JP3885904B2 - EGR gas cooling device - Google Patents

EGR gas cooling device Download PDF

Info

Publication number
JP3885904B2
JP3885904B2 JP13168397A JP13168397A JP3885904B2 JP 3885904 B2 JP3885904 B2 JP 3885904B2 JP 13168397 A JP13168397 A JP 13168397A JP 13168397 A JP13168397 A JP 13168397A JP 3885904 B2 JP3885904 B2 JP 3885904B2
Authority
JP
Japan
Prior art keywords
egr gas
cooling
cooling zone
temperature
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13168397A
Other languages
Japanese (ja)
Other versions
JPH10306987A (en
Inventor
豊博 古屋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP13168397A priority Critical patent/JP3885904B2/en
Publication of JPH10306987A publication Critical patent/JPH10306987A/en
Application granted granted Critical
Publication of JP3885904B2 publication Critical patent/JP3885904B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1607Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/16Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
    • F28D7/1684Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section
    • F28D7/1692Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation the conduits having a non-circular cross-section with particular pattern of flow of the heat exchange media, e.g. change of flow direction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2250/00Arrangements for modifying the flow of the heat exchange media, e.g. flow guiding means; Particular flow patterns
    • F28F2250/06Derivation channels, e.g. bypass

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、エンジンの冷却液、インタークーラー用冷媒、カーエアコン用冷媒または冷却風等によってEGRガスを冷却する装置に関するものである。
【0002】
【従来の技術】
排気ガスの一部を排気系から取出して、再びエンジンの吸気系に戻し、混合気に加える方法は、EGR(Exhaust Gas Recirculation:排気再循環)と称される。EGRはNOx(窒素酸化物)の発生抑制、ポンプ損失の低減、燃焼ガスの温度低下に伴う冷却液への放熱損失の低減、作動ガス量・組成の変化による比熱比の増大と、これに伴うサイクル効率の向上等、多くの効果が得られることから、エンジンの熱効率を改善するには有効な方法とされている。
【0003】
しかるに、EGRガスの温度が高くなると、吸気温度の上昇に伴う燃費の低下やその熱作用によりEGRバルブの耐久性が劣化し、早期破損を招く場合があったり、その防止のために水冷構造とする必要があること等が認識されている。このような事態を避けるため、エンジンの冷却液等によってEGRガスを冷却する装置が用いられている。この装置としては、一般に多管式の熱交換器が利用される。
【0004】
この場合に利用される多管式の熱交換器は、図2にその一例を示すごとく、両端部に冷却媒体流入口11−1および冷却媒体流出口11−2を設けた胴管11内部において、伝熱管群12の両端部がチューブシート13にろう付けまたは溶接により固定され、一方チューブシート13はその外周部を胴管11の内壁にろう付けまたは溶接により固着して配列され、前記胴管11の一方の端部にはEGRガスの流入口14a−1が設けられた端部キャップ14aが固着され、また他方の端部にはEGRガスの流出口14b−1が設けられた端部キャップ14bが固着された構成となし、冷却媒体流入口11−1より導入されるエンジンの冷却液等により、伝熱管群12の内部を流れるEGRガスが冷却される構造となっているものが知られている(実公昭57−309号公報等参照)。
【0005】
【発明が解決しようとする課題】
しかしながら、エンジンの冷却液等によってEGRガスを冷却する上記の多管式熱交換器の場合は、エンジンの冷却液がEGRガスとの熱交換により昇温し、胴管11内部において沸騰することや、エンジン冷却液の温度が100℃に近くEGRガスの出口付近では両流体間の温度差が少ないため伝熱管群12の内部を流れるEGRガスが十分に冷却されないという問題点があった。
【0006】
本発明は、このような問題点を解決するためになされたもので、EGRガスの冷却ゾーンを複数で構成するとともに、各冷却ゾーンに温度の異なる冷却媒体を導入する方式をとることによって、冷却媒体の沸騰現象を防止するとともに、EGRガスの出口付近での温度差を大きくしてEGRガスの熱交換量を高めることができるEGRガス冷却装置を提供しようとするものである。
【0007】
本発明は、上記課題を解決するため、胴管内壁の両端部付近に固定されたチューブシートに伝熱管群が固着配列され、さらに前記胴管の両端部の外側には端部キャップが固着され、また前記端部キャップにはEGRガスの流入口と流出口が設けられた構造の多管式のEGRガス冷却装置において、前記胴管の冷却ゾーンを仕切板にて両端と中央部の3つの冷却ゾーンに区分し、両端部の冷却ゾーンをそれぞれ第1冷却ゾーンおよび第3冷却ゾーン、中央部を第2冷却ゾーンとし、かつ前記第1冷却ゾーンと第3冷却ゾーン間を配管にて連通し、第1冷却ゾーンおよび第3冷却ゾーンには低温冷却媒体を、第2冷却ゾーンにはエンジン冷却液をそれぞれ導入する方式となしたことを特徴とするものである。
【0008】
本発明において、主にEGRガスの流入口側に設ける第1冷却ゾーンと、EGRガスの流出口側に設ける第3冷却ゾーンは、それぞれ胴管の全容積の5〜30%程度が適当とされる。その理由は5%未満では胴管内部における沸騰の防止やEGRガス出口付近での低温冷却媒体との温度差が乏しく、一方30%を超えると低温冷却媒体の熱負荷が大きくなり過ぎるためであるが、低温冷却媒体の導入温度や伝熱管の径やピッチなどによっては必ずしもこの容積とする必要はない。また、胴管の両端部に低温冷却媒体を導入し、胴管中央部にエンジン冷却液を導入してEGRガスを冷却するようにしたのは、なるべく多くの熱量をエンジン冷却液で冷却し低温冷却媒体の熱負荷を軽くすること、EGRガスを大温度差で能率よく冷却することと、エンジン冷却液の沸騰現象を防止するためである。低温冷却媒体としては、例えば水冷インタークーラー用冷却液やカーエアコン用冷媒等を使用することができる。
【0009】
EGRガス流入口より流入したEGRガスは、まず第1冷却ゾーンで低温冷却媒体により冷却される。このゾーンでは、EGRガスと低温冷却媒体との温度差が大きいので熱交換率が高い。したがって、EGRガスの温度が高くエンジン冷却液での冷却では伝熱管の外表面において当該冷却液の沸騰が発生するような場合、この第1冷却ゾーンでの冷却により沸騰を防止するかあるいは僅かに沸騰して小さな気泡が発生しても直ちに凝縮できる。次に、第1冷却ゾーンで冷却されたEGRガスは中央の第2冷却ゾーンにおいて、エンジン冷却液により通常の冷却が行われ熱量の多くはこのゾーンで熱交換される。この第2冷却ゾーンでは、EGRガスとエンジン冷却液の温度差が小さくなるため、EGRガスの当該ゾーン出口温度はエンジン冷却液の温度にかなり近づく。第3冷却ゾーンでは、第1冷却ゾーンより配管を通って導入される低温冷却媒体により熱交換されるので、EGRガスと低温冷却媒体間の温度差が大きくなり(急冷効果)、EGRガスの温度を第2冷却ゾーンより下げることができる。
【0010】
なお、胴管の両端と中央部の3つの冷却ゾーンは、一応仕切板によって水密に仕切られるが、両低温冷却媒体とエンジン冷却液が同系の場合は仕切板と伝熱管群とは完全密閉シールする必要はない。
【0011】
【発明の実施の形態】
図1は本発明に係る多管式のEGRガス冷却装置の構造例を示す横断平面図であり、1は胴管、1−1は第1冷却ゾーン、1−2は第2冷却ゾーン、1−3は第3冷却ゾーン、2は伝熱管群、3はチューブシート、4a、4bは端部キャップ、4a−1はEGRガスの流入口、4b−1はEGRガスの流出口、5は仕切板、6は連絡配管である。
【0012】
すなわち、本発明に係る多管式のEGRガス冷却装置は、両端部に冷却媒体流入口1−1および冷却媒体流出口1−2を設けた胴管1内部において、伝熱管群2の両端部が板金製のチューブシート3にろう付けまたは溶接により固定され、一方チューブシート3はその外周部を胴管1の内壁にろう付けまたは溶接により固着して配列され、前記胴管1の一方の端部にはEGRガスの流入口4a−1が設けられた端部キャップ4aが固着され、また他方の端部にはEGRガスの流出口4b−1が設けられた端部キャップ4bが固着された構成となすとともに、胴管1内部の両端部に仕切板5をろう付けまたは溶接により固定し、胴管1内部のEGRガスの流入口側を第1冷却ゾーン1−1、中央部を第2冷却ゾーン1−2、EGRガスの流出口側を第3冷却ゾーン1−3とし、かつ第1冷却ゾーン1−1と第3冷却ゾーン1−3を連絡配管6にて連通し、第1冷却ゾーン1−1には低温冷却媒体の流入口1−1aを、第3冷却ゾーン1−3には低温冷却媒体の流出口1−3bを、第2冷却ゾーン1−2にはエンジン冷却液の流入口1−2aと流出口1−2bを、それぞれ設けた構造となっている。
【0013】
上記構造のEGRガス冷却装置において、EGRガスの流入口4a−1より流入したEGRガスは、第1冷却ゾーン1−1において低温冷却媒体流入口1−1aより導入された低温冷却媒体により大温度差で能率よく冷却され、続いて第2冷却ゾーン1−2においてエンジン冷却液流入口1−2aより導入されるエンジン冷却液にて通常の冷却が行われる。この第2冷却ゾーン1−2では、EGRガスとエンジン冷却液の温度差が小さくなるため、EGRガスの当該ゾーン出口温度はエンジン冷却液の温度にかなり近づいた状態で第3冷却ゾーン1−3に移行する。第3冷却ゾーン1−3では、第1冷却ゾーン1−1から連絡配管6を介して導入される低温冷却媒体により、エンジン冷却液の温度にかなり近づいたEGRガスが大きな温度差(急冷効果)によりさらに冷却される。したがって、EGRガス流出口4b−1より流出するEGRガスは、エンジン冷却液のみにより冷却する従来のEGRガス冷却装置よりも低温に冷却される。故に、NOx(窒素酸化物)の発生を大幅に抑制できる上、パーティキュレートの減少および燃費の向上をはかることができる。なお、第1冷却ゾーン1−1の低温冷却媒体流入口1−1aより導入された低温冷却媒体は、第3冷却ゾーン1−3に設けた低温冷却媒体流出口1−3bより流出し、第2冷却ゾーン1−1のエンジン冷却液流入口1−2aより導入されたエンジン冷却液は当該ゾーンに設けたエンジン冷却液流出口1−2bより流出する。
【0014】
なお図示の実施例では、EGRガスはまず第1冷却ゾーン1−1に導入され、次いで第2冷却ゾーン1−2を介して第3冷却ゾーン1−3から流出する例について説明したが、所望に応じEGRガスの流れを逆にして、まず第3冷却ゾーン1−3に導入され、第2冷却ゾーン1−2を介して第1冷却ゾーン1−1から流出するよう構成しても上記と同様の作用効果が得られる。
【0015】
【発明の効果】
以上説明したごとく、本発明のEGRガス冷却装置によれば、EGRガスを3つの冷却ゾーンにて効率よく冷却することができることにより、EGRガスをエンジン冷却液のみにより冷却する従来のEGRガス冷却装置よりも低温に冷却することができ、冷却媒体の沸騰現象を防止するとともに、EGRガスの出口付近での温度差を大きくしてEGRガスの熱交換量を高めてNOx(窒素酸化物)の発生抑制、パーティキュレートの減少および燃費の向上に多大な効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る多管式のEGRガス冷却装置の構造例を示す横断平面図である。
【図2】本発明の対象とする従来の多管式のEGRガス冷却装置の一例を一部破断して示す平面図である。
【符号の説明】
1 胴管
1−1a 低温冷却媒体の流入口
1−2a エンジン冷却液の流入口
1−2b エンジン冷却液の流出口
1−3b 低温冷却媒体の流出口
2 伝熱管群
3 チューブシート
4a、4b 端部キャップ
4a−1 EGRガスの流入口
4b−1 EGRガスの流出口
5 仕切板
6 連絡配管
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an apparatus that cools EGR gas with engine coolant, intercooler refrigerant, car air conditioner refrigerant, cooling air, or the like.
[0002]
[Prior art]
A method in which a part of the exhaust gas is taken out from the exhaust system, returned to the engine intake system, and added to the air-fuel mixture is called EGR (Exhaust Gas Recirculation). EGR suppresses the generation of NOx (nitrogen oxide), reduces pump loss, reduces heat dissipation loss to the coolant due to lowering of combustion gas temperature, and increases specific heat ratio due to changes in working gas amount / composition. Since many effects such as improvement of cycle efficiency can be obtained, it is an effective method for improving the thermal efficiency of the engine.
[0003]
However, when the temperature of the EGR gas increases, the durability of the EGR valve deteriorates due to a decrease in fuel consumption accompanying the increase in intake air temperature and its thermal action, which may lead to premature breakage. It is recognized that there is a need to do so. In order to avoid such a situation, an apparatus that cools EGR gas with engine coolant or the like is used. As this apparatus, a multi-tube heat exchanger is generally used.
[0004]
As shown in FIG. 2, the multi-tubular heat exchanger used in this case is provided inside the trunk tube 11 provided with the cooling medium inlet 11-1 and the cooling medium outlet 11-2 at both ends. Both ends of the heat transfer tube group 12 are fixed to the tube sheet 13 by brazing or welding, while the tube sheet 13 is arranged with its outer peripheral portion fixed to the inner wall of the trunk tube 11 by brazing or welding, An end cap 14a provided with an EGR gas inflow port 14a-1 is fixed to one end of the end 11, and an end cap provided with an EGR gas outflow port 14b-1 is provided at the other end. 14b is fixed, and the EGR gas flowing inside the heat transfer tube group 12 is cooled by engine coolant introduced from the coolant inlet 11-1 or the like. Have (See Publication No. Utility Model 57-309).
[0005]
[Problems to be solved by the invention]
However, in the case of the above-described multi-tube heat exchanger that cools the EGR gas with engine coolant or the like, the temperature of the engine coolant rises due to heat exchange with the EGR gas, and boiles in the trunk tube 11. The temperature of the engine coolant is close to 100 ° C., and the temperature difference between the two fluids is small near the outlet of the EGR gas, so that the EGR gas flowing inside the heat transfer tube group 12 is not sufficiently cooled.
[0006]
The present invention has been made in order to solve such problems, and includes a plurality of EGR gas cooling zones, and a cooling medium having different temperatures is introduced into each cooling zone. An object of the present invention is to provide an EGR gas cooling device that can prevent a medium boiling phenomenon and increase a temperature difference in the vicinity of the outlet of the EGR gas to increase the heat exchange amount of the EGR gas.
[0007]
In order to solve the above problems, the present invention has a heat transfer tube group fixedly arranged on a tube sheet fixed in the vicinity of both ends of the inner wall of the trunk tube, and end caps are fixed to the outside of both ends of the trunk tube. Further, in the multi-tube EGR gas cooling device having a structure in which an inlet and an outlet for EGR gas are provided in the end cap, the cooling zone of the trunk pipe is divided into three parts at both ends and a central part by a partition plate. It is divided into cooling zones, the cooling zones at both ends are the first cooling zone and the third cooling zone, the central portion is the second cooling zone, and the first cooling zone and the third cooling zone are connected by piping. The first cooling zone and the third cooling zone are configured to introduce a low-temperature cooling medium, and the second cooling zone is configured to introduce an engine coolant.
[0008]
In the present invention, the first cooling zone provided mainly on the EGR gas inlet side and the third cooling zone provided on the EGR gas outlet side are each appropriately set to about 5 to 30% of the total volume of the trunk pipe. The The reason is that if it is less than 5%, the temperature difference from the low temperature cooling medium in the vicinity of the EGR gas outlet and the prevention of boiling inside the trunk tube is poor, while if it exceeds 30%, the thermal load of the low temperature cooling medium becomes too large. However, this volume is not necessarily required depending on the introduction temperature of the low-temperature cooling medium, the diameter and pitch of the heat transfer tubes, and the like. In addition, the EGR gas is cooled by introducing a low-temperature cooling medium to both ends of the trunk and introducing an engine coolant to the middle of the trunk to cool the EGR gas as much as possible with the engine coolant. This is because the heat load of the cooling medium is reduced, the EGR gas is efficiently cooled with a large temperature difference, and the boiling phenomenon of the engine coolant is prevented. As the low-temperature cooling medium, for example, a coolant for a water-cooled intercooler, a refrigerant for a car air conditioner, or the like can be used.
[0009]
The EGR gas that has flowed in from the EGR gas inlet is first cooled by the low-temperature cooling medium in the first cooling zone. In this zone, since the temperature difference between the EGR gas and the low-temperature cooling medium is large, the heat exchange rate is high. Therefore, when the EGR gas temperature is high and the cooling of the engine coolant causes boiling of the coolant on the outer surface of the heat transfer tube, the cooling in the first cooling zone prevents the boiling or slightly Even if it boiles and small bubbles are generated, it can be condensed immediately. Next, the EGR gas cooled in the first cooling zone is normally cooled by the engine coolant in the central second cooling zone, and most of the heat is exchanged in this zone. In this second cooling zone, the temperature difference between the EGR gas and the engine coolant becomes small, so that the zone outlet temperature of the EGR gas approaches the temperature of the engine coolant considerably. In the third cooling zone, heat exchange is performed by the low-temperature cooling medium introduced through the pipe from the first cooling zone, so that the temperature difference between the EGR gas and the low-temperature cooling medium increases (rapid cooling effect), and the temperature of the EGR gas Can be lowered from the second cooling zone.
[0010]
Note that the three cooling zones at both ends and the center of the trunk are watertightly partitioned by a partition plate. However, if the low-temperature cooling medium and the engine coolant are the same system, the partition plate and the heat transfer tube group are completely sealed. do not have to.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a cross-sectional plan view showing a structural example of a multi-tube EGR gas cooling device according to the present invention, wherein 1 is a trunk pipe, 1-1 is a first cooling zone, 1-2 is a second cooling zone, -3 is a third cooling zone, 2 is a heat transfer tube group, 3 is a tube sheet, 4a and 4b are end caps, 4a-1 is an EGR gas inlet, 4b-1 is an EGR gas outlet, and 5 is a partition A plate 6 is a connecting pipe.
[0012]
That is, the multi-tube EGR gas cooling device according to the present invention includes both end portions of the heat transfer tube group 2 inside the trunk tube 1 provided with the cooling medium inlet port 1-1 and the cooling medium outlet port 1-2 at both ends. Is fixed to the tube sheet 3 made of sheet metal by brazing or welding, while the tube sheet 3 is arranged with its outer peripheral portion fixed to the inner wall of the barrel tube 1 by brazing or welding, and one end of the barrel tube 1 is arranged. An end cap 4a provided with an EGR gas inlet 4a-1 is fixed to the part, and an end cap 4b provided with an EGR gas outlet 4b-1 is fixed to the other end. In addition to the configuration, the partition plates 5 are fixed to both ends inside the trunk tube 1 by brazing or welding, the EGR gas inlet side inside the trunk tube 1 is the first cooling zone 1-1, and the central portion is the second. Cooling zone 1-2, EGR gas outlet Is the third cooling zone 1-3, and the first cooling zone 1-1 and the third cooling zone 1-3 are communicated with each other through the connecting pipe 6, and the inlet of the low-temperature cooling medium is connected to the first cooling zone 1-1. 1-1a, the third cooling zone 1-3 has a low-temperature cooling medium outlet 1-3b, the second cooling zone 1-2 has an engine coolant inlet 1-2a and an outlet 1-2b. Each has a structure provided.
[0013]
In the EGR gas cooling apparatus having the above-described structure, the EGR gas that has flowed in from the EGR gas inlet 4a-1 has a large temperature due to the low-temperature cooling medium introduced from the low-temperature cooling medium inlet 1-1a in the first cooling zone 1-1. Cooling is efficiently performed by the difference, and then normal cooling is performed with the engine coolant introduced from the engine coolant inlet 1-2a in the second cooling zone 1-2. In the second cooling zone 1-2, since the temperature difference between the EGR gas and the engine coolant is small, the zone cooling temperature of the EGR gas is considerably close to the temperature of the engine coolant. Migrate to In the third cooling zone 1-3, the EGR gas that has approached the temperature of the engine coolant is greatly affected by the low-temperature cooling medium introduced from the first cooling zone 1-1 via the connecting pipe 6 (rapid cooling effect). Is further cooled. Therefore, the EGR gas flowing out from the EGR gas outlet 4b-1 is cooled to a temperature lower than that of the conventional EGR gas cooling device that is cooled only by the engine coolant. Therefore, generation of NOx (nitrogen oxide) can be greatly suppressed, and particulates can be reduced and fuel consumption can be improved. The low-temperature cooling medium introduced from the low-temperature cooling medium inlet 1-1a in the first cooling zone 1-1 flows out from the low-temperature cooling medium outlet 1-3b provided in the third cooling zone 1-3. The engine coolant introduced from the engine coolant inlet 1-2a in the 2-cooling zone 1-1 flows out from the engine coolant outlet 1-2b provided in the zone.
[0014]
In the illustrated embodiment, EGR gas is first introduced into the first cooling zone 1-1 and then flows out from the third cooling zone 1-3 through the second cooling zone 1-2. Accordingly, the flow of the EGR gas is reversed, and the EGR gas is first introduced into the third cooling zone 1-3 and then flows out of the first cooling zone 1-1 through the second cooling zone 1-2. Similar effects can be obtained.
[0015]
【The invention's effect】
As described above, according to the EGR gas cooling device of the present invention, the EGR gas can be efficiently cooled in the three cooling zones, so that the conventional EGR gas cooling device that cools the EGR gas only by the engine coolant. It can be cooled to a lower temperature, preventing the boiling phenomenon of the cooling medium, and increasing the temperature difference near the outlet of the EGR gas to increase the heat exchange amount of the EGR gas and generate NOx (nitrogen oxide) It has a great effect on suppression, reduction of particulates and improvement of fuel consumption.
[Brief description of the drawings]
FIG. 1 is a cross-sectional plan view showing a structural example of a multi-tube EGR gas cooling device according to the present invention.
FIG. 2 is a plan view partially broken away showing an example of a conventional multi-tube EGR gas cooling device that is a subject of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Body pipe 1-1a Low temperature cooling medium inflow 1-2a Engine cooling liquid inflow 1-2b Engine cooling liquid outflow 1-3b Low temperature cooling medium outflow 2 Heat transfer tube group 3 Tube sheet 4a, 4b End Cap 4a-1 EGR gas inlet 4b-1 EGR gas outlet 5 Partition plate 6 Connecting piping

Claims (1)

胴管内壁の両端部付近に固定されたチューブシートに伝熱管群が固着配列され、さらに前記胴管の両端部の外側には端部キャップが固着され、また前記端部キャップにはEGRガスの流入口と流出口が設けられた構造の多管式のEGRガス冷却装置において、前記胴管の冷却ゾーンを仕切板にて両端と中央部の3つの冷却ゾーンに区分し、両端部の冷却ゾーンをそれぞれ第1冷却ゾーンおよび第3冷却ゾーン、中央部を第2冷却ゾーンとし、かつ前記第1冷却ゾーンと第3冷却ゾーン間を配管にて連通し、第1冷却ゾーンおよび第3冷却ゾーンには低温冷却媒体を、第2冷却ゾーンにはエンジン冷却液をそれぞれ導入する方式となしたことを特徴とするEGRガス冷却装置。A heat transfer tube group is fixedly arranged on tube sheets fixed near both ends of the inner wall of the trunk tube, and end caps are fixed to the outside of both ends of the trunk tube, and EGR gas is attached to the end cap. In the multi-tube EGR gas cooling apparatus having a structure in which an inlet and an outlet are provided, the cooling zone of the trunk pipe is divided into three cooling zones at both ends and a central portion by a partition plate, and cooling zones at both ends Are the first cooling zone and the third cooling zone, the central portion is the second cooling zone, and the first cooling zone and the third cooling zone are connected by piping, and the first cooling zone and the third cooling zone are connected. Is a system for introducing a low-temperature cooling medium and an engine coolant into the second cooling zone, respectively.
JP13168397A 1997-05-06 1997-05-06 EGR gas cooling device Expired - Fee Related JP3885904B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13168397A JP3885904B2 (en) 1997-05-06 1997-05-06 EGR gas cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13168397A JP3885904B2 (en) 1997-05-06 1997-05-06 EGR gas cooling device

Publications (2)

Publication Number Publication Date
JPH10306987A JPH10306987A (en) 1998-11-17
JP3885904B2 true JP3885904B2 (en) 2007-02-28

Family

ID=15063788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13168397A Expired - Fee Related JP3885904B2 (en) 1997-05-06 1997-05-06 EGR gas cooling device

Country Status (1)

Country Link
JP (1) JP3885904B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000045883A (en) * 1998-07-24 2000-02-15 Hino Motors Ltd Egr cooler
ITRM20010050A1 (en) * 2001-01-31 2002-07-31 Bennardo Marioli HIGH FLOW EXCHANGER MANIFOLD DEVICE.
DE10312788A1 (en) 2003-03-21 2004-09-30 Behr Gmbh & Co. Kg Exhaust gas heat exchanger and sealing device for exhaust gas heat exchanger
CN1300539C (en) * 2003-10-30 2007-02-14 丁振荣 Inner tube equipment of heating water by using disposal heat energy generated from condensation process
JP2007255719A (en) 2004-04-30 2007-10-04 T Rad Co Ltd Connection structure of heat exchanger
JP4578375B2 (en) * 2005-09-30 2010-11-10 日野自動車株式会社 Engine EGR system
DE102006055973A1 (en) * 2006-11-24 2008-05-29 Borsig Gmbh Heat exchanger for cooling cracked gas
US7461641B1 (en) 2007-10-18 2008-12-09 Ford Global Technologies, Llc EGR Cooling System with Multiple EGR Coolers
JP5293077B2 (en) * 2007-10-30 2013-09-18 株式会社デンソー Heat exchanger
KR101458352B1 (en) * 2008-07-21 2014-11-04 한라비스테온공조 주식회사 Radiator equipped with inverter cooling part
BE1019332A5 (en) 2010-05-11 2012-06-05 Atlas Copco Airpower Nv HEAT EXCHANGER.
JP5582022B2 (en) * 2010-12-22 2014-09-03 株式会社デンソー Exhaust heat exchanger
CN108775825B (en) * 2018-05-24 2021-05-04 重庆美的通用制冷设备有限公司 Heat exchange assembly and refrigerating system with same

Also Published As

Publication number Publication date
JPH10306987A (en) 1998-11-17

Similar Documents

Publication Publication Date Title
JP3885904B2 (en) EGR gas cooling device
US8069905B2 (en) EGR gas cooling device
JP3781386B2 (en) EGR gas cooling device
US7594536B2 (en) EGR cooler
JP4386215B2 (en) EGR gas cooling device
CN201835912U (en) Cooling core of water-air intercooler
JP3991786B2 (en) Exhaust heat exchanger
JP4247942B2 (en) EGR gas cooling device
JPH09324707A (en) Egr device
JPH1113551A (en) Egr cooler
JP3664457B2 (en) EGR gas cooling device
CN108317018A (en) Cylinder head cooling device and preparation method thereof and cylinder cover cooling system
JPH1113549A (en) Egr cooler
JPH11193992A (en) Multitubular egr gas cooling device
JP3948638B2 (en) EGR gas cooling device
KR100256515B1 (en) An egr gas cooling device
CN211782963U (en) Combined heat exchanger
JP3982650B2 (en) Multi-tube EGR gas cooling system
CN2901226Y (en) Heat exchanger of multitube distance
JP3886214B2 (en) EGR gas cooling device
JPH10185489A (en) Egr gas cooler
CN208380718U (en) A kind of close-coupled cooler for recycled exhaust gas
JP2001304049A (en) Multiple pipe type egr gas cooling device
CN216157790U (en) EGR cooler and engine with same
JP2003214262A (en) Egr gas cooling device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040428

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061115

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees