EP1926895B1 - Kühlsystem für ein kraftfahrzeug - Google Patents

Kühlsystem für ein kraftfahrzeug Download PDF

Info

Publication number
EP1926895B1
EP1926895B1 EP06805656A EP06805656A EP1926895B1 EP 1926895 B1 EP1926895 B1 EP 1926895B1 EP 06805656 A EP06805656 A EP 06805656A EP 06805656 A EP06805656 A EP 06805656A EP 1926895 B1 EP1926895 B1 EP 1926895B1
Authority
EP
European Patent Office
Prior art keywords
air
exhaust gas
cooler
cooling
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06805656A
Other languages
English (en)
French (fr)
Other versions
EP1926895A2 (de
Inventor
Klaus Irmler
Ulrich Maucher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Behr GmbH and Co KG
Original Assignee
Behr GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Behr GmbH and Co KG filed Critical Behr GmbH and Co KG
Publication of EP1926895A2 publication Critical patent/EP1926895A2/de
Application granted granted Critical
Publication of EP1926895B1 publication Critical patent/EP1926895B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/24Layout, e.g. schematics with two or more coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/31Air-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0066Multi-circuit heat-exchangers, e.g. integrating different heat exchange sections in the same unit or heat-exchangers for more than two fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/185Arrangements or mounting of liquid-to-air heat-exchangers arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/04Pump-driving arrangements
    • F01P2005/046Pump-driving arrangements with electrical pump drive
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/02Intercooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/16Outlet manifold
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/02Pumping cooling-air; Arrangements of cooling-air pumps, e.g. fans or blowers
    • F01P5/08Use of engine exhaust gases for pumping cooling-air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/026Thermostatic control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/08Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0437Liquid cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/29Constructional details of the coolers, e.g. pipes, plates, ribs, insulation or materials
    • F02M26/32Liquid-cooled heat exchangers

Definitions

  • the invention relates to a cooling system for a motor vehicle according to the preamble of claim 1.
  • Modern motor vehicles have due to increasing engine performance and increasing numbers of ancillaries already a high total thermal power, for the large cooling capacities for the removal of heat by means of heat exchangers are necessary.
  • the often limited space for a arranged in the wind heat exchanger or composite heat exchangers is now fully used.
  • the possible flow of ambient air is generally improved by increasingly powerful fans, which are usually arranged on the suction side of a main cooler.
  • the maximum cooling capacity is largely exhausted by arranged in the wind or the front side of a motor vehicle heat exchanger or heat exchanger packages.
  • the fundamental problem with exhaust gas recirculation is that the engine's engine performance and pollutant emissions are better, the cooler the intake-side gases are.
  • the cooling of the recirculated exhaust gases by means of a liquid heat exchanger to principle limits, since the temperature of the cooling secondary medium is in the range of 100 ° C, at least when using main engine coolant.
  • DE 102 03 003 A1 describes a cooling system for a motor vehicle in which a part of the exhaust gases of the internal combustion engine are introduced into a charged fresh air stream, wherein the recirculated exhaust gases are previously cooled by a bypassed liquid heat exchanger.
  • the liquid heat exchanger is connected to the main cooling circuit of the internal combustion engine.
  • the EP 0499071 discloses a refrigeration system for an internal combustion engine with engine coolant heat exchangers and microprocessor control charge air.
  • the WO 2004/051069 discloses a device for cooling media, in particular exhaust gas and charge air.
  • heat exchangers for exhaust gas and charge air are used.
  • the FR 2 283 338 discloses a charge air cooling device including a fan, a compressor, and a turbine.
  • the EP 1 420 221 A2 discloses an air-cooled intercooler with cooling planes through which cooling air flows successively.
  • the cooling system for a motor vehicle comprises a first substantially arranged in the front of the vehicle heat exchanger, which is in particular designed as a main cooler, for cooling a coolant that is particularly liquid and / or gaseous, an internal combustion engine by an air flow of ambient air, and, if necessary, additional heat exchanger for Cooling or heating of other media includes and a second cooler, which is cooled by an air flow of ambient air.
  • the second radiator is arranged spatially separated from the main radiator, wherein the air flow for the second radiator and the air flow for the main radiator are spatially separated from each other from the environment.
  • the second radiator advantageously the direct cooling of gases, in particular of exhaust gas and / or charge air, is used.
  • the cooling system comprises an air conveying means by means of which the second cooler can be swept with an air stream of ambient air, wherein the air conveying means is in particular a separate air conveying means relative to a main ventilator of the first heat exchanger.
  • the air conveyor is a radial fan.
  • Radial fans are particularly pressure-resistant and particularly uncritical in terms of Angle of incoming and outgoing air.
  • radial fans are particularly suitable for supplying a second radiator according to the invention, if the second radiator and / or the air intake is disposed at an unfavorable position in the engine compartment, especially if an angled air duct in the region of the air conveyor is required.
  • radial fans provide a high flow rate with limited space and relatively low noise.
  • an axial fan can be used as an air conveyor.
  • this may preferably be arranged before the second cooler (pressure operation), but also after the second cooler (suction operation). Furthermore, the air conveyor can also be arranged between two coolers.
  • the air conveyor is driven by an electric motor.
  • the air conveyor may also be mechanically coupled to the internal combustion engine, in particular via a coupling agent.
  • any type of power transmission can be given to the air conveyor, for example, a hydrostatic drive.
  • the air conveying means is designed drivable via an exhaust gas turbine. This may be a separate, only the drive of the air conveyor associated exhaust gas turbine.
  • the air conveyor with a shaft of an exhaust gas turbocharger for air charging can be driven.
  • the air conveying means may be a paddle wheel applied to a protruding pin of the exhaust gas turbocharger shaft, wherein a corresponding further housing part is added to the exhaust gas turbocharger.
  • the exhaust gas turbocharger can be modular, so that it can also be used as a component without the additional air conveyor in corresponding vehicles, with a modified version with additional Air conveyor module may be used in other engines with, for example, higher emission limits or higher power.
  • a drive of the air conveying means is selectably controllable, in particular switched on and off, is formed. In this way, the energy consumption can be reduced according to the driving situation, if no drive of the air conveyor of the second radiator is required.
  • a third cooler is provided, which is flowed through by the internal combustion engine supplied gas, wherein the gas in the third cooler by means of a liquid medium, in particular a coolant of the internal combustion engine, can be cooled.
  • a liquid medium in particular a coolant of the internal combustion engine
  • the second radiator is flowed through by a recirculated to the internal combustion engine exhaust gas stream.
  • the second radiator may be a low-pressure exhaust gas cooler in which the exhaust gas carried in the radiator is removed after a final stage of an exhaust gas turbocharger system.
  • the second radiator can also be flowed through by a stream of charged fresh air led to the internal combustion engine, or in a further alternative embodiment by a mixture of charged fresh air and exhaust gas routed to the internal combustion engine.
  • the second cooler is advantageously a parallel flow cooler, in particular a countercurrent cooler. Due to the parallel flow arrangement, the fact is taken into account that in the majority of cases the second cooler is to be accommodated in limited and possibly unfavorably shaped space.
  • the countercurrent arrangement is particularly advantageous in terms of cooling capacity.
  • the type of the second cooler may be a tri-flow cooler in which three connections are provided for the cooling secondary medium, which leads to a particularly good combination of cooling capacity and temperature distribution in the material of the cooler.
  • the second cooler can also be an at least two-pass cooler, as a result of which the cooling capacity can be improved for a given cooler dimension and sufficient cooling air flow available.
  • the second cooler may also be a cross-flow cooler.
  • a further air-cooled radiator is provided, wherein the second radiator for cooling of one of the two, exhaust or fresh charge air, and the further radiator for cooling of the respective other of the two is formed.
  • both air-cooled radiators may be spatially separated from a main radiator of the vehicle, but it may also be present only one of the two air-cooled radiator in a spatially separate arrangement to the main radiator.
  • a flow of ambient air through a common air conveyor to both the second and to the other cooler can be conveyed.
  • This can be realized, for example, in that the second radiator and the further radiator are arranged adjacent. However, it may also be a non-adjacent arrangement with correspondingly branched air ducts, wherein the common air conveyor drives the ambient air in the printing operation through both air channels.
  • the air flow associated with the second cooler can be changed in size via a valve means, in particular an adjustable flap.
  • a valve means in particular an adjustable flap.
  • variable branch in particular a bypass
  • air-cooled gas cooler can freeze at low outdoor temperatures, with frozen condensed water of the guided gases, especially in the case of guided exhaust gases, can reduce or prevent the passage of the primary medium through the radiator.
  • the variable branch can be either a bypass or simply an opening, by means of which jammed exhaust gas is blown into the environment.
  • the variability of the branch can consist in a pressure relief valve or in an adjustable flap.
  • the arrangement is designed so that the heat exchanger is heated by blowing off or bypass diversion of the gas in order to melt the frozen condensed water.
  • the outflowing cooling air of the second radiator is at least partially fed to a vehicle interior for purposes of heating.
  • provision can be made, for example, for a supply of the cooling air flowing out of the second cooler via a channel into an inlet region of a ventilation or also air conditioning system of the vehicle.
  • the supply of the heated exhaust air can be controlled for example via a valve.
  • a significant advantage of such use of the heated cooling air is a particularly rapid response of the vehicle heating system when the engine is cold-starting.
  • the second radiator will often be arranged in a lateral or rear area of the engine compartment, resulting in a better connection possibility of the exhaust air flow to the ventilation system compared to the main radiator.
  • an intake can be provided in the region of a wheel house.
  • the air conveyor is a radial fan.
  • the air conveyor is an axial fan.
  • the air conveyor is drivable via an electric motor.
  • the air conveyor is mechanically coupled to the engine.
  • the air conveying means can be driven via an exhaust gas turbine.
  • the second radiator is a low-pressure exhaust gas cooler in a single- or multi-stage exhaust gas cooler concept, wherein the exhaust gas led into the radiator can be removed after a final stage of an exhaust gas turbocharger system, in particular downstream of the components for exhaust gas aftertreatment.
  • the second cooler is a tri-flow cooler.
  • the second radiator is an at least two-pass radiator.
  • the outflowing cooling air of the second radiator is at least partially fed to a vehicle interior for purposes of heating.
  • an intake of ambient air for cooling the second radiator is arranged in the region of a wheel house.
  • the cooling system according to Fig. 1 (first embodiment) comprises a main radiator 1 of an internal combustion engine 2, via a liquid coolant in a closed cooling circuit 3 in a known manner the internal combustion engine 2 cools.
  • the main radiator 1 is arranged in the front region of the vehicle and is at least largely traversed by driving wind.
  • a main fan 4 is provided in a sucking arrangement on the main radiator 1, by means of which a sufficient air flow of the main radiator is ensured even at low speeds.
  • the internal combustion engine 2 has a charge of its supplied fresh gas 6 by means of an exhaust gas turbocharger 5, wherein the charged fresh air 6 must be cooled before being supplied to the internal combustion engine 2 due to the heating generated in the exhaust gas turbocharger 5.
  • one of the main radiator 1 spatially separate charge air cooler 7 is provided, which is a second radiator in the context of the invention.
  • the intercooler 7 is flown by means of an air fan 8 designed as an electric fan with ambient air 9, whereby a direct cooling of the charge air 6 is given in an open cooling circuit. From the spatial arrangement of the components in Fig. 1 also results that the intercooler 7 and the air conveyor 8 are not arranged in the front area of the vehicle, but in a lateral engine compartment area. Due to the fostanordung in the air stream area, the air conveyor 8 will be regularly in operation when the intercooler 7 must be operated with sufficient cooling capacity.
  • a partial exhaust gas recirculation is provided via a branch 10 in the exhaust pipe of the internal combustion engine 2, wherein in one via a valve (not shown) controllable interface 11, a merger of the exhaust gas is carried out with the charged fresh air.
  • the recirculated exhaust gas is cooled in a third cooler 12 before merging in the region 10.
  • the third radiator 12 is arranged in the main cooling circuit of the internal combustion engine 2 in parallel with the internal combustion engine 2, so that the dissipated heat of the exhaust gas is finally introduced via the liquid-cooled third radiator 12 into the main coolant of the internal combustion engine 2.
  • the heat flows in the cooling system of the engine 2 so that due to the exhaust gas recirculation less heat energy is given by the exhaust gas to the outside or registered in the engine more heat energy in the coolant becomes.
  • the additional amount of heat introduced into the coolant is dissipated by a larger than usual designed main cooler. Due to the larger design of the main radiator 1 is not known per se combination of the main radiator with a charge air cooler to a module or makes sense of the cooling performance ago. Therefore, the intercooler 7 is arranged separately and charged with ambient air, which is driven by an air conveyor 8.
  • the heat balance according to the embodiment of the invention is such that the amount of heat that is removed from the exhaust, essentially via the intercooler 7 in addition to the Ambient air is discharged.
  • the second embodiment according to Fig. 2 differs from the first embodiment mainly by the fact that a further ambient air flowed around and spatially separated from the main cooler 1 exhaust gas cooler 13 is provided, which is downstream of the liquid-cooled first exhaust gas cooler (or third cooler) 12 in the flow direction of the recirculated exhaust gas. This makes sense in terms of cooling the exhaust gas, since the ambient air temperature is regularly below the coolant temperature.
  • a branch 14 in the fresh air stream 9 which is arranged downstream of the air conveying means 8 operated in an oppressive arrangement.
  • exhaust gas coolers 13 and charge air coolers 7 are arranged directly adjacent and flow around the same fresh air stream, or that they are arranged spatially separated, for which purpose branch 14 is usually separate Air ducts for supplying the fresh air to the respective coolers 7, 13 are provided.
  • the main radiator 1 as in the first embodiment is designed to be particularly large to dissipate the additional amount of heat introduced by the liquid cooled exhaust gas cooler 12 in the cycle of the internal combustion engine 2, wherein Amount of heat from both the air-flow intercooler 307 and the air flowing around the exhaust gas cooler 13 is discharged directly to the environment.
  • the cooling system according to the third embodiment has a charge air cooler 307, which is not arranged spatially separated from the main radiator 1 in contrast to the first and second embodiments, but is combined with this in a known per se to form an assembly.
  • the charge air cooler 307 as well as the main radiator 1 is surrounded by wind and thus requires a reduction of the possible cooling capacity of the main radiator. 1
  • the first stage is also achieved by a third cooler 12 and the second stage by an air-cooled heat exchanger 13.
  • the heat exchanger 13 is flowed around by pumped fresh air, wherein a conveying means 308 is provided for the ambient air or fresh air.
  • the fan 308c may also be placed directly on a shaft of the exhaust gas turbocharger 5, in order to save components and installation space.
  • the exhaust gas turbocharger has a module-like further housing part for forming the air conveying means (not shown).
  • the cooling system according to the invention Fig. 4 has similarities with that of the third embodiment. Deviating, however, there is a two-stage supercharging of the internal combustion engine 2 with a first exhaust gas turbocharger 5 a and a second exhaust gas turbocharger 5 b, which are arranged serially one behind the other. After a first charging stage of the fresh air through the second exhaust gas turbocharger 5 b, an air-circulated intercooler 415 is provided, which cools the precompressed charge air before it enters the compressor stage of the first exhaust gas turbocharger 5 a and is finally compressed there.
  • the intercooler 415 can serve as a "second cooler” or as “another cooler” in the context of the invention.
  • the compressed charge air flows through the main charge air cooler 407, which in principle is known from the third embodiment and is unified with the main cooler 1 to form a unit, after which recirculated exhaust gas is fed to the final compressed and cooled charge air at an interface 11.
  • the recirculated exhaust gas is, as in the third embodiment, cooled in two stages via a liquid-cooled second cooler 12 and an air-cooled cooler 13.
  • an electrically operated and designed as a radial fan air conveyor 8 is provided, which presses air in a pressing arrangement through a branch 414, through which the cooling air is distributed to the two coolers 13, 415.
  • an adjustable valve or a regulating flap 416 is provided in the supply channel to the cooler 13. By regulating this valve 416, a regulated distribution of the cooling air flow to the two coolers 13, 415 can be set. This makes it possible to optimize the cooling system depending on the operating state.
  • a total of four coolers 1, 13, 407, 415 are provided which cause a direct open cooling with ambient air and thus emit heat generated by the internal combustion engine 2 into the environment.
  • Fig. 1 to Fig. 4 demonstrate Fig. 5 to Fig. 8 exemplary schematic embodiments of heat exchangers, which are particularly suitable for a second radiator according to the invention or a further radiator for their design.
  • FIG. 5 a parallel-flow, countercurrent heat exchanger 501, which in one direction by a primary medium 20 and in a separate chamber in the opposite direction of a cooling air flow 21 (secondary medium) is flowed through.
  • Fig. 6 shows a tri-flow cooler, 601, which is flowed through in one direction by the primary medium 20 to be cooled.
  • cooling air is supplied to the two end-side nozzle 602, 604 and discharged through the central port 603.
  • the cooling air thus flows rectified with the primary medium and in the subsequent second section opposite to the primary medium. This makes it possible to increase the cooling capacity with sufficient available amount of cooling air 21 and given dimensions, in particular, with a uniform heating of the radiator 601 is given.
  • the cooling capacity can be controlled by a two-path cooler 701 (see Fig. 7 ), wherein the cooling air 21 via four ports provided on the radiator ports 702, 703, 704, 705 enters and exits, wherein two counter-current cooling paths are provided sequentially along the path of the primary medium 20.
  • Fig. 8 shows a cross-flow cooler, in the primary medium 20 and cooling air 21 to flow substantially at right angles to each other.
  • a crossflow cooler 801 is easy to manufacture and effective if the required space is available.
  • a second cooler in the sense of the invention may have a tube bundle construction in construction, in particular with air-cooled ribbing. It may also be a disc design with axial flow through the Act primary gas, in particular with double-sided ribbing, in particular with a surrounding housing. Alternatively, a second cooler may have a disk construction in which the primary medium flows across the disks transversely; Again, there may be a ribbing. Both the primary side and the secondary side can each be configured with turbulence generators (winglets) or also inside-ribbed.
  • winglets turbulence generators
  • the fresh air heated by the cooling process is not or only partially dissipated into the environment and used for heating the interior of the vehicle. This can be done via admixture or by means of a heat exchanger.
  • cooling air ducts and control valves can be used in a simple manner.
  • the optionally released installation space can also be used to implement an additional low-temperature coolant circuit in addition to the main coolant circuit, with a second coolant cooler arranged largely in front of the main coolant cooler on the vehicle front side.
  • a refrigerant circuit instead of a low-temperature coolant circuit, it is also possible to provide a refrigerant circuit, wherein instead of the second coolant cooler, a condenser is arranged substantially in front of the coolant radiator.
  • the cooling air can heat up strongly, measures can be provided at the outlet of the cooling air into the environment in order to prevent the inadmissible heating of other vehicle components or endangerment of persons, especially passers-by. This can be done by a suitable Positioning of the outlet, in particular, for example, above the driver's cab, done. It can also be advantageous to dispense the cooling air via the exhaust.
  • the cooling air at the outlet can be mixed with ambient air and thus cooled.
  • Particularly meaningful here can be a strong turbulence of the cooling air at the outlet, in particular the application of strong swirl is to be mentioned, which leads particularly effectively to break up the exiting gas jet and thus to more efficient mixing with ambient air.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)
  • Motor Or Generator Cooling System (AREA)

Description

  • Die Erfindung betrifft ein Kühlsystem für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1.
  • Moderne Kraftfahrzeuge haben aufgrund steigender Motorleistungen und zunehmender Anzahl von Nebenaggregaten bereits eine hohe thermische Gesamtleistung, für die große Kühlleistungen zur Abführung von Wärme mittels Wärmetauschern notwendig sind. Dabei wird der häufig begrenzte Bauraum für einen im Fahrtwind angeordneten Wärmetauscher oder Verbund von Wärmetauschern inzwischen vollständig genutzt. Der mögliche Strom an Umgebungsluft wird allgemein durch zunehmend leistungsfähigere Lüfter, die zumeist auf der Saugseite eines Hauptkühlers angeordnet sind, verbessert. Insgesamt ist die maximale Kühlleistung durch im Fahrtwind beziehungsweise stirnseitig eines Kraftfahrzeugs angeordnete Wärmetauscher bzw. Wärmetauscherpakete weitgehend ausgereizt.
  • Diese Situation trifft auf immer strengere Emissionsnormen, die in den nächsten Jahren vor allem in Europa und den USA anstehen. Um diesen Emissionsnormen insbesondere bei Dieselmotoren, grundsätzlich jedoch auch bei Ottomotoren und neuen Motorkonzepten wie etwa HCCI gerecht zu werden, wird vielfach vorgeschlagen, die Emissionen, insbesondere von Stickoxyden, durch zumindest teilweise Abgasrückführung in den Verbrennungstrakt des Motors zu verringern. Diese Abgasrückführung ist nur sinnvoll, wenn das Abgas zuvor gekühlt wird. Hierzu wurden bisher im Wesentlichen flüssigkeitsgekühlte Wärmetauscher vorgeschlagen, wobei die Kühlflüssigkeit zumeist an den Hauptkühlkreislauf des Verbrennungsmotors angeschlossen ist. Hierdurch werden mittels der Abgasrückführung große thermische Leistungen in den Hauptkühlkreislauf des Verbrennungsmotors eingetragen, die im Falle von Nutzkraftfahrzeugen bis zu über 100 kW betragen können,
  • Zudem besteht bei der Abgasrückführung die grundsätzliche Problematik, dass Leistung und Schadstoffemission des Motors um so besser sind, je kühler die ansaugseitigen Gase sind. Hierbei tritt die Kühlung der rückgeführten Abgase mittels eines Flüssigkeits-Wärmetauschers an prinzipbedingte Grenzen, da zumindest bei Verwendung von Hauptmotorkühlmittel die Temperatur des kühlenden Sekundärmediums im Bereich von 100°C liegt.
  • Neben der Problematik der Kühlung von rückgeführten Abgasen ergibt sich auch eine zunehmende Problematik der Kühlung von aufgeladener Frischluft. Inzwischen sind mehrstufige Aufladungssysteme entwickelt, wobei grundsätzlich Wirkungsgrad und Leistungsgewicht eines Verbrennungmotors durch hohe Abgasaufladung verbessert werden. Die bei der Abgasaufladung entstehenden hohen Frischgastemperaturen sind jedoch zu kühlen. Bei den bekannten Anordnungen eines Ladeluftkühlers in Baueinheit mit dem im Fahrtwind angeordneten Hauptkühler eines Fahrzeugs liegt bedingt durch die Verwendung des gleichen Luftstroms aus der Umgebungsluft eine Begrenzung der erzielbaren Kühlleistung vor. Diese ist letztlich durch die gegebenenfalls designbedingte Begrenzung der Fahrzeugstirnfläche bzw. der Lufteintritts-Querschnitte limitiert ist.
  • DE 102 03 003 A1 beschreibt ein Kühlsystem für ein Kraftfahrzeug, bei dem ein Teil der Abgase des Verbrennungsmotors in einen aufgeladenen Frischluftstrom eingeleitet werden, wobei die rückgeführten Abgase zuvor durch einen mit einem Bypass versehenen Flüssigkeits-Wärmetauscher gekühlt werden. Der Flüssigkeits-Wärmetauscher ist dabei an den Hauptkühlkreislauf des Verbrennungsmotors angeschlossen.
  • Die EP 0499 071 offenbart eine Kühlanlage für einen Verbrennungsmotor mit Wärmetauschern für Motorkühlmittel und Ladeluft mit Mikroprozessorsteuerung.
  • Die WO 2004/051069 offenbart eine Vorrichtung zur Kühlung von Medien, insbesondere von Abgas und Ladeluft. Dazu werden Wärmeübertrager für Abgas und Ladeluft eingesetzt.
  • Die FR 2 283 338 offenbart eine Vorrichtung zur Ladeluftkühlung mit einem Lüfter, einem Kompressor und einer Turbine.
  • Die EP 1 420 221 A2 offenbart einen luftgekühlten Ladeluftkühlermit nacheinander von Kühlluft durchströmten Kühlebenen.
  • Es ist die Aufgabe der Erfindung, ein Kühlsystem für einen Verbrennungsmotor hinsichtlich seiner thermischen Gesamtleistungsfähigkeit zu verbessern.
  • Diese Aufgabe wird für ein eingangs genanntes Kühlsystem erfindungsgemäß mit den kennzeichnenden Merkmalen des Anspruchs 1 gelöst.
  • Das Kühlsystem für ein Kraftfahrzeug umfasst einen ersten im wesentlichen in der Fahrzeugfront angeordneten Wärmetauscher , der insbesondere als Hauptkühler ausgebildet ist, zur Kühlung eines Kühlmittels, dass insbesondere flüssig und/oder gasförmig ist, eines Verbrennungsmotors durch einen Luftstrom aus Umgebungsluft, sowie bedarfsweise zusätzliche Wärmetauscher zur Kühlung oder Heizung weiterer Medien umfasst sowie einen zweiten Kühler, der durch einen Luftstrom aus Umgebungsluft kühlbar ist. Der zweite Kühler ist räumlich getrennt von dem Hauptkühler angeordnet, wobei der Luftstrom für den zweiten Kühler und der Luftstrom für den Hauptkühler räumlich getrennt von einander aus der Umgebung entnommen werden.
  • Durch die räumlich getrennte Anordnung des zusätzlichen Kühlers von dem Hauptkühler ist es möglich, weitere Luftströme zur Abführung von Wärme des Verbrennungsmotors zu nutzen, wobei der zweite Kühler vorteilhaft der direkten Kühlung von Gasen, insbesondere von Abgas- und/oder Ladeluft, dient.
  • Erfindungsgemäβ umfasst das Kühlsystem ein Luftfördermittel mittels dessen der zweite Kühler mit einem Luftstrom aus Umgebungsluft beströmbar ist, wobei das Luftfördermittel insbesondere ein bezüglich eines Hauptlüfters des ersten Wärmetauschers separates Luftfördermittel ist. Hierdurch wird insbesondere dann, wenn der zweite Kühler in seiner räumlichen Anordnung nur ungünstig durch Fahrtwind beströmbar ist, eine erhebliche Verbesserung der möglichen Tauscherleistung des zweiten Kühlers insbesondere bei geringen Fahrgeschwindigkeiten erzielt.
  • In vorteilhafter Ausgestaltung ist das Luftfördermittel ein Radiallüfter. Radiallüfter sind besonders druckfest und besonders unkritisch hinsichtlich der Winkel der an- und abströmenden Luft. Somit sind Radiallüfter ganz besonders zur Versorgung eines zweiten Kühlers im Sinne der Erfindung geeignet, wenn der zweite Kühler- und/oder der Luftansaugbereich an einer ungünstigen Stelle im Motorraum angeordnet ist, insbesondere wenn eine gewinkelte Luftführung im Bereich des Luftfördermittels erforderlich ist. Zudem ergeben Radiallüfter eine hohe Förderleistung bei begrenztem Bauraum und relativ geringer Geräuschentwicklung.
  • Alternativ hierzu kann jedoch auch ein Axiallüfter als Luftfördermittel Verwendung finden.
  • Unabhängig von der Art des Luftfördermittels kann dieses bevorzugt vor dem zweiten Kühler (Druckbetrieb), aber auch nach dem zweiten Kühler (Saugbetrieb) angeordnet sein. Weiterhin kann das Luftfördermittel auch zwischen zwei Kühlern angeordnet sein.
  • Bevorzugt ist das Luftfördermittel über einen Elektromotor antreibbar. Alternativ und bei geeignetem zur Verfügung stehenden Bauraum kann das Luftfördermittel jedoch auch mechanisch mit dem Verbrennungsmotor gekoppelt sein, insbesondere über ein Kupplungsmittel. Grundsätzlich kann jede Art der Kraftübertragung auf das Luftfördermittel gegeben sein, beispielsweise auch ein hydrostatischer Antrieb.
  • Besonders bevorzugt ist das Luftfördermittel über eine Abgasturbine antreibbar ausgebildet. Dabei kann es sich um eine separate, nur dem Antrieb des Luftfördermittets zugeordnete Abgasturbine handeln. In besonders bevorzugter Ausführung ist das Luftfördermittel mit einer Welle eines Abgas-Turboladers zur Luftaufladung antreibbar. Insbesondere kann dabei das Luftfördermittel ein auf einem überstehenden Zapfen der Abgas-Turboladerwelle aufgebrachtes Schaufelrad sein, wobei dem Abgas-Turbolader ein entsprechender weiterer Gehäuseteil hinzugefügt ist. Der Abgas-Turbolader kann dabei modular aufgebaut sein, so dass er auch als Komponente ohne das zusätzliche Luftfördermittel bei entsprechenden Fahrzeugen einsetzbar ist, wobei eine modifizierte Version mit zusätzlichem Luftfördermittel-Modul bei anderen Motoren mit beispielsweise höheren Emissionsgrenzwerten oder höherer Leistung Verwendung finden kann.
  • Grundsätzlich ist es bevorzugt vorgesehen, dass ein Antrieb des Luftfördermittels selektierbar regelbar, insbesondere an- und abschaltbar, ausgebildet ist. Hierdurch kann der Energieverbrauch entsprechend der Fahrsituation gesenkt werden, wenn keine Antrieb des Luftfördermittels des zweiten Kühlers erforderlich ist.
  • In dem erfindungsgemäßen Kühlsystem ist ein dritter Kühler vorgesehen, welcher von dem dem Verbrennungsmotor zuführbaren Gas durchströmt wird, wobei das Gas in dem dritten Kühler mittels eines flüssigen Mediums, insbesondere eines Kühlmittels des Verbrennungsmotors, kühlbar ist. Hierdurch wird insgesamt eine zwei- oder mehrstufige Kühlung des gasförmigen Primärmediums realisiert, wobei insbesondere bevorzugt eine erste Kühlstufe durch den flüssigkeitsbetriebenen dritten Kühler und eine zweite Kühlstufe durch den luftumströmten zweiten Kühler gegeben ist. Durch diese Anpassung der Kühlmitteltemperaturen (Flüssigkeit in der Regel im Bereich von 100°C bei der ersten Stufe, Umgebungsluft typisch im Bereich von 20°C bei der zweiten Stufe) ist eine besonders effektive Kühlung des Gases möglich, wobei zudem durch die luftgekühlte Stufe ein erheblicher Teil der thermischen Energie des Gases nicht in das Kühlsystem des Verbrennungsmotors eingetragen wird, sondern unmittelbar an die Umgebung abgegeben wird (direkte Kühlung durch die zweite Stufe).
  • In einer bevorzugten Ausführung wird der zweite Kühler von einem zu dem Verbrennungsmotor rückgeführten Abgasstrom durchströmt. Je nach Auslegung des Kühlsystems kann der zweite Kühler ein Niederdruck-Abgaskühler sein, bei dem das in dem Kühler geführte Abgas nach einer letzten Stufe eines Abgas-Turboladersystems entnommen wird.
  • Der zweite Kühler kann jedoch auch von einem zu dem Verbrennungsmotor geführten Strom aus aufgeladener Frischluft durchströmt werden, oder in weiterer alternativer Ausführung von einem Gemisch aus zu dem Verbrennungsmotor geführter aufgeladener Frischluft und Abgas.
  • Hinsichtlich der bevorzugten Bauart des zweiten Kühlers ist dieser vorteilhaft ein Parallelstromkühler, insbesondere ein Gegenstromkühler. Durch die Parallelstromanordnung wird dem Umstand Rechnung getragen, dass in der Mehrzahl der Fälle der zweite Kühler in begrenztem und gegebenenfalls ungünstig geformten Bauraum unterzubringen ist. Die Gegenstromanordnung ist hinsichtlich der Kühlleistung besonders vorteilhaft. Es kann sich bei der Bauart des zweiten Kühlers insbesondere um einen Tri-Flow-Kühler handeln, bei dem drei Anschlüsse für das kühlende Sekundärmedium vorgesehen sind, was zu einer besonders guten Kombination von Kühlleistung und Temperaturverteilung im Material des Kühlers führt. Allgemein kann der zweite Kühler auch ein zumindest zweipfadiger Kühler sein, wodurch die Kühlleistung bei gegebener Kühlerdimension und ausreichend zur Verfügung stehenden Kühlluftstrom verbessbar ist.
  • Bei geeigneten Bedingungen insbesondere hinsichtlich des Bauraums kann der zweite Kühler jedoch auch ein Kreuzstromkühler sein.
  • In dem erfindungsgemäßen Kühlsystem ist ein weiterer luftgekühlter Kühler vorgesehen, wobei der zweite Kühler zur Kühlung von einem der beiden, Abgas- oder frischer Ladeluft, und der weitere Kühler zur Kühlung von dem jeweils anderen der beiden ausgebildet ist. Insbesondere können dabei beide luftgekühlte Kühler räumlich von einem Hauptkühler des Fahrzeugs getrennt sein, es kann aber auch nur einer der beiden luftgekühlten Kühler in räumlich getrennter Anordnung zu dem Hauptkühler vorliegen. Dabei ist ein Strom aus Umgebungsluft durch ein gemeinsames Luftfördermittel sowohl zu dem zweiten als auch zu dem weiteren Kühler förderbar. Dies kann etwa dadurch realisiert sein, dass der zweite Kühler und der weitere Kühler benachbart angeordnet sind. Es kann sich jedoch auch um eine nicht benachbarte Anordnung mit entsprechend verzweigten Luftführungskanälen handeln, wobei das gemeinsame Luftfördermittel die Umgebungsluft im Druckbetrieb durch beide Luftkanäle treibt.
  • Der dem zweiten Kühler zugeordnete Luftstrom ist über ein Ventilmittel, insbesondere eine stellbare Klappe, in seiner Größe veränderbar. Hierdurch ist die Kühlleistung des zweiten Kühlers auf einfache Weise an die jeweiligen Anforderungen anpassbar, wobei in die stellbare Klappe eine Anpassung auch dann ermöglicht, wenn der Luftstrom fahrtwindbedingt ist.
  • In einer Führung des zu kühlenden Gases ist ein veränderbarer Abzweig, insbesondere ein Bypass, vor dem zweiten Kühler vorgesehen . Hierdurch wird berücksichtigt, dass insbesondere luftgekühlte Gaskühler bei niedrigen Außentemperaturen vereisen können, wobei gefrorenes Kondenswasser der geführten Gase, insbesondere im Falle von geführten Abgasen, den Durchtritt des Primärmediums durch den Kühler verringern oder verhindern können. Der veränderbare Abzweig kann sowohl ein Bypass sein oder einfach eine Öffnung, mittels derer gestautes Abgas in die Umgebung abblasbar ist. Die Veränderbarkeit des Abzweigs kann dabei in einer Überdruckklappe bestehen oder auch in einer regelbaren Klappe. Vorteilhaft ist die Anordnung so ausgebildet, dass durch Abblasen oder Bypass-Umleitung des Gases der Wärmetauscher erwärmt wird, um das gefrorene Kondenswasser zu schmelzen.
  • Allgemein ist es in vorteilhafter Ausgestaltung vorgesehen, dass die abströmende Kühlluft des zweiten Kühlers zumindest teilweise einem Fahrzeuginnenraum zu Zwecken der Heizung zuführbar ist. Hierzu kann etwa eine Zuführung der von dem zweiten Kühler abströmenden Kühlluft über einen Kanal in einen Eintrittsbereich einer Belüftungs- oder auch Klimaanlage des Fahrzeugs vorgesehen sein. Die Zuführung der erwärmten Abluft kann z.B. über eine Stellklappe regelbar sein. Ein erheblicher Vorteil einer solchen Nutzung der erwärmten Kühlluft liegt in einem besonders schnellen Ansprechen der Fahrzeugheizung bei Kaltstart des Motors. Zudem wird der zweite Kühler häufig in einem seitlichen oder hinteren Bereich des Motorraums angeordnet sein, wodurch sich eine im Vergleich zum Hauptkühler bessere Anschlußmöglichkeit des Abluftstroms an die Belüftungsanlage ergibt.
  • Zur Sicherstellung einer ausreichend niedrigen Kühllufttemperatur für den zweiten Kühler ist es allgemein vorteilhaft vorgesehen, dass eine Ansaugung von Umgebungsluft zur Kühlung des zweiten Kühlers außerhalb des Motorraums stattfindet. Insbesondere kann eine Ansaugung dabei im Bereich eines Radkastens vorgesehen sein.
  • Weitere Vorteile und Merkmale ergeben sich aus den nachfolgend beschriebenen Ausführungsbeispielen sowie den abhängigen Ansprüchen.
  • Vorteilhaft ist, dass das Luftfördermittel ein Radiallüfter ist.
  • Vorteilhaft ist, dass das Luftfördermittel ein Axiallüfter ist.
  • Vorteilhaft ist, dass das Luftfördermittel über einen Elektromotor antreibbar ist.
  • Vorteilhaft ist, dass das Luftfördermittel mechanisch mit dem Verbrennungsmotor koppelbar ist.
  • Vorteilhaft ist, dass das Luftfördermittel über eine Abgasturbine antreibbar ist.
  • Vorteilhaft ist, dass das Luftfördermittel mit einer Welle eines Abgas-Turboladers zur Luftaufladung antreibbar ist.
  • Vorteilhaft ist, dass der zweite Kühler ein Niederdruck-Abgaskühler in einem ein- oder mehrstufigen Abgaskühlerkonzept ist, wobei das in den Kühler geführte Abgas nach einer letzten Stufe eines Abgas-Turboladersystems, insbesondere stromab der Komponenten zur Abgasnachbehandlung entnehmbar ist.
  • Vorteilhaft ist, dass der zweite Kühler ein Tri-Flow-Kühler ist.
  • Vorteilhaft ist, dass der zweite Kühler ein zumindest zweipfadiger Kühler ist.
  • Vorteilhaft ist, dass ein weiterer luftgekühlter Kühler vorgesehen ist, wobei der zweite Kühler zur Kühlung von einem der beiden, Abgas oder frischer Ladeluft, und ein weiterer Kühler zur Kühlung von dem jeweils anderen der beiden ausgebildet ist.
  • Vorteilhaft ist, dass ein Strom aus Umgebungsluft durch ein gemeinsames Luftfördermittel sowohl zu dem zweiten Kühler als auch zu einem weiteren Kühler förderbar ist.
  • Vorteilhaft ist, dass die abströmende Kühlluft des zweiten Kühlers zumindest teilweise einem Fahrzeuginnenraum zu Zwecken der Heizung zuführbar ist.
  • Vorteilhaft ist, dass eine Ansaugung von Umgebungsluft zur Kühlung des zweiten Kühlers im Bereich eines Radkastens angeordnet ist.
  • Nachfolgend werden vier bevorzugte Ausführungsbeispiele eines erfindungsgemäßen Kühlsystems beschrieben und anhand der anliegenden Zeichnungen näher erläutert.
  • Fig. 1
    zeigt eine schematische Darstellung eines ersten Ausführungsbeispiels eines Kühlsystems.
    Fig. 2
    zeigt eine schematische Darstellung eines zweiten Ausführungsbeispiels eines Kühlsystems.
    Fig. 3
    zeigt eine schematische Darstellung eines dritten Ausführungsbeispiels eines kühlsystems.
    Fig. 4
    zeigt eine schematische Darstellung des erfndungsgemäßen Kühlsystems.
    Fig. 5
    zeigt eine schematische Darstellung eines im Gegenstrom betriebenen, parallel durchströmten Wämetauschers.
    Fig. 6
    zeigt eine schematische Darstellung eines Tri-Flow-Kühlers.
    Fig. 7
    zeigt eine schematische Darstellung eines 2-Pfad-Kühlers.
    Fig. 8
    zeigt eine schematische Darstellung eines Kreuzstromkühlers.
  • Das Kühlsystem gemäß Fig. 1 (erstes Ausführungsbeispiel) umfasst einen Hauptkühler 1 eines Verbrennungsmotors 2, der über ein flüssiges Kühlmittel in einem geschlossenen Kühlkreislauf 3 auf an sich bekannte Weise den Verbrennungsmotor 2 kühlt. Der Hauptkühler 1 ist dabei im Stirnbereich des Fahrzeugs angeordnet und wird zumindest größtenteils von Fahrwind durchströmt. Zudem ist ein Hauptlüfter 4 in saugender Anordnung an dem Hauptkühler 1 vorgesehen, mittels dessen eine ausreichende Luftdurchströmung des Hauptkühlers auch bei niedrigen Geschwindigkeiten gewährleistet ist.
  • Der Verbrennungsmotor 2 weist eine Aufladung seines zugeführten Frischgases 6 mittels eines Abgas-Turboladers 5 auf, wobei die aufgeladene Frischluft 6 vor einer Zuführung zu dem Verbrennungsmotor 2 aufgrund der in dem Abgas-Turbolader 5 erzeugten Erwärmung gekühlt werden muss. Hierzu ist ein von dem Hauptkühler 1 räumlich getrennter Ladeluftkühler 7 vorgesehen, welcher ein zweiter Kühler im Sinne der Erfindung ist. Der Ladeluftkühler 7 wird mittels eines als elektrischer Lüfter ausgebildeten Luftfördermittels 8 mit Umgebungsluft 9 beströmt, wodurch eine direkte Kühlung der Ladeluft 6 in einem offenen Kühlkreislauf gegeben ist. Aus der räumlichen Anordnung der Komponenten in Fig. 1 ergibt sich zudem, dass der Ladeluftkühler 7 und das Luftfördermittel 8 nicht im Stirnbereich des Fahrzeugs, sondern in einem seitlichen Motorraumbereich angeordnet sind. Aufgrund der Nichtanordung im Fahrtwindbereich wird das Luftfördermittel 8 regelmäßig dann in Betrieb sein, wenn der Ladeluftkühler 7 mit ausreichender Kühlleistung betrieben werden muss.
  • Zudem ist über einen Abzweig 10 in der Abgasleitung des Verbrennungsmotors 2 eine teilweise Abgasrückführung vorgesehen, wobei in einer über ein Ventil (nicht dargestellt) regelbaren Schnittstelle 11 eine Zusammenführung des Abgases mit der aufgeladenen Frischluft erfolgt. Das rückgeführte Abgas wird vor der Zusammenführung im Bereich 10 in einem dritten Kühler 12 gekühlt. Der dritte Kühler 12 ist in dem Hauptkühlkreislauf des Verbrennungsmotors 2 parallel zu dem Verbrennungsmotor 2 angeordnet, so dass die abgeführte Wärme des Abgases über den flüssiggekühlten dritten Kühler 12 letztlich in das Hauptkühlmittel des Verbrennungsmotors 2 eingetragen wird.
  • Für ein Motorkonzept mit erhöhter Motorleistung oder höheren Abgasrückführraten stellen sich in einer Betrachtung der Wärmebilanz die Wärmeflüsse in dem Kühlsystem des Verbrennungsmotors 2 so dar, dass bedingt durch die Abgasrückführung weniger Wärmeenergie durch das Abgas nach außen gegeben wird oder im Verbrennungsmotor mehr Wärmeenergie in das Kühlmittel eingetragen wird. Die so zusätzlich in das Kühlmittel eingetragene, Wärmemenge wird durch einen größer als üblich ausgelegten Hauptkühler abgeführt. Durch die größere Auslegung des Hauptkühlers 1 ist keine an sich bekannte Kombination des Hauptkühlers mit einem Ladeluftkühler zu einer Baugruppe möglich oder von der Kühlleistung her sinnvoll. Daher ist der Ladeluftkühler 7 separat angeordnet und mit Umgebungsluft beschickt, die von einem Luftfördermittel 8 getrieben ist. In einer sehr groben Betrachtung könnte somit festgestellt werden, dass bei gegebener maximaler Ausnutzung der Kühlmöglichkeit im Stirnbereich eines Fahrzeugs sich die Wärmebilanz gemäß dem erfindungsgemäßen Ausführungsbeispiel so darstellt, dass diejenige Wärmemenge, die dem Abgas entnommen wird, im wesentlichen über den Ladeluftkühler 7 zusätzlich an die Umgebungsluft abgegeben wird.
  • Das zweite Ausführungsbeispiel gemäß Fig. 2 unterscheidet sich von dem ersten Ausführungsbeispiel hauptsächlich dadurch, dass ein weiterer von Umgebungsluft umströmter und von dem Hauptkühler 1 räumlich getrennter Abgaskühler 13 vorgesehen ist, welcher in Strömungsrichtung des rückgeführten Abgases dem flüssigkeitsgekühlten ersten Abgaskühler (beziehungsweise dritten Kühler)12 nachgeschaltet ist. Dies ist hinsichtlich der Kühlung des Abgases sinnvoll, da die Umgebungslufttemperatur regelmäßig unterhalb der Kühlmitteltemperatur liegt.
  • Bezüglich der Versorgung des zusätzlichen Abgaskühlers 13 mit Umgebungsluft liegt ein Abzweig 14 im Frischluftstrom 9 vor, der dem in drückender Anordnung betriebenen Luftfördermittel 8 nachgeordnet ist. In der konkreten Ausbildung kann es dabei je nach Anforderung vorgesehen sein, dass Abgaskühler 13 und Ladeluftkühler 7 unmittelbar benachbart angeordnet sind und von demselben Frischluftstrom umströmt werden, oder das sie räumlich getrennt angeordnet sind, wozu zumeist ab dem Abzweig 14 getrennte Luftleitkanäle zur Zuleitung der Frischluft zu den jeweiligen Kühlern 7, 13 vorgesehen sind.
  • Hinsichtlich der Wärmebilanz gemäß dem Kühlsystem des zweiten Ausführungsbeispiels ist festzustellen, dass der Hauptkühler 1 ebenso wie im ersten Ausführungsbeispiel besonders groß ausgelegt ist, um die zusätzliche Wärmemenge, die durch den flüssig gekühlten Abgaskühler 12 in den Kreislauf des Verbrennungsmotors 2 eingebracht wird abzuführen, wobei zudem Wärmemenge sowohl von dem luftumströmten Ladeluftkühler 307 als auch dem luftumströmenden Abgaskühler 13 an die Umgebung unmittelbar abgegeben wird.
  • Das Kühlsystem gemäß dem dritten Ausführungsbeispiel (Fig. 3) weist einen Ladeluftkühler 307 auf, der im Unterschied zu dem ersten und zweiten Ausführungsbeispiel nicht räumlich getrennt zu dem Hauptkühler 1 angeordnet ist, sondern mit diesem auf an sich bekannte Weise zu einer Baugruppe zusammengefasst ist. Hierdurch wird der Ladeluftkühler 307 ebenso wie der Hauptkühler 1 von Fahrtwind umströmt und bedingt somit eine Verringerung der möglichen Kühlleistung des Hauptkühlers 1.
  • Ebenso wie im Fall des zweiten Ausführungsbeispiels liegt eine zweistufige Kühlung des rückgeführten Abgases vor, wobei die erste Stufe ebenfalls durch einen dritten Kühler 12 und die zweite Stufe durch einen luftgekühlten Wärmetauscher 13 erzielt wird. Der Wärmetauscher 13 wird von gepumpter Frischluft umströmt, wobei ein Fördermittel 308 für die Umgebungsluft bzw. Frischluft vorgesehen ist.
  • Eine Besonderheit liegt in dem Fördermittel 308, welches vorliegend als Antrieb eine separate Abgasturbine 308a aufweist, die über eine Kupplung 308b mit einem Lüfterrad 308c lösbar verbindbar ausgeführt sein kann. In bevorzugter Abwandlung kann das Lüfterrad 308c allerdings auch unmittelbar auf einer Welle des Abgasturboladers 5 aufgesetzt sein, um Bauteile und Bauraum zu sparen. Hierzu weist der Abgasturbolader einen modulartigen weiteren Gehäuseteil zur Ausbildung des Luftfördermittels auf (nicht dargestellt).
  • Das erfindungsgemäβe Kühlsystem gemäß Fig. 4 weist Ähnlichkeiten mit dem des dritten Ausführungsbeispiels auf. Abweichend liegt jedoch eine zweistufige Aufladung des Verbrennungsmotors 2 mit einem ersten Abgasturbolader 5 a und einem zweiten Abgasturbolader 5 b vor, welche seriell hintereinander angeordnet sind. Nach einer ersten Aufladungsstufe der Frischluft durch den zweiten Abgasturbolader 5 b ist ein luftumströmter Zwischenkühler 415 vorgesehen, welcher die vorverdichtete Ladeluft herunterkühlt, bevor sie in die Verdichterstufe des ersten Abgasturboladers 5a eintritt und dort endverdichtet wird. Der Zwischenkühler 415 kann dabei als "zweiter Kühler" oder auch als "weiterer Kühler" im Sinne der Erfindung dienen. Nach Endverdichtung durchströmt die verdichtete Ladeluft den im Prinzip aus dem dritten Ausführungsbeispiel bekannten und mit dem Hauptkühler 1 zu einer Baueinheit vereinheitlichten Hauptladeluftkühler 407, wonach an einer Schnittstelle 11 rückgeführtes Abgas der endverdichteten und gekühlten Ladeluft zugeführt wird. Das rückgeführte Abgas wird ebenso wie im dritten Ausführungsbeispiel zweistufig über einen flüssiggekühlten zweiten Kühler 12 und einen luftgekühlten Kühler 13 gekühlt. Insgesamt erliegen im vierten Ausführungsbeispiel somit zwei luftgekühlte Gaskühler 415, 13 vor, welche von dem Hauptkühler 1 bzw. dem Hauptladeluftkühler 407 räumlich getrennt im Motorraum angeordnet sind. Zur Versorgung dieser beiden Kühler 415, 13 mit kühler Umgebungsluft ist ein elektrisch betriebenes und als Radiallüfter ausgebildetes Luftfördermittel 8 vorgesehen, welches in drückender Anordnung Luft durch einen Abzweig 414 drückt, durch den die Kühlluft auf die beiden Kühler 13, 415-verteilt wird. In dem Zuleitungskanal zu dem Kühler 13 ist zudem ein einstellbares Ventil bzw. eine Stellklappe 416 vorgesehen. Durch Regelung dieser Stellklappe 416 kann eine geregelte Aufteilung des Kühlluftstroms auf die beiden Kühler 13, 415 eingestellt werden. Hierdurch ist eine Optimierung des Kühlsystems je nach Betriebszustand möglich. In dem vierten Ausführungsbeispiel sind somit insgesamt vier Kühler 1, 13, 407, 415 vorgesehen, die eine direkte offene Kühlung mit Umgebungsluft bewirken und somit von dem Verbrennungsmotor 2 erzeugte Wärme in die Umgebung abgeben.
  • Unabhängig von den Ausführungsbeispielen gemäß Fig. 1 bis Fig. 4 zeigen Fig. 5 bis Fig. 8 beispielhafte schematische Ausführungen von Wärmetauschern, die von ihrer Bauart her für einen erfindungsgemäßen zweiten Kühler oder auch einen weiteren Kühler besonders geeignet sind.
  • Dabei zeigt Fig. 5 einen parallel durchströmten, im Gegenstrom betriebenen Wärmetauscher 501, welcher in eine Richtung von einem Primärmedium 20 und in einer dazu getrennten Kammer in Gegenrichtung von einem Kühlluftstrom 21 (Sekundärmedium) durchströmt wird.
  • Fig. 6 zeigt einen Tri-Flow-Kühler, 601, welcher in einer Richtung von dem zu kühlenden Primärmedium 20 durchströmt wird. Bei insgesamt drei Anschlussstutzen 602, 603, 604 wird Kühlluft an den beiden endseitigen Stutzen 602, 604 zugeleitet und durch den mittigen Stutzen 603 abgeleitet. In einem ersten Abschnitt des Tri-Flow-Kühler 601 fließt die Kühlluft somit gleichgerichtet mit dem Primärmedium und in dem nachfolgenden zweiten Abschnitt entgegengerichtet zu dem Primärmedium. Hierdurch lässt sich die Kühlleistung bei ausreichender zur Verfügung stehender Menge an Kühlluft 21 und bei gegebenen Baumaßen besonders vergrößern, wobei zudem eine gleichmäßige Erhitzung des Kühlers 601 gegeben ist.
  • Ähnlich wie der Tri-Flow-Kühler kann die Kühlleistung durch einen Zwei-Pfad-Kühler 701 (siehe Fig. 7) optimiert werden, wobei die Kühlluft 21 über jeweils vier an dem Kühler vorgesehene Anschlüsse 702, 703, 704, 705 ein-und austritt, wobei zwei gegen Stromrichtung betriebene Kühlpfade sequentiell entlang des Pfades des Primärmediums 20 vorgesehen sind.
  • Fig. 8 zeigt einen Kreuzstromkühler, bei dem Primärmedium 20 und Kühlluft 21 im Wesentlichen im rechten Winkel zueinander strömen. Ein Kreuzstromkühler 801 ist einfach herstellbar und effektiv falls der erforderliche Bauraum zur Verfügung steht.
  • Ein zweiter Kühler im Sinne der Erfindung kann vom Aufbau her eine Rohrbündelbauweise aufweisen, insbesondere mit luftgekühlter Berippung. Es kann sich auch um eine Scheibenbauweise mit axialer Durchströmung des Primärgases handeln, insbesondere mit beidseitiger Berippung, insbesondere mit einem umgebenden Gehäuse. Alternativ kann ein zweiter Kühler eine Scheibenbauweise aufweisen, bei der das Primärmedium die Scheiben quer anströmt; auch hier kann eine Berippung vorliegen. Sowohl Primärseite als auch Sekundärseite können jeweils mit Turbulenzerzeugern (Winglets) oder auch innenberippt ausgestaltet sein.
  • Ganz allgemein kann bei jedem der beschriebenen Ausführungsbeispiele vorgesehen sein, dass die durch den Kühlungsprozess erwärmte Frischluft nicht oder nur teilweise in die Umgebung abgeführt und für eine Heizung des Innenraums des Fahrzeugs verwendet wird. Dies kann über Beimischung oder mittels eines Wärmetauschers geschehen. Hierzu können nicht eingezeichnete Kühlluftkanäle und Regelklappen auf einfache Weise dienen.
  • Da durch ein erfindungsgemäßes Kühlsystem Wärmetauscher aus der Fahrzeugfront verlagert werden, kann der gegebenenfalls freiwerdende Bauraum besonders sinnvoll auch zur Implementierung eines zusätzlichen Niedertemperaturkühlmittelkreislaufs neben dem Hauptkülmittelkreislauf genutzt werden, mit einem weitgehend vor dem Hauptmittelkühler an der Fahrzeugstirnseite angeordneten zweiten Kühlmittelkühler. Analog kann statt eines Niedertemperaturkühlmittelkreises auch ein Kältemittelkreislauf vorgesehen sein wobei statt des zweiten Kühlmittelkühlers ein Kondensator weitgehend vor dem Kühlmittelkühler angeordnet ist.
  • Alle insbesondere auch in den Ausführungsbeispielen genannten Bauteile und Anordnungen können in beliebiger Form kombiniert sein. Dies gilt insbesondere für die Art und Bauweise der Wärmetauscher, der Luftförderelemente, Kupplungselemente, Ventile, Bypassrohre und Auslässe der Kühlluft in die Umgebung, die jeweils in unterschiedlicher Anordnung und Anzahl in das Kühlsystem integriert sein können.
  • Da sich die Kühlluft stark erhitzen kann, können am Auslass der Kühlluft in die Umgebung Maßnahmen vorgesehen werden um die unzulässige Erhitzung von anderen Fahrzeugkomponenten oder Gefährdung von Personen, insbesondere auch Passanten, auszuschließen. Dies kann durch eine geeignete Positionierung des Auslasses, insbesondere z.B. oberhalb der Fahrerkabine, erfolgen. Vorteilhaft kann auch eine Abgabe der Kühlluft über den Auspuff sein. In einer weiteren vorteilhaften Ausführung kann die Kühlluft am Auslass mit Umgebungsluft vermischt und so abgekühlt werden. Besonders sinnvoll kann hierbei eine starke Verwirbelung der Kühlluft am Austritt sein, insbesondere ist dabei die Beaufschlagung mit starkem Drall zu nennen, die besonders effektiv zum Aufbrechen des austretenden Gasstrahls und damit zu effizienter Durchmischung mit Umgebungsluft führt.

Claims (10)

  1. Kühlsystem für ein Kraftfahrzeug, umfassend
    einen ersten im wesentlichen in der Fahrzeugfront angeordneten Hauptkühler (1) zur Kühlung eines Kühlmittels (3) eines Verbrennungsmotors (2) durch einen Luftstrom aus Umgebungsluft,
    einen Hauptlüfter (4) zur Bestromung des Hauptkühlers (1) mit dem Luftstrom aus Umgebungsluft,
    einen Abgaskühler (13), der der Kühlung von Abgas des Verbrennungsmotors (2) dient, wobei
    der Abgaskühler (13) räumlich getrennt von dem Hauptkühler (1) angeordnet ist, und
    ein von dem Hauptlüfter (4) separates Luftfördermittel (8, 308), mittels dessen der Abgaskühler (13) mit einem Luftstrom aus Umgebungsluft beströmbar ist, wobei der Luftstrom für den Abgaskühler (13) und der Luftstrom für den Hauptkühler (1) räumlich getrennt voneinander aus der Umgebung entnommen werden gekennzeichnet durch einen von dem Abgaskühler (13) verschiedenen zusätzlichen Abgaskühler (12), der der Kühlung des Abgases des Verbrennungsmotors (2) dient, und
    der zusätzlichen Abgaskühler (12) mittels eines flüssigen Mediums, insbesondere eines Kühlmittels (3) des Verbrennungsmotors (2), kühlbar ist und der dem Abgaskühler (13) zugeordnete Luftstrom über ein Ventilmittel (416), insbesondere eine stellbare Klappe, in seiner Größe veränderbar ist, wobei
    in einer Führung des zu kühlenden Gases ein veränderbarer Abzweig, insbesondere ein Bypass, um den Abgaskühler (13) vorgesehen ist, wobei ein ladeluffkühler (415) vorgesehen ist,
    der der Kühlung von Ladeluft für den Verbrennungsmotor (2) dient und
    das Luftfördermittel (8, 308) den Luftstrom aus Umgebungsluft sowohl durch den Abgaskühler (13) als auch durch den Ladeluftkühler (415) fördert.
  2. Kühlsystem nach Anspruch 1, dadurch gekennzeichnet, dass das Abgas des Verbrennungsmotors (2) in dem Abgaskühler (13) und dem zusätzlichen Abgaskühler (12) mindestens zweistuflg abkühlbar ist.
  3. Kühlsystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Luftfördermittel (8, 308) mechanisch mit dem Verbrennungsmotor koppelbar ist.
  4. Kühlsystem nach einem der Ansprüche 1 und 2, dadurch gekennzeichnet, dass das Luftfördermittel (8, 308) über eine Abgasturbine antreibbar ist.
  5. Kühlsystem nach Anspruch 4, dadurch gekennzeichnet, dass das Luftfördermittel (8, 308) mit einer Welle eines Abgas-Turboladers zur Luftaufladung antreibbar ist.
  6. Kühlsystem nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass mindestens ein Antrieb des Luftfördermittels (8, 308) selektierbar regelbar, insbesondere an- und abschaltbar ist.
  7. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgaskühler (13) von einem zu dem Verbrennungsmotor (2) rückgeführten Abgasstrom durchströmbar ist.
  8. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Abgaskühler (13) ein Paralielstromkühler (501, 601, 701), insbesondere ein Gegenstromkühler ist.
  9. Kühlsystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass der Abgaskühler (13) ein Kreuzstromkühler (801) ist.
  10. Kühlsystem nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Ansaugung von Umgebungsluft zur Kühlung des Abgaskühlers (13) außerhalb des Motorraums stattfindet.
EP06805656A 2005-09-06 2006-09-06 Kühlsystem für ein kraftfahrzeug Not-in-force EP1926895B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005042396A DE102005042396A1 (de) 2005-09-06 2005-09-06 Kühlsystem für ein Kraftfahrzeug
PCT/EP2006/008682 WO2007028591A2 (de) 2005-09-06 2006-09-06 Kühlsystem für ein kraftfahrzeug

Publications (2)

Publication Number Publication Date
EP1926895A2 EP1926895A2 (de) 2008-06-04
EP1926895B1 true EP1926895B1 (de) 2012-05-02

Family

ID=37762946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06805656A Not-in-force EP1926895B1 (de) 2005-09-06 2006-09-06 Kühlsystem für ein kraftfahrzeug

Country Status (7)

Country Link
US (1) US8028522B2 (de)
EP (1) EP1926895B1 (de)
JP (1) JP2010502870A (de)
CN (1) CN101263285B (de)
AT (1) ATE556205T1 (de)
DE (1) DE102005042396A1 (de)
WO (1) WO2007028591A2 (de)

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1509692B1 (de) * 2002-05-15 2009-05-13 Behr GmbH & Co. KG Schaltbarer abgaswaermetauscher
DE102008014169A1 (de) 2007-04-26 2009-01-08 Behr Gmbh & Co. Kg Wärmetauscher, insbesondere zur Abgaskühlung, System mit einem Wärmetauscher zur Abgaskühlung, Verfahren zum Betreiben eines Wärmetauschers
EP2171234B1 (de) * 2007-06-26 2019-10-30 Volvo Lastvagnar AB Ladeluftsystem und betriebsverfahren für das ladeluftsystem
JP5112805B2 (ja) * 2007-10-12 2013-01-09 日野自動車株式会社 Egr装置
SE531705C2 (sv) * 2007-11-16 2009-07-14 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor
JP2009197680A (ja) * 2008-02-21 2009-09-03 Kobelco Contstruction Machinery Ltd 建設機械
US8132407B2 (en) * 2008-04-03 2012-03-13 GM Global Technology Operations LLC Modular exhaust gas recirculation cooling for internal combustion engines
SE533942C2 (sv) * 2008-06-09 2011-03-08 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor
DE102008038624A1 (de) * 2008-08-12 2010-02-18 Behr Gmbh & Co. Kg Abgaskühler
WO2010019664A2 (en) * 2008-08-14 2010-02-18 Dierbeck Robert F Combined high temperature exhaust gas and charge air cooler with protective internal coating
FR2935475B1 (fr) * 2008-08-27 2012-12-07 Valeo Systemes Thermiques Echangeur de chaleur pour le refroidissement d'un fluide, en particulier des gaz d'echappement recircules d'un moteur thermique
DE102008048133B4 (de) 2008-09-20 2020-06-04 Man Truck & Bus Se Vorrichtung zur Abgasführung für eine Brennkraftmaschine
SE534270C2 (sv) * 2008-11-05 2011-06-21 Scania Cv Ab Arrangemang för kylning av återcirkulerande avgaser hos en förbränningsmotor
SE533508C2 (sv) * 2009-03-13 2010-10-12 Scania Cv Ab Arrangemang för kylning av återcirkulerande avgaser hos en förbränningsmotor
CN102362054B (zh) * 2009-03-23 2014-01-22 康奈可关精株式会社 进气控制系统
US20110073285A1 (en) * 2009-09-30 2011-03-31 Gm Global Technology Operations, Inc. Multi-Zone Heat Exchanger for Use in a Vehicle Cooling System
US20110100342A1 (en) * 2009-11-02 2011-05-05 International Engine Intellectual Property Company Llc Forced convection egr cooling system
DE102010001752B4 (de) 2010-02-10 2012-06-21 Ford Global Technologies, Llc Kühlsystem
DE102010064472B3 (de) * 2010-02-10 2015-05-13 Ford Global Technologies, Llc Verfahren zum Betrieb eines Kühlsystems und Kühlsystem
SE535877C2 (sv) * 2010-05-25 2013-01-29 Scania Cv Ab Kylarrangemang hos ett fordon som drivs av en överladdad förbränningsmotor
DE102010036591A1 (de) * 2010-07-23 2012-01-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Ladeluftkühlung
DE102010036946A1 (de) * 2010-08-11 2012-02-16 Ford Global Technologies, Llc. Hochdruck-Abgasrückführsystem mit Wärmerückgewinnung
US20120067332A1 (en) * 2010-09-17 2012-03-22 Gm Global Technology Operations, Inc. Integrated exhaust gas recirculation and charge cooling system
US20120181001A1 (en) * 2011-01-14 2012-07-19 Gregory Alan Marsh Thermal management systems and methods
US9097174B2 (en) 2012-05-11 2015-08-04 Delphi Technologies, Inc. System and method for conditioning intake air to an internal combustion engine
DE102012216452A1 (de) * 2012-09-14 2014-03-20 Eberspächer Exhaust Technology GmbH & Co. KG Wärmeübertrager
CN103527301B (zh) * 2013-10-31 2015-08-12 唐荣春 一种冷却水道边盖增压气流冷却器
US20150219005A1 (en) * 2014-01-31 2015-08-06 Halla Visteon Climate Control Corp. Method of improving charge air condition in air-cooled charge air coolers
DE102015011192A1 (de) * 2015-08-26 2017-03-02 Man Truck & Bus Ag Bypass-Einrichtung zur Reduzierung einer Rezirkulation erwärmter Luft in eine Kühleinrichtung
US10036337B2 (en) * 2016-03-28 2018-07-31 General Electric Company Systems and method for exhaust gas recirculation
DE102016221503A1 (de) * 2016-11-02 2018-05-03 Röchling Automotive SE & Co. KG Vorrichtung und Verfahren zur lüfterbasierten Enteisung von Luftklappenanordnungen
DE102017004014A1 (de) * 2017-04-25 2018-10-25 Liebherr-Transportation Systems Gmbh & Co. Kg Verfahren zur Bestimmung der Dichtigkeit des Prozessluftkreislaufs einer Kaltluftklimaanlage
EP3499003B1 (de) * 2017-12-14 2020-05-06 C.R.F. Società Consortile per Azioni System zur luftzuführung an einen verbrennungsmotor
DE102018205961A1 (de) * 2018-04-19 2019-10-24 Volkswagen Aktiengesellschaft Ladeluftkühler einer Brennkraftmaschine und Verfahren zur Ladeluftkühlung einer Brennkraftmaschine
DE102019206450B4 (de) * 2019-05-06 2021-03-04 Ford Global Technologies, Llc Motorsystem
CN114000960A (zh) * 2020-07-28 2022-02-01 广州汽车集团股份有限公司 一种egr系统及汽车
JP7435534B2 (ja) * 2021-04-23 2024-02-21 株式会社豊田自動織機 内燃機関および内燃機関の制御方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT170662B (de) 1946-04-16 1952-03-10 Tatra Np Kühleranordnung bei wassergekühlten Heckmotorfahrzeugen
US3946565A (en) * 1974-08-29 1976-03-30 Wallace Murray Corporation Intercooler fan and compressor construction
US4062188A (en) * 1976-03-31 1977-12-13 Wallace Murray Corporation Turbocharger system for an internal combustion engine
DE3508240A1 (de) * 1985-03-08 1986-09-11 Klöckner-Humboldt-Deutz AG, 5000 Köln Waermetauscher, insbesondere ladeluftkuehler mit optimierten stroemungswiderstaenden fuer alle waermeaustauschenden medien
DE3738412A1 (de) * 1987-11-12 1989-05-24 Bosch Gmbh Robert Vorrichtung und verfahren zur motorkuehlung
JP3116231B2 (ja) * 1990-02-28 2000-12-11 臼井国際産業株式会社 送風ダクトを用いたラジエータ放熱装置
DE4104093A1 (de) * 1991-02-11 1992-08-13 Behr Gmbh & Co Kuehlanlage fuer ein fahrzeug mit verbrennungsmotor
JPH04314918A (ja) * 1991-04-15 1992-11-06 Toyota Autom Loom Works Ltd インタークーラ
DE4441164C2 (de) * 1994-11-18 1997-04-03 Daimler Benz Ag Vorrichtung zur Steuerung des Ladeluftstromes für eine aufgeladene Brennkraftmaschine
JPH08158871A (ja) * 1994-12-02 1996-06-18 Toyota Motor Corp 内燃機関の冷却装置
US6216458B1 (en) * 1997-03-31 2001-04-17 Caterpillar Inc. Exhaust gas recirculation system
DE19808633A1 (de) 1998-02-28 1999-09-02 Kuetter Verfahren und Vorrichtung zur intensivierten Ladeluftkühlung bei aufgeladenen Brennkraftmaschinen mittels aufbereiteter Kühlluft
DE19849619B4 (de) * 1998-10-28 2004-11-18 Daimlerchrysler Ag Kühlsystem für einen Verbrennungsmotor eines Kraftfahrzeuges
SE514456C2 (sv) * 1999-01-08 2001-02-26 Lysholm Techn Ab Anordning vid en förbränningsmotor försedd med en överladdare
EP1072783B1 (de) * 1999-07-30 2002-09-25 Denso Corporation Abgaswärmetauscher mit schräg angeordneten Gasleitsegmenten
DE19950753A1 (de) * 1999-10-21 2001-04-26 Modine Mfg Co Kühlanlage I
DE19961825A1 (de) * 1999-12-21 2001-06-28 Valeo Klimasysteme Gmbh Kühl-Heiz-Kreis mit zwei Kühlern
JP2002339810A (ja) * 2001-05-16 2002-11-27 Mitsubishi Motors Corp 排ガス還流装置
SE523073C2 (sv) * 2001-06-28 2004-03-23 Valeo Engine Cooling Ab Sätt och anordning för kylning av laddluft och hydraulolja
FI116802B (fi) * 2002-01-17 2006-02-28 Waertsilae Finland Oy Mäntämoottorin imuilmajärjestely
DE10203003B4 (de) 2002-01-26 2007-03-15 Behr Gmbh & Co. Kg Abgaswärmeübertrager
GB2393759B (en) 2002-10-04 2004-12-15 Visteon Global Tech Inc Air intake cooling system and method
DE10247264A1 (de) * 2002-10-10 2004-04-29 Behr Gmbh & Co. Plattenwärmeübertrager in Stapelbauweise
DE10253813B4 (de) * 2002-11-18 2005-02-10 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Luftgekühlte Kühler mit nacheinander von Kühlluft durchströmten Kühlerelementen
JP2006509146A (ja) * 2002-12-03 2006-03-16 ベール ゲーエムベーハー ウント コー カーゲー 冷却装置
DE10302708A1 (de) * 2003-01-23 2004-07-29 Behr Gmbh & Co. Kg Vorrichtung zum Austausch von Wärme
DE10328746A1 (de) * 2003-06-25 2005-01-13 Behr Gmbh & Co. Kg Vorrichtung zum mehrstufigen Wärmeaustausch und Verfahren zur Herstellung einer derartigen Vorrichtung
KR100666853B1 (ko) * 2003-12-05 2007-01-10 현대자동차주식회사 인터쿨러 시스템 및 흡입공기 냉각 방법
DE102004001462A1 (de) 2004-01-08 2005-08-18 Behr Gmbh & Co. Kg Kühlsystem
SE527479C2 (sv) * 2004-05-28 2006-03-21 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor
US7040303B2 (en) * 2004-08-20 2006-05-09 Electro-Motive Diesel, Inc. Combined aftercooler system with shared fans
US7469689B1 (en) * 2004-09-09 2008-12-30 Jones Daniel W Fluid cooled supercharger
US7322193B2 (en) * 2005-08-19 2008-01-29 Deere & Company Exhaust gas recirculation system
JP4609243B2 (ja) * 2005-08-30 2011-01-12 株式会社デンソー 排気ガス再循環装置
US20080098998A1 (en) * 2006-10-30 2008-05-01 Dicke Paul A Engine mounted air-to-air aftercooler
US7591254B2 (en) * 2007-03-28 2009-09-22 Billy Machner Supercharger control system
EP2171234B1 (de) * 2007-06-26 2019-10-30 Volvo Lastvagnar AB Ladeluftsystem und betriebsverfahren für das ladeluftsystem
US20090139474A1 (en) * 2007-11-30 2009-06-04 Caterpillar Inc. Air-to-air aftercooler
EP2110634B1 (de) * 2008-04-16 2016-10-19 MAHLE Behr GmbH & Co. KG Abgasverdampfer eines Kraftfahrzeuges
US8370052B2 (en) * 2008-10-22 2013-02-05 Caterpillar Inc. Engine cooling system onboard diagnostic strategy

Also Published As

Publication number Publication date
WO2007028591A2 (de) 2007-03-15
ATE556205T1 (de) 2012-05-15
US8028522B2 (en) 2011-10-04
EP1926895A2 (de) 2008-06-04
US20080196679A1 (en) 2008-08-21
DE102005042396A1 (de) 2007-03-15
CN101263285A (zh) 2008-09-10
WO2007028591A3 (de) 2007-05-03
JP2010502870A (ja) 2010-01-28
CN101263285B (zh) 2012-04-04

Similar Documents

Publication Publication Date Title
EP1926895B1 (de) Kühlsystem für ein kraftfahrzeug
DE102012209893B4 (de) Aufgeladene Brennkraftmaschine mit Ladeluftkühlung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102011078457B4 (de) Verfahren zum Betreiben einer Brennkraftmaschine mit Ladeluftkühler
EP3048291B1 (de) Brennkraftmaschine mit agr-kühler
DE60306954T2 (de) Verbesserte vorrichtung zur thermischen regelung von der ansaugluft einer brennkraftmaschine und rückgeführtem brennkraftmaschinenabgas
DE102014206644A1 (de) Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP2554820A1 (de) Aufgeladene Brennkraftmaschine mit zwei Turbinen und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102011078454B4 (de) Brennkraftmaschine mit Ladeluftkühlung
EP1623101B1 (de) Kreislauf zur k hlung von ladeluft und verfahren zum betreib en eines derartigen kreislaufs
DE102012011227A1 (de) Verbrennungskraftmaschine für einen Kraftwagen
DE102007061495A1 (de) Explosionsverbrennungsmotor mit einer Kühleranordnung
DE102013206690A1 (de) Brennkraftmaschine mit Ladeluftkühler und Abgasrückführung und Verfahren zum Herstellen einer derartigen Brennkraftmaschine
DE102010003002B4 (de) Abgasturbolader-Anordnung mit Abgasrückführeinrichtung und Abgasverdichter
EP3201449B1 (de) Aufgeladene brennkraftmaschine sowie fahrzeug
DE102018209238B4 (de) Abgasturboaufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP1284343B1 (de) Kraftfahrzeug-Kühlsystem und entsprechendes Kraftfahrzeug
EP1727976B1 (de) Brennkraftmaschine mit befeuchtungseinrichtung und wärmetauscher
DE102015219625B4 (de) Aufgeladene Brennkraftmaschine mit Niederdruck-Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
EP2153054A1 (de) Abgaswärmetauscher, abgaswärmetauschersystem, brennkraftmotor und verfahren zum behandeln von abgasen eines brennkraftmotors
DE102014216101A1 (de) Aufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE202015102241U1 (de) Zweistufig aufladbare Brennkraftmaschine mit Abgasnachbehandlung
DE102019206450A1 (de) Motorsystem
DE102019206216B4 (de) Aufgeladene Brennkraftmaschine mit Abgasrückführung und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102016215862A1 (de) Brennkraftmaschine mit Verdichter, Abgasrückführung und einer mit dem Verdichter verbundenen Ventileinheit
DE202014103770U1 (de) Aufgeladene Brennkraftmaschine mit Abgasrückführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080407

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20081022

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 556205

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011403

Country of ref document: DE

Effective date: 20120705

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120502

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120902

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120803

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120903

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: BEHR G.M.B.H. & CO. KG

Effective date: 20120930

26N No opposition filed

Effective date: 20130205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120813

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011403

Country of ref document: DE

Effective date: 20130205

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120802

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 556205

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060906

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011403

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011403

Country of ref document: DE

Representative=s name: GRAUEL, ANDREAS, DIPL.-PHYS. DR. RER. NAT., DE

Effective date: 20150317

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006011403

Country of ref document: DE

Owner name: MAHLE INTERNATIONAL GMBH, DE

Free format text: FORMER OWNER: BEHR GMBH & CO. KG, 70469 STUTTGART, DE

Effective date: 20150317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20180924

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180924

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181001

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011403

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190906

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930