EP1928816A1 - Verfahren zur herstellung von xylylendiamin - Google Patents
Verfahren zur herstellung von xylylendiaminInfo
- Publication number
- EP1928816A1 EP1928816A1 EP06793495A EP06793495A EP1928816A1 EP 1928816 A1 EP1928816 A1 EP 1928816A1 EP 06793495 A EP06793495 A EP 06793495A EP 06793495 A EP06793495 A EP 06793495A EP 1928816 A1 EP1928816 A1 EP 1928816A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- hydrogenation
- xylylenediamine
- range
- weight
- phthalonitrile
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000034 method Methods 0.000 title claims abstract description 43
- GKXVJHDEWHKBFH-UHFFFAOYSA-N [2-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC=C1CN GKXVJHDEWHKBFH-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 5
- 238000005984 hydrogenation reaction Methods 0.000 claims abstract description 46
- FDLQZKYLHJJBHD-UHFFFAOYSA-N [3-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=CC(CN)=C1 FDLQZKYLHJJBHD-UHFFFAOYSA-N 0.000 claims abstract description 42
- XQZYPMVTSDWCCE-UHFFFAOYSA-N phthalonitrile Chemical compound N#CC1=CC=CC=C1C#N XQZYPMVTSDWCCE-UHFFFAOYSA-N 0.000 claims abstract description 20
- LAQPNDIUHRHNCV-UHFFFAOYSA-N isophthalonitrile Chemical compound N#CC1=CC=CC(C#N)=C1 LAQPNDIUHRHNCV-UHFFFAOYSA-N 0.000 claims abstract description 12
- ISKQADXMHQSTHK-UHFFFAOYSA-N [4-(aminomethyl)phenyl]methanamine Chemical compound NCC1=CC=C(CN)C=C1 ISKQADXMHQSTHK-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000002638 heterogeneous catalyst Substances 0.000 claims abstract description 6
- BHXFKXOIODIUJO-UHFFFAOYSA-N benzene-1,4-dicarbonitrile Chemical compound N#CC1=CC=C(C#N)C=C1 BHXFKXOIODIUJO-UHFFFAOYSA-N 0.000 claims abstract description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 50
- 239000002904 solvent Substances 0.000 claims description 27
- 229910021529 ammonia Inorganic materials 0.000 claims description 22
- 229920006391 phthalonitrile polymer Polymers 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 14
- 238000004821 distillation Methods 0.000 claims description 14
- 238000009835 boiling Methods 0.000 claims description 12
- 239000006227 byproduct Substances 0.000 claims description 10
- 229910017052 cobalt Inorganic materials 0.000 claims description 8
- 239000010941 cobalt Substances 0.000 claims description 8
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 8
- 239000007788 liquid Substances 0.000 claims description 6
- 238000000746 purification Methods 0.000 claims description 5
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 claims description 4
- 239000012535 impurity Substances 0.000 claims description 3
- 229910052759 nickel Inorganic materials 0.000 claims description 3
- 239000003960 organic solvent Substances 0.000 claims description 3
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 claims description 2
- 238000000605 extraction Methods 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 claims description 2
- 239000000243 solution Substances 0.000 description 16
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 150000001408 amides Chemical class 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- -1 aromatic nitriles Chemical class 0.000 description 4
- WGQKYBSKWIADBV-UHFFFAOYSA-N benzylamine Chemical compound NCC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-N 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 238000010626 work up procedure Methods 0.000 description 4
- 150000001298 alcohols Chemical class 0.000 description 3
- 150000001409 amidines Chemical class 0.000 description 3
- 150000001412 amines Chemical class 0.000 description 3
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 150000002170 ethers Chemical class 0.000 description 3
- 229910052748 manganese Inorganic materials 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 150000002825 nitriles Chemical class 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- GWHJZXXIDMPWGX-UHFFFAOYSA-N 1,2,4-trimethylbenzene Chemical compound CC1=CC=C(C)C(C)=C1 GWHJZXXIDMPWGX-UHFFFAOYSA-N 0.000 description 2
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 239000007868 Raney catalyst Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000011068 loading method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- RIWRFSMVIUAEBX-UHFFFAOYSA-N n-methyl-1-phenylmethanamine Chemical compound CNCC1=CC=CC=C1 RIWRFSMVIUAEBX-UHFFFAOYSA-N 0.000 description 2
- 150000003141 primary amines Chemical class 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- FPPLREPCQJZDAQ-UHFFFAOYSA-N 2-methylpentanedinitrile Chemical compound N#CC(C)CCC#N FPPLREPCQJZDAQ-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- 238000009903 catalytic hydrogenation reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003426 co-catalyst Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 150000002431 hydrogen Chemical class 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- 229930195734 saturated hydrocarbon Natural products 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 150000003738 xylenes Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C209/00—Preparation of compounds containing amino groups bound to a carbon skeleton
- C07C209/44—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers
- C07C209/48—Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of carboxylic acids or esters thereof in presence of ammonia or amines, or by reduction of nitriles, carboxylic acid amides, imines or imino-ethers by reduction of nitriles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C211/00—Compounds containing amino groups bound to a carbon skeleton
- C07C211/01—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
- C07C211/26—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring
- C07C211/27—Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an unsaturated carbon skeleton containing at least one six-membered aromatic ring having amino groups linked to the six-membered aromatic ring by saturated carbon chains
Definitions
- the present invention relates to a process for the preparation of xylylenediamine by hydrogenation of phthalonitrile in the presence of a heterogeneous catalyst.
- Xylylenediamine bis (aminomethyl) benzene
- Xylylenediamine is a useful starting material, e.g. for the synthesis of polyamides, epoxy hardeners or as an intermediate for the preparation of isocyanates.
- xylylenediamine includes the three isomers ortho-xylylenediamine, meta-xylylenediamine (MXDA) and para-xylylenediamine.
- the phthalonitriles are solids (for example, melts isophthalonitrile (IPN) at 161 0 C) and have relatively poor solubilities in organic solvents.
- EP-A1-1 209 146 (BASF AG) relates to a process for the hydrogenation of nitriles to primary amines on specific Raney catalysts.
- the solvents mentioned are alcohols, amines, amides such as NMP and dimethylformamide (DMF), ethers and esters.
- WO-A-98/09947 (Du Pont) describes the hydrogenation of 2-methylglutaronitrile in the presence of many possible solvents, i.a. NMP (see claim 2).
- a disadvantage of the use of methanol is that methylated XDA occurs as a byproduct.
- CN-A-1 285 343 (Derwent Abstract WP2001317563) (China Petrochem Corp.) describes the use of amines as solvents for the hydrogenation of PDN.
- US-A-4,482,741 (UOP) describes the use of MXDA as a solvent.
- MXDA solubility of IPDN at 70 ° C is about 20 wt .-%.
- this requires high purification streams of the MXDA.
- a 20% solution of IPDN in pure MXDA requires ⁇ times the cleaning capacity than would be required to purify the formed product alone. The investment and operating costs are correspondingly higher.
- EP-A-538 865 and US 4,247,478 teach the use of ethers such as dioxane, THF and diglyme as solvents for the hydrogenation of PDN.
- EP-A2-1 193 247 and EP-A1-1 279 661 (both Mitsubishi Gas Chem. Comp.) Relate to a process for the purification of isophthalonitrile (IPDN) and a process for the preparation of pure XDA.
- IPDN isophthalonitrile
- EP-A2-1 193 247 discloses the hydrogenation of IPDN in the presence of NH 3 and a solvent (see Figure 1).
- EP-A1-1 279 661 discloses aromatic hydrocarbons and saturated hydrocarbons as solvents for the hydrogenation (column 7, paragraph [0038]).
- EP-A2-1 193 244 (Mitsubishi Gas Chem. Comp.) Describes a process for the preparation of XDA by hydrogenation of phthalonitrile which is dissolved in a C 6 -C 12 aromatic hydrocarbon, such as xylene, mesitylene and pseudocumene (columns 5 6, paragraphs [0027] and [0028], column 6, paragraph [0032]).
- GB-A-852,972 (equivalent: DE-A-1 1 19 285) (BASF AG) discloses the use of ammonia as a solvent in the hydrogenation of PDN.
- German Patent Application No. 102005036222.2 dated 02.08.05 (BASF AG) relates to a process for the preparation of xylylenediamine by continuous hydrogenation of phthalonitrile on a heterogeneous catalyst in the presence of liquid ammonia in a reactor, wherein a portion of the reactor effluent as liquid recycle stream continuously recycled to the reactor inlet is (circulating), in which by means of a mixer phthalonitrile as a melt or in solid form with a stream of liquid ammonia (stream a) and another stream which is at least partially withdrawn from the recycle stream to the hydrogenation reactor, (stream b) or a mixture of the streams a and b is mixed and the resulting liquid mixture is driven into the hydrogenation reactor.
- a mixer phthalonitrile as a melt or in solid form with a stream of liquid ammonia (stream a) and another stream which is at least partially withdrawn from the recycle stream to the hydrogenation reactor, (stream b) or a mixture of the streams a and
- the addition of nitrile or its solution in the hydrogenation reactor should be at moderate temperatures (eg ⁇ 80 ° C) or pressures (eg ⁇ 6 bar) can take place and the distillation effort should be kept as low as possible, so that the production of XDA in existing Equipment or standard equipment can be carried out so that no investment is needed.
- a process for the preparation of o-, m- or p-xylylenediamine by hydrogenation of o-, m- or p-phthalodinitrile was found in the presence of a heterogeneous catalyst, which is characterized in that a solution of the Phthodoinitrils in the corresponding isomer of crude xylylenediamine is fed to the hydrogenation reactor, wherein the crude xylylenediamine has a purity in the range of 85 to 99.7 wt .-% and a content of high boilers in the range of 0.3 to 15 wt .-%.
- a solution of the phthalonitrile in the corresponding isomer of crude xylylenediamine is moved into the hydrogenation reactor, the crude xylylenediamine having a purity in the range from 89 to 99.5% by weight, in particular in the range from 92 to 99.2% by weight, and a content of high boilers in the range of 0.5 to 11 wt .-%, in particular in the range of 0.8 to 8 wt .-%, having.
- the high boilers are, for example, amides, amidines, bis-XDA (XDA dimers), and further oligomers, for example according to the following formulas:
- R -CH 2 NH 2 , -CN, -CONH 2 , -CH 2 NHCH 2 -AfyI, -C (NH) NCH 2 -aryl, -CHFCH 2 -aryl
- Amidines e.g.
- R, R '(independently of each other) -CH 2 NH 2 , -CN, -CONH 2 , -CH 2 NHCH 2 -aryl, -C (NH) NCH 2 -aryl, -CHFCH 2 -aryl
- Bis-XDA e.g. BisMXDA
- the crude xylylenediamine used as solvent preferably has a content of low-boiling components, such as benzylamine and / or N-methylbenzylamine, in the range from 0.01 to 2% by weight, in particular in the range from 0.01 to 1% by weight. , (each without ammonia) and a content of ammonia in the range of 0 to 5 wt .-%, especially in the range of 0 to 2 wt .-%, on.
- high boilers are meant components which, under the same conditions, have a higher boiling point than the respective xylylenediamine.
- low boilers are meant components which have a lower boiling point than the respective xylylenediamine under the same conditions.
- the process according to the invention preferably finds application for the preparation of meta-xylylenediamine (MXDA) by hydrogenation of isophthalonitrile (IPDN).
- MXDA meta-xylylenediamine
- IPDN isophthalonitrile
- MXDA is suitable as a solvent for IPDN. Due to the poor solubility (e.g., 15% by weight at 60 ° C), high distillation capacities are required. According to the invention, it was recognized that the use of the obtained crude MXDA (reaction discharge after removal of the ammonia optionally used in the reaction), the distillation streams can be greatly reduced (almost the same amount as used IPDN as feed stream for purifying).
- the reaction effluent contains reaction by-products (e.g., benzylamine, methylbenzylamine, methylated MXDA, amides, amidines, bis-MXDA, other high boilers) and optionally residual ammonia.
- the PDN used in the process as starting material can be synthesized in a previous stage by ammoxidation of the corresponding xylene isomer.
- Such synthesis methods are e.g. in BASF patent applications EP-A-767 165, EP-A-699 476, EP-A-222 249, DE-A-35 40 517 and DE-A-37 00 710, in the aforementioned applications EP-A2 1 193 247, EP-A1-1 279 661 and EP-A2-1 193 244 (all Mitsubishi Gas Chem. Comp.) And in the above-mentioned BASF patent applications for the preparation of XDA described.
- the PDN is solved in raw XDA.
- This can e.g. separately, i. in an upstream step, in a discontinuously, semicontinuously or continuously operated vessel or stirred tank, optionally with external pumped circulation, or other suitable mixing or dissolving device.
- the dissolution process at elevated temperature e.g. at 40 to 120 ° C, preferably at 50 to 80 ° C, more preferably at 55 to 70 ° C, take place.
- the heat can be supplied via double jacket, coils, external heat exchanger or other suitable means for heat transfer device.
- the dissolution process is preferably carried out at an absolute pressure in the range of 1 to 20 bar, preferably 1 to 6 bar.
- the accumulation of larger amounts of by-products can be controlled by regular continuous discharge of crude XDA, eg crude MXDA. It is advantageous to correlate the amount of discharged material with the amount of PDN used, eg IPDN. Thus, only at the beginning of a campaign the use of pure XDA, eg MXDA, is necessary. Thus, the distillation streams - off see from these first use amounts - to reduce only the formed XDA. In the other case, ie when pure XDA is used instead of the crude XDA for dissolving the PDN, the use of an eg -15% by weight solution would produce 7 times the amount of XDA to be distilled.
- the solution is particularly preferably ammonia, preferably in liquid form, added.
- the weight ratio in the fresh feed of dinitrile to ammonia is in this case generally 1: 0.15 to 1:15, preferably 1: 0.5 to 1:10, in particular 1: 1 to 1: 5.
- the catalysts and reactors known to those skilled in the art for this reaction e.g., fixed bed or suspension mode
- processes continuous, semi-batch, batch
- the hydrogenation reactor can be run in straight passage.
- a circulation procedure is possible, in which part of the reactor discharge is returned to the reactor inlet.
- an optimal dilution of the reaction solution can be achieved, which has a favorable effect on the selectivity.
- the circulation stream can be cooled by means of an external heat exchanger in a simple and cost-effective manner, and thus the heat of reaction can be dissipated.
- the reactor can also be operated adiabatically, wherein the temperature rise of the reaction solution can be limited by the cooled circulation stream. Since the reactor does not have to be cooled in this case, a simple and cost-effective design is possible.
- An alternative is a cooled tube bundle reactor.
- the heterogeneous catalysts known in the prior art can be used for the hydrogenation of aromatic nitriles.
- catalysts which contain cobalt and / or nickel and / or iron as a full catalyst or on an (inert) support.
- Suitable catalysts are for example Raney nickel, Raney cobalt, Co full contact, titanium-doped cobalt supported (JP-A-2002 205980), Ni on SiO 2 support (WO-A-2000/046179), Co / Ti / Pd on SiO 2 support (CN-A-1 285 343, CN-A-1 285 236) and nickel and / or cobalt on zirconia support (EP-A1-1 262 232).
- catalysts are the full cobalt contacts disclosed in EP-A1-742 045 (BASF AG), doped with Mn, P, and alkali metal (Li, Na, K, Rb, Cs).
- the catalytically active composition of these catalysts before reduction with hydrogen from 55 to 98 wt .-%, in particular 75 to 95 wt .-%, cobalt, 0.2 to 15 wt .-% phosphorus, 0.2 to 15 wt. -% manganese and 0.05 to 5 wt .-% alkali metal, especially sodium, each calculated as the oxide.
- reaction temperatures of the hydrogenation are generally from 40 to 150.degree. C., preferably from 40 to 120.degree.
- the absolute pressure in the hydrogenation is generally 40 to 250 bar, preferably 100 to 210 bar.
- the ammonia used is distilled off. If necessary, part of the XDA (preferably the corresponding amount that was added to PDN) is removed and added to the purification. The remaining amount is used again as a solvent.
- the product (XDA) is additionally extracted with an organic solvent, preferably an aliphatic hydrocarbon, in particular a cycloaliphatic hydrocarbon, very particularly cyclohexane or methylcyclohexane.
- an organic solvent preferably an aliphatic hydrocarbon, in particular a cycloaliphatic hydrocarbon, very particularly cyclohexane or methylcyclohexane.
- This purification by extraction may be e.g. according to DE-A-1 074 592 (BASF AG).
- the hydrogenation of MXDA can be carried out in a plant as shown in Figure 1.
- MXDA or crude MXDA (stream [2]) is placed in a stirred tank and heated.
- IPDN stream [1] is fed in with stirring.
- a 15% solution of IPDN in MXDA is obtained.
- This solution (stream [3]) is then mixed continuously with ammonia (stream [4]) and preheated together with fresh hydrogen (stream [5]) and possibly hydrogen peroxide (stream [9]) in the heat exchanger W 300 and the hydrogenation reactor C. 300 closed.
- the catalytic hydrogenation to MXDA, with load and temperature are adjusted so that full conversion is achieved.
- the reaction is cooled and separated from the gas in the high pressure separator B 301.
- the gas is circulated by means of compressor V 300 (stream [9]) and a part is discharged (stream [12]) to avoid accumulation of inert gases.
- the liquid phase from B 301 can partly be circulated (stream [6]) or completely fed to the pressure distillation in K 300, in which ammonia is recovered in liquid form (stream [12]) and again in place of fresh ammonia Electricity [4] can be used.
- Crude MXDA is obtained via the bottom of the K 300 pressure column (stream [13]) which, depending on the distillation conditions, contains only slight traces of ammonia. It can then be used directly and without any further work-up step to dissolve a new batch of IPDN instead of the pure MXDA (stream [2]).
- a part of the crude MXDA can be fed to the purifying distillation to obtain MXDA with a purity> 99 wt .-%.
- This pure MXDA can also be used to dissolve IPDN, but crude MXDA is preferably used to minimize the distillation overhead. Examples
- a sump-mode reactor with a reactor volume of 70 ml was filled with a cobalt full contact (doped with Mn, P, Na), 4 mm strands.
- a 15% by weight solution (at 60 ° C) of IPDN in MXDA was introduced.
- Hydrogen and ammonia were also introduced from below. With an hourly feed of 126 g of dinitrile-MXDA solution and 54 g of ammonia per hour, a hydrogen flow of 20 l / h (volume under normal conditions) and a circuit of 3.5 ml / min, was set.
- the reactor pressure was 190 bar (abs.).
- the reaction effluent was depressurized to about 14 bar and distilled off at this pressure ammonia, which was used again after condensation.
- the selectivity based on IPDN used was 93%.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Verfahren zur Herstellung von o-, m- oder p-Xylylendiamin durch Hydrierung von o-, m- oder p-Phthalodinitril in Gegenwart eines Heterogenkatalysators, dadurch gekennzeichnet, dass eine Lösung des Phthalodinitrils im entsprechenden Isomer von rohem Xylylendiamin in den Hydrierreaktor gefahren wird, wobei das rohe Xylylendiamin eine Reinheit im Bereich von 85 bis 99,7 Gew.-% und einen Gehalt an Höhersiedern im Bereich von 0,3 bis 15 Gew.-% aufweist.
Description
Verfahren zur Herstellung von Xylylendiamin
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Xylylendiamin durch Hydrierung von Phthalodinitril in Gegenwart eines Heterogenkatalysators.
Xylylendiamin (Bis(aminomethyl)benzol) ist ein nützlicher Ausgangsstoff, z.B. für die Synthese von Polyamiden, Epoxyhärtern oder als Zwischenstufe zur Herstellung von Isocyanaten.
Die Synthese von Xylylendiamin durch Hydrierung von Phthalodinitril ist bekannt.
Die Bezeichnung „Xylylendiamin" (XDA) umfasst die drei Isomere ortho-Xylylendiamin, meta-Xylylendiamin (MXDA) und para-Xylylendiamin.
Der Begriff „Phthalodinitril" (PDN) umfasst die drei Isomere 1 ,2-Dicyanbenzol = o-Phthalodinitril, 1 ,3-Dicyanbenzol = Isophthalodinitril = IPDN und 1 ,4-Dicyanbenzol = Terephthalodinitril.
Die Phthalodinitrile sind Feststoffe (z.B. schmilzt Isophthalodinitril (IPDN) bei 1610C) und weisen relativ schlechte Löslichkeiten in organischen Lösungsmitteln auf.
Als Lösungsmittel für die Hydrierung von Nitrilen zu primären Aminen werden in der Literatur hauptsächlich Alkohole, Amide, cyclische Ether bzw. Amine gelehrt.
EP-A1-1 209 146 (BASF AG) betrifft ein Verfahren zur Hydrierung von Nitrilen zu primären Aminen an spezifischen Raney-Katalysatoren. Als Lösungsmittel werden Alkohole, Amine, Amide wie NMP und Dimethylformamid (DMF), Ether und Ester genannt.
WO-A-98/09947 (Du Pont) beschreibt die Hydrierung von 2-Methylglutaronitril in Gegenwart zahlreicher möglicher Lösungsmittel, u.a. NMP (vgl. Anspruch 2).
Als Lösungsmittel für die Hydrierung von PDN werden z.B. in JP-A-2002 205980, WO-A-2000/046179, JP-A-54 041 804 und JP-B-54 037 593 Alkohole, insbesondere Methanol, beschrieben.
Nachteilig am Einsatz von Methanol (Löslichkeit von IPDN bei 60°C: 18 Gew.-%) ist, dass methyliertes XDA als Nebenprodukt auftritt.
CN-A-1 285 343 (Derwent Abstract WP2001317563) (China Petrochem. Corp.) beschreibt den Einsatz von Aminen als Lösungsmittel für die Hydrierung von PDN.
US-A-4,482,741 (UOP) beschreibt den Einsatz von MXDA als Lösungsmittel. In MXDA beträgt die Löslichkeit von IPDN bei 70°C ca. 20 Gew.-%. Hierbei sind allerdings hohe Aufreinigungsströme des MXDAs notwendig. Z.B. ist bei einer 20 %igen Lösung von IPDN in reinem MXDA die δfache Reinigungskapazität notwendig, als sie für die Aufreinigung des gebildeten Produkts alleine erforderlich wäre. Entsprechend höher sind Investitions- und Betriebskosten.
EP-A-538 865 und US 4,247,478 lehren die Verwendung von Ethern, wie Dioxan, THF und Diglyme, als Lösungsmittel für die Hydrierung von PDN.
In THF ist die Löslichkeit von IPDN mit knapp 19 Gew.-% bei 60°C zwar befriedigend, nachteilig an Ethern als Lösungsmittel ist jedoch deren Neigung zur Bildung von unerwünschten Peroxiden.
EP-A2-1 193 247 und EP-A1-1 279 661 (beide Mitsubishi Gas Chem. Comp.) betreffen ein Verfahren zur Reinigung von lsophthalodinitril (IPDN) bzw. ein Verfahren zur Herstellung von reinem XDA. EP-A2-1 193 247 offenbart die Hydrierung von IPDN in Gegenwart von NH3 und einem Lösungsmittel (vgl. Figur 1 ).
In EP-A1-1 279 661 werden als Lösungsmittel für die Hydrierung aromatische Kohlenwasserstoffe und gesättigte Kohlenwasserstoffe offenbart (Spalte 7, Absatz [0038]).
EP-A2-1 193 244 (Mitsubishi Gas Chem. Comp.) beschreibt ein Verfahren zur Herstel- lung von XDA durch Hydrierung von Phthalodinitril, welches in einem C6-C12 aromatischen Kohlenwasserstoff, wie XyIoI, Mesitylen und Pseudocumol, gelöst ist (Spalten 5- 6, Absatz [0027] und [0028]; Spalte 6, Absatz [0032]).
US-A-3,069,469 (California Research Corp.) lehrt als Lösungsmittel zur Hydrierung von aromatischen Nitrilen, wie PDN, aromatische Kohlenwasserstoffe, XyIoI, Dioxan und aliphatische Alkohole.
DE-A-21 64 169 (Mitsubishi Gas Chem. Comp.) beschreibt auf Seite 6, letzter Absatz, die Hydrierung von IPDN zu MXDA in Gegenwart eines Ni- und/oder Co-Katalysators in Ammoniak als Lösungsmittel.
Auch GB-A-852,972 (Äquivalent: DE-A-1 1 19 285) (BASF AG) offenbart die Verwendung von Ammoniak als Lösungsmittel in der Hydrierung von PDN.
Die acht Patentanmeldungen WO-A-05/028417, WO-A-05/026102, WO-A-05/026103, WO-A-05/026104, WO-A-05/026100, WO-A-05/026101 , WO-A-05/026098 und
WO-A-05/026099 (jeweils BASF AG) betreffen jeweils Verfahren zur Herstellung von XDA.
Die deutsche Patentanmeldung Nr. 102005036222.2 vom 02.08.05 (BASF AG) betrifft ein Verfahren zur Herstellung von Xylylendiamin durch kontinuierliche Hydrierung von Phthalodinitril an einem Heterogenkatalysator in Gegenwart von flüssigem Ammoniak in einem Reaktor, wobei ein Teil des Reaktoraustrags als flüssiger Umlaufstrom kontinuierlich zum Reaktoreingang zurückgeführt wird (Umlaufkreisfahrweise), in dem mittels einer Mischeinrichtung Phthalodinitril als Schmelze oder in fester Form mit einem Strom von flüssigem Ammoniak (Strom a) und einem weiteren Strom, der zumindest als Teilstrom aus dem Umlaufstrom um den Hydrierreaktor abgezogen wird, (Strom b) oder einer Mischung aus den Strömen a und b gemischt wird und die resultierende flüssige Mischung in den Hydrierreaktor gefahren wird.
Die Handhabung von flüssigem Ammoniak als Lösungsmittel und Lösungen in Ammoniak erfordert spezielle Druckapparaturen, die nicht immer bereitstehen.
Der vorliegenden Erfindung lag die Aufgabe zugrunde, ein verbessertes wirtschaftli- ches Verfahren zur Herstellung von hoch reinem Xylylendiamin, insbesondere meta- Xylylendiamin, mit hoher Ausbeute und Raum-Zeit-Ausbeute (RZA) aufzufinden, welches bei mit den Verfahren des Stands der Technik vergleichbaren Durchsätzen durchgeführt werden kann. Die Zudosierung des Nitrils oder dessen Lösung in den Hydrierreaktor soll bei moderaten Temperaturen (z.B. < 80°C) bzw. Drücken (z.B. < 6 bar) stattfinden können und der Destillationsaufwand sollte so gering wie möglich gehalten werden, damit die Herstellung von XDA in vorhandenen Anlagen bzw. Standardapparaturen durchgeführt werden kann, so dass keine Investitionen von Nöten sind.
Demgemäß wurde ein Verfahren zur Herstellung von o-, m- oder p-Xylylendiamin durch Hydrierung von o-, m- oder p-Phthalodinitril in Gegenwart eines Heterogenkatalysators gefunden, welches dadurch gekennzeichnet ist, dass eine Lösung des Phtha- lodinitrils im entsprechenden Isomer von rohem Xylylendiamin in den Hydrierreaktor gefahren wird, wobei das rohe Xylylendiamin eine Reinheit im Bereich von 85 bis 99,7 Gew.-% und einen Gehalt an Höhersiedern im Bereich von 0,3 bis 15 Gew.-% aufweist.
Bevorzugt wird eine Lösung des Phthalodinitrils im entsprechenden Isomer von rohem Xylylendiamin in den Hydrierreaktor gefahren, wobei das rohe Xylylendiamin eine Reinheit im Bereich von 89 bis 99,5 Gew.-%, insbesondere im Bereich von 92 bis 99,2 Gew.-%, und einen Gehalt an Höhersiedern im Bereich von 0,5 bis 11 Gew.-%, insbesondere im Bereich von 0,8 bis 8 Gew.-%, aufweist.
Bei den Höhersiedern handelt es sich z.B. um Amide, Amidine, Bis-XDA (XDA- Dimere), und weitere Oligomere, z.B. gemäß der folgenden Formeln:
Amide: z.B.
R = -CH2NH2, -CN, -CONH2, -CH2NHCH2-AFyI, -C(NH)NCH2-Aryl, -CHNCH2-Aryl
Amidine: z.B.
R, R' (unabhängig voneinander)= -CH2NH2, -CN, -CONH2, -CH2NHCH2-Aryl, -C(NH)NCH2-Aryl, -CHNCH2-Aryl
Bis-XDA: z.B. Bis-MXDA
Sonstige Oligomere: z.B.
R, R' (unabhängig voneinander)= -CH2NH2, -CN, -CONH2, -CH2NHCH2-Aryl, -C(NH)NCH2-Aryl, -CHNCH2-Aryl
Bevorzugt weist das als Lösungsmittel eingesetzte rohe Xylylendiamin einen Gehalt an Leichtersiedern, wie Benzylamin und/oder N-Methyl-benzylamin, im Bereich von 0,01 bis 2 Gew.-%, besonders im Bereich von 0,01 bis 1 Gew.-%, (jeweils ohne Ammoniak) und einen Gehalt an Ammoniak im Bereich von 0 bis 5 Gew.-%, besonders im Bereich von 0 bis 2 Gew.-%, auf.
Unter , Höhersieder' sind Komponenten zu verstehen, die unter gleichen Bedingungen einen höheren Siedepunkt als das jeweilige Xylylendiamin aufweisen.
Unter .Leichtersieder' sind Komponenten zu verstehen, die unter gleichen Bedingungen einen niedrigeren Siedepunkt als das jeweilige Xylylendiamin aufweisen.
Das m-Phthalodinitril (= Isophthalodinitril) entsprechende Isomer von XDA ist meta- XDA. Für die anderen Isomere gilt Analoges.
Für die Aufarbeitung ist es wichtig, kein zusätzliches Lösemittel einzusetzen, da damit der Aufwand für Destillation und Logistik ansteigen würde. Logistisch wäre das Wiedereinsetzen des Lösemittels insbesondere bei kleineren herzustellenden Mengen an XDA recht aufwendig. In jedem Fall aber würden aufgrund des Lösungsmittels weitere Stoffkosten anfallen. Außerdem ist darauf zu achten, die Anzahl der zu belegenden Anlagen bzw. Teilanlagen sowie deren Größe (sowie Logistik) so gering wie möglich zu halten. Dieses gelingt erfindungsgemäß, wenn man XDA, welches man aus der Hydrierung erhält, als Rohware, d.h. ohne weitere Aufarbeitung als LM einsetzt.
Bevorzugt findet das erfindungsgemäße Verfahren Anwendung zur Herstellung von meta-Xylylendiamin (MXDA) durch Hydrierung von Isophthalodinitril (IPDN).
Es ist bekannt, dass MXDA sich als Lösemittel für IPDN eignet. Aufgrund der schlech- ten Löslichkeit (z.B. 15 Gew.-% bei 60°C) sind hierdurch hohe Destillationskapazitäten erforderlich. Erfindungsgemäß wurde erkannt, dass durch den Einsatz des erhaltenen Roh-MXDAs (Reaktionsaustrag nach Entfernung des ggf. in der Reaktion eingesetzten Ammoniaks) die Destillationsströme stark reduziert werden können (nahezu gleiche Menge wie eingesetztes IPDN als Feedstrom zur Reindestillation). Der Reaktionsaus- trag enthält Nebenprodukte der Reaktion (z.B. Benzylamin, Methylbenzylamin, methy- liertes MXDA, Amide, Amidine, Bis-MXDA, weitere Hochsieder) sowie gegebenenfalls Rest-Ammoniakmengen.
Durch die Rückführung des Roh-MXDAs zum Lösen von IPDN kommt es jedoch zur Aufpegelung von Nebenkomponenten, insbesondere solchen mit höherem Siedepunkt als MXDA. Erstaunlicherweise konnte selbst bis zu einer Aufpegelung von mehr als
10 Gew.-% Hochsiedern im Roh-MXDA bei einer Katalysatorbelastung von 0,3 kg/l/h kein Einbruch auf die Katalysatoraktivität bzw. Selektivität beobachtet werden.
Das im Verfahren als Edukt eingesetzte PDN kann in einer vorherigen Stufe durch Ammonoxidation des entsprechenden Xylol-Isomers synthetisiert werden. Solche Syntheseverfahren sind z.B. in den BASF-Patentanmeldungen EP-A-767 165, EP-A-699 476, EP-A-222 249, DE-A-35 40 517 und DE-A-37 00 710, in den eingangs erwähnten Anmeldungen EP-A2-1 193 247, EP-A1-1 279 661 und EP-A2-1 193 244 (alle Mitsubishi Gas Chem. Comp.) sowie in den o.g. BASF-Patentanmeldungen zur Herstellung von XDA beschrieben.
Das erfindungsgemäße Verfahren lässt sich wie folgt ausführen:
Für die Hydrierung des Phthalodinitrils zum entsprechenden Xylylendiamin (o-, m- bzw. p-Xylylendiamin) nach der Gleichung
wird das PDN in Roh-XDA gelöst. Dies kann z.B. separat, d.h. in einem vorgeschalte- ten Schritt, in einem diskontinuierlich, halbkontinuierlich oder kontinuierlich betriebenen Behälter oder Rührkessel, ggf. mit äußerem Umpumpkreis, oder einer sonstigen geeigneten Misch- oder Lösevorrichtung erfolgen.
Zur Erhöhung der Geschwindigkeit des Auflösens und/oder zur Erhöhung der Menge an gelöstem PDN kann der Lösungsvorgang bei erhöhter Temperatur, z.B. bei 40 bis 120°C, bevorzugt bei 50 bis 80°C, besonders bevorzugt bei 55 bis 70°C, erfolgen. Die Wärme kann über Doppelmantel, Rohrschlangen, außenliegende Wärmeübertrager oder eine andere zur Wärmeüberragung geeignete Einrichtung zugeführt werden. Der Lösungsvorgang wird bevorzugt bei einem Absolutdruck im Bereich von 1 bis 20 bar, bevorzugt 1 bis 6 bar, durchgeführt.
Bevorzugt werden im erfindungsgemäßen Verfahren 7,5 bis 25 Gew.-%ige, insbesondere 10 bis 20 Gew.-%ige, Lösungen von PDN, besonders IPDN, im rohen XDA eingesetzt.
Die Aufpegelung größerer Mengen Nebenprodukte lässt sich durch regelmäßiges kontinuierliches Ausschleusen von Roh-XDA, z.B. Roh-MXDA, kontrollieren. Von Vorteil ist, die Menge an ausgeschleustem Material mit der Menge an eingesetztem PDN, z.B. IPDN, zu korrelieren. Somit ist lediglich am Beginn einer Kampagne der Einsatz von reinem XDA, z.B. MXDA, notwendig. Somit lassen sich die Destillationsströme - abge-
sehen von diesen ersten Einsatzmengen - auf lediglich das gebildete XDA reduzieren. Im anderen Fall, d.h. bei Verwendung von Rein-XDA an Stelle des Roh-XDA zum Lösen des PDNs, würde bei dem Einsatz einer z.B. -15 Gew.-%igen Lösung die 7fache Menge an zu destillierendem XDA anfallen.
Je nach technischen Möglichkeiten kann aber ein diskontinuierliches Ausschleusen größerer Mengen an XDA von Vorteil sein.
Bei zu großer Aufpegelung von Nebenprodukten kann es von Nöten sein, nach einer gewissen Anzahl von Zyklen zumindest geringe Mengen an destilliertem XDA als Lösemittel zu verwenden.
In allen Fällen ist aber der Destillationsaufwand um ein Vielfaches geringer, als beim Einsatz eines Lösemittels oder bei ausschließlicher Verwendung von aufgereinigtem XDA.
Für die Hydrierung des Phthalodinitrils zum entsprechenden Xylylendiamin (o-, m- bzw. p-Xylylendiamin) wird der Lösung besonders bevorzugt Ammoniak, bevorzugt in flüssiger Form, zugefügt.
Das Gewichtsverhältnis im Frischzulauf von Dinitril zu Ammoniak beträgt hierbei im allgemeinen 1 : 0,15 bis 1 : 15, vorzugsweise 1 : 0,5 bis 1 : 10, insbesondere 1 : 1 bis 1 : 5.
Für die Hydrierung können die dem Fachmann für diese Umsetzung bekannten Katalysatoren und Reaktoren (z.B. Festbett- oder Suspensionsfahrweise) sowie Verfahren (kontinuierlich, halbkontinuierlich (Semibatch), diskontinuierlich (Batch)) angewendet werden.
Bei der Katalysatorfestbettfahrweise ist sowohl die Sumpf- als auch die Rieselfahrwei- se möglich. Bevorzugt ist eine Rieselfahrweise.
Der Hydrierreaktor kann in geradem Durchgang gefahren werden. Alternativ ist auch eine Kreislauffahrweise möglich, bei der ein Teil des Reaktoraustrages an den Reak- toreingang zurückgeführt wird. Damit lässt sich eine optimale Verdünnung der Reaktionslösung erreichen, was sich günstig auf die Selektivität auswirkt. Insbesondere kann der Kreislaufstrom mittels eines externen Wärmeübertragers auf einfache und kostengünstige Weise gekühlt und somit die Reaktionswärme abgeführt werden. Der Reaktor lässt sich dadurch auch adiabat betreiben, wobei der Temperaturanstieg der Reakti- onslösung durch den gekühlten Kreislaufstrom begrenzt werden kann. Da der Reaktor in diesem Fall nicht gekühlt werden muss, ist eine einfache und kostengünstige Bauform möglich. Eine Alternative stellt ein gekühlter Rohrbündelreaktor dar.
Als Katalysatoren können die im Stand der Technik bekannten Heterogenkatalysatoren zur Hydrierung von aromatischen Nitrilen eingesetzt werden.
Bevorzugt sind Katalysatoren, die Kobalt und/oder Nickel und/oder Eisen, als Vollkatalysator oder auf einem (inerten) Träger, enthalten.
Geeignete Katalysatoren sind beispielsweise Raney-Nickel, Raney-Cobalt, Co- Vollkontakt, Titan-dotiertes Cobalt auf Träger (JP-A-2002 205980), Ni auf SiO2-Träger (WO-A-2000/046179), Co/Ti/Pd auf SiO2-Träger (CN-A-1 285 343, CN-A-1 285 236) und Nickel und/oder Cobalt auf Zirkoniumdioxid-Träger (EP-A1-1 262 232).
Besonders bevorzugte Katalysatoren sind die in EP-A1-742 045 (BASF AG) offenbarten Cobalt-Vollkontakte, dotiert mit Mn, P, und Alkalimetall (Li, Na, K, Rb, Cs). Die katalytisch aktive Masse dieser Katalysatoren besteht vor der Reduktion mit Wasserstoff aus 55 bis 98 Gew.-%, insbesondere 75 bis 95 Gew.-%, Cobalt, 0,2 bis 15 Gew.-% Phosphor, 0,2 bis 15 Gew.-% Mangan und 0,05 bis 5 Gew.-% Alkalimetall, insbesondere Natrium, jeweils berechnet als Oxid.
Die Reaktionstemperaturen der Hydrierung liegen im allgemeinen bei 40 bis 150°C, bevorzugt bei 40 bis 120°C.
Der Absolutdruck beträgt bei der Hydrierung im allgemeinen 40 bis 250 bar, bevorzugt 100 bis 210 bar.
Isolierung des XDAs:
Nach der Hydrierung wird gegebenenfalls der eingesetzte Ammoniak abdestilliert. Ein Teil des XDA (bevorzugt die entsprechende Menge, die an PDN zugefahren wurde) wird ggf. ausgeschleust und der Aufreinigung zugefahren. Die übrige Menge wird erneut als Lösemittel eingesetzt.
Bevorzugt erfolgt eine Reinigung des Xylylendiamins durch Abdestillation leichtersiedender Nebenprodukte über Kopf und destillativer Abtrennung von schwerersiedenden Verunreinigungen über Sumpf.
Besonders bevorzugt ist die Fahrweise, in der man nach der Hydrierung gegebenenfalls Ammoniak sowie gegebenenfalls leichtsiedende Nebenprodukte über Kopf abdestilliert und danach schwerersiedende Verunreinigungen vom Xylylendiamin destillativ über Sumpf abtrennt.
In einer besonderen Ausführungsform kann die Abtrennung leichter- und schwerersiedender Nebenprodukte auch in einer Seitenabzugs- oder Trennwandkolonne erfolgen, wobei reines Xylylendiamin über einen flüssigen oder dampfförmigen Seitenabzug gewonnen wird.
Je nach gewünschter Reinheit wird das Produkt (XDA) zusätzlich mit einem organischen Lösungsmittel, bevorzugt einem aliphatischen Kohlenwasserstoff, insbesondere einem cycloaliphatischen Kohlenwasserstoff, ganz besonders Cyclohexan oder Methyl- cyclohexan, extrahiert. Diese Reinigung durch Extraktion kann z.B. gemäß DE-A-1 074 592 (BASF AG) erfolgen.
Die Hydrierung von MXDA kann z.B. in einer Anlage gemäß Abbildung 1 durchgeführt werden. MXDA bzw. Roh-MXDA (Strom [2]) wird in einem Rührkessel vorgelegt und aufgeheizt. IPDN (Strom [1]) wird unter Rühren zugefahren. Es wird eine 15 %ige Lösung aus IPDN in MXDA erhalten. Diese Lösung (Strom [3]) wird dann kontinuierlich mit Ammoniak (Strom [4]) gemischt und zusammen mit frischem Wasserstoff (Strom [5]) sowie ggf. Kreiswasserstoff (Strom [9]) im Wärmeübertrager W 300 vorgewärmt und dem Hydrierreaktor C 300 zugefahren. Dort erfolgt die katalytische Hydrierung zu MXDA, wobei Belastung und Temperatur so eingestellt werden, dass Vollumsatz erreicht wird. Der Reaktionsaustrag wird gekühlt und im Hochdruckabscheider B 301 vom Gas getrennt. Das Gas wird mittels Verdichter V 300 im Kreis gefahren (Strom [9]) und ein Teil wird ausgeschleust (Strom [12]), um die Aufpegelung von Inerten zu vermeiden. Die Flüssigphase aus B 301 kann teilweise im Kreis gefahren werden (Strom [6]) oder auch komplett der Druckdestillation in K 300 zugeführt werden, in der Ammoniak in flüssiger Form zurückgewonnen wird (Strom [12]) und wieder an Stelle von frischem Ammoniak als Strom [4] eingesetzt werden kann. Über Sumpf der Druckkolonne K 300 wird Roh-MXDA erhalten (Strom [13]), das - je nach Destillationsbedingungen - nur noch geringe Spuren an Ammoniak enthält. Es kann dann direkt und ohne weite- ren Aufarbeitungsschritt zum Lösen einer neuen Charge an IPDN an Stelle des reinen MXDA (Strom [2]) eingesetzt werden. Ein Teil des Roh-MXDA kann der Reindestillation zugeführt werden, um MXDA mit einer Reinheit > 99 Gew.-% zu erhalten. Dieses Rein- MXDA kann ebenfalls zum Lösen von IPDN verwendet werden, jedoch wird bevorzugt Roh-MXDA verwendet, um den Destillationsaufwand klein zu halten.
Beispiele
Beispiel 1
Ein für die Sumpffahrweise geeigneter Reaktor mit einem Reaktorvolumen von 70 ml wurde mit einem Cobalt-Vollkontakt (dotiert mit Mn, P, Na), 4 mm Stränge, gefüllt. Am unteren Ende des Reaktors wurde eine 15 Gew.-%ige-Lösung (bei 60°C) von IPDN in MXDA eingeleitet. Wasserstoff und Ammoniak wurden ebenfalls von unten eingeleitet. Bei einem stündlichen Zulauf von 126 g Dinitril-MXDA-Lösung und 54 g Ammoniak pro Stunde wurde ein Wasserstofffluss von 20 l/h (Volumenangabe unter Normalbedingungen) sowie ein Kreislauf von 3,5 ml/Min, eingestellt. Der Reaktordruck betrug 190 bar (abs.). Nachdem -150 g IPDN mit einer 88 %igen Selektivität (bezogen auf eingesetztes IPDN) umgesetzt wurden, wurden 15 % des erhaltenen Roh-MXDAs ausgeschleust. Die übrige Menge wurde als Lösemittel von weiteren ~150 g IPDN eingesetzt. Dieser Vorgang wurde 10fach wiederholt. In allen Fällen konnte kein IPDN im Austrag nachgewiesen werden. Die Reinheit des erhaltenen Roh-MXDAs lag nach dem 10. Durchgang bei 89 Gew.-%. Diese entspricht einer Selektivität von -87 % bezogen auf eingesetztes IPDN.
Beispiel 2
In einem Rührbehälter wurden diskontinuierlich bei 60°C Lösungen von 15 Gew.-% IPDN in MXDA hergestellt, und in einen Zwischenbehälter gepumpt. Zum Anfang der Kampagne stand MXDA mit einer Reinheit > 99 Gew.-% zur Verfügung. Die Lösung wurde mittels einer Hochdruckpumpe auf 200 bar komprimiert und mit flüssigem Ammoniak versetzt (50 mol NH3 pro mol IPDN). Die Mischung wurde auf 70°C aufgeheizt und zusammen mit Wasserstoff einem Hydrierreaktor zugeführt. Der Reaktor wurde adiabat in Rieselfahrweise mit einer Katalysatorbelastung von 0,3 kg IPDN/l/h im gera- den Durchgang betrieben. Durch die Reaktionswärme erhöhte sich die Temperatur im Reaktor bis zum Austritt auf ca. 100°C. Der Reaktionsaustrag wurde auf ca. 14 bar entspannt und bei diesem Druck Ammoniak abdestilliert, welcher nach Kondensation erneut eingesetzt wurde. Das verbliebene Sumpfprodukt (= Roh-MXDA) wurde komplett ohne weiteren Aufarbeitungsschritt zum Lösen einer weiteren Charge von IPDN eingesetzt, welches dann anschließend hydriert wurde. Auf diese Weise wurde das Roh-MXDA fünfmal zum Lösen von IPDN zurückgeführt, bevor es schließlich der Reindestillation zugeführt wurde. Die Selektivität bezogen auf eingesetztes IPDN betrug 93 %.
Claims
1. Verfahren zur Herstellung von o-, m- oder p-Xylylendiamin durch Hydrierung von o-, m- oder p-Phthalodinitril in Gegenwart eines Heterogenkatalysators, dadurch gekennzeichnet, dass eine Lösung des Phthalodinitrils im entsprechenden Isomer von rohem Xylylendiamin in den Hydrierreaktor gefahren wird, wobei das rohe Xylylendiamin eine Reinheit im Bereich von 85 bis 99,7 Gew.-% und einen Gehalt an Höhersiedern im Bereich von 0,3 bis 15 Gew.-% aufweist.
2. Verfahren nach Anspruch 1 zur Herstellung von meta-Xylylendiamin durch Hydrierung von Isophthalodinitril.
3. Verfahren nach den Ansprüchen 1 oder 2, dadurch gekennzeichnet, dass eine 7,5 bis 25 Gew.-%ige Lösung des Phthalodinitrils eingesetzt wird.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung des Phthalodinitrils bei einer Temperatur im Bereich von 40 bis 1200C hergestellt wird.
5. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Lösung des Phthalodinitrils bei einem Absolutdruck im Bereich von 1 bis 20 bar hergestellt wird.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Abwesenheit eines weiteren Lösungsmittels durchgeführt wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung in Gegenwart von Ammoniak durchgeführt wird.
8. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung bei einer Temperatur im Bereich von 40 bis 150°C durchgeführt wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das als Lösungsmittel eingesetzte rohe Xylylendiamin eine Reinheit im Bereich von 89 bis 99,5 Gew.-% und einen Gehalt an Höhersiedern im Bereich von 0,5 bis 1 1 Gew.-% aufweist.
10. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das als Lösungsmittel eingesetzte rohe Xylylendiamin durch Hydrierung von Phthalodinitril erhalten wurde.
1. Zeichn.
1 1. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das als Lösungsmittel eingesetzte rohe Xylylendiamin einen Gehalt an Leichtersiedern im Bereich von 0,01 bis 2 Gew.-% und einen Gehalt an Ammoni- ak im Bereich von 0 bis 5 Gew.-% aufweist.
12. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass es kontinuierlich durchgeführt wird.
13. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass ein Teil des Reaktoraustrags als flüssiger Umlaufstrom kontinuierlich zum Reaktoreingang zurückgeführt wird (Umlaufkreisfahrweise).
14. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung an einem Katalysator enthaltend Ni, Co und/oder Fe, als
Vollkatalysator oder auf einem inerten Träger, durchgeführt wird.
15. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Hydrierung an einem Mangan-dotierten Cobalt-Vollkatalysator durchge- führt wird.
16. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der Hydrierung gegebenenfalls Ammoniak sowie gegebenenfalls leichtersiedender Nebenprodukte über Kopf abdestilliert werden und ein Teil des erhaltenen rohen Xylylendiamins zur Herstellung der im Verfahren eingesetzten
Lösung des Phthalodinitrils eingesetzt wird.
17. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass nach der Hydrierung eine Reinigung des Xylylendiamins erfolgt, indem ge- gebenenfalls Ammoniak sowie gegebenenfalls leichtersiedender Nebenprodukte über Kopf abdestilliert werden und eine destillative Abtrennung von schwerersiedenden Verunreinigungen über Sumpf erfolgt.
18. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass das Xylylendiamin nach der Destillation zur weiteren Reinigung mit einem organischem Lösungsmittel extrahiert wird.
19. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass man zur Extraktion Cyclohexan oder Methylcyclohexan verwendet.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005045806A DE102005045806A1 (de) | 2005-09-24 | 2005-09-24 | Verfahren zur Herstellung von Xylylendiamin |
PCT/EP2006/066342 WO2007033932A1 (de) | 2005-09-24 | 2006-09-14 | Verfahren zur herstellung von xylylendiamin |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1928816A1 true EP1928816A1 (de) | 2008-06-11 |
Family
ID=37462875
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06793495A Withdrawn EP1928816A1 (de) | 2005-09-24 | 2006-09-14 | Verfahren zur herstellung von xylylendiamin |
Country Status (7)
Country | Link |
---|---|
US (1) | US20080262266A1 (de) |
EP (1) | EP1928816A1 (de) |
JP (1) | JP2009508909A (de) |
KR (1) | KR20080049846A (de) |
CN (1) | CN101273006A (de) |
DE (1) | DE102005045806A1 (de) |
WO (1) | WO2007033932A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1984320B1 (de) | 2006-02-01 | 2013-10-23 | Basf Se | Verfahren zur herstellung von reinem xylylendiamin (xda) |
CN102179259B (zh) * | 2011-03-23 | 2013-01-16 | 南通泰禾化工有限公司 | 用于制备对苯二甲胺的催化剂及其制备方法 |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3009957A (en) * | 1958-04-02 | 1961-11-21 | Basf Ag | Production of xylene diamines |
US3069469A (en) * | 1958-06-11 | 1962-12-18 | California Research Corp | Hydrogenation of aromatic nitriles |
US4247478A (en) * | 1979-11-16 | 1981-01-27 | Suntech, Inc. | Process and catalyst for hydrogenation of aromatic dinitriles |
US4482741A (en) * | 1984-01-09 | 1984-11-13 | Uop Inc. | Preparation of xylylenediamine |
DE3540517A1 (de) * | 1985-11-15 | 1987-05-21 | Basf Ag | Verfahren zur herstellung von aromatischen nitrilen |
DE4428595A1 (de) * | 1994-08-12 | 1996-02-15 | Basf Ag | Für die Ammonoxidation geeignete Trägerkatalysatoren |
ES2169169T3 (es) * | 1995-05-09 | 2002-07-01 | Basf Ag | Catalizadores de cobalto. |
DE19537446A1 (de) * | 1995-10-07 | 1997-04-10 | Basf Ag | Verfahren zur Herstellung von aromatischen oder heteroaromatischen Nitrilen |
US6476267B1 (en) * | 1999-02-04 | 2002-11-05 | Sagami Chemical Research Center | Process for producing aromatic primary amine by low-pressure |
JP4729779B2 (ja) * | 2000-09-25 | 2011-07-20 | 三菱瓦斯化学株式会社 | キシリレンジアミンの製造方法 |
DE10056840A1 (de) * | 2000-11-16 | 2002-05-23 | Basf Ag | Verfahren zur Hydrierung von Nitrilen an Raney-Katalysatoren |
JP5017756B2 (ja) * | 2001-07-16 | 2012-09-05 | 三菱瓦斯化学株式会社 | 高純度メタキシリレンジアミンの製造方法 |
DE10341612A1 (de) * | 2003-09-10 | 2005-04-28 | Basf Ag | Verfahren zur Herstellung von Xylylendiamin |
DE10341614A1 (de) * | 2003-09-10 | 2005-04-28 | Basf Ag | Verfahren zur Herstellung von Xylylendiamin (XDA) |
DE10341613A1 (de) * | 2003-09-10 | 2005-04-14 | Basf Ag | Verfahren zur Herstellung von Xylylendiamin |
EP1663946B1 (de) * | 2003-09-10 | 2007-12-12 | Basf Aktiengesellschaft | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril |
DE502004005974D1 (de) * | 2003-09-10 | 2008-03-06 | Basf Ag | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril |
DE102005003315A1 (de) * | 2005-01-24 | 2006-08-03 | Basf Ag | Verfahren zur Herstellung eines Xylylendiamins |
DE102005008929A1 (de) * | 2005-02-24 | 2006-08-31 | Basf Ag | Verfahren zur Herstellung eines Xylylendiamins |
-
2005
- 2005-09-24 DE DE102005045806A patent/DE102005045806A1/de not_active Withdrawn
-
2006
- 2006-09-14 JP JP2008531677A patent/JP2009508909A/ja not_active Withdrawn
- 2006-09-14 CN CNA2006800352019A patent/CN101273006A/zh active Pending
- 2006-09-14 US US12/067,893 patent/US20080262266A1/en not_active Abandoned
- 2006-09-14 EP EP06793495A patent/EP1928816A1/de not_active Withdrawn
- 2006-09-14 KR KR1020087009669A patent/KR20080049846A/ko not_active Application Discontinuation
- 2006-09-14 WO PCT/EP2006/066342 patent/WO2007033932A1/de active Application Filing
Non-Patent Citations (1)
Title |
---|
See references of WO2007033932A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102005045806A1 (de) | 2007-03-29 |
KR20080049846A (ko) | 2008-06-04 |
CN101273006A (zh) | 2008-09-24 |
WO2007033932A1 (de) | 2007-03-29 |
US20080262266A1 (en) | 2008-10-23 |
JP2009508909A (ja) | 2009-03-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2129651B1 (de) | Neues verfahren zur herstellung von teta über eddn | |
EP1107941B1 (de) | Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin | |
EP2114857B1 (de) | Verfahren zur herstellung von tetraethylenpentaamin | |
EP2132163A1 (de) | Verfahren zur herstellung von ethylenaminen aus roh-aan | |
EP2132162A1 (de) | Verfahren zur herstellung von ethylenaminen | |
EP1663943B1 (de) | Verfahren zur herstellung von meta-xylylendiamin (mxda) | |
EP1663945B1 (de) | Verfahren zur herstellung von xylylendiamin (xda) | |
EP1663942A1 (de) | Verfahren zur herstellung von xylylendiamin (xda) | |
EP1663946B1 (de) | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril | |
EP1984320B1 (de) | Verfahren zur herstellung von reinem xylylendiamin (xda) | |
EP1663947B1 (de) | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von flüssigem phthalodinitril | |
EP1663944B1 (de) | Verfahren zur herstellung von xylylendiamin (xda) | |
EP1529027B1 (de) | Verfahren zur herstellung von isophorondiamin (ipda, 3-aminomethyl-3,5,5-trimethylcyclohexylamin) mit einem hohen cis/trans-isomerenverh ltnis | |
EP1917232B1 (de) | Verfahren zur herstellung von xylylendiamin durch kontinuierliche hydrierung von phthalodinitril | |
EP1098869B1 (de) | Verbessertes verfahren zur gleichzeitigen herstellung von 6-aminocapronitril und hexamethylendiamin | |
EP1928816A1 (de) | Verfahren zur herstellung von xylylendiamin | |
WO2005026101A1 (de) | Verfahren zur herstellung von xylylendiamin | |
EP0105146B1 (de) | Verfahren zur Herstellung von Diaminen oder Diamingemischen | |
WO2005026100A1 (de) | Verfahren zur herstellung von xylylendiamin (xda) | |
EP3180308B1 (de) | Verfahren zur herstellung von 2,2-difluorethylamin | |
DE102004042947A1 (de) | Verfahren zur Herstellung von Xylylendiamin durch kontinuierliche Hydrierung von flüssigem Phthalodinitril | |
DE102004042954A1 (de) | Verfahren zur Herstellung von Xylylendiamin durch kontinuierliche Hydrierung von flüssigem Phthalodinitril | |
WO2002044135A1 (de) | Verfahren zur reduzierung des gehalts an einem ungesättigten amin in einer mischung enthaltend ein amin und ein nitril | |
DE102005058417A1 (de) | Verfahren zur Herstellung von Xylylendiamin durch kontinuierliche Hydrierung von Phthalodinitril |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080424 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20100401 |