EP1917422B1 - Kondensationsverfahren - Google Patents
Kondensationsverfahren Download PDFInfo
- Publication number
- EP1917422B1 EP1917422B1 EP06761709A EP06761709A EP1917422B1 EP 1917422 B1 EP1917422 B1 EP 1917422B1 EP 06761709 A EP06761709 A EP 06761709A EP 06761709 A EP06761709 A EP 06761709A EP 1917422 B1 EP1917422 B1 EP 1917422B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- condensate
- condensation
- condenser
- condensation method
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/08—Auxiliary systems, arrangements, or devices for collecting and removing condensate
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K9/00—Plants characterised by condensers arranged or modified to co-operate with the engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B1/00—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
- F28B1/06—Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28B—STEAM OR VAPOUR CONDENSERS
- F28B9/00—Auxiliary systems, arrangements, or devices
- F28B9/10—Auxiliary systems, arrangements, or devices for extracting, cooling, and removing non-condensable gases
Definitions
- the invention relates to a condensation method having the features in the preamble of claim 1. Such a method is known from WO 90/07633 known.
- Power plant efficiency is a factor that has a decisive influence on economic efficiency, especially when new power plants are planned. There are therefore many efforts to optimize steam power processes in thermal power plants. Particular attention is paid to the condensation system.
- the potential in terms of power plant efficiency is not yet optimally utilized when using air-cooled condensers, such as those often used in water shortages at the power plant site.
- Air-cooled condensers have the inherent disadvantage that only the dry air temperature can be used.
- the condensate subcooling is greater than with water-cooled surface condensers:
- Air-cooled condensers usually have two condensation stages. In a first condensation stage, about 80-90% of the exhaust steam of a turbine is condensed. A 100% condensation in the first condensation stage is due to the process-related parameters, such as the fluctuating outside temperatures virtually impossible, so that in any case a second condensation stage for the residual steam condensation is required. For this reason, condensed and dephlegmatorily switched air-cooled condensers are often combined with each other, wherein the dephlegmatoric condensation is provided for residual vapor condensation, thus forming the second condensation stage.
- the recovered condensate is fed directly to a condensate collection tank.
- the condensate is fed to a degasser, is added in the treated as a replacement for loss of leakage processed water, to then be fed via a feed pump again upstream of the turbine evaporator. Since the condensate must be brought back to boiling temperature in the deaerator for degassing, it is detrimental to the energy balance if the condensate was previously overcooled, since ultimately an increased energy supply must be realized through the use of primary fuels. It is therefore desirable to minimize the overcooling of the condensate to minimize the use of primary fuels. At the same time, the aim is also to keep the amount of energy to be used for the condensation of the turbine exhaust steam as low as possible.
- a condensation process is known in which a small portion of the turbine effluent stream is introduced into a condensate collection tank to warm the condensate. This is to avoid condensate supercooling.
- the order of magnitude of the turbine effluent flow to be used for condensate heating is about 1% of the amount of steam passed through the main exhaust steam line.
- From the DE 22 57 369 A1 is provided as a second stage of a condensation device instead of a dephlegmator an injection capacitor. Condensate recovered from the condensation process is sprayed within the injection condenser. To increase the efficiency of the injection condenser, the condensate is pumped into heat exchanger elements to further cool it down. In this way, the cycle process lost a lot of energy, which adversely affects the power plant efficiency.
- the invention has for its object to provide a condensation method in which the supercooling of the condensate can be minimized and at the same time the power plant efficiency is further improved.
- the condensate stream obtained in the condenser is heated prior to introduction into a condensate collection tank in a condensate reheating stage specially provided for this purpose.
- the heating of the condensate stream takes place within the Kondensat mayber Anlagentretre by the turbine exhaust steam.
- the partial steam flow emerging from the condenser is fed to a degasser, in which the partial steam flow heats colder additional feed water and completely condenses itself.
- a condensate heating stage provided in addition to a degasser makes it possible, in the switching mode according to the invention, to significantly minimize condensate subcooling and thus to reduce the use of primary fuels.
- Model calculations have confirmed that a condensate supercooling observed in air-cooled condensers of conventional design can be reduced in a range of about 1-6 K to about 0.5 K from the saturation temperature behind the turbine.
- the power plant efficiency increases. With a 600 MW power plant, the thermal efficiency can be improved by up to approx. 0.25%, which, considering the dimensions of the power plant, should be considered as a non-negligible factor.
- the thermal energy of the turbine exhaust steam flow is used much more effectively, since it is not discharged through the capacitors to the environment, but flows to a large extent in the condensate, so the heat cycle is largely retained.
- the reduced energy losses lead to the desired improvement in power plant efficiency.
- a condensation of a part of the turbine exhaust steam flow is achieved at the same time, so that less exhaust steam enters the condenser.
- the capacitors can be made smaller.
- the first condensation stage that is the air-cooled condenser
- the second condensation stage for condensing the excess steam.
- the structure of the air-cooled condenser is simplified.
- the fiction, contemporary method is also applicable to capacitors, both Have condensing and dephlegmatorisch switched heat exchange elements.
- the degassing of the additional feed water is first and foremost, preferably exclusively, in the designated degasser. Due to the heating of the condensate stream in the condensate warm-up stage, gases can also escape here as a result of the process, but the heated condensate is very poor in inert gases, so that only small amounts of gas are produced within the condensate-warming stage. The gases can be removed by suction just like a dephlegmator and, like a degasser.
- the heated additional feed water from the degasifier is preferably also supplied to the condensate warm-up stage, so that the additional feed water is heated in two stages.
- the condensate stream from the condenser is sufficient to condense a portion of the turbine effluent stream, complete condensation of the partial steam effluent exiting the condenser is virtually impossible for energy balance reasons. A condensation of the partial steam flow can be ensured by a sufficient amount of colder additional feed water in each case.
- the condensate In order to improve the heat transfer within the Kondensaticar Anlagenr, it is intended to bring the condensate in droplet form with the turbine exhaust steam in contact. This can be done by passing the condensate over moldings and bringing it in countercurrent contact with the turbine effluent stream.
- the shaped bodies can be arranged in cascade. Basically, a cascade-like arrangement of sheets without the use of moldings is conceivable.
- the decisive factor is the optimization of the heat transfer from the turbine waste steam to the supercooled condensate. In this context, it is considered particularly expedient to atomize the condensate for droplet formation.
- the condensate can therefore be introduced by means of nozzles in the Kondensat mayberdicarmnote.
- the droplets of supercooled condensate form condensation nuclei of low temperature within the condensate warm-up stage, thereby accelerating the condensation of the turbine effluent stream while at the same time raising the temperature of the condensate energetic
- FIG. 1 shows a highly simplified steam power process of a thermal power plant, in which a Turbineabdampfstrom 2 is fed from a turbine 1 via a line 2 to a condenser 3.
- the condenser 3 is an air-cooled condenser with condenser-connected heat exchanger elements 4 and dephlegmatorily connected heat exchanger elements 5. A majority of the turbine waste steam flow condenses inside the condenser 3.
- the recovered condensate K is supplied from the condenser 3, starting from a condensate warm-up stage 6, within which the supercooled condensate K comes into contact with the turbine waste steam stream 2.
- the condensate K is heated so that a partial vapor stream of the turbine waste steam stream 2 is condensed into the condenser 3 via line 7 before the turbine waste steam stream 2 enters, and is recirculated directly into the material cycle as part of the condensate K3.
- a degasser 8 is provided, to which a partial steam flow T exiting from the condenser 3 is supplied.
- the partial steam flow T is condensed by supplying colder additional feed water W. In this case, the additional feed water W is heated and degassed at the same time.
- the degasser 8 serves as a sort of downstream second condensation stage.
- the condensate K1 from the degasser 8 is fed to the condensate warm-up stage 6, in which the subcooling of the condensates K, K1 is used to condense a part of the turbine effluent stream 2.
- FIG. 2 is different from the one of FIG. 1 primarily in that the capacitor 9 is switched exclusively dephlegmatorisch. This can be seen at the steam inlet at the lower edge region of the condenser 9.
- a surplus steam condenser 11 is also provided as the second condensation stage.
- the excess steam condenser 11 is used to excess vapor T2, which is already heavily enriched with inert gases from the condenser 9, completely to condense by adding feed water W. This has the effect that the additional feed water W is heated and mixed with the condensate from the excess steam.
- the mixture is fed as condensate stream K2 to the condensate warm-up stage 6.
- an air exhaust 10 is provided to remove gases from the material flow.
- the air exhaust 10 is connected both to the exclusively dephlegmatorisch switched capacitor 9 and the dephlegmatorisch connected heat exchanger elements 5, as well as to the Kondensatauf ⁇ rmhand 6 and to the degasser 8 and the excess steam condenser 11.
- the entire condensate K3 is fed in a manner not shown a condensate collection tank.
- FIG. 3 shows the calculated change of the thermal efficiency of the process (in%), plotted by condensate supercooling (in K).
- turbine output 600 MW exhaust steam mass flow 369 kg / s, exhaust steam enthalpy 2330 kJ / kg, evaporating pressure 7 kPa, saturated steam temperature 39 ° C, heat input 1400.26 MW.
- the advantage of the method according to the invention is expressed by the fact that the supercooling of the condensate can be greatly reduced, which affects the improvement of the efficiency.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
- Heat Treatment Of Water, Waste Water Or Sewage (AREA)
Description
- Die Erfindung betrifft ein Kondensationsverfahren mit den Merkmalen im Oberbegriff des Patentanspruchs 1. So ein Verfahren ist aus der
WO 90/07633 - Der Kraftwerkswirkungsgrad ist ein Faktor, der insbesondere bei Neuplanung von Kraftwerken einen entscheidenden Einfluss auf die Wirtschaftlichkeit hat Es gibt daher vielfältige Bemühungen, Dampfkraftprozesse in Wärmekraftwerken zu optimieren. Besonderes Augenmerk wird hierbei auch auf das Kondensationssystem gelegt. Insbesondere ist das Potential hinsichtlich des Kraftwerkwirkungsgrads noch nicht optimal ausgenutzt, wenn luftgekühlte Kondensatoren verwendet werden, wie sie häufig bei Wassermangel am Kraftwerksstandort zum Einsatz kommen. Luftgekühlte Kondensatoren haben den prinzipbedingten Nachteil, dass nur die Trockenlufttemperatur, genutzt werden kann. Hinzu kommt, dass beim Betrieb mit besonders kleinen Abdampfdrücken auch die Kondensatunterkühlung größer ist als bei wassergekühlten Oberflächenkondensatoren:
- Bei luftgekühlten Kondensatoren sind in der Regel zwei Kondensationsstufen vorhanden. In einer ersten Kondensationsstufe werden ca. 80-90 % des Abdampfes einer Turbine kondensiert. Eine 100 %ige Kondensation in der ersten Kondensationsstufe ist aufgrund der prozessbedingten Parameter, wie z.B. der schwankenden Außentemperaturen praktisch nicht möglich, so dass in jedem Fall eine zweite Kondensationsstufe für die Restdampfkondensation erforderlich ist. Aus diesem Grund werden häufig kondensatorisch und dephlegmatorisch geschaltete luftgekühlte Kondensatoren miteinander kombiniert, wobei die dephlegmatorische Kondensation zur Restdampfkondensation vorgesehen ist, also die zweite Kondensationsstufe bildet.
- Üblicherweise wird das gewonnene Kondensat unmittelbar einem Kondensatsammeltank zugeführt. Anschließend wird das Kondensat einem Entgaser zugeleitet, in dem als Ersatz für Undichtigkeitsverluste aufbereitetes Zusatzwasser zugemischt wird, um daraufhin über eine Speisepumpe wieder einem der Turbine vorgeschalteten Verdampfer zugeführt zu werden. Da das Kondensat in dem Entgaser zur Entgasung wieder auf Siedetemperatur gebracht werden muss, ist es für die Energiebilanz nachteilig, wenn das Kondensat vorher zu stark unterkühlt wurde, da letztlich eine erhöhte Energiezufuhr durch den Einsatz von Primärbrennstoffen realisiert werden muss. Es wird daher angestrebt, die Unterkühlung des Kondensats so gering wie möglich zu halten, um den Einsatz von Primärbrennstoffen zu minimieren. Gleichzeitig wird angestrebt, die zur Kondensation des Turbinenabdampfs einzusetzende Energiemenge ebenfalls so gering wie möglich zu halten.
- Aus der
WO 90/07633 A - Aus der
DE 22 57 369 A1 ist als zweite Stufe einer Kondensationsvorrichtung anstelle eines Dephlegmators ein Einspritzkondensator vorgesehen. Aus dem Kondensationsprozess gewonnenes Kondensat wird innerhalb des Einspritzkondensators versprüht. Um die Effizienz des Einspritzkondehsators zu steigern, wird das Kondensat in Wärmetauscherelemente gepumpt, um es noch weiter herunterzukühlen. Auf diese Weise geht dem Kreislaufprozess viel Energie verloren, was sich nachteilig auf den Kraftwerkwirkungsgrad auswirkt. - Der Erfindung liegt die Aufgabe zugrunde, ein Kondensationsverfahren aufzuzeigen, bei welchem die Unterkühlung des Kondensats minimiert werden kann und gleichzeitig der Kraftwerkwirkungsgrad weiter verbessert wird.
- Diese Aufgabe ist bei einem Kondensationsverfahren mit den Merkmalen des Patentanspruchs 1 gelost.
- Wesentlich bei dem erfindungsgemäßen Verfahren ist, dass der im Kondensator gewonnene Kondensatstrom vor der Einleitung in einen Kondensatsammeltank in einer eigens dafür vorgesehenen Kondensataufwärmstufe erwärmt wird. Die Erwärmung des Kondensatstroms erfolgt innerhalb der Kondensataufwärmstufe durch den Turbinenabdampfstrom. Gleichzeitig wird der aus dem Kondensator austretende Teildampfstrom einem Entgaser zugeführt, in welchem der Teildampfstrom kälteres Zusatzspeisewasser erwärmt und selber vollständig kondensiert.
- Eine zusätzlich zu einem Entgaser vorgesehene Kondensataufwärmstufe ermöglicht es in der erfindungsgemäßen Schaltungsweise, die Kondensatunterkühlung maßgeblich zu minimieren und damit den Einsatz von Primärbrennstoffen zu reduzieren. Modellrechnungen haben bestätigt, dass eine bei luftgekühlten Kondensatoren herkömmlicher Bauart festzustellende Unterkühlung des Kondensats in einem Bereich von ca. 1 - 6 K auf etwa 0,5 K gegenüber der Temperatur im Sättigungszustand hinter der Turbine reduziert werden kann. In Abhängigkeit von der Reduzierung der Unterkühlung steigt der Kraftwerkwirkungsgrad. Bei einem 600 MW Kraftwerk kann der thermische Wirkungsgrad um bis zu ca. 0,25 % verbessert werden, was in Anbetracht der Kraftwerkdimensionen als nicht zu vernachlässigende Größe zu werten ist.
- Bei dem erfindungsgemäßen Verfahren wird die thermische Energie des Turbinenabdampfstroms wesentlich effektiver genutzt, da sie nicht durch die Kondensatoren an die Umgebung abgegeben wird, sondern zu einem großen Teil in das Kondensat einfließt, also dem Wärmekreislauf weitestgehend erhalten bleibt. Die verringerten Energieverluste führen zu der angestrebten Verbesserung des Kraftwerkwirkungsgrads. Durch die Erwärmung des unterkühlten Kondensats wird gleichzeitig eine Kondensation eines Teils des Turbinenabdampfstroms erreicht, so dass weniger Abdampf in den Kondensator eintritt. Die Kondensatoren können dadurch unter Umständen kleiner ausgelegt werden.
- Vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand der Unteransprüche.
- Bei dem erfindungsgemäßen Verfahren ist es ausreichend, wenn die erste Kondensationsstufe, das heißt der luftgekühlte Kondensator, ausschließlich dephlegmatorisch geschaltet ist, da ein bei Dampfkraftprozessen ohnehin erforderlicher Entgaser als zweite Kondensationsstufe zur Kondensation des Überschussdampfs genutzt werden kann. Der Aufbau, des luftgekühlten Kondensators wird dadurch vereinfacht. Selbstverständlich ist das erfindungs gemäße Verfahren auch bei Kondensatoren anwendbar, die sowohl kondensatorisch als auch dephlegmatorisch geschaltete Wärmetauschelemente aufweisen.
- Bei vollständig dephlegmatorisch geschalteten Kondensatoren wird bereits ein hoher Anteil des Abdampfes der Turbine kondensiert. Dennoch stellt sich der aus dem Kondensator austretende Teildampfstrom aus thermodynamischen Gründen selbsttätig so ein, dass ein hinreichender Volumenstrom im Entgaser zur Verfügung steht. Bei der dephlegmatorisch Schaltung der Kondensatoren wird der Turbinenabdampfstrom gewissermaßen über den Kondensator zu dem Entgaser durchgeleitet und tritt als Teildampfstrom aus. Sollte der aus dem Kondensator austretende Teildampfstrom unter bestimmten Umständen nicht ausreichen, um das kältere Zusatzspeisewasser hinreichend zu erwärmen, ist es möglich, dass ein weiterer Teildampfstrom des Turbinenabdampfstroms direkt, d.h. ohne den Weg über den Kondensator zugeführt wird. Ein erhöhter wärmebedarf innerhalb des Entgasers besteht insbesondere dann, wenn größere Mengen aufbereiteten Zusatzspeisewassers in den Stoffkreislauf gegeben werden. Da das Zusatzspeisewasser regelmäßig eine deutlich niedrigere Temperatur als das Kondensat besitzt, wirkt es sich auch hier vorteilhaft auf die Energiebilanz eines Kondensationskraftwerks aus, wenn der Teilabdampfstrom aus dem Kondensator dazu genutzt wird, das Zusatzspeisewasser zu entgasen oder zumindest thermisch zur Entgasung beizutragen.
- Die Entgasung des Zusatzspeisewassers erfolgt in allererster Linie, vorzugsweise ausschließlich, in dem dafür vorgesehenen Entgaser. Aufgrund der Erwärmung des Kondensatstroms in der Kondensataufwärmstufe können auch hier prozessbedingt Gase entweichen, allerdings ist das erwärmte Kondensat sehr arm an Inertgasen, so dass innerhalb der Kondensataufwärmstufe nur geringe Gasmengen anfallen. Die Gase können ebenso wie bei einem Dephlegmator und wie bei einem Entgaser durch eine Absaugung entfernt werden.
- Sollte festgestellt werden, dass durch die Luftabsaugung aus dem Entgaser noch Überschussdampf abgesaugt wird ist es in einer vorteilhaften Weiterbildung der Erfindung möglich, diesen Überschussdampf ebenfalls durch Zusatzwasser zu kondensieren. Auch hierdurch wird das Zusatzwasser erwärmt.
- Das erwärmte Zusatzspeisewasser aus dem Entgaser wird vorzugsweise ebenfalls der Kondensataufwärmstufe zugeführt, so dass das Zusatzspeisewasser in zwei Stufen erwärmt wird. Der Kondensatstrom aus dem Kondensator reicht zwar aus, um einen Teil des Turbinenabdampfstroms zu kondensieren, eine vollständige Kondensation des aus dem Kondensator austretenden Teildampfstroms ist jedoch aus Gründen der Energiebilanz praktisch nicht möglich. Eine Kondensation des Teildampfstroms kann durch eine hinreichende Menge kälteren Zusatzspeisewassers in jedem Fall sichergestellt werden.
- Um den Wärmeübergang innerhalb der Kondensataufwärmstufe zu verbessern, ist vorgesehen, das Kondensat in Tropfenform mit dem Turbinenabdampfstrom in Kontakt zu bringen. Dies kann dadurch geschehen, dass das Kondensat über Formkörper geleitet wird und im Gegenstromverfahren mit dem Turbinenabdampfstrom in Kontakt gebracht wird. Hierzu können die Formkörper kaskadenförmig angeordnet sein. Grundsätzlich ist auch eine kaskadenartige Anordnung von Blechen ohne Verwendung von Formkörpern denkbar. Entscheidend ist die Optimierung des Wärmeübergangs vom Turbinenabdampfstrom auf das unterkühlte Kondensat. In diesem Zusammenhang wird es als besonders zweckmäßig angesehen, das Kondensat zur Tropfenbildung zu zerstäuben. Das Kondensat kann also mittels Düsen in die Kondensataufwärmstufe eingebracht werden. Die Tropfen unterkühlten Kondensats bilden innerhalb der Kondensataufwärmstufe Kondensationskeime niedriger Temperatur, wodurch die Kondensierung des Turbinenabdampfstroms beschleunigt wird, während gleichzeitig die Temperatur des Kondensats energetisch günstig angehoben wird.
- Die Erfindung wird nachfolgend anhand der in den Figuren schematisch dargestellten Ausführungsbeispiele näher erläutert.
- Die
Figur 1 zeigt einen stark vereinfachten Dampfkraftprozess eines Wärmekraftwerks, bei welchem aus einer Turbine 1 über eine Leitung ein Turbinenabdampfstrom 2 einem Kondensator 3 zugeführt wird. Bei dem Kondensator 3 handelt es sich um einen luftgekühlten Kondensator mit kondensatorisch geschalteten Wärmetauscherelementen 4 als auch dephlegmatorisch geschalteten Wärmetauscherelementen 5. Ein Großteil des Turbinenabdampfstroms kondensiert innerhalb des Kondensators 3. - Das gewonnene Kondensat K wird von dem Kondensator 3 ausgehend einer Kondensataufwärmstufe 6 zugeführt, innerhalb welcher das unterkühlte Kondensat K mit dem Turbinenabdampfstrom 2 in Kontakt gelangt. Das Kondensat K wird erhitzt, so dass bereits vor Eintritt des Turbinenabdampfstroms 2 in den Kondensator 3 über die Leitung 7 ein Teildampfstrom des Turbinenabdampfstroms 2 kondensiert und als Teil des Kondensats K3 unmittelbar in den Stoffkreislauf zurückgeführt wird.
- Des Weiteren ist ein Entgaser 8 vorgesehen, welchem ein aus dem Kondensator 3 austretender Teildampfstrom T zugeführt wird. Der Teildampfstrom T wird durch Zuführung kälteren Zusatzspeisewassers W kondensiert. Hierbei wird das Zusatzspeisewasser W erhitzt und gleichzeitig entgast. Der Entgaser 8 dient gewissermaßen als nachgeschaltete zweite Kondensationsstufe. Das Kondensat K1 aus dem Entgaser 8 wird der Kondensataufwärmstufe 6 zugeführt, in welchem die Unterkühlung der Kondensate K, K1 zur Kondensation eines Teils des Turbinenabdampfstroms 2 genutzt wird.
- Das Ausführungsbeispiel der
Figur 2 unterscheidet sich von demjenigen derFigur 1 primär dadurch, dass der Kondensator 9 ausschließlich dephlegmatorisch geschaltet ist. Dies ist an dem Dampfeintritt am unteren Randbereich des Kondensators 9 zu erkennen. - Ein weiterer Unterschied ist, dass neben dem Entgaser 8 auch als zweite Kondensationsstufe ein Überschussdampfköndensator 11 vorgesehen ist. Der Überschussdampfkondensator 11 dient dazu, Überschussdampf T2, welcher schon stark mit Inertgasen aus dem Kondensator 9 angereichert ist, vollständig zu kondensieren und zwar durch Zusatzspeisewasser W. Das hat den Effekt, dass sich das Zusatzspeisewasser W erwärmt und sich mit dem Kondensat aus dem Überschussdampf vermischt. Das Gemisch wird als Kondensatstrom K2 der Kondensataufwärmstufe 6 zugeführt.
- Bei beiden Ausführungsbeispielen ist eine Luftabsaugung 10 vorgesehen, um Gase aus dem Stoffstrom zu entfernen. Die Luftabsaugung 10 ist sowohl an den ausschließlich dephlegmatorisch geschalteten Kondensator 9 bzw. die dephlegmatorisch geschalteten Wärmetauscherelemente 5, als auch an die Kondensataufwärmstufe 6 sowie an den Entgaser 8 bzw. den Überschussdampfkondensator 11 angeschlossen. Das gesamte Kondensat K3 wird in nicht näher dargestellter Weise einem Kondensatsammeltank zugeführt.
-
Figur 3 zeigt die errechnete Veränderung des thermischen Wirkungsgrads des Prozesses (in %), aufgetragen über die Kondensatunterkühlung (in K). Grundlage für die in diesem Diagramm angegebenen Werte ist eine Berechnung nach der Formel η1th=P/(Qin+ΔQin), wobei mit ηth der Wirkungsgrad, mit P die Turbinenleistung, mit Qin die Wärmeeinspeisung und mit ΔQin die Zusatzwärme für die Kondensataufwärmung bezeichnet ist. Bei einem 600 MW Kraftwerk ergeben sich folgende Werte:Kondensattemperatur tK °C 38,50 38,00 37,00 36,00 35,00 34,00 33,00 Kondensat-Kondensatunterkühlung ΔtK K 0,50 1,00 2,00 3,00 4,00 5,00 6,00 Kondensatenthalpie hK kJ/kg 161,28 159,19 155,01 150,83 142,47 142,47 138,29 Abwärme Qab MW 800,26 801,03 802,57 804,11 805,66 807,20 808,74 Zusatzwärme für Kondensataufwärmung ΔQin MW 0,00 0,77 2,31 3,86 5,40 6,94 8,48 Wirkungsgrad ηth % 42,85 42,83 42,78 42,73 42,68 42,64 42,59 Wirkungsgradveränderung Δηth % 0,00 0,02 0,07 0,12 0,16 0,21 0,26 - Folgende Parameter sind bei dieser Berechnung konstant: Turbinenleistung 600 MW, Abdampfmassenstrom 369 kg/s, Abdampfenthalpie 2330 kJ/kg, Abdampfdruck 7 kPa, Sattdampftemperatur 39°C, Wärmeeinspeisung 1400,26 MW. Der Vorteil des erfindungsgemäßen Verfahrens kommt dadurch zum Ausdruck, dass die Unterkühlung des Kondensats stark reduziert werden kann, was sich in der Verbesserung des Wirkungsgrads auswirkt.
-
- 1 -
- Turbine
- 2 -
- Turbinenabdampfstrom
- 3 -
- Kondensator
- 4 -
- kondensatorisch geschaltetes Wärmetauscherelement
- 5 -
- dephlegmatorisch geschaltetes Wärmetauscherelement
- 6 -
- Kondensataufwärmstufe
- 7 -
- Leitung
- 8 -
- Entgaser
- 9 -
- Kondensator
- 10 -
- Luftabsaugung
- 11 -
- Überschussdampfkondensator
- K -
- Kondensat
- K1 -
- Kondensat
- K2 -
- Kondensat
- K3 -
- Kondensat
- T -
- Teildampfstrom
- T1 -
- Teildampfstrom
- T2 -
- Überschussdampf
- W -
- Zusatzspeisewasser
Claims (7)
- Kondensationsverfahren, bei welchem Wasser einem einer Turbine (1) eines Kondensationskraftwerks vorgeschalteten Verdampfer zugeführt wird, wobei der Turbinenabdampfstrom (2) zur Kondensation einem luftgekühlten Kondensator (3, 9) zugeführt wird, wobei der im Kondensator (3, 9) gewonnene Kondensatstrom (K) vor der Einleitung in einen Kondensatsammeltank in einer Kondensataufwärmstufe (6) mittels des Turbinenabdampfstroms (2) erwärmt wird, und wobei ein aus dem Kondensator (3, 9) austretender Teildampfstrom (T,T1) einem Entgaser (8) zugeführt wird, dadurch gekennzeichnet, dass der dem luftgekühlten Kondensator (3, 9) zuzuführende Turbinenabdampfstrom (2) zur Erwärmung des Kondensatstroms (K) zunächst durch die Kondensataufwärmstufe (6) geleitet wird und wobei in dem Entgaser kälteres Zusatzspeisewasser (W) durch den Teildampfstrom (T,T1) erwärmt wird.
- Kondensationsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der luftgekühlte Kondensator (9) dephlegmatorisch geschaltet ist.
- Kondensationsverfahren nach Anspruch 1, dadurch gekennzeichnet, dass der luftgekühlte Kondensator (3) sowohl kondensatorisch geschaltete als auch dephlegmatorisch geschaltete Wärmetauschelemente (4, 5) aufweist.
- Kondensationsverfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Kondensat (K, K1) in der Kondensatvorwärmstufe (5) in Tropfenform mit dem Turbinenabdampfstrom (2) in Kontakt gebracht wird.
- Kondensationsverfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Kondensat (K, K1) zur Tropfenbildung über Formkörper geleitet wird.
- Kondensationsverfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Formkörper kaskadenartig angeordnet sind.
- Kondensationsverfahren nach Anspruch 4, dadurch gekennzeichnet, dass das Kondensat (K, K1) zur Tropfenbildung zerstäubt wird.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102005040380A DE102005040380B3 (de) | 2005-08-25 | 2005-08-25 | Kondensationsverfahren |
PCT/DE2006/001097 WO2007022738A1 (de) | 2005-08-25 | 2006-06-27 | Kondensationsverfahren |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1917422A1 EP1917422A1 (de) | 2008-05-07 |
EP1917422B1 true EP1917422B1 (de) | 2009-04-01 |
Family
ID=36650820
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06761709A Not-in-force EP1917422B1 (de) | 2005-08-25 | 2006-06-27 | Kondensationsverfahren |
Country Status (18)
Country | Link |
---|---|
US (1) | US20100132362A1 (de) |
EP (1) | EP1917422B1 (de) |
JP (1) | JP4542187B2 (de) |
KR (1) | KR20080016628A (de) |
CN (1) | CN101208498A (de) |
AP (1) | AP2007004105A0 (de) |
AT (1) | ATE427413T1 (de) |
AU (1) | AU2006284266B2 (de) |
CA (1) | CA2610872A1 (de) |
DE (2) | DE102005040380B3 (de) |
ES (1) | ES2324798T3 (de) |
IL (1) | IL189649A0 (de) |
MA (1) | MA29562B1 (de) |
MX (1) | MX2007010783A (de) |
RU (1) | RU2355895C1 (de) |
TN (1) | TNSN07284A1 (de) |
WO (1) | WO2007022738A1 (de) |
ZA (1) | ZA200801846B (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL2986910T3 (pl) * | 2013-07-05 | 2019-12-31 | Siemens Aktiengesellschaft | System i sposób podgrzewania dodatkowej wody w elektrowniach parowych z wypuszczeniem pary procesowej |
EP2871335A1 (de) * | 2013-11-08 | 2015-05-13 | Siemens Aktiengesellschaft | Modul zur Kondensation von Wrasendampf und zur Kühlung von Turbinenabwasser |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3040528A (en) * | 1959-03-22 | 1962-06-26 | Tabor Harry Zvi | Vapor turbines |
DE2257369A1 (de) * | 1972-11-23 | 1974-05-30 | Deggendorfer Werft Eisenbau | Kondensatoranlage |
US4905474A (en) * | 1988-06-13 | 1990-03-06 | Larinoff Michael W | Air-cooled vacuum steam condenser |
WO1990007633A1 (en) * | 1989-01-06 | 1990-07-12 | Birwelco Limited | Steam condensing apparatus |
US5165237A (en) * | 1991-03-08 | 1992-11-24 | Graham Corporation | Method and apparatus for maintaining a required temperature differential in vacuum deaerators |
DE19549139A1 (de) * | 1995-12-29 | 1997-07-03 | Asea Brown Boveri | Verfahren und Apparateanordnung zur Aufwärmung und mehrstufigen Entgasung von Wasser |
US5765629A (en) * | 1996-04-10 | 1998-06-16 | Hudson Products Corporation | Steam condensing apparatus with freeze-protected vent condenser |
DE19810580A1 (de) * | 1998-03-11 | 1999-09-16 | Siemens Ag | Dampfeinlaßventil |
US6531206B2 (en) * | 2001-02-07 | 2003-03-11 | 3M Innovative Properties Company | Microstructured surface film assembly for liquid acquisition and transport |
DE10333009B3 (de) * | 2003-07-18 | 2004-08-19 | Gea Energietechnik Gmbh | Anordnung zur Kondensation von Wasserdampf |
JP4155916B2 (ja) * | 2003-12-11 | 2008-09-24 | 大阪瓦斯株式会社 | 排熱回収システム |
-
2005
- 2005-08-25 DE DE102005040380A patent/DE102005040380B3/de not_active Expired - Fee Related
-
2006
- 2006-06-27 AP AP2007004105A patent/AP2007004105A0/xx unknown
- 2006-06-27 AT AT06761709T patent/ATE427413T1/de active
- 2006-06-27 EP EP06761709A patent/EP1917422B1/de not_active Not-in-force
- 2006-06-27 US US12/063,175 patent/US20100132362A1/en not_active Abandoned
- 2006-06-27 WO PCT/DE2006/001097 patent/WO2007022738A1/de active Application Filing
- 2006-06-27 CA CA002610872A patent/CA2610872A1/en not_active Abandoned
- 2006-06-27 CN CNA2006800051929A patent/CN101208498A/zh active Pending
- 2006-06-27 DE DE502006003341T patent/DE502006003341D1/de active Active
- 2006-06-27 ES ES06761709T patent/ES2324798T3/es active Active
- 2006-06-27 KR KR1020077028898A patent/KR20080016628A/ko not_active Application Discontinuation
- 2006-06-27 RU RU2007134111/06A patent/RU2355895C1/ru not_active IP Right Cessation
- 2006-06-27 JP JP2008527295A patent/JP4542187B2/ja not_active Expired - Fee Related
- 2006-06-27 AU AU2006284266A patent/AU2006284266B2/en not_active Expired - Fee Related
- 2006-06-27 MX MX2007010783A patent/MX2007010783A/es not_active Application Discontinuation
-
2007
- 2007-07-20 TN TNP2007000284A patent/TNSN07284A1/en unknown
- 2007-12-24 MA MA30503A patent/MA29562B1/fr unknown
-
2008
- 2008-02-21 IL IL189649A patent/IL189649A0/en unknown
- 2008-02-26 ZA ZA200801846A patent/ZA200801846B/xx unknown
Also Published As
Publication number | Publication date |
---|---|
AU2006284266B2 (en) | 2009-07-23 |
DE502006003341D1 (de) | 2009-05-14 |
AU2006284266A1 (en) | 2007-03-01 |
JP4542187B2 (ja) | 2010-09-08 |
RU2355895C1 (ru) | 2009-05-20 |
EP1917422A1 (de) | 2008-05-07 |
IL189649A0 (en) | 2008-06-05 |
CA2610872A1 (en) | 2007-03-01 |
AP2007004105A0 (en) | 2007-08-31 |
DE102005040380B3 (de) | 2006-07-27 |
TNSN07284A1 (en) | 2008-12-31 |
ZA200801846B (en) | 2010-06-30 |
US20100132362A1 (en) | 2010-06-03 |
MX2007010783A (es) | 2007-11-07 |
MA29562B1 (fr) | 2008-06-02 |
CN101208498A (zh) | 2008-06-25 |
KR20080016628A (ko) | 2008-02-21 |
ATE427413T1 (de) | 2009-04-15 |
ES2324798T3 (es) | 2009-08-14 |
JP2009506244A (ja) | 2009-02-12 |
WO2007022738A1 (de) | 2007-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2382028B1 (de) | Verfahren zum abtrennen von kohlendioxid aus einem abgas einer fossilbefeuerten kraftwerksanlage | |
DE2920270C2 (de) | Verfahren zum Erzeugen von Sauerstoff | |
DE3016406A1 (de) | Mehrstufige verdampferanlage mit kombiniertem bruedenverdichter und waermetransformator zur rueckgewinnung der in den brueden enthaltenden waerme | |
DE2550450A1 (de) | Kraftanlage mit gasturbine und einem im arbeitskreis der gasturbine liegenden waermetauscher zum kuehlen des arbeitsgases | |
EP1602401B2 (de) | Verfahren und Vorrichtung zur aerosolarmen Partialkondensation | |
DE1956956A1 (de) | Verfahren und Vorrichtung zur Frischwassererzeugung aus Seewasser | |
DE102012112215A1 (de) | Verfahren und Anlage zur Aufbereitung und Verarbeitung von Wässern | |
DE2632910C2 (de) | Verfahren zum Eindampfen von Flüssigkeiten, insbesondere von radioaktiven Abwässern | |
EP1870646B1 (de) | Verfahren und Vorrichtung zur Rückgewinnung von Kondensationswärme aus einem thermodynamischen Kreisprozess | |
EP1917422B1 (de) | Kondensationsverfahren | |
DE102009026239A1 (de) | System und Verfahren zur Verwendung in einem Kombi- oder Rankine-Zyklus-Kraftwerk | |
DE102013210425A1 (de) | Anlage und Verfahren zum Aufbereiten von Wasser | |
DE102009007193A1 (de) | Verfahren und Anordnung zum Reinigen salzhaltigen Wassers mittels heisser Abgase | |
WO2014005921A1 (de) | Verfahren für die erzeugung von wasser aus dem abgasstrom einer gasturbinenanlage | |
DE102016214019A1 (de) | Vorrichtung zum Abtrennen von Produktwasser aus verunreinigtem Rohwasser und Verfahren zum Betrieb dieser Vorrichtung | |
DE2207035C3 (de) | Verfahren und Vorrichtung zur verbrennungslosen Rückgewinnung der Expansionsenergie von Hochofengas | |
DE102022210397A1 (de) | Kombianlage und Verfahren zum Betreiben einer Kombianlage | |
EP1703201B1 (de) | Verfahren zur Wärmeenergieübertragung | |
EP2559867A1 (de) | Verfahren zum Erzeugen von elektrischer Energie mittels eines Kombikraftwerkes sowie Kombikraftwerk zur Durchführung des Verfahrens | |
DE102012100645B4 (de) | ORC - Organischer Rankine Zyklus | |
DE102008004107A1 (de) | Verfahren und Anlage zur Entsalzung von Salzwasser unter Verwendung von MSF-Entsalzungseinheiten mit einem Dampfumlaufsystem | |
EP3705458B1 (de) | Verfahren zur aufbereitung ammoniakhaltiger flüssigkeiten und anlage zur durchführung des verfahrens | |
EP1270877B1 (de) | Wärmetransformation mit Rückverdichtung | |
DE102012020480A1 (de) | Verfahren zum Betreiben eines solarthermischen Kraftwerks sowie solarthermisches Kraftwerk | |
DE102011114776B4 (de) | Verfahren zum Betreiben eines Dampfkraftwerkes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20070629 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 502006003341 Country of ref document: DE Date of ref document: 20090514 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: EP Ref document number: 20090401354 Country of ref document: GR |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2324798 Country of ref document: ES Kind code of ref document: T3 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090801 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
BERE | Be: lapsed |
Owner name: GEA ENERGIETECHNIK G.M.B.H. Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
26N | No opposition filed |
Effective date: 20100105 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090701 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20090627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20091002 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20110601 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20090401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120627 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20140618 Year of fee payment: 9 Ref country code: IE Payment date: 20140625 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20140624 Year of fee payment: 9 Ref country code: IT Payment date: 20140620 Year of fee payment: 9 Ref country code: ES Payment date: 20140627 Year of fee payment: 9 Ref country code: AT Payment date: 20140611 Year of fee payment: 9 Ref country code: CH Payment date: 20140618 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20140626 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20140619 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502006003341 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150627 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 427413 Country of ref document: AT Kind code of ref document: T Effective date: 20150627 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20150627 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20160229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150627 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150627 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150630 Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160112 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150627 |
|
REG | Reference to a national code |
Ref country code: GR Ref legal event code: ML Ref document number: 20090401354 Country of ref document: GR Effective date: 20160112 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20160727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150628 |