EP1917331A2 - Verfahren zur verringerung der korrosivität von brennstoffen - Google Patents
Verfahren zur verringerung der korrosivität von brennstoffenInfo
- Publication number
- EP1917331A2 EP1917331A2 EP06773948A EP06773948A EP1917331A2 EP 1917331 A2 EP1917331 A2 EP 1917331A2 EP 06773948 A EP06773948 A EP 06773948A EP 06773948 A EP06773948 A EP 06773948A EP 1917331 A2 EP1917331 A2 EP 1917331A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- treated
- biodiesel
- treated fuel
- untreated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/10—Liquid carbonaceous fuels containing additives
- C10L1/14—Organic compounds
- C10L1/22—Organic compounds containing nitrogen
- C10L1/222—Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
- C10L1/2222—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
- C10L1/2225—(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L10/00—Use of additives to fuels or fires for particular purposes
- C10L10/04—Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation
Definitions
- the invention relates to fuel oils. More particularly, it relates to fuel oils containing additives that reduce corrosion in systems in contact with the oils.
- Fuel oils are widely used in a variety of applications, including diesel engines, furnaces, jet engines, and other energy-consuming uses.
- Traditional fuel oils are well known, and are produced by refining crude petroleum feedstocks via distillation, cracking, and other processes.
- the crude petroleum feedstocks are in limited supply and are non-renewable, and therefore renewable sources of fuel oils are increasingly sought.
- Biodiesel a clean-burning alternative fuel produced from domestic, renewable resources.
- Biodiesel contains no petroleum, but it can be blended at any level with petroleum diesel to create a fuel blend. It can be used in compression-ignition (diesel) engines with little or no modification.
- Biodiesel is biodegradable, essentially nontoxic, and essentially free of sulfur and aromatic compounds, and thus can provide certain environmental advantages.
- Biodiesel is essentially a mixture of methyl and/or ethyl esters of fatty acids, made through transesterification of fatty acid triglycerides (oils) with methyl or ethyl alcohol.
- the most commonly used raw material oils are triglyceride seed oils (e.g., soybean oil, palm oil, rapeseed oil).
- Biodiesel esters are never produced as 100% pure compounds, and one common impurity in biodiesel is free fatty acids, which can lead to corrosion problems.
- Biodiesel may be used alone, petroleum oils may be used alone, or blends may be used. Petroleum oils typically also contain some amount of acidic impurities, especially naphthenic acids. Acids from either source may cause any of a number of problems, including corrosion, poor combustion, elevated pour points, formation of deposits, and poor lubricity. As a result, fuel producers typically try to reduce the acidity of their products, but doing so usually introduces additional costs for these products, which generally sell at low margins. Beyond a certain point, the removal of acids becomes economically unacceptable, and therefore crude petroleum oils with too high a naphthenic acid content or biodiesel feed with too high a free fatty acid content become a liability to the fuel producer. Thus it would be beneficial to provide economical ways of dealing with free acids in fuel oils.
- the invention provides a treated fuel.
- the treated fuel includes:
- an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof;
- the invention provides a method of treating a fuel comprising blending together an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof and one or more alkanolamines according to formula (I) as shown above, wherein the treated fuel is essentially free of added biological control agents.
- fuels may be treated by the addition of small amounts of one or more alkanolamines according to formula (I)
- n 1 or 2
- R 1 is H or CH 3
- each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen.
- the total number of carbon atoms in the R group(s) taken together is from 4 to 24, and in some preferred embodiments the number is from 6 to 20.
- Exemplary useful alkanolamines of formula (I) include butyldiethanolamine, butylaminoethanol, dibutylaminoethanol, diisopropylaminoethanol, octylaminoethanol, and octyldiethanolamine.
- the alkanolamine(s) of formula (I) may be incorporated into the treated fuel in any amount. Typically, they will be present in an amount equal to at least 0.8 mol equivalents relative to a total of the fatty and naphthenic acid impurities, and typically in an amount equal to from 0.01 to 2 wt% relative to the untreated fuel, more typically from 0.01 to 1 wt%. It is to be understood that, when reference is made to a treated fuel containing a certain amount of an alkanolamine of formula (I), this includes both alkanolamine that is unreacted and that which has formed a salt (but not an ester or amide) with fatty, naphthenic, or other acid impurities present in the untreated fuel. At least 95 wt% of the alkanolamine(s) of formula (I) added to the untreated fuel is unreacted or in the form of a salt, and preferably at least 98%.
- Fuels to be treated with the alkanolamines of formula (I) include biodiesel, petroleum distillates, and blends of these.
- the blends contain at least 5 wt% of biodiesel, or they may consist of a blend in which the biodiesel constitutes at least about 20 wt% of the blend, or at least about 80 wt% of the blend, with the balance being a petroleum distillate.
- Biodiesel derived from any natural or synthetic fat or oil is suitable for treatment according to the invention.
- Petroleum distillates suitable for use according to the invention include any of a variety of petroleum-based fuels, including but not limited to those normally referred to as "diesel.” Exemplary distillates may include gasoline, gas-oil, and bunker fuel. Petroleum middle distillates will be used in many applications, and such middle distillates include mineral oils boiling within the range from 120 to 450 0 C obtained by distillation of crude oil, for example standard kerosene, low-sulfur kerosene, jet fuel, diesel and heating oil such as No. 2 fuel oil.
- Exemplary distillates that may be blended with biodiesel for treatment with the alkanolamines of this invention are those which contain not more than 500 ppm, in particular less than 200 ppm, of sulfur and in specific cases less than 50 ppm of sulfur or even less than 5 ppm.
- the petroleum distillate may comprise from 0.01 to 1 wt% of the naphthenic acids, but the invention is not limited to this range.
- Useful distillates, especially middle distillates are generally those which were subjected to refinement under hydrogenating conditions and which therefore contain only small amounts of polyaromatic and polar compounds that impart natural lubricating activity to them.
- the alkanolamines according to the invention may also find good use in those distillates that have 95% distillation points of less than 370 0 C, in particular 35O 0 C and in special cases less than 330 0 C.
- the untreated fuel typically contains a minor amount of one or more fatty acids and/or naphthenic acids as impurities, although it need not contain either of them.
- the untreated fuel may consist essentially of those impurities and the esters or hydrocarbons of the fuels themselves.
- the acids will typically be fatty acids, while naphthenic acids may often be found in petroleum distillates.
- the amount of fatty and/or naphthenic acids present in the untreated fuels is typically from 0.01 to 5 wt%, more typically from 0.01 to 2 wt%, and most typically between 0.05 and 1 wt%.
- An untreated fuel may consist essentially of the biodiesel and/or the petroleum distillates, along with their acid impurities, or it may also contain other optional additives such as those detailed below.
- the treated fuel may consist essentially of the untreated fuel combined with one or more alkanolamines of formula (I), or it may also contain those other additives. It should be noted that certain additives, when used in combination with the alkanolamine(s), may have a substantial effect on certain important properties of the treated fuel.
- Such properties include the viscosity of the treated fuel at 35°C (or more generally, at engine operating temperature), the pour point of the treated fuel, the rate or extent of rust formation or other corrosion of metals in contact with the treated fuel, and the growth of bacteria, molds, fungi, slimes, and other microbial forms in the fuel.
- the effects of such changes may or may not be desirable in a given situation, and therefore some embodiments of the invention preclude the use of such additives in an amount that materially affects one or more of these properties.
- Examples of materials that may have a material effect on one or more of the above- mentioned properties, when used in a high enough amount in combination with the alkanolamines of formula (I), include esters or amides of the alkanolamines of formula (I) with fatty or naphthenic acids, and polymers containing vinyl ester and olefin repeat groups.
- Other such materials include carboxylic acid esters of alkoxylated phenol-aldehyde resins, and certain biological control agents.
- Examples of the latter include certain triazines, thiazolinones, halogenated compounds, thiocyanates, carbamates, pyrithiones, quaternary ammonium compounds, aldehydes, heterocyclic compounds, soluble metal ions and reactive alkylating agents.
- Specific examples of biological control agents that may or may not be included in an effective amount include 1 ,3,5-(2- hydroxyethyl)-s-triazine and benzoisothiazolone.
- certain other additives may typically be included in the treated fuel in an amount sufficient to achieve certain performance advantages.
- surfactants may be included to help reduce the buildup of deposits.
- Other ingredients might also include fatty acids as friction modifiers, octane boosters, cetane enhancers, and explosion suppressors (e.g., tetraethyllead or manganocene tricarbonyl), Water may also be present in the treated fuel. If present, it may be in only small amounts, i.e., at less than 2 wt% or even less than 0.5 wt%, most typically less than 500 ppm. It may however be present in larger amounts, for example from 2 to 25 wt% based on the total weight of the resulting mixture, more commonly 10 to 15 wt%, in the form of a solution, stabilized emulsion, or other dispersion.
- the alkanolamines of formula (I) may simply be blended with fuel, without any heating or other special processing steps. Thus they may be blended at ambient temperatures, although lower or higher temperatures may be used as long as mixing is reasonably facile and undesired reactions do not occur. Typically, the temperature will be from 10 to 50 0 C.
- the pH of the fuel will be increased by the addition of the amine, and the corrosion-reducing effect of the alkanolamine will be realized following the addition. It should be noted that the measured acid number of the fuel will not necessarily change after the alkanolamine is added, since titration in the usual manner (with KOH) may still pick up protons bound by amino nitrogen.
- Treated fuels according to the invention generally provide relatively low rates of corrosion, making them suitable for use in a number of applications. For example, many applications involve the use of brass parts, either leaded or unleaded, and corrosion caused by some prior art fuels can lead to excessive and deleterious levels of copper and other metals in the fuel.
- Example 1 Corrosion inhibition in aqueous solutions of alkanolamine and fatty acid
- the following data provide an indication of corrosion performance in situations where diesel fuel is exposed to pools of standing water (e.g., fuel tanks, storage containers) and the fatty acids and amines within the fuel are extracted into the pools.
- Eight aqueous solutions each containing a different alkanolamine at a concentration of 0.3 M along with octanoic acid at a concentration of 0.2 M and with the pH adjusted to 8.5 (at room temperature) by H 3 PO 4 and/or KOH addition were prepared as models of heavily neutralized biodiesel type fuel. A 450-gram portion of each of these solutions was weighed carefully and transferred to a wide-mouth screw-cap glass bottle.
- Brass panels (2" x 2" x 0.032”) panels were washed with 10% liquid-Nox (Alcanox), buffed dry with a paper towel, and immersed in the solutions described above. Caps were placed tightly on all bottles to insure that no evaporation took place. A 5-gram sample of each solution was collected after 30 days and analyzed by ICP (Inductively Coupled Plasma) atomic emission spectroscopy for metals content. Two types of brass were tested - leaded (CA-360, 3% Pb) and unleaded (CA-260) alloy. The results (passive dissolution of copper, zinc and lead) are shown below.
- ICP Inductively Coupled Plasma
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Liquid Carbonaceous Fuels (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US70113605P | 2005-07-21 | 2005-07-21 | |
PCT/US2006/024703 WO2007018782A2 (en) | 2005-07-21 | 2006-06-26 | Method of reducing fuel corrosiveness |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1917331A2 true EP1917331A2 (de) | 2008-05-07 |
EP1917331A4 EP1917331A4 (de) | 2010-12-01 |
Family
ID=37727791
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06773948A Withdrawn EP1917331A4 (de) | 2005-07-21 | 2006-06-26 | Verfahren zur verringerung der korrosivität von brennstoffen |
Country Status (4)
Country | Link |
---|---|
US (1) | US20080209798A1 (de) |
EP (1) | EP1917331A4 (de) |
BR (1) | BRPI0613421A2 (de) |
WO (1) | WO2007018782A2 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5570816B2 (ja) | 2007-01-12 | 2014-08-13 | アングス ケミカル カンパニー | アミノアルコール及び水性系のための殺生物剤組成物 |
US7918905B2 (en) * | 2007-05-17 | 2011-04-05 | Baker Hughes Incorporated | Method for improving biodiesel fuel |
CN102026542B (zh) * | 2008-05-15 | 2014-08-20 | 安格斯化学公司 | 用于水基体系的氨基醇和杀生物剂组合物 |
BRPI0908613A8 (pt) * | 2008-05-15 | 2017-10-31 | Angus Chemical | Mistura, mistura de combustível e método para prover resistência microbiana a um combustível biodiesel |
FR2940314B1 (fr) * | 2008-12-23 | 2011-11-18 | Total Raffinage Marketing | Carburant de type gazole pour moteur diesel a fortes teneurs en carbone d'origine renouvelable et en oxygene |
PL2643437T3 (pl) * | 2010-11-25 | 2018-06-29 | Gane Energy & Resources Pty Ltd | Zastosowanie paliwowej kompozycji zawierającej metanol i sposób zasilania silnika o samoczynnym zapłonie |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3114700A (en) * | 1962-05-08 | 1963-12-17 | Universal Oil Prod Co | Sweetening of sour hydrocarbon distillates |
US3372009A (en) * | 1964-06-18 | 1968-03-05 | Mobil Oil Corp | Liquid fuel compositions containing as anti-corrosion agent an alkyl monoalkanol amino compound |
US3629119A (en) * | 1969-12-22 | 1971-12-21 | Shell Oil Co | Water-in-oil emulsions |
WO2006016991A1 (en) * | 2004-07-08 | 2006-02-16 | Arkema Inc. | Alkyl ethanolamine and biocide combination for hydrocarbon based fuels |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4410334A (en) * | 1981-10-30 | 1983-10-18 | Parkinson Harold B | Hydrocarbon fuel composition |
US6270541B1 (en) * | 1994-08-12 | 2001-08-07 | Bp Corporation North America Inc. | Diesel fuel composition |
US7357819B2 (en) * | 2001-05-07 | 2008-04-15 | Victorian Chemicals International Pty Ltd | Fuel blends |
JP2005520033A (ja) * | 2002-03-14 | 2005-07-07 | ザ ルブリゾル コーポレイション | エタノール−ディーゼル燃料組成物およびそれらの方法 |
-
2006
- 2006-06-26 EP EP06773948A patent/EP1917331A4/de not_active Withdrawn
- 2006-06-26 US US11/996,129 patent/US20080209798A1/en not_active Abandoned
- 2006-06-26 BR BRPI0613421-1A patent/BRPI0613421A2/pt not_active IP Right Cessation
- 2006-06-26 WO PCT/US2006/024703 patent/WO2007018782A2/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3114700A (en) * | 1962-05-08 | 1963-12-17 | Universal Oil Prod Co | Sweetening of sour hydrocarbon distillates |
US3372009A (en) * | 1964-06-18 | 1968-03-05 | Mobil Oil Corp | Liquid fuel compositions containing as anti-corrosion agent an alkyl monoalkanol amino compound |
US3629119A (en) * | 1969-12-22 | 1971-12-21 | Shell Oil Co | Water-in-oil emulsions |
WO2006016991A1 (en) * | 2004-07-08 | 2006-02-16 | Arkema Inc. | Alkyl ethanolamine and biocide combination for hydrocarbon based fuels |
Non-Patent Citations (1)
Title |
---|
See also references of WO2007018782A2 * |
Also Published As
Publication number | Publication date |
---|---|
US20080209798A1 (en) | 2008-09-04 |
BRPI0613421A2 (pt) | 2011-05-31 |
EP1917331A4 (de) | 2010-12-01 |
WO2007018782A3 (en) | 2007-04-19 |
WO2007018782A2 (en) | 2007-02-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8097570B2 (en) | Lubricating composition for hydrocarbonated mixtures and products obtained | |
AU2006350703B2 (en) | Stabilizer compositions for blends of petroleum and renewable fuels | |
DE60306250T2 (de) | Reibungsabänderungszusätze für Kraftstoffzusammensetzungen und Verfahren zu deren Verwendung | |
KR100598442B1 (ko) | 연료 조성물용 첨가제로서의 마찰 개질제인 카르복실산의알콕시아민염 및 이의 사용 방법 | |
CN102239238A (zh) | 减少金属混入燃料中的添加剂 | |
US6562086B1 (en) | Fatty acid amide lubricity aids and related methods for improvement of lubricity of fuels | |
US20080209798A1 (en) | Method of Reducing Fuel Corrosiveness | |
CA2326295C (en) | Low nitrogen content fuel with improved lubricity | |
EP3205703A1 (de) | Kraftstoffadditive | |
DE102007008532A1 (de) | Kraftstoffschmierungsadditive | |
EP3414303B1 (de) | Verwendung von additiven zur deemulgierung | |
CN108699464B (zh) | 用于减少铁腐蚀的方法 | |
EP0991738A1 (de) | Schmiereigenschaft verbesserende salzzusammensetzungen enthaltende brennstoffzusammensetzungen | |
US6872230B2 (en) | Lubricity additives for low sulfur hydrocarbon fuels | |
WO2007094171A1 (ja) | 燃料油組成物 | |
US20070074449A1 (en) | Additive concentrate | |
CN107922883A (zh) | 用于具有低硫含量的燃料的润滑性添加剂 | |
EP1963466A2 (de) | Stabile niedrigtemperatur-fettsäurezusammensetzung | |
CA2244152C (en) | Distillate fuel composition of reduced nickel corrosivity | |
AU735528B2 (en) | Method for defoaming fuels | |
WO2021105709A1 (en) | Low greenhouse gas fuel compositions | |
PL188160B1 (pl) | Olej napędow |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20080221 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: GERNON, MICHAEL, D. Inventor name: MARTYAK, NICHOLAS, M. Inventor name: ALFORD, DANIEL Inventor name: DOWLING, CONOR, M. |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10L 1/14 20060101AFI20080527BHEP Ipc: C10L 1/22 20060101ALI20080527BHEP Ipc: C10L 1/224 20060101ALI20080527BHEP |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TAMINCO |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20101028 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110607 |