EP1917422B1 - Kondensationsverfahren - Google Patents

Kondensationsverfahren Download PDF

Info

Publication number
EP1917422B1
EP1917422B1 EP06761709A EP06761709A EP1917422B1 EP 1917422 B1 EP1917422 B1 EP 1917422B1 EP 06761709 A EP06761709 A EP 06761709A EP 06761709 A EP06761709 A EP 06761709A EP 1917422 B1 EP1917422 B1 EP 1917422B1
Authority
EP
European Patent Office
Prior art keywords
condensate
condensation
condenser
condensation method
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06761709A
Other languages
English (en)
French (fr)
Other versions
EP1917422A1 (de
Inventor
Michael Herbermann
Raimund Witte
Heinz Wienen
Andras Mikovics
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Energietchnik GmbH
Original Assignee
GEA Energietchnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Energietchnik GmbH filed Critical GEA Energietchnik GmbH
Publication of EP1917422A1 publication Critical patent/EP1917422A1/de
Application granted granted Critical
Publication of EP1917422B1 publication Critical patent/EP1917422B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/10Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases

Definitions

  • the invention relates to a condensation method having the features in the preamble of claim 1. Such a method is known from WO 90/07633 known.
  • Power plant efficiency is a factor that has a decisive influence on economic efficiency, especially when new power plants are planned. There are therefore many efforts to optimize steam power processes in thermal power plants. Particular attention is paid to the condensation system.
  • the potential in terms of power plant efficiency is not yet optimally utilized when using air-cooled condensers, such as those often used in water shortages at the power plant site.
  • Air-cooled condensers have the inherent disadvantage that only the dry air temperature can be used.
  • the condensate subcooling is greater than with water-cooled surface condensers:
  • Air-cooled condensers usually have two condensation stages. In a first condensation stage, about 80-90% of the exhaust steam of a turbine is condensed. A 100% condensation in the first condensation stage is due to the process-related parameters, such as the fluctuating outside temperatures virtually impossible, so that in any case a second condensation stage for the residual steam condensation is required. For this reason, condensed and dephlegmatorily switched air-cooled condensers are often combined with each other, wherein the dephlegmatoric condensation is provided for residual vapor condensation, thus forming the second condensation stage.
  • the recovered condensate is fed directly to a condensate collection tank.
  • the condensate is fed to a degasser, is added in the treated as a replacement for loss of leakage processed water, to then be fed via a feed pump again upstream of the turbine evaporator. Since the condensate must be brought back to boiling temperature in the deaerator for degassing, it is detrimental to the energy balance if the condensate was previously overcooled, since ultimately an increased energy supply must be realized through the use of primary fuels. It is therefore desirable to minimize the overcooling of the condensate to minimize the use of primary fuels. At the same time, the aim is also to keep the amount of energy to be used for the condensation of the turbine exhaust steam as low as possible.
  • a condensation process is known in which a small portion of the turbine effluent stream is introduced into a condensate collection tank to warm the condensate. This is to avoid condensate supercooling.
  • the order of magnitude of the turbine effluent flow to be used for condensate heating is about 1% of the amount of steam passed through the main exhaust steam line.
  • From the DE 22 57 369 A1 is provided as a second stage of a condensation device instead of a dephlegmator an injection capacitor. Condensate recovered from the condensation process is sprayed within the injection condenser. To increase the efficiency of the injection condenser, the condensate is pumped into heat exchanger elements to further cool it down. In this way, the cycle process lost a lot of energy, which adversely affects the power plant efficiency.
  • the invention has for its object to provide a condensation method in which the supercooling of the condensate can be minimized and at the same time the power plant efficiency is further improved.
  • the condensate stream obtained in the condenser is heated prior to introduction into a condensate collection tank in a condensate reheating stage specially provided for this purpose.
  • the heating of the condensate stream takes place within the Kondensat mayber Anlagentretre by the turbine exhaust steam.
  • the partial steam flow emerging from the condenser is fed to a degasser, in which the partial steam flow heats colder additional feed water and completely condenses itself.
  • a condensate heating stage provided in addition to a degasser makes it possible, in the switching mode according to the invention, to significantly minimize condensate subcooling and thus to reduce the use of primary fuels.
  • Model calculations have confirmed that a condensate supercooling observed in air-cooled condensers of conventional design can be reduced in a range of about 1-6 K to about 0.5 K from the saturation temperature behind the turbine.
  • the power plant efficiency increases. With a 600 MW power plant, the thermal efficiency can be improved by up to approx. 0.25%, which, considering the dimensions of the power plant, should be considered as a non-negligible factor.
  • the thermal energy of the turbine exhaust steam flow is used much more effectively, since it is not discharged through the capacitors to the environment, but flows to a large extent in the condensate, so the heat cycle is largely retained.
  • the reduced energy losses lead to the desired improvement in power plant efficiency.
  • a condensation of a part of the turbine exhaust steam flow is achieved at the same time, so that less exhaust steam enters the condenser.
  • the capacitors can be made smaller.
  • the first condensation stage that is the air-cooled condenser
  • the second condensation stage for condensing the excess steam.
  • the structure of the air-cooled condenser is simplified.
  • the fiction, contemporary method is also applicable to capacitors, both Have condensing and dephlegmatorisch switched heat exchange elements.
  • the degassing of the additional feed water is first and foremost, preferably exclusively, in the designated degasser. Due to the heating of the condensate stream in the condensate warm-up stage, gases can also escape here as a result of the process, but the heated condensate is very poor in inert gases, so that only small amounts of gas are produced within the condensate-warming stage. The gases can be removed by suction just like a dephlegmator and, like a degasser.
  • the heated additional feed water from the degasifier is preferably also supplied to the condensate warm-up stage, so that the additional feed water is heated in two stages.
  • the condensate stream from the condenser is sufficient to condense a portion of the turbine effluent stream, complete condensation of the partial steam effluent exiting the condenser is virtually impossible for energy balance reasons. A condensation of the partial steam flow can be ensured by a sufficient amount of colder additional feed water in each case.
  • the condensate In order to improve the heat transfer within the Kondensaticar Anlagenr, it is intended to bring the condensate in droplet form with the turbine exhaust steam in contact. This can be done by passing the condensate over moldings and bringing it in countercurrent contact with the turbine effluent stream.
  • the shaped bodies can be arranged in cascade. Basically, a cascade-like arrangement of sheets without the use of moldings is conceivable.
  • the decisive factor is the optimization of the heat transfer from the turbine waste steam to the supercooled condensate. In this context, it is considered particularly expedient to atomize the condensate for droplet formation.
  • the condensate can therefore be introduced by means of nozzles in the Kondensat mayberdicarmnote.
  • the droplets of supercooled condensate form condensation nuclei of low temperature within the condensate warm-up stage, thereby accelerating the condensation of the turbine effluent stream while at the same time raising the temperature of the condensate energetic
  • FIG. 1 shows a highly simplified steam power process of a thermal power plant, in which a Turbineabdampfstrom 2 is fed from a turbine 1 via a line 2 to a condenser 3.
  • the condenser 3 is an air-cooled condenser with condenser-connected heat exchanger elements 4 and dephlegmatorily connected heat exchanger elements 5. A majority of the turbine waste steam flow condenses inside the condenser 3.
  • the recovered condensate K is supplied from the condenser 3, starting from a condensate warm-up stage 6, within which the supercooled condensate K comes into contact with the turbine waste steam stream 2.
  • the condensate K is heated so that a partial vapor stream of the turbine waste steam stream 2 is condensed into the condenser 3 via line 7 before the turbine waste steam stream 2 enters, and is recirculated directly into the material cycle as part of the condensate K3.
  • a degasser 8 is provided, to which a partial steam flow T exiting from the condenser 3 is supplied.
  • the partial steam flow T is condensed by supplying colder additional feed water W. In this case, the additional feed water W is heated and degassed at the same time.
  • the degasser 8 serves as a sort of downstream second condensation stage.
  • the condensate K1 from the degasser 8 is fed to the condensate warm-up stage 6, in which the subcooling of the condensates K, K1 is used to condense a part of the turbine effluent stream 2.
  • FIG. 2 is different from the one of FIG. 1 primarily in that the capacitor 9 is switched exclusively dephlegmatorisch. This can be seen at the steam inlet at the lower edge region of the condenser 9.
  • a surplus steam condenser 11 is also provided as the second condensation stage.
  • the excess steam condenser 11 is used to excess vapor T2, which is already heavily enriched with inert gases from the condenser 9, completely to condense by adding feed water W. This has the effect that the additional feed water W is heated and mixed with the condensate from the excess steam.
  • the mixture is fed as condensate stream K2 to the condensate warm-up stage 6.
  • an air exhaust 10 is provided to remove gases from the material flow.
  • the air exhaust 10 is connected both to the exclusively dephlegmatorisch switched capacitor 9 and the dephlegmatorisch connected heat exchanger elements 5, as well as to the Kondensatauf ⁇ rmhand 6 and to the degasser 8 and the excess steam condenser 11.
  • the entire condensate K3 is fed in a manner not shown a condensate collection tank.
  • FIG. 3 shows the calculated change of the thermal efficiency of the process (in%), plotted by condensate supercooling (in K).
  • turbine output 600 MW exhaust steam mass flow 369 kg / s, exhaust steam enthalpy 2330 kJ / kg, evaporating pressure 7 kPa, saturated steam temperature 39 ° C, heat input 1400.26 MW.
  • the advantage of the method according to the invention is expressed by the fact that the supercooling of the condensate can be greatly reduced, which affects the improvement of the efficiency.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Description

  • Die Erfindung betrifft ein Kondensationsverfahren mit den Merkmalen im Oberbegriff des Patentanspruchs 1. So ein Verfahren ist aus der WO 90/07633 bekannt.
  • Der Kraftwerkswirkungsgrad ist ein Faktor, der insbesondere bei Neuplanung von Kraftwerken einen entscheidenden Einfluss auf die Wirtschaftlichkeit hat Es gibt daher vielfältige Bemühungen, Dampfkraftprozesse in Wärmekraftwerken zu optimieren. Besonderes Augenmerk wird hierbei auch auf das Kondensationssystem gelegt. Insbesondere ist das Potential hinsichtlich des Kraftwerkwirkungsgrads noch nicht optimal ausgenutzt, wenn luftgekühlte Kondensatoren verwendet werden, wie sie häufig bei Wassermangel am Kraftwerksstandort zum Einsatz kommen. Luftgekühlte Kondensatoren haben den prinzipbedingten Nachteil, dass nur die Trockenlufttemperatur, genutzt werden kann. Hinzu kommt, dass beim Betrieb mit besonders kleinen Abdampfdrücken auch die Kondensatunterkühlung größer ist als bei wassergekühlten Oberflächenkondensatoren:
  • Bei luftgekühlten Kondensatoren sind in der Regel zwei Kondensationsstufen vorhanden. In einer ersten Kondensationsstufe werden ca. 80-90 % des Abdampfes einer Turbine kondensiert. Eine 100 %ige Kondensation in der ersten Kondensationsstufe ist aufgrund der prozessbedingten Parameter, wie z.B. der schwankenden Außentemperaturen praktisch nicht möglich, so dass in jedem Fall eine zweite Kondensationsstufe für die Restdampfkondensation erforderlich ist. Aus diesem Grund werden häufig kondensatorisch und dephlegmatorisch geschaltete luftgekühlte Kondensatoren miteinander kombiniert, wobei die dephlegmatorische Kondensation zur Restdampfkondensation vorgesehen ist, also die zweite Kondensationsstufe bildet.
  • Üblicherweise wird das gewonnene Kondensat unmittelbar einem Kondensatsammeltank zugeführt. Anschließend wird das Kondensat einem Entgaser zugeleitet, in dem als Ersatz für Undichtigkeitsverluste aufbereitetes Zusatzwasser zugemischt wird, um daraufhin über eine Speisepumpe wieder einem der Turbine vorgeschalteten Verdampfer zugeführt zu werden. Da das Kondensat in dem Entgaser zur Entgasung wieder auf Siedetemperatur gebracht werden muss, ist es für die Energiebilanz nachteilig, wenn das Kondensat vorher zu stark unterkühlt wurde, da letztlich eine erhöhte Energiezufuhr durch den Einsatz von Primärbrennstoffen realisiert werden muss. Es wird daher angestrebt, die Unterkühlung des Kondensats so gering wie möglich zu halten, um den Einsatz von Primärbrennstoffen zu minimieren. Gleichzeitig wird angestrebt, die zur Kondensation des Turbinenabdampfs einzusetzende Energiemenge ebenfalls so gering wie möglich zu halten.
  • Aus der WO 90/07633 A ist ein Kondensationsverfahren bekannt, bei welchem ein geringer Anteil des Turbinenabdampfstroms in einen Kondensatsammeltank eingeleitet wird, um das Kondensat aufzuwärmen. Dadurch soll eine Kondensatunterkühlung vermieden werden. Die Größenordnung des Turbinenabdampfstroms, der zur Kondensataufwärmung verwendet werden soll, liegt etwa bei 1 % der durch die Hauptabdampfleitung geleiteten Dampfmenge.
  • Aus der DE 22 57 369 A1 ist als zweite Stufe einer Kondensationsvorrichtung anstelle eines Dephlegmators ein Einspritzkondensator vorgesehen. Aus dem Kondensationsprozess gewonnenes Kondensat wird innerhalb des Einspritzkondensators versprüht. Um die Effizienz des Einspritzkondehsators zu steigern, wird das Kondensat in Wärmetauscherelemente gepumpt, um es noch weiter herunterzukühlen. Auf diese Weise geht dem Kreislaufprozess viel Energie verloren, was sich nachteilig auf den Kraftwerkwirkungsgrad auswirkt.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Kondensationsverfahren aufzuzeigen, bei welchem die Unterkühlung des Kondensats minimiert werden kann und gleichzeitig der Kraftwerkwirkungsgrad weiter verbessert wird.
  • Diese Aufgabe ist bei einem Kondensationsverfahren mit den Merkmalen des Patentanspruchs 1 gelost.
  • Wesentlich bei dem erfindungsgemäßen Verfahren ist, dass der im Kondensator gewonnene Kondensatstrom vor der Einleitung in einen Kondensatsammeltank in einer eigens dafür vorgesehenen Kondensataufwärmstufe erwärmt wird. Die Erwärmung des Kondensatstroms erfolgt innerhalb der Kondensataufwärmstufe durch den Turbinenabdampfstrom. Gleichzeitig wird der aus dem Kondensator austretende Teildampfstrom einem Entgaser zugeführt, in welchem der Teildampfstrom kälteres Zusatzspeisewasser erwärmt und selber vollständig kondensiert.
  • Eine zusätzlich zu einem Entgaser vorgesehene Kondensataufwärmstufe ermöglicht es in der erfindungsgemäßen Schaltungsweise, die Kondensatunterkühlung maßgeblich zu minimieren und damit den Einsatz von Primärbrennstoffen zu reduzieren. Modellrechnungen haben bestätigt, dass eine bei luftgekühlten Kondensatoren herkömmlicher Bauart festzustellende Unterkühlung des Kondensats in einem Bereich von ca. 1 - 6 K auf etwa 0,5 K gegenüber der Temperatur im Sättigungszustand hinter der Turbine reduziert werden kann. In Abhängigkeit von der Reduzierung der Unterkühlung steigt der Kraftwerkwirkungsgrad. Bei einem 600 MW Kraftwerk kann der thermische Wirkungsgrad um bis zu ca. 0,25 % verbessert werden, was in Anbetracht der Kraftwerkdimensionen als nicht zu vernachlässigende Größe zu werten ist.
  • Bei dem erfindungsgemäßen Verfahren wird die thermische Energie des Turbinenabdampfstroms wesentlich effektiver genutzt, da sie nicht durch die Kondensatoren an die Umgebung abgegeben wird, sondern zu einem großen Teil in das Kondensat einfließt, also dem Wärmekreislauf weitestgehend erhalten bleibt. Die verringerten Energieverluste führen zu der angestrebten Verbesserung des Kraftwerkwirkungsgrads. Durch die Erwärmung des unterkühlten Kondensats wird gleichzeitig eine Kondensation eines Teils des Turbinenabdampfstroms erreicht, so dass weniger Abdampf in den Kondensator eintritt. Die Kondensatoren können dadurch unter Umständen kleiner ausgelegt werden.
  • Vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand der Unteransprüche.
  • Bei dem erfindungsgemäßen Verfahren ist es ausreichend, wenn die erste Kondensationsstufe, das heißt der luftgekühlte Kondensator, ausschließlich dephlegmatorisch geschaltet ist, da ein bei Dampfkraftprozessen ohnehin erforderlicher Entgaser als zweite Kondensationsstufe zur Kondensation des Überschussdampfs genutzt werden kann. Der Aufbau, des luftgekühlten Kondensators wird dadurch vereinfacht. Selbstverständlich ist das erfindungs gemäße Verfahren auch bei Kondensatoren anwendbar, die sowohl kondensatorisch als auch dephlegmatorisch geschaltete Wärmetauschelemente aufweisen.
  • Bei vollständig dephlegmatorisch geschalteten Kondensatoren wird bereits ein hoher Anteil des Abdampfes der Turbine kondensiert. Dennoch stellt sich der aus dem Kondensator austretende Teildampfstrom aus thermodynamischen Gründen selbsttätig so ein, dass ein hinreichender Volumenstrom im Entgaser zur Verfügung steht. Bei der dephlegmatorisch Schaltung der Kondensatoren wird der Turbinenabdampfstrom gewissermaßen über den Kondensator zu dem Entgaser durchgeleitet und tritt als Teildampfstrom aus. Sollte der aus dem Kondensator austretende Teildampfstrom unter bestimmten Umständen nicht ausreichen, um das kältere Zusatzspeisewasser hinreichend zu erwärmen, ist es möglich, dass ein weiterer Teildampfstrom des Turbinenabdampfstroms direkt, d.h. ohne den Weg über den Kondensator zugeführt wird. Ein erhöhter wärmebedarf innerhalb des Entgasers besteht insbesondere dann, wenn größere Mengen aufbereiteten Zusatzspeisewassers in den Stoffkreislauf gegeben werden. Da das Zusatzspeisewasser regelmäßig eine deutlich niedrigere Temperatur als das Kondensat besitzt, wirkt es sich auch hier vorteilhaft auf die Energiebilanz eines Kondensationskraftwerks aus, wenn der Teilabdampfstrom aus dem Kondensator dazu genutzt wird, das Zusatzspeisewasser zu entgasen oder zumindest thermisch zur Entgasung beizutragen.
  • Die Entgasung des Zusatzspeisewassers erfolgt in allererster Linie, vorzugsweise ausschließlich, in dem dafür vorgesehenen Entgaser. Aufgrund der Erwärmung des Kondensatstroms in der Kondensataufwärmstufe können auch hier prozessbedingt Gase entweichen, allerdings ist das erwärmte Kondensat sehr arm an Inertgasen, so dass innerhalb der Kondensataufwärmstufe nur geringe Gasmengen anfallen. Die Gase können ebenso wie bei einem Dephlegmator und wie bei einem Entgaser durch eine Absaugung entfernt werden.
  • Sollte festgestellt werden, dass durch die Luftabsaugung aus dem Entgaser noch Überschussdampf abgesaugt wird ist es in einer vorteilhaften Weiterbildung der Erfindung möglich, diesen Überschussdampf ebenfalls durch Zusatzwasser zu kondensieren. Auch hierdurch wird das Zusatzwasser erwärmt.
  • Das erwärmte Zusatzspeisewasser aus dem Entgaser wird vorzugsweise ebenfalls der Kondensataufwärmstufe zugeführt, so dass das Zusatzspeisewasser in zwei Stufen erwärmt wird. Der Kondensatstrom aus dem Kondensator reicht zwar aus, um einen Teil des Turbinenabdampfstroms zu kondensieren, eine vollständige Kondensation des aus dem Kondensator austretenden Teildampfstroms ist jedoch aus Gründen der Energiebilanz praktisch nicht möglich. Eine Kondensation des Teildampfstroms kann durch eine hinreichende Menge kälteren Zusatzspeisewassers in jedem Fall sichergestellt werden.
  • Um den Wärmeübergang innerhalb der Kondensataufwärmstufe zu verbessern, ist vorgesehen, das Kondensat in Tropfenform mit dem Turbinenabdampfstrom in Kontakt zu bringen. Dies kann dadurch geschehen, dass das Kondensat über Formkörper geleitet wird und im Gegenstromverfahren mit dem Turbinenabdampfstrom in Kontakt gebracht wird. Hierzu können die Formkörper kaskadenförmig angeordnet sein. Grundsätzlich ist auch eine kaskadenartige Anordnung von Blechen ohne Verwendung von Formkörpern denkbar. Entscheidend ist die Optimierung des Wärmeübergangs vom Turbinenabdampfstrom auf das unterkühlte Kondensat. In diesem Zusammenhang wird es als besonders zweckmäßig angesehen, das Kondensat zur Tropfenbildung zu zerstäuben. Das Kondensat kann also mittels Düsen in die Kondensataufwärmstufe eingebracht werden. Die Tropfen unterkühlten Kondensats bilden innerhalb der Kondensataufwärmstufe Kondensationskeime niedriger Temperatur, wodurch die Kondensierung des Turbinenabdampfstroms beschleunigt wird, während gleichzeitig die Temperatur des Kondensats energetisch günstig angehoben wird.
  • Die Erfindung wird nachfolgend anhand der in den Figuren schematisch dargestellten Ausführungsbeispiele näher erläutert.
  • Die Figur 1 zeigt einen stark vereinfachten Dampfkraftprozess eines Wärmekraftwerks, bei welchem aus einer Turbine 1 über eine Leitung ein Turbinenabdampfstrom 2 einem Kondensator 3 zugeführt wird. Bei dem Kondensator 3 handelt es sich um einen luftgekühlten Kondensator mit kondensatorisch geschalteten Wärmetauscherelementen 4 als auch dephlegmatorisch geschalteten Wärmetauscherelementen 5. Ein Großteil des Turbinenabdampfstroms kondensiert innerhalb des Kondensators 3.
  • Das gewonnene Kondensat K wird von dem Kondensator 3 ausgehend einer Kondensataufwärmstufe 6 zugeführt, innerhalb welcher das unterkühlte Kondensat K mit dem Turbinenabdampfstrom 2 in Kontakt gelangt. Das Kondensat K wird erhitzt, so dass bereits vor Eintritt des Turbinenabdampfstroms 2 in den Kondensator 3 über die Leitung 7 ein Teildampfstrom des Turbinenabdampfstroms 2 kondensiert und als Teil des Kondensats K3 unmittelbar in den Stoffkreislauf zurückgeführt wird.
  • Des Weiteren ist ein Entgaser 8 vorgesehen, welchem ein aus dem Kondensator 3 austretender Teildampfstrom T zugeführt wird. Der Teildampfstrom T wird durch Zuführung kälteren Zusatzspeisewassers W kondensiert. Hierbei wird das Zusatzspeisewasser W erhitzt und gleichzeitig entgast. Der Entgaser 8 dient gewissermaßen als nachgeschaltete zweite Kondensationsstufe. Das Kondensat K1 aus dem Entgaser 8 wird der Kondensataufwärmstufe 6 zugeführt, in welchem die Unterkühlung der Kondensate K, K1 zur Kondensation eines Teils des Turbinenabdampfstroms 2 genutzt wird.
  • Das Ausführungsbeispiel der Figur 2 unterscheidet sich von demjenigen der Figur 1 primär dadurch, dass der Kondensator 9 ausschließlich dephlegmatorisch geschaltet ist. Dies ist an dem Dampfeintritt am unteren Randbereich des Kondensators 9 zu erkennen.
  • Ein weiterer Unterschied ist, dass neben dem Entgaser 8 auch als zweite Kondensationsstufe ein Überschussdampfköndensator 11 vorgesehen ist. Der Überschussdampfkondensator 11 dient dazu, Überschussdampf T2, welcher schon stark mit Inertgasen aus dem Kondensator 9 angereichert ist, vollständig zu kondensieren und zwar durch Zusatzspeisewasser W. Das hat den Effekt, dass sich das Zusatzspeisewasser W erwärmt und sich mit dem Kondensat aus dem Überschussdampf vermischt. Das Gemisch wird als Kondensatstrom K2 der Kondensataufwärmstufe 6 zugeführt.
  • Bei beiden Ausführungsbeispielen ist eine Luftabsaugung 10 vorgesehen, um Gase aus dem Stoffstrom zu entfernen. Die Luftabsaugung 10 ist sowohl an den ausschließlich dephlegmatorisch geschalteten Kondensator 9 bzw. die dephlegmatorisch geschalteten Wärmetauscherelemente 5, als auch an die Kondensataufwärmstufe 6 sowie an den Entgaser 8 bzw. den Überschussdampfkondensator 11 angeschlossen. Das gesamte Kondensat K3 wird in nicht näher dargestellter Weise einem Kondensatsammeltank zugeführt.
  • Figur 3 zeigt die errechnete Veränderung des thermischen Wirkungsgrads des Prozesses (in %), aufgetragen über die Kondensatunterkühlung (in K). Grundlage für die in diesem Diagramm angegebenen Werte ist eine Berechnung nach der Formel η1th=P/(Qin+ΔQin), wobei mit ηth der Wirkungsgrad, mit P die Turbinenleistung, mit Qin die Wärmeeinspeisung und mit ΔQin die Zusatzwärme für die Kondensataufwärmung bezeichnet ist. Bei einem 600 MW Kraftwerk ergeben sich folgende Werte:
    Kondensattemperatur tK °C 38,50 38,00 37,00 36,00 35,00 34,00 33,00
    Kondensat-Kondensatunterkühlung ΔtK K 0,50 1,00 2,00 3,00 4,00 5,00 6,00
    Kondensatenthalpie hK kJ/kg 161,28 159,19 155,01 150,83 142,47 142,47 138,29
    Abwärme Qab MW 800,26 801,03 802,57 804,11 805,66 807,20 808,74
    Zusatzwärme für Kondensataufwärmung ΔQin MW 0,00 0,77 2,31 3,86 5,40 6,94 8,48
    Wirkungsgrad ηth % 42,85 42,83 42,78 42,73 42,68 42,64 42,59
    Wirkungsgradveränderung Δηth % 0,00 0,02 0,07 0,12 0,16 0,21 0,26
  • Folgende Parameter sind bei dieser Berechnung konstant: Turbinenleistung 600 MW, Abdampfmassenstrom 369 kg/s, Abdampfenthalpie 2330 kJ/kg, Abdampfdruck 7 kPa, Sattdampftemperatur 39°C, Wärmeeinspeisung 1400,26 MW. Der Vorteil des erfindungsgemäßen Verfahrens kommt dadurch zum Ausdruck, dass die Unterkühlung des Kondensats stark reduziert werden kann, was sich in der Verbesserung des Wirkungsgrads auswirkt.
  • Bezugszeichen:
  • 1 -
    Turbine
    2 -
    Turbinenabdampfstrom
    3 -
    Kondensator
    4 -
    kondensatorisch geschaltetes Wärmetauscherelement
    5 -
    dephlegmatorisch geschaltetes Wärmetauscherelement
    6 -
    Kondensataufwärmstufe
    7 -
    Leitung
    8 -
    Entgaser
    9 -
    Kondensator
    10 -
    Luftabsaugung
    11 -
    Überschussdampfkondensator
    K -
    Kondensat
    K1 -
    Kondensat
    K2 -
    Kondensat
    K3 -
    Kondensat
    T -
    Teildampfstrom
    T1 -
    Teildampfstrom
    T2 -
    Überschussdampf
    W -
    Zusatzspeisewasser

Claims (7)

  1. Kondensationsverfahren, bei welchem Wasser einem einer Turbine (1) eines Kondensationskraftwerks vorgeschalteten Verdampfer zugeführt wird, wobei der Turbinenabdampfstrom (2) zur Kondensation einem luftgekühlten Kondensator (3, 9) zugeführt wird, wobei der im Kondensator (3, 9) gewonnene Kondensatstrom (K) vor der Einleitung in einen Kondensatsammeltank in einer Kondensataufwärmstufe (6) mittels des Turbinenabdampfstroms (2) erwärmt wird, und wobei ein aus dem Kondensator (3, 9) austretender Teildampfstrom (T,T1) einem Entgaser (8) zugeführt wird, dadurch gekennzeichnet, dass der dem luftgekühlten Kondensator (3, 9) zuzuführende Turbinenabdampfstrom (2) zur Erwärmung des Kondensatstroms (K) zunächst durch die Kondensataufwärmstufe (6) geleitet wird und wobei in dem Entgaser kälteres Zusatzspeisewasser (W) durch den Teildampfstrom (T,T1) erwärmt wird.
  2. Kondensationsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der luftgekühlte Kondensator (9) dephlegmatorisch geschaltet ist.
  3. Kondensationsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der luftgekühlte Kondensator (3) sowohl kondensatorisch geschaltete als auch dephlegmatorisch geschaltete Wärmetauschelemente (4, 5) aufweist.
  4. Kondensationsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Kondensat (K, K1) in der Kondensatvorwärmstufe (5) in Tropfenform mit dem Turbinenabdampfstrom (2) in Kontakt gebracht wird.
  5. Kondensationsverfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Kondensat (K, K1) zur Tropfenbildung über Formkörper geleitet wird.
  6. Kondensationsverfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Formkörper kaskadenartig angeordnet sind.
  7. Kondensationsverfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Kondensat (K, K1) zur Tropfenbildung zerstäubt wird.
EP06761709A 2005-08-25 2006-06-27 Kondensationsverfahren Not-in-force EP1917422B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005040380A DE102005040380B3 (de) 2005-08-25 2005-08-25 Kondensationsverfahren
PCT/DE2006/001097 WO2007022738A1 (de) 2005-08-25 2006-06-27 Kondensationsverfahren

Publications (2)

Publication Number Publication Date
EP1917422A1 EP1917422A1 (de) 2008-05-07
EP1917422B1 true EP1917422B1 (de) 2009-04-01

Family

ID=36650820

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06761709A Not-in-force EP1917422B1 (de) 2005-08-25 2006-06-27 Kondensationsverfahren

Country Status (18)

Country Link
US (1) US20100132362A1 (de)
EP (1) EP1917422B1 (de)
JP (1) JP4542187B2 (de)
KR (1) KR20080016628A (de)
CN (1) CN101208498A (de)
AP (1) AP2007004105A0 (de)
AT (1) ATE427413T1 (de)
AU (1) AU2006284266B2 (de)
CA (1) CA2610872A1 (de)
DE (2) DE102005040380B3 (de)
ES (1) ES2324798T3 (de)
IL (1) IL189649A0 (de)
MA (1) MA29562B1 (de)
MX (1) MX2007010783A (de)
RU (1) RU2355895C1 (de)
TN (1) TNSN07284A1 (de)
WO (1) WO2007022738A1 (de)
ZA (1) ZA200801846B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
PL2986910T3 (pl) * 2013-07-05 2019-12-31 Siemens Aktiengesellschaft System i sposób podgrzewania dodatkowej wody w elektrowniach parowych z wypuszczeniem pary procesowej
EP2871335A1 (de) * 2013-11-08 2015-05-13 Siemens Aktiengesellschaft Modul zur Kondensation von Wrasendampf und zur Kühlung von Turbinenabwasser

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3040528A (en) * 1959-03-22 1962-06-26 Tabor Harry Zvi Vapor turbines
DE2257369A1 (de) * 1972-11-23 1974-05-30 Deggendorfer Werft Eisenbau Kondensatoranlage
US4905474A (en) * 1988-06-13 1990-03-06 Larinoff Michael W Air-cooled vacuum steam condenser
WO1990007633A1 (en) * 1989-01-06 1990-07-12 Birwelco Limited Steam condensing apparatus
US5165237A (en) * 1991-03-08 1992-11-24 Graham Corporation Method and apparatus for maintaining a required temperature differential in vacuum deaerators
DE19549139A1 (de) * 1995-12-29 1997-07-03 Asea Brown Boveri Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser
US5765629A (en) * 1996-04-10 1998-06-16 Hudson Products Corporation Steam condensing apparatus with freeze-protected vent condenser
DE19810580A1 (de) * 1998-03-11 1999-09-16 Siemens Ag Dampfeinlaßventil
US6531206B2 (en) * 2001-02-07 2003-03-11 3M Innovative Properties Company Microstructured surface film assembly for liquid acquisition and transport
DE10333009B3 (de) * 2003-07-18 2004-08-19 Gea Energietechnik Gmbh Anordnung zur Kondensation von Wasserdampf
JP4155916B2 (ja) * 2003-12-11 2008-09-24 大阪瓦斯株式会社 排熱回収システム

Also Published As

Publication number Publication date
AU2006284266B2 (en) 2009-07-23
DE502006003341D1 (de) 2009-05-14
AU2006284266A1 (en) 2007-03-01
JP4542187B2 (ja) 2010-09-08
RU2355895C1 (ru) 2009-05-20
EP1917422A1 (de) 2008-05-07
IL189649A0 (en) 2008-06-05
CA2610872A1 (en) 2007-03-01
AP2007004105A0 (en) 2007-08-31
DE102005040380B3 (de) 2006-07-27
TNSN07284A1 (en) 2008-12-31
ZA200801846B (en) 2010-06-30
US20100132362A1 (en) 2010-06-03
MX2007010783A (es) 2007-11-07
MA29562B1 (fr) 2008-06-02
CN101208498A (zh) 2008-06-25
KR20080016628A (ko) 2008-02-21
ATE427413T1 (de) 2009-04-15
ES2324798T3 (es) 2009-08-14
JP2009506244A (ja) 2009-02-12
WO2007022738A1 (de) 2007-03-01

Similar Documents

Publication Publication Date Title
EP2382028B1 (de) Verfahren zum abtrennen von kohlendioxid aus einem abgas einer fossilbefeuerten kraftwerksanlage
DE2920270C2 (de) Verfahren zum Erzeugen von Sauerstoff
DE3016406A1 (de) Mehrstufige verdampferanlage mit kombiniertem bruedenverdichter und waermetransformator zur rueckgewinnung der in den brueden enthaltenden waerme
DE2550450A1 (de) Kraftanlage mit gasturbine und einem im arbeitskreis der gasturbine liegenden waermetauscher zum kuehlen des arbeitsgases
EP1602401B2 (de) Verfahren und Vorrichtung zur aerosolarmen Partialkondensation
DE1956956A1 (de) Verfahren und Vorrichtung zur Frischwassererzeugung aus Seewasser
DE102012112215A1 (de) Verfahren und Anlage zur Aufbereitung und Verarbeitung von Wässern
DE2632910C2 (de) Verfahren zum Eindampfen von Flüssigkeiten, insbesondere von radioaktiven Abwässern
EP1870646B1 (de) Verfahren und Vorrichtung zur Rückgewinnung von Kondensationswärme aus einem thermodynamischen Kreisprozess
EP1917422B1 (de) Kondensationsverfahren
DE102009026239A1 (de) System und Verfahren zur Verwendung in einem Kombi- oder Rankine-Zyklus-Kraftwerk
DE102013210425A1 (de) Anlage und Verfahren zum Aufbereiten von Wasser
DE102009007193A1 (de) Verfahren und Anordnung zum Reinigen salzhaltigen Wassers mittels heisser Abgase
WO2014005921A1 (de) Verfahren für die erzeugung von wasser aus dem abgasstrom einer gasturbinenanlage
DE102016214019A1 (de) Vorrichtung zum Abtrennen von Produktwasser aus verunreinigtem Rohwasser und Verfahren zum Betrieb dieser Vorrichtung
DE2207035C3 (de) Verfahren und Vorrichtung zur verbrennungslosen Rückgewinnung der Expansionsenergie von Hochofengas
DE102022210397A1 (de) Kombianlage und Verfahren zum Betreiben einer Kombianlage
EP1703201B1 (de) Verfahren zur Wärmeenergieübertragung
EP2559867A1 (de) Verfahren zum Erzeugen von elektrischer Energie mittels eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens
DE102012100645B4 (de) ORC - Organischer Rankine Zyklus
DE102008004107A1 (de) Verfahren und Anlage zur Entsalzung von Salzwasser unter Verwendung von MSF-Entsalzungseinheiten mit einem Dampfumlaufsystem
EP3705458B1 (de) Verfahren zur aufbereitung ammoniakhaltiger flüssigkeiten und anlage zur durchführung des verfahrens
EP1270877B1 (de) Wärmetransformation mit Rückverdichtung
DE102012020480A1 (de) Verfahren zum Betreiben eines solarthermischen Kraftwerks sowie solarthermisches Kraftwerk
DE102011114776B4 (de) Verfahren zum Betreiben eines Dampfkraftwerkes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070629

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006003341

Country of ref document: DE

Date of ref document: 20090514

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090401354

Country of ref document: GR

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2324798

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090902

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090801

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

BERE Be: lapsed

Owner name: GEA ENERGIETECHNIK G.M.B.H.

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

26N No opposition filed

Effective date: 20100105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090627

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091002

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20110601

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120627

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140618

Year of fee payment: 9

Ref country code: IE

Payment date: 20140625

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20140624

Year of fee payment: 9

Ref country code: IT

Payment date: 20140620

Year of fee payment: 9

Ref country code: ES

Payment date: 20140627

Year of fee payment: 9

Ref country code: AT

Payment date: 20140611

Year of fee payment: 9

Ref country code: CH

Payment date: 20140618

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140626

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140619

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006003341

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150627

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 427413

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150627

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150627

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150627

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150627

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160112

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150627

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20090401354

Country of ref document: GR

Effective date: 20160112

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20160727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150628