EP1923173B1 - Machine-outil manuelle - Google Patents

Machine-outil manuelle Download PDF

Info

Publication number
EP1923173B1
EP1923173B1 EP20070019116 EP07019116A EP1923173B1 EP 1923173 B1 EP1923173 B1 EP 1923173B1 EP 20070019116 EP20070019116 EP 20070019116 EP 07019116 A EP07019116 A EP 07019116A EP 1923173 B1 EP1923173 B1 EP 1923173B1
Authority
EP
European Patent Office
Prior art keywords
hollow shaft
tool spindle
hand
bearing
operated machine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20070019116
Other languages
German (de)
English (en)
Other versions
EP1923173A1 (fr
Inventor
Johannes Dr. Steimel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Festool GmbH
Original Assignee
Festool GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Festool GmbH filed Critical Festool GmbH
Publication of EP1923173A1 publication Critical patent/EP1923173A1/fr
Application granted granted Critical
Publication of EP1923173B1 publication Critical patent/EP1923173B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B23/00Portable grinding machines, e.g. hand-guided; Accessories therefor
    • B24B23/02Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor
    • B24B23/03Portable grinding machines, e.g. hand-guided; Accessories therefor with rotating grinding tools; Accessories therefor the tool being driven in a combined movement

Definitions

  • the invention relates to a hand tool machine in the form of an eccentric grinding machine or eccentric polishing machine according to the preamble of claim 1.
  • Such a hand tool machine is for example off DE 42.33 727 A1 or EP 0 591 876 A1 known.
  • the eccentric grinding machine has a hollow shaft, which is driven by the motor.
  • a tool spindle is mounted eccentrically.
  • the hollow shaft in turn is rotatably mounted with bearings which are arranged on its outer circumference with respect to a housing of the power tool.
  • needle bearings and ball bearings are used in the known eccentric grinding machines.
  • the load on the bearings, especially with eccentric tool spindles, is high.
  • the tool spindle bearing sits outside on the hollow shaft.
  • the tool spindle bearing of the power tool according to the invention comprises at least one tool spindle bearing, the inner ring is connected to an outer periphery of the hollow shaft and the outer ring is connected to the tool spindle.
  • a tool spindle bearing of a hand tool of the type mentioned above advantageously contains at least one tool spindle bearing with an inner circumference which is larger than the outer circumference of the tool spindle in the same longitudinal position as the at least one tool spindle bearing.
  • the hollow shaft expediently has a hollow shaft bearing, with which it is rotatably mounted with respect to the housing.
  • the hollow shaft bearing comprises at least one, expediently two or more hollow shaft bearings seated on the outer circumference of the hollow shaft.
  • the hollow shaft is for example a motor shaft of the motor or an output shaft of a transmission that drives the motor.
  • the diameter of the hollow shaft bearings is small in comparison to the at least one tool spindle bearing connected to the outer circumference of the hollow shaft. There are low friction losses in the bearings or a low power loss.
  • the tool spindle is mounted eccentrically with respect to a housing of the power tool.
  • the tool spindle is mounted eccentrically with respect to the axis of rotation of the hollow shaft.
  • the interior of the hollow shaft or the cavity of the hollow shaft has, for example, an eccentricity to the hollow shaft of the hollow shaft.
  • An axis of rotation of the seated on the outer circumference of the hollow shaft tool spindle bearing has an eccentric distance to the axis of rotation of the hollow shaft.
  • the interior or longitudinal interior of the hollow shaft may be an eccentric bore.
  • a longitudinal central axis of the interior is eccentric to the axis of rotation of the hollow shaft.
  • a bearing holding arrangement is advantageously provided which protrudes radially in front of a longitudinal end of the hollow shaft and holds a bearing ring of the at least one tool spindle bearing.
  • the bearing arrangement has, for example, a cup structure, wherein the tool spindle bearing is arranged in the interior of the cup structure.
  • the tool spindle bearing advantageously has at least two tool spindle bearings arranged at a longitudinal distance on the hollow shaft. Between the at least two tool spindle bearings, the hollow shaft is advantageously rotatably mounted on a hollow shaft bearing.
  • the bearings of the hollow shaft between the bearings of the tool spindle which is advantageously an eccentric shaft, arranged.
  • the at least one tool spindle bearing has, for example, a larger diameter than the tool spindle in the region of the same longitudinal position as the at least one tool spindle bearing.
  • the at least one tool spindle bearing advantageously has a larger bearing diameter than at least one hollow shaft bearing of the shaft bearing, for example as the smallest hollow shaft bearing.
  • the diameter of the at least one tool spindle bearing seated on the outside of the hollow shaft is greater than the bearing diameter of all hollow shaft bearings for mounting the hollow shaft. Furthermore, it is possible for the outer diameter of at least one tool spindle bearing, which is seated on the outer circumference of the hollow shaft, to be larger than the inner diameter of the smallest hollow shaft bearing. In the aforementioned measures is advantageous that the diameter of the hollow shaft bearing is smaller than in the known construction mentioned above, in which the outer diameter of the tool spindle bearing or there the eccentric shaft bearing are smaller than the inner diameter of the hollow shaft bearing or output shaft bearings. According to the invention, this results in a lower power loss.
  • the engine can drive the hollow shaft directly or via a gearbox.
  • gearbox For example, belt transmissions or toothed gears, e.g. Bevel gear, helical gear or planetary gear.
  • the hollow shaft we expediently driven in the area of the hollow shaft bearing.
  • the engine is arranged there, for example.
  • a coupling arrangement For driving force transmission from the hollow shaft to the tool spindle, which is expediently eccentric, a coupling arrangement is advantageously provided.
  • the tool spindle bearing according to the invention advantageously forms part of the coupling arrangement.
  • the Hollow shaft the tool spindle due to friction in the tool spindle bearing with.
  • a brake assembly for braking the tool spindle is advantageous.
  • the brake assembly includes, for example, an effective between the tool spindle and the housing friction brake and / or an eddy current brake.
  • the engine may be an electric or a pneumatic engine.
  • the motor is a brushless, in particular an electronically cummuttierter engine.
  • the electric motor in particular in the case of the electronically commutated motor, it is advantageous if it has an external-rotor rotor which drives the tool spindle directly or via a transmission.
  • the motor has a tubular stator structure for holding the stator. The support structure is penetrated by the hollow shaft.
  • the hollow shaft is rotatably mounted with the hollow shaft bearing on the rotor structure.
  • the tool spindle which is advantageously eccentric, in turn is mounted on the hollow shaft with the inventively designed tool spindle bearing.
  • the hollow shaft is, for example, the output shaft of a transmission or the motor shaft. In the latter case, the engine is a direct drive.
  • a compact design is achieved.
  • a stator of the motor is expediently arranged between the hollow shaft and the external rotor rotor.
  • the external rotor rotos is advantageously rotatably coupled to the hollow shaft.
  • the hollow shaft forms part of the external rotor.
  • a tool holder for a polishing or grinding plate is advantageously provided.
  • the hollow shaft advantageously carries at least one fan wheel for cooling the power tool, for extracting dust from a surface machined by the power tool or the like.
  • a blocking device for blocking the tool spindle.
  • the aforementioned bearing arrangement for holding the at least one tool spindle bearing has, for example, a blocking receptacle or a blocking projection of the blocking device.
  • the at least one tool spindle bearing connected to the outer circumference of the hollow shaft is expediently arranged in the region of a longitudinal end of the hollow shaft. It is understood that a tool spindle bearing connected to the outer circumference of the hollow shaft can be provided at both longitudinal ends of the hollow shaft.
  • the hollow shaft bearing is arranged for the hollow shaft between the tool spindle bearings.
  • a hand tool 10 for example an eccentric grinding machine or eccentric polishing machine, has a brushless motor 11 for driving a tool spindle 12.
  • a tool holder 13 for holding a tool 14, for example a grinding plate 15, is arranged.
  • the motor 11 drives a hollow shaft 16, in the cavity or interior 17, the tool spindle 12 is arranged at least in sections.
  • the interior 17 extends over the entire length of the hollow shaft 16, which is open at their ends.
  • the tool spindle 12 protrudes at an upper end portion 18 and a lower end portion 19 of the hollow shaft 16 before this.
  • the hollow shaft 16 is rotatably supported with a hollow shaft bearing 20 with respect to a housing 21 of the power tool 10.
  • the tool spindle 12 in turn is rotatably mounted on the hollow shaft 16 with a tool spindle bearing 22.
  • An axis of rotation 24 of the tool spindle 12 has an eccentricity e to a rotational axis 23 of the hollow shaft 16.
  • the motor 11 drives the hollow shaft 16 to a rotational movement, which at least partially transmits the hollow shaft 16 via a coupling arrangement 9 on the tool spindle 12.
  • the motor 11 forms a direct drive for driving the hollow shaft 16.
  • the hollow shaft 16 and the coupling assembly 9 form a kind of gear for the tool spindle 12.
  • the coupling assembly 9 includes the tool spindle bearing 22.
  • the hollow shaft 16 takes the tool spindle 12 due to friction in the Tool spindle bearing 22 with.
  • the tool spindle bearing 22 is loaded, inter alia, by centrifugal forces. For example, this is present in tool spindle bearings 50, 51 friction.
  • the tool spindle 12 rotates about the rotation axis 23 and with a superimposed about the eccentricity e offset rotational movement about the rotation axis 24.
  • the eccentricity e is realized by an eccentric arrangement of the cavity or interior 17 with respect to the axis of rotation 23 of the hollow shaft 16. It is understood that even with a central cavity of a hollow shaft by an appropriate storage of the tool spindle with respect to the hollow shaft an eccentricity can be realized.
  • an effective between the housing 21 and the tool spindle 12 brake assembly 25 is realized with an eddy current brake, in which a rotatably coupled to the tool spindle 12 metallic eddy current element 26 and non-rotatable, arranged on the housing 21 magnets 27 cooperate.
  • the magnets 27 are arranged for example on an upper collar region of a support sleeve 49 of the housing 21 and generate eddy currents in the eddy current element 26, which is formed in the embodiment by a bearing holder 29 of a bearing holder assembly 30.
  • the bearing holder 29 is at the upper end portion 32 of the tool spindle 12, for example, with a nut 31 rotatably fixed. It is also conceivable to provide other brake concepts for the realization of a brake assembly, for example friction portions on a tool spindle in the manner of the tool spindle 12, which rub against housing-fixed friction portions and thus brake the tool spindle. For example, instead of the magnets 27 friction elements could be provided on which a portion of the bearing holder 29 rubs.
  • the motor 11 is a brushless, electronically commutated drive motor.
  • the motor 11 is an external rotor motor.
  • An exciting coil assembly 33 of a stator 34 of the motor 11 is disposed on the outside of a stator body or a stator structure 28.
  • a laminated core 35 is seated, for example, on the outer circumference of the stator structure 28.
  • the excitation coils of the excitation coil arrangement 33 are arranged on the laminated core 35 and generate current by energizing means 36 with a rotating field. This rotating field acts on a rotor 37, which is designed as an external rotor rotor.
  • Magnets 38 for example permanent magnets, of the rotor 37 are arranged radially outside with respect to the stator on a rotor body or a rotor structure 39, for example on a cup-shaped, cylindrical peripheral portion 40 of the rotor structure 39.
  • the wall-like peripheral portion 40 it would also be possible, for example, to hold webs, a cage structure, etc to be provided for holding the magnets 38.
  • a lower portion 41 of the rotor structure 39 is rotatably connected to the hollow shaft 16.
  • the hollow shaft 16 is driven directly by the rotor 37 and forms an output shaft 42 of the motor 11.
  • the output shaft 42 is disposed in the interior of the stator 34.
  • the rotor 37 is radially outward of the output shaft 42, so that an air gap 53a between the magnets 38 and the exciting coil assembly 33 has a large diameter and the motor 11 can generate high torque. Nevertheless, the hand tool 10 is very compact. Due to the high torque of the motor 11, no gear for driving the hollow shaft 16 is required.
  • the hollow shaft 16 has a stepped structure, so that one of a Step wave can speak.
  • the outer diameter of the hollow shaft 16 gradually increases from an upper end portion 45 to an upper portion 46 via a middle portion 47 to a lower end portion 48 of the hollow shaft 16.
  • the lower bearing 44 is seated at the lower end of the central portion 47 on the hollow shaft 16 and is supported on the outside of the stator 28.
  • the lower bearing 44 is seated at the step between the middle portion 47 and the lower end portion 48.
  • the upper bearing 43 of the hollow shaft bearing 20 is seated at the step between the upper end portion 45 and the middle portion 46.
  • the upper bearing 43 is supported on one side Support structure or support sleeve 49 from which is inserted into the stator 28 and is supported on this.
  • An upper and a lower bearing 50, 51 of the tool spindle bearing 22 are arranged in the region of the upper and lower end portions 45, 48 of the hollow shaft 16.
  • the upper tool spindle bearing 50 is an outer bearing with respect to the hollow shaft 16, the lower tool spindle bearing 51 an inner bearing for the tool spindle 12.
  • the two hollow shaft bearings 43, 44 are advantageously arranged between the tool spindle bearings 50, 51.
  • the lower bearing 51 is located on an inner circumference of the hollow shaft 16, namely in a receptacle 52 of the hollow shaft 16.
  • the receptacle 52 is formed by an enlarged portion of the inner space 17 of the hollow shaft 16.
  • the upper bearing 50 has a larger diameter than the lower bearing 51.
  • the upper bearing 50 is seated on an outer periphery 53 of the hollow shaft 16, namely at the upper end portion 45.
  • Die Bearing assembly 30 which is rotatably connected to the tool spindle 12, holds the upper bearing 50 at its outer periphery.
  • the bearing support assembly 30 projects radially forward of the upper longitudinal end or end portion 18 of the hollow shaft 16 and retains an outer bearing ring 73 of the upper tool spindle bearing 50.
  • a cylindrical peripheral portion 54 is disposed at the bottom holds the bearing ring 73.
  • the rotor structure 39 comprises a fan wheel, which is arranged on the output shaft 42, which is formed by the hollow shaft 16.
  • the fan 56 generates a suction air stream 57 for extracting dust from a processed by the power tool 10 surface f, for example, a wooden surface.
  • the suction air flow 57 passes through openings 58 on the tool 14 into a suction air space 59 below the fan wheel 56 and is blown through air duct sections or air ducts 60 on the fan 56 into a suction channel 61 of the housing 21 so to speak.
  • a collecting container such as a dust bag or the like, can be connected to the suction channel 61.
  • a seal 62 is expediently arranged so that the suction air stream 57 does not escape from the suction air space 59.
  • the air ducts 60 are angled, with a portion extending approximately parallel to the axes of rotation 23, 24 and a second portion leads radially outward, where it opens into the suction channel 61, when the respective air duct 60 with the suction channel 61 at a suitable rotational position of the Fan wheel 56 is aligned.
  • the fan 56 further generates an engine cooling air stream 64 for cooling the engine 11.
  • the cooling air stream 64 enters through openings 65 on a cover 66 of the housing 21 and flows from there through cooling channels 67 of an engine cooling air duct 68 to the motor 11.
  • the cooling channels 67 are formed on the housing 21 and extend approximately parallel to the axes of rotation 23, 24.
  • the cooling channels 67 lead directly to the excitation coil assembly 33, so that substantially the excitation coils are cooled.
  • Cooling channels 69 lead out of the exciter coil assembly 33.
  • the cooling channels 67, 69 extend parallel to the axes of rotation 23; 24, so that the cooling air flow 64 in the region of the exciter coil 33 approximately parallel to the axes of rotation 23, 24 extends.
  • Ribs 70 on the upper side of the fan wheel 56 generate the motor cooling air flow 64, which exits the housing 21 through radially outer openings 71 in the lower region of the housing 21.
  • the energizing device 36 can scan the respective rotational position of the rotor 37 electronically. Furthermore, it is conceivable that, for example, a position magnet arrangement 63 is arranged on the rotor 37, for example below the air ducts 60, so that a sensor 63 'can detect the respective rotational position of the rotor 37 with the aid of the magnets 63.
  • An upper portion of the housing 21 serves as a handle portion. Below this handle region, the cooling air 68 flows out of the housing 21, so that it does not affect an operator of the power tool 10.
  • a recessed grip 72 on the outer circumference of the housing 21 facilitates the gripping of the housing 21. An operator can grasp the power tool 10 from above and engage with his fingers in the recessed grip 72. The hand tool is thus well in the hand. In the region of the recessed grip 72, a switch for switching on the motor 11 may be provided.
  • a blocking device 75 is used, which rotatably locked the tool spindle, so that the tool spindle 12 is stationary, while the operator changes the tool 14 on the tool holder 13.
  • the tool holder 13 contains, for example, a screw thread, a bayonet, latching means or other fastening means for fastening the tool 14.
  • a locking device 76 although rotationally fixed with respect to the axes of rotation 23, 24, but is movably mounted on the housing 21 is between a release position (in FIG. 1 drawn with solid lines) and one in FIG. 2 illustrated blocking position (in FIG. 1 dashed lines) movable.
  • a first blocking projection 80 of a first blocking arrangement 78 engages successively in a first blocking receptacle 79 and then a second blocking projection 83 in a second blocking receptacle 82 of a second blocking arrangement 81.
  • the blocking projections 80, 83 are arranged on a blocking part 77, which is coupled for movement with the tool spindle 12, in the present case being arranged rotationally fixed on the tool spindle 12. It is understood that between a blocking part and the tool spindle, for example, a gear or other entrainment means may be provided for movement coupling.
  • the blocking part 77 is here plate-like.
  • the blocking part 77 is formed by the bearing holder 29 arranged at the upper end of the tool spindle 12. In front of the bearing holder 29, the blocking projections 80, 83 project upwards parallel to the axes of rotation 23, 24.
  • the blocking receivers 79, 82 are formed by recesses 84, 85 of a plate 86 of the locking device 76.
  • the locking device 76 is against the spring force of springs 90 a return device 91 from the release position movable in the blocking position.
  • an operator can displace the locking device 76 in the direction of the blocking part 77 with an actuating handle 88, for example an actuating button, which is accessible through an opening 87 on the housing 21 or on the cover 66.
  • a guide device 90a with guide elements 89 guides the locking device 76 linearly parallel to the axes of rotation 23, 24.
  • the guide elements 89 are, for example, bolts which are bolted to expediently projecting sections or brackets 92 of the housing 21.
  • the springs 90 are supported on the one hand on the brackets 92 and on the other hand on the locking device 76 from.
  • the guide elements 89 penetrate the locking device 76 at guide openings 93. Projections 94 on the guide elements 89, for example screw heads, limit the displacement of the locking device in the direction of the release position.
  • stops 95 for example a collar section or radially protruding projections, are provided on the actuating handle 88, which abut stops 96 of the housing 21, for example stops in the region of the opening 87, in the release position of the locking device 76. This also limits the stroke of the locking device 76 in the direction of the release position.
  • the blocking part 77 is rotatable about the axis of rotation 23 of the hollow shaft 16 driven by the motor 11 and also about the axis of rotation 24 of the tool spindle 12, wherein the axis of rotation 24 of the tool spindle 12 is eccentric to the axis of rotation 23 of the hollow shaft 16 by the eccentricity e.
  • An eccentricity in itself makes it difficult to operate a blocking device.
  • a non-rotatable setting of the tool spindle for the tool change with known blocking devices is not possible.
  • the blocking device 75 With the blocking device 75, however, the tool spindle 12 can be conveniently locked against rotation.
  • the blocking projection 80 When displacing the locking device 76 from the release position in the direction of the blocking position engages in a first movement section, first the blocking projection 80 in the blocking receptacle 79 a.
  • the blocking projection 80 projects further upwardly in front of the plate portion 55 of the blocking part 77, so that it engages in its associated blocking receptacle 79, before the shorter blocking projection 83 engages in its associated blocking receptacle 82 in a second movement section.
  • the first blocking arrangement 78 forms a kind of catch-blocking arrangement, that is, the pin or blocking projection 80 engages in the blocking receptacle 79. This is for example in FIG. 4b shown schematically. Then the blocking part 77, which sits tightly against the tool spindle 12 at the top, is moved on, for example, by turning on the tool spindle 12 until the blocking receptacle 82 and the blocking projection 83 are opposite one another and can engage. Due to the fixed coupling of the tool spindle 12 with the blocking part 77, the blocking part 77 is rotatably mounted about both axes of rotation 23, 24 and thus eccentrically.
  • a receptacle 97 is provided, for example, a passage opening into which the nut 31 can penetrate the tool spindle 12 in the blocking position. Due to the eccentricity e, the receptacle 97 is expediently so large that a free movement play of the tool spindle 12 within the receptacle 97 is ensured.
  • the recesses 84, 85 for the blocking projections 80 and 83 are expediently narrower with respect to the direction of rotation of the blocking part 77, so that in the blocking position the blocking projections 80, 83 are received in the blocking receptacles 79, 82 as far as possible without play.
  • the blocking receivers 79, 82 are similar and have the same arrangement geometry so that each of the blocking projections 80, 83 fits into each of the blocking receivers 79, 82.
  • the blocking receivers 79, 82 are, for example, oblong holes or longitudinal receptacles 98 which extend transversely to the axis of rotation 24 of the blocking part 77.
  • the longitudinal receptacles 98 extend away from the central receptacle 97 radially outward.
  • the longitudinal receptacles 98 have a longitudinal extension length which corresponds to the diameter d of the blocking projections 80, 83 and additionally a double eccentric distance e.
  • the two blocking projections 80, 83 are each at a distance r relative to the radially inner side of the VBlockiervorsprünge 80, 83 away from the axis of rotation 24 of the blocking part 77.
  • This distance r defines a radially inner end region 99a of the longitudinal recordings 98, where in Figure 3c
  • the blocking projection 80 is located, as well as a required radially outer end portion 99 b, where the blocking projection 83 is located.
  • a radially outer end of the longitudinal receptacles 98 is defined by the distance r and additionally the diameter d of the respective blocking projections 80, 83.
  • a tool spindle bearing 22 ' is provided in the hand tool 10', in which not only the upper bearing 50 but also a lower tool spindle bearing 51 'is designed as an outer bearing.
  • the bearing 51 ' is seated on the outer periphery of a lower end portion 48' a tool spindle 12 '.
  • the end portion 48 ' has a smaller outer diameter than the end portion 48.
  • the hollow shaft 16' is equal to the hollow shaft 16.
  • the outer bearing ring 73 'of the tool spindle bearing 51' is held by a bearing holder 29 '.
  • the bearing holder 29 ' is cup-shaped and forms a bearing holding assembly 30' for holding a tool spindle bearing.
  • both tool spindle bearings 50, 51 'outer bearing which are arranged on the outer circumference of the hollow shaft 16' and so can optimally absorb bearing forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)

Claims (20)

  1. Machine-outil manuelle sous forme de ponceuse excentrique ou de polisseuse excentrique, avec une broche porte-outil (12) pouvant être entraînée par un moteur (11), qui est agencée au moins par sections à l'intérieur (17) d'un arbre creux (16) et est logée avec un support de broche porte-outil (22) au niveau de l'arbre creux (16) de manière excentrique par rapport à un axe de rotation (23) de l'arbre creux (16), dans laquelle l'arbre creux (16) forme un arbre de sortie (42) pouvant être entraîné par le moteur (11), caractérisée en ce que l'au moins un palier de broche porte-outil (50 ; 51') est relié à une périphérie extérieure (53) de l'arbre creux (16), dans laquelle une bague intérieure de l'au moins un palier de broche porte-outil (50 ; 51') est reliée à une périphérie extérieure de l'arbre creux (16) et une bague extérieure (73) de l'au moins un palier de broche porte-outil (50 ; 51') est reliée à la broche porte-outil (12).
  2. Machine-outil manuelle selon la revendication 1, caractérisée en ce que l'arbre creux (16) est logé avec un support d'arbre creux (20) de manière rotative par rapport à une carcasse (21).
  3. Machine-outil manuelle selon la revendication 1 ou 2, caractérisée en ce que la broche porte-outil (12) est logée à une distance de l'excentrique (e) de manière rotative par rapport à un axe de rotation (23) de l'arbre creux (16) au niveau de celui-ci.
  4. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que l'au moins un palier de broche porte-outil (50 ; 51') est agencé dans la zone d'une extrémité longitudinale (18, 19) de l'arbre creux (16).
  5. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce qu'un agencement porte-palier (30) qui est en saillie radiale d'une extrémité longitudinale (18, 19) de l'arbre creux (16) et porte une bague de palier (73 ; 73') de l'au moins un palier de broche porte-outil (50 ; 51'), est agencé au niveau de la broche porte-outil (12).
  6. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que le support de broche porte-outil (22) présente au moins deux paliers de broche porte-outil (50, 51 ; 51') agencés à une distance longitudinale au niveau de l'arbre creux (16).
  7. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que l'arbre creux (16) est logé entre le support de broche porte-outil (22) avec un support d'arbre creux (20) de manière rotative par rapport à la carcasse (21), en particulier au niveau de la carcasse (21).
  8. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que l'au moins un palier de broche porte-outil (50, 51 ; 51') présente un plus grand diamètre de palier qu'au moins un palier (43, 44) ou que tous les paliers (43, 44) du support d'arbre creux (20).
  9. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que le moteur (11) entraîne l'arbre creux (16) directement ou par le biais d'une transmission.
  10. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que l'arbre creux (16) est entraîné dans la zone du support d'arbre creux (20).
  11. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle présente un agencement d'accouplement (25) efficace pour la transmission des forces d'entraînement de l'arbre creux (16) à la broche porte-outil (12) et en ce que le support de broche porte-outil (22) est une partie de l'agencement d'accouplement (25).
  12. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle comprend un dispositif de freinage (9) agissant entre la carcasse (21) et la broche porte-outil (12) et réduisant la vitesse de la broche porte-outil (12), en particulier un frein à courants de Foucault et/ou un dispositif de freins à friction.
  13. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que le moteur (11) est un moteur pneumatique ou un moteur électrique (11), en particulier un moteur à commutation électronique (11).
  14. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce que le moteur (11) présente un rotor à induit extérieur (37) agencé à l'extérieur par rapport à son stator (34) pour l'entraînement direct ou indirect de la broche porte-outil (12).
  15. Machine-outil manuelle selon la revendication 14, caractérisée en ce qu'un stator (34) du moteur (11) est agencé entre l'arbre creux (16) et le rotor à induit extérieur (37).
  16. Machine-outil manuelle selon la revendication 14 ou 15, caractérisée en ce que le rotor à induit extérieur (37) est couplé de manière solidaire en rotation avec l'arbre creux (16) ou l'arbre creux (16) est une partie du rotor à induit extérieur (37).
  17. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce qu'il y a un logement d'outil (13) pour un disque de polissage ou de ponçage (15) au niveau de la broche porte-outil (12).
  18. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle présente au moins une roue de ventilateur (56) agencée au niveau de l'arbre creux (16) pour le refroidissement de la machine-outil manuelle (10) et/ou pour l'aspiration de la poussière d'une surface (f) usinée par la machine-outil manuelle (10).
  19. Machine-outil manuelle selon l'une quelconque des revendications précédentes, caractérisée en ce qu'elle présente un dispositif de blocage (75) servant à bloquer la broche porte-outil (12) pour un changement d'outil.
  20. Machine-outil manuelle selon la revendication 19, caractérisée en ce que l'agencement porte-palier (30) présente pour l'au moins un palier de broche porte-outil (50, 51 ; 51'), au moins un logement de blocage (79, 82 ; 79', 82') ou une saillie de blocage (80, 83 ; 80', 83') du dispositif de blocage (75).
EP20070019116 2006-11-17 2007-09-28 Machine-outil manuelle Active EP1923173B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200610054265 DE102006054265B3 (de) 2006-11-17 2006-11-17 Handwerkzeugmaschine

Publications (2)

Publication Number Publication Date
EP1923173A1 EP1923173A1 (fr) 2008-05-21
EP1923173B1 true EP1923173B1 (fr) 2009-05-27

Family

ID=38792722

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20070019116 Active EP1923173B1 (fr) 2006-11-17 2007-09-28 Machine-outil manuelle

Country Status (2)

Country Link
EP (1) EP1923173B1 (fr)
DE (2) DE102006054265B3 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11670977B2 (en) 2019-04-24 2023-06-06 Black & Decker Inc. Outer rotor brushless motor stator mount
US11872665B2 (en) 2021-04-01 2024-01-16 Milwaukee Electric Tool Corporation Integrated dust extractor and power tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066312A1 (fr) * 2007-07-17 2009-05-28 Janak Mistry Polisseuse pour le polissage des pierres précieuses
EP3646987B1 (fr) * 2018-10-29 2023-06-14 Guido Valentini Outil électrique de ponçage ou de polissage orbital aléatoire portatif, guidé à la main
EP3693132B1 (fr) * 2019-02-08 2023-09-06 Guido Valentini Outil électrique de ponçage ou de polissage orbital aléatoire guidé à la main portatif

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4233729A1 (de) 1992-10-07 1994-04-14 Bosch Gmbh Robert Exzentertellerschleifer mit Schleiftellerbremse
DE4233728A1 (de) * 1992-10-07 1994-04-14 Bosch Gmbh Robert Exzentertellerschleifer
DE4233727A1 (de) * 1992-10-07 1994-04-14 Bosch Gmbh Robert Exzentertellerschleifer
DE19901122A1 (de) * 1999-01-14 2000-07-20 Bosch Gmbh Robert Motorgetriebener Exzentertellerschleifer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11670977B2 (en) 2019-04-24 2023-06-06 Black & Decker Inc. Outer rotor brushless motor stator mount
US11973374B2 (en) 2019-04-24 2024-04-30 Black & Decker Inc. Outer rotor brushless motor having an axial fan
US11872665B2 (en) 2021-04-01 2024-01-16 Milwaukee Electric Tool Corporation Integrated dust extractor and power tool

Also Published As

Publication number Publication date
DE502007000772D1 (de) 2009-07-09
DE102006054265B3 (de) 2008-04-10
EP1923173A1 (fr) 2008-05-21

Similar Documents

Publication Publication Date Title
EP2346148B1 (fr) Entraînement linéaire
EP2146820B2 (fr) Machine-outil, notamment machine-outil manuelle
EP1923173B1 (fr) Machine-outil manuelle
DE10057139A1 (de) Elektrohandwerkzeug mit Sicherheitskupplung
DE102014103019A1 (de) Werkzeugkopf für eine handgehaltene Schleifmaschine und handgehaltene Schleifmaschine
EP1923978A2 (fr) Ponceuse orbitale avec un moteur sans balai
CH691893A5 (de) Elektrohandwerkzeugmaschine.
EP1199500B1 (fr) Barillet de commande des passages de vitesses dans une transmission
EP1262278A1 (fr) Révolver porte-outil
WO2020173618A1 (fr) Moteur à courant continu sans balais d'une machine-outil portative
EP0820838A1 (fr) Ponçeuse à plateau excentrique
DE102012008016A1 (de) Rotorträger für eine elektrische Maschine, Stützelement für einen Rotorträger und Verfahren zur Herstellung eines Stützelements
EP4052357A1 (fr) Machine à flux axial pour un dispositif de traitement électrique et dispositif de traitement électrique doté d'une machine à flux axial
DE9016415U1 (de) Handgeführte Elektrowerkzeugmaschine mit einer Einrichtung zum Einstellen des Drehmoments
WO2012062521A1 (fr) Machine-outil à main comportant un dispositif de blocage de broche
EP2295621B1 (fr) Broche à friction motorisée
DE202006009702U1 (de) Transportables Elektrowerkzeug
DE102007052527B4 (de) Spindel mit Antrieb
WO2021083763A1 (fr) Machine à flux axial de dispositif de traitement électrique et dispositif de traitement électrique doté d'une machine à flux axial
EP4052355A1 (fr) Machine à flux axial destinée à un dispositif de traitement électrique et dispositif de traitement électrique doté d'une machine à flux axial
EP1923172B1 (fr) Machine-outil dotée d'un dispositif d'arrêt
EP4052363A1 (fr) Machine à flux axial destinée à un dispositif de traitement électrique et dispositif de traitement électrique doté d'une machine à flux axial
EP3976316B1 (fr) Machine-outil portative
DE102017209013A1 (de) Handwerkzeugmaschine mit einer Sicherungseinheit
DE202012100274U1 (de) Handwerkzeugmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20080712

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

AKX Designation fees paid

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 502007000772

Country of ref document: DE

Date of ref document: 20090709

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090917

Year of fee payment: 3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007000772

Country of ref document: DE

Effective date: 20110401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110401

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230929

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240923

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240924

Year of fee payment: 18