限公司 Fluid distribution method for rapid-cooling heat exchanger
CN101865446B (en) * 2010-06-17 2012-01-11 南京国昌化工科技有限公司 Horizontal-type bushing-type high temperature exhaust-heat recovery unit capable of generating saturated vapor and superheated vapor at the same time
CA3092028C (en) 2012-01-13 2022-08-30 Lummus Technology Llc Process for separating hydrocarbon compounds
US9428978B2 (en) * 2012-06-28 2016-08-30 Carbon Energy Limited Method for shortening an injection pipe for underground coal gasification
US9670113B2 (en) 2012-07-09 2017-06-06 Siluria Technologies, Inc. Natural gas processing and systems
IN2015DN03086A (en) * 2012-09-26 2015-10-02 Trane Int Inc
US9598328B2 (en) 2012-12-07 2017-03-21 Siluria Technologies, Inc. Integrated processes and systems for conversion of methane to multiple higher hydrocarbon products
US10047020B2 (en) 2013-11-27 2018-08-14 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
CN110655437B (en) 2014-01-08 2022-09-09 鲁玛斯技术有限责任公司 System and method for ethylene to liquids
CA3225180A1 (en) 2014-01-09 2015-07-16 Lummus Technology Llc Oxidative coupling of methane implementations for olefin production
US10377682B2 (en) 2014-01-09 2019-08-13 Siluria Technologies, Inc. Reactors and systems for oxidative coupling of methane
US10793490B2 (en) 2015-03-17 2020-10-06 Lummus Technology Llc Oxidative coupling of methane methods and systems
US9334204B1 (en) 2015-03-17 2016-05-10 Siluria Technologies, Inc. Efficient oxidative coupling of methane processes and systems
US20160289143A1 (en) 2015-04-01 2016-10-06 Siluria Technologies, Inc. Advanced oxidative coupling of methane
US9328297B1 (en) 2015-06-16 2016-05-03 Siluria Technologies, Inc. Ethylene-to-liquids systems and methods
EP3362425B1 (en) 2015-10-16 2020-10-28 Lummus Technology LLC Separation methods and systems for oxidative coupling of methane
FR3044081B1 (en) * 2015-11-20 2017-12-29 Technip France COOL FLOW COOLING SYSTEM AND METHOD THEREOF
EP3442934A4 (en) 2016-04-13 2019-12-11 Siluria Technologies, Inc. Oxidative coupling of methane for olefin production
EP3267100B1 (en) * 2016-07-08 2021-04-14 L'air Liquide, Société Anonyme Pour L'Étude Et L'exploitation Des Procédés Georges Claude Steam creation system
DE102016013459A1 (en) * 2016-11-12 2018-05-17 Linde Aktiengesellschaft Process for changing the temperature of a fluid by means of a shell-and-tube heat exchanger and shell-and-tube heat exchanger
EP3554672A4 (en) 2016-12-19 2020-08-12 Siluria Technologies, Inc. Methods and systems for performing chemical separations
CN106839827A (en) * 2017-01-19 2017-06-13 南京天华化学工程有限公司 A kind of multi-functional cracking rapid-cooling heat exchanger
HUE064375T2 (en) 2017-05-23 2024-03-28 Lummus Technology Inc Integration of oxidative coupling of methane processes
EP3406970A1 (en) 2017-05-26 2018-11-28 ALFA LAVAL OLMI S.p.A. Vapour and liquid drum for a shell-and-tube heat exchanger
RU2020102298A (en) 2017-07-07 2021-08-10 Люммус Текнолоджи Ллс SYSTEMS AND METHODS FOR OXIDATIVE COMBINATIONS OF METHANE
CN110056848A (en) * 2018-04-23 2019-07-26 新能能源有限公司 High temperature and high pressure flue gas afterheat utilizing system
EP4053452B1 (en) 2021-03-05 2023-09-27 ALFA LAVAL OLMI S.p.A. Process heat recovery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062344A2 (en) * 1981-04-06 1982-10-13 The M. W. Kellogg Company Waste heat boiler and steam superheater system
EP0272378A1 (en) * 1986-12-20 1988-06-29 Deutsche Babcock-Borsig AG Process and device for cooling cracking gases
DE3643303A1 (en) * 1986-12-18 1988-06-30 Uhde Gmbh DEVICE FOR HEAT EXCHANGE, ESPECIALLY BETWEEN SYNTHESIS GAS AND BOILER FEED WATER
BE1012128A3 (en) * 1998-08-21 2000-05-02 Blommaert Paul Combined steam boiler and water supply pre-heater of the type with a flare pipe known as a "combination boiler"
EP1219892A1 (en) * 2000-12-14 2002-07-03 Borsig GmbH Heat recovery boiler for cooling hot synthesis gas

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2711897C3 (en) * 1977-03-18 1980-01-10 Davy International Ag, 6000 Frankfurt Process and device for the catalytic oxidation of gaseous sulfur compounds to sulfur trioxide
JPS5752793A (en) * 1980-09-12 1982-03-29 Mitsubishi Heavy Ind Ltd Rapid cooling type heat exchanger
DE3302304A1 (en) * 1983-01-25 1984-07-26 Borsig Gmbh, 1000 Berlin HEAT EXCHANGER FOR COOLING HOT GASES, ESPECIALLY FROM THE AMMONIA SYNTHESIS
US4488513A (en) * 1983-08-29 1984-12-18 Texaco Development Corp. Gas cooler for production of superheated steam
DE3429366A1 (en) * 1984-08-09 1986-02-27 L. & C. Steinmüller GmbH, 5270 Gummersbach CLEARED GAS COOLER FOR LOW-ENERGY PLANTS
DE3913731A1 (en) * 1989-04-26 1990-10-31 Borsig Gmbh HEAT EXCHANGER FOR COOLING FUSE GAS
JP2778878B2 (en) * 1991-09-12 1998-07-23 株式会社日本触媒 Method for producing ethylene oxide
DK173540B1 (en) * 1994-06-29 2001-02-05 Topsoe Haldor As Waste heat boiler
DE19534823C2 (en) * 1995-09-20 2002-08-22 Ruhr Oel Gmbh Shell and tube heat exchangers
US5813453A (en) * 1996-06-01 1998-09-29 Deutsche Babcock-Borsig Ag Heat exchanger for cooling cracked gas
JP3885904B2 (en) * 1997-05-06 2007-02-28 臼井国際産業株式会社 EGR gas cooling device
JPH1113549A (en) * 1997-06-23 1999-01-19 Isuzu Motors Ltd Egr cooler
DE19811905C2 (en) 1998-03-18 2000-03-30 Papierfabrik Scheufelen Gmbh & Method and device for measuring the breakage behavior of cardboard, in particular playing cards
DE10233818B4 (en) * 2002-07-25 2007-05-24 Uhde Gmbh Waste heat boiler for a Claus plant
US7090816B2 (en) * 2003-07-17 2006-08-15 Kellogg Brown & Root Llc Low-delta P purifier for nitrogen, methane, and argon removal from syngas
DE102005057674B4 (en) * 2005-12-01 2008-05-08 Alstom Technology Ltd. waste heat boiler

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0062344A2 (en) * 1981-04-06 1982-10-13 The M. W. Kellogg Company Waste heat boiler and steam superheater system
DE3643303A1 (en) * 1986-12-18 1988-06-30 Uhde Gmbh DEVICE FOR HEAT EXCHANGE, ESPECIALLY BETWEEN SYNTHESIS GAS AND BOILER FEED WATER
EP0272378A1 (en) * 1986-12-20 1988-06-29 Deutsche Babcock-Borsig AG Process and device for cooling cracking gases
BE1012128A3 (en) * 1998-08-21 2000-05-02 Blommaert Paul Combined steam boiler and water supply pre-heater of the type with a flare pipe known as a "combination boiler"
EP1219892A1 (en) * 2000-12-14 2002-07-03 Borsig GmbH Heat recovery boiler for cooling hot synthesis gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018002086A1 (en) * 2018-03-09 2019-09-12 Borsig Gmbh quench
US10744474B2 (en) 2018-03-09 2020-08-18 Borsig Gmbh Quenching system

Also Published As

Publication number Publication date
ATE484653T1 (en) 2010-10-15
ES2351522T3 (en) 2011-02-07
US7784433B2 (en) 2010-08-31
EP1939412B1 (en) 2010-10-13
US20080121383A1 (en) 2008-05-29
DE102006055973A1 (en) 2008-05-29
JP2008145097A (en) 2008-06-26
JP5368694B2 (en) 2013-12-18
DE502007005333D1 (en) 2010-11-25

Similar Documents

Publication Publication Date Title
EP1939412B1 (en) Heat exchanger for cooling fission gas
DE102008048405B3 (en) Tube bundle heat exchanger for the regulation of a wide power range
EP2151652B1 (en) Connecting piece between a cracking tube and a cooling tube and method for connecting a cracking tube with a cooling tube
EP0417428A2 (en) Tube bundle heat exchanger
DE3039787A1 (en) HEAT EXCHANGER
WO2007017064A1 (en) Heat exchanger
DE602004000055T2 (en) Horizontal reactor, in particular for the production of methanol
WO2004067165A1 (en) Multi-zone tubular reactor for carrying out exothermic gas-phase reactions
EP1219892B1 (en) Heat recovery boiler for cooling hot synthesis gas
EP0810414B1 (en) Heat exchanger for cooling cracked gases
DE102007050799B3 (en) Device for humidifying and heating fuel gas for fuel cell system, has housing through which gas to be humidified and heated flows on predetermined path
DE2109825B2 (en) Steam generator with a tube bundle arranged in a vertical pressure vessel
EP0974803B1 (en) Heat exchanger for cooling hot process gas
DE102009050087A1 (en) Cyclone separator for the phase separation of a multiphase fluid flow, steam turbine plant with a cyclone separator and associated operating method
EP1772692A1 (en) Apparatus for cooling waste gases
DE2551195C3 (en) Heat exchanger for cooling fission gases
WO2018055067A1 (en) Method and arrangement for heat energy recovery in systems comprising at least one reformer
WO2011045152A2 (en) Plate heat exchanger
DE3333735C2 (en)
WO2002093099A1 (en) Heat exchanger for heating a product, in particular a mass for production of confectionery
EP0436828B1 (en) Heat exchanger for cooling hot reaction gas
DE102009011847A1 (en) Heat exchanger for use in organic rankine cycle system, has guide plates for guiding hot gas after cooling, where hot gas is inwardly circulated around predominant part of outer casing, before leaving through openings in casing
DE2224899A1 (en) Heat-exchanger - for steam raising in pipes surrounding hot gas pipes fed from an inlet chamber
WO2017067629A1 (en) Tube bundle heat exchanger and method for producing same
WO2017032880A1 (en) Reactor and method for catalytic conversion of a gas mixture

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080924

17Q First examination report despatched

Effective date: 20081027

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502007005333

Country of ref document: DE

Date of ref document: 20101125

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Effective date: 20110126

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110214

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110213

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110113

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

26N No opposition filed

Effective date: 20110714

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007005333

Country of ref document: DE

Effective date: 20110714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110414

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101013

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221118

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230125

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 17

Ref country code: FR

Payment date: 20231120

Year of fee payment: 17

Ref country code: DE

Payment date: 20231122

Year of fee payment: 17

Ref country code: CZ

Payment date: 20231023

Year of fee payment: 17

Ref country code: AT

Payment date: 20231121

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20231120

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240124

Year of fee payment: 17