US20080209798A1 - Method of Reducing Fuel Corrosiveness - Google Patents

Method of Reducing Fuel Corrosiveness Download PDF

Info

Publication number
US20080209798A1
US20080209798A1 US11/996,129 US99612906A US2008209798A1 US 20080209798 A1 US20080209798 A1 US 20080209798A1 US 99612906 A US99612906 A US 99612906A US 2008209798 A1 US2008209798 A1 US 2008209798A1
Authority
US
United States
Prior art keywords
fuel
treated
biodiesel
treated fuel
untreated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/996,129
Inventor
Michael D. Gernon
Nicholas M. Martyak
Conor M. Dowling
Daniel Alford
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taminco BV
Original Assignee
Taminco BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taminco BV filed Critical Taminco BV
Priority to US11/996,129 priority Critical patent/US20080209798A1/en
Assigned to TAMINCO N.V. reassignment TAMINCO N.V. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: MARTYAK, NICHOLAS, ALFORD, DANIEL, DOWLING, CONOR, GERNON, MICHAEL
Publication of US20080209798A1 publication Critical patent/US20080209798A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/222Organic compounds containing nitrogen containing at least one carbon-to-nitrogen single bond
    • C10L1/2222(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates
    • C10L1/2225(cyclo)aliphatic amines; polyamines (no macromolecular substituent 30C); quaternair ammonium compounds; carbamates hydroxy containing
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/04Use of additives to fuels or fires for particular purposes for minimising corrosion or incrustation

Definitions

  • the invention relates to fuel oils. More particularly, it relates to fuel oils containing additives that reduce corrosion in systems in contact with the oils.
  • Fuel oils are widely used in a variety of applications, including diesel engines, furnaces, jet engines, and other energy-consuming uses.
  • Traditional fuel oils are well known, and are produced by refining crude petroleum feedstocks via distillation, cracking, and other processes.
  • the crude petroleum feedstocks are in limited supply and are non-renewable, and therefore renewable sources of fuel oils are increasingly sought.
  • Biodiesel a clean-burning alternative fuel produced from domestic, renewable resources.
  • Biodiesel contains no petroleum, but it can be blended at any level with petroleum diesel to create a fuel blend. It can be used in compression-ignition (diesel) engines with little or no modification.
  • Biodiesel is biodegradable, essentially nontoxic, and essentially free of sulfur and aromatic compounds, and thus can provide certain environmental advantages.
  • Biodiesel is essentially a mixture of methyl and/or ethyl esters of fatty acids, made through transesterification of fatty acid triglycerides (oils) with methyl or ethyl alcohol.
  • the most commonly used raw material oils are triglyceride seed oils (e.g., soybean oil, palm oil, rapeseed oil).
  • Biodiesel esters are never produced as 100% pure compounds, and one common impurity in biodiesel is free fatty acids, which can lead to corrosion problems.
  • Biodiesel may be used alone, petroleum oils may be used alone, or blends may be used. Petroleum oils typically also contain some amount of acidic impurities, especially naphthenic acids. Acids from either source may cause any of a number of problems, including corrosion, poor combustion, elevated pour points, formation of deposits, and poor lubricity. As a result, fuel producers typically try to reduce the acidity of their products, but doing so usually introduces additional costs for these products, which generally sell at low margins. Beyond a certain point, the removal of acids becomes economically unacceptable, and therefore crude petroleum oils with too high a naphthenic acid content or biodiesel feed with too high a free fatty acid content become a liability to the fuel producer. Thus it would be beneficial to provide economical ways of dealing with free acids in fuel oils.
  • the invention provides a treated fuel.
  • the treated fuel includes:
  • n 1 or 2
  • R 1 is H or CH 3
  • each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen, and wherein the treated fuel is essentially free of added biological control agents.
  • the invention provides a method of treating a fuel comprising blending together an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof and one or more alkanolamines according to formula (I) as shown above, wherein the treated fuel is essentially free of added biological control agents.
  • fuels may be treated by the addition of small amounts of one or more alkanolamines according to formula (I)
  • n 1 or 2
  • R 1 is H or CH 3
  • each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen.
  • the total number of carbon atoms in the R group(s) taken together is from 4 to 24, and in some preferred embodiments the number is from 6 to 20.
  • Exemplary useful alkanolamines of formula (I) include butyidiethanolamine, butylaminoethanol, dibutylaminoethanol, diisopropylaminoethanol, octylaminoethanol, and octyldiethanolamine.
  • the alkanolamine(s) of formula (I) may be incorporated into the treated fuel in any amount. Typically, they will be present in an amount equal to at least 0.8 mol equivalents relative to a total of the fatty and naphthenic acid impurities, and typically in an amount equal to from 0.01 to 2 wt % relative to the untreated fuel, more typically from 0.01 to 1 wt %. It is to be understood that, when reference is made to a treated fuel containing a certain amount of an alkanolamine of formula (I), this includes both alkanolamine that is unreacted and that which has formed a salt (but not an ester or amide) with fatty, naphthenic, or other acid impurities present in the untreated fuel. At least 95 wt % of the alkanolamine(s) of formula (I) added to the untreated fuel is unreacted or in the form of a salt, and preferably at least 98%.
  • Fuels to be treated with the alkanolamines of formula (I) include biodiesel, petroleum distillates, and blends of these.
  • the blends contain at least 5 wt % of biodiesel, or they may consist of a blend in which the biodiesel constitutes at least about 20 wt % of the blend, or at least about 80 wt % of the blend, with the balance being a petroleum distillate.
  • Biodiesel derived from any natural or synthetic fat or oil is suitable for treatment according to the invention.
  • Petroleum distillates suitable for use according to the invention include any of a variety of petroleum-based fuels, including but not limited to those normally referred to as “diesel.” Exemplary distillates may include gasoline, gas-oil, and bunker fuel. Petroleum middle distillates will be used in many applications, and such middle distillates include mineral oils boiling within the range from 120 to 450° C. obtained by distillation of crude oil, for example standard kerosene, low-sulfur kerosene, jet fuel, diesel and heating oil such as No. 2 fuel oil.
  • Exemplary distillates that may be blended with biodiesel for treatment with the alkanolamines of this invention are those which contain not more than 500 ppm, in particular less than 200 ppm, of sulfur and in specific cases less than 50 ppm of sulfur or even less than 5 ppm.
  • the petroleum distillate may comprise from 0.01 to 1 wt % of the naphthenic acids, but the invention is not limited to this range.
  • Useful distillates, especially middle distillates are generally those which were subjected to refinement under hydrogenating conditions and which therefore contain only small amounts of polyaromatic and polar compounds that impart natural lubricating activity to them.
  • the alkanolamines according to the invention may also find good use in those distillates that have 95% distillation points of less than 370° C., in particular 350° C. and in special cases less than 330° C.
  • the untreated fuel typically contains a minor amount of one or more fatty acids and/or naphthenic acids as impurities, although it need not contain either of them.
  • the untreated fuel may consist essentially of those impurities and the esters or hydrocarbons of the fuels themselves.
  • the acids will typically be fatty acids, while naphthenic acids may often be found in petroleum distillates.
  • the amount of fatty and/or naphthenic acids present in the untreated fuels is typically from 0.01 to 5 wt %, more typically from 0.01 to 2 wt %, and most typically between 0.05 and 1 wt %.
  • An untreated fuel may consist essentially of the biodiesel and/or the petroleum distillates, along with their acid impurities, or it may also contain other optional additives such as those detailed below.
  • the treated fuel may consist essentially of the untreated fuel combined with one or more alkanolamines of formula (I), or it may also contain those other additives. It should be noted that certain additives, when used in combination with the alkanolamine(s), may have a substantial effect on certain important properties of the treated fuel. Such properties include the viscosity of the treated fuel at 35° C.
  • the pour point of the treated fuel (or more generally, at engine operating temperature), the pour point of the treated fuel, the rate or extent of rust formation or other corrosion of metals in contact with the treated fuel, and the growth of bacteria, molds, fungi, slimes, and other microbial forms in the fuel.
  • the effects of such changes may or may not be desirable in a given situation, and therefore some embodiments of the invention preclude the use of such additives in an amount that materially affects one or more of these properties.
  • Examples of materials that may have a material effect on one or more of the above-mentioned properties, when used in a high enough amount in combination with the alkanolamines of formula (I), include esters or amides of the alkanolamines of formula (I) with fatty or naphthenic acids, and polymers containing vinyl ester and olefin repeat groups.
  • Other such materials include carboxylic acid esters of alkoxylated phenol-aldehyde resins, and certain biological control agents.
  • Examples of the latter include certain triazines, thiazolinones, halogenated compounds, thiocyanates, carbamates, pyrithiones, quaternary ammonium compounds, aldehydes, heterocyclic compounds, soluble metal ions and reactive alkylating agents.
  • Specific examples of biological control agents that may or may not be included in an effective amount include 1,3,5-(2-hydroxyethyl)-s-triazine and benzoisothiazolone.
  • certain other additives may typically be included in the treated fuel in an amount sufficient to achieve certain performance advantages.
  • surfactants may be included to help reduce the buildup of deposits.
  • Other ingredients might also include fatty acids as friction modifiers, octane boosters, cetane enhancers, and explosion suppressors (e.g., tetraethyllead or manganocene tricarbonyl).
  • Water may also be present in the treated fuel. If present, it may be in only small amounts, i.e., at less than 2 wt % or even less than 0.5 wt %, most typically less than 500 ppm.
  • the alkanolamines of formula (I) may simply be blended with fuel, without any heating or other special processing steps. Thus they may be blended at ambient temperatures, although lower or higher temperatures may be used as long as mixing is reasonably facile and undesired reactions do not occur. Typically, the temperature will be from 10 to 50° C.
  • the pH of the fuel will be increased by the addition of the amine, and the corrosion-reducing effect of the alkanolamine will be realized following the addition. It should be noted that the measured acid number of the fuel will not necessarily change after the alkanolamine is added, since titration in the usual manner (with KOH) may still pick up protons bound by amino nitrogen.
  • Treated fuels according to the invention generally provide relatively low rates of corrosion, making them suitable for use in a number of applications.
  • many applications involve the use of brass parts, either leaded or unleaded, and corrosion caused by some prior art fuels can lead to excessive and deleterious levels of copper and other metals in the fuel.
  • Low corrosion of copper, brass and iron is an important property for many fuels, and such low corrosion is particularly important in biodiesel type fuels, since these fuels need to be compatible with existing engines that contain iron, iron alloy, aluminum alloy, copper, and copper alloy parts.
  • Corrosion of brass in the presence of the treated fuel may produce less than 70 ppm of copper in the treated fuel, as measured by the test methods described in Example 1 below. Without wishing to be bound by any particular theory or explanation, it is believed that the alkanolamines of formula (I) neutralize at least some of the free acids, and that this reduces corrosion.
  • the following data provide an indication of corrosion performance in situations where diesel fuel is exposed to pools of standing water (e.g., fuel tanks, storage containers) and the fatty acids and amines within the fuel are extracted into the pools.
  • Eight aqueous solutions each containing a different alkanolamine at a concentration of 0.3 M along with octanoic acid at a concentration of 0.2 M and with the pH adjusted to 8.5 (at room temperature) by H 3 PO 4 and/or KOH addition were prepared as models of heavily neutralized biodiesel type fuel. A 450-gram portion of each of these solutions was weighed carefully and transferred to a wide-mouth screw-cap glass bottle.
  • Brass panels (2′′ ⁇ 2′′ ⁇ 0.032′′) panels were washed with 10% liquid-Nox (Alcanox), buffed dry with a paper towel, and immersed in the solutions described above. Caps were placed tightly on all bottles to insure that no evaporation took place. A 5-gram sample of each solution was collected after 30 days and analyzed by ICP (Inductively Coupled Plasma) atomic emission spectroscopy for metals content. Two types of brass were tested—leaded (CA-360, 3% Pb) and unleaded (CA-260) alloy. The results (passive dissolution of copper, zinc and lead) are shown below.
  • ICP Inductively Coupled Plasma
  • solutions containing fatty acids (i.e., octanoic acid) and the alkanolamines of this invention have far less tendency to corrode brass than do solutions in which prior art alkanolamines are used instead.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Fuels containing biodiesel, petroleum distillates, or blends of these may be treated by the addition of small amounts of one or more alkanolamines according to formula (I)

Rn—N(CH2CHR1OH)3-n ;   (I)
wherein n is 1 or 2, R1 is H or CH3, and each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen. Fuels treated in this manner may be less corrosive toward metals with which they are in contact.

Description

    FIELD OF THE INVENTION
  • The invention relates to fuel oils. More particularly, it relates to fuel oils containing additives that reduce corrosion in systems in contact with the oils.
  • BACKGROUND OF THE INVENTION
  • Fuel oils are widely used in a variety of applications, including diesel engines, furnaces, jet engines, and other energy-consuming uses. Traditional fuel oils are well known, and are produced by refining crude petroleum feedstocks via distillation, cracking, and other processes. However, the crude petroleum feedstocks are in limited supply and are non-renewable, and therefore renewable sources of fuel oils are increasingly sought.
  • One renewable fuel oil source is biodiesel, a clean-burning alternative fuel produced from domestic, renewable resources. Biodiesel contains no petroleum, but it can be blended at any level with petroleum diesel to create a fuel blend. It can be used in compression-ignition (diesel) engines with little or no modification. Biodiesel is biodegradable, essentially nontoxic, and essentially free of sulfur and aromatic compounds, and thus can provide certain environmental advantages.
  • Biodiesel is essentially a mixture of methyl and/or ethyl esters of fatty acids, made through transesterification of fatty acid triglycerides (oils) with methyl or ethyl alcohol. The most commonly used raw material oils are triglyceride seed oils (e.g., soybean oil, palm oil, rapeseed oil). Biodiesel esters are never produced as 100% pure compounds, and one common impurity in biodiesel is free fatty acids, which can lead to corrosion problems.
  • Biodiesel may be used alone, petroleum oils may be used alone, or blends may be used. Petroleum oils typically also contain some amount of acidic impurities, especially naphthenic acids. Acids from either source may cause any of a number of problems, including corrosion, poor combustion, elevated pour points, formation of deposits, and poor lubricity. As a result, fuel producers typically try to reduce the acidity of their products, but doing so usually introduces additional costs for these products, which generally sell at low margins. Beyond a certain point, the removal of acids becomes economically unacceptable, and therefore crude petroleum oils with too high a naphthenic acid content or biodiesel feed with too high a free fatty acid content become a liability to the fuel producer. Thus it would be beneficial to provide economical ways of dealing with free acids in fuel oils.
  • SUMMARY OF THE INVENTION
  • In one aspect, the invention provides a treated fuel. The treated fuel includes:
      • a) an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof; and
      • b) one or more alkanolamines according to formula (I)

  • Rn—N(CH2CHR1OH)3-n   (I);
  • wherein n is 1 or 2, R1 is H or CH3, and each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen, and wherein the treated fuel is essentially free of added biological control agents.
  • In another aspect, the invention provides a method of treating a fuel comprising blending together an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof and one or more alkanolamines according to formula (I) as shown above, wherein the treated fuel is essentially free of added biological control agents.
  • DETAILED DESCRIPTION OF THE INVENTION
  • According to the invention, fuels may be treated by the addition of small amounts of one or more alkanolamines according to formula (I)

  • Rn—N(CH2CHR1OH)3-n   (I);
  • wherein n is 1 or 2, R1 is H or CH3, and each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen. In some embodiments of the invention, the total number of carbon atoms in the R group(s) taken together is from 4 to 24, and in some preferred embodiments the number is from 6 to 20. Without wishing to be bound by any particular theory or explanation, it is believed that the presence of a significant amount of hydrophobic substitution directly on the amine nitrogen is beneficial to the reduction of corrosion. Exemplary useful alkanolamines of formula (I) include butyidiethanolamine, butylaminoethanol, dibutylaminoethanol, diisopropylaminoethanol, octylaminoethanol, and octyldiethanolamine.
  • The alkanolamine(s) of formula (I) may be incorporated into the treated fuel in any amount. Typically, they will be present in an amount equal to at least 0.8 mol equivalents relative to a total of the fatty and naphthenic acid impurities, and typically in an amount equal to from 0.01 to 2 wt % relative to the untreated fuel, more typically from 0.01 to 1 wt %. It is to be understood that, when reference is made to a treated fuel containing a certain amount of an alkanolamine of formula (I), this includes both alkanolamine that is unreacted and that which has formed a salt (but not an ester or amide) with fatty, naphthenic, or other acid impurities present in the untreated fuel. At least 95 wt % of the alkanolamine(s) of formula (I) added to the untreated fuel is unreacted or in the form of a salt, and preferably at least 98%.
  • Fuels to be treated with the alkanolamines of formula (I) include biodiesel, petroleum distillates, and blends of these. In some embodiments, the blends contain at least 5 wt % of biodiesel, or they may consist of a blend in which the biodiesel constitutes at least about 20 wt % of the blend, or at least about 80 wt % of the blend, with the balance being a petroleum distillate. Biodiesel derived from any natural or synthetic fat or oil is suitable for treatment according to the invention.
  • Petroleum distillates suitable for use according to the invention include any of a variety of petroleum-based fuels, including but not limited to those normally referred to as “diesel.” Exemplary distillates may include gasoline, gas-oil, and bunker fuel. Petroleum middle distillates will be used in many applications, and such middle distillates include mineral oils boiling within the range from 120 to 450° C. obtained by distillation of crude oil, for example standard kerosene, low-sulfur kerosene, jet fuel, diesel and heating oil such as No. 2 fuel oil. Exemplary distillates that may be blended with biodiesel for treatment with the alkanolamines of this invention are those which contain not more than 500 ppm, in particular less than 200 ppm, of sulfur and in specific cases less than 50 ppm of sulfur or even less than 5 ppm. Generally, the petroleum distillate may comprise from 0.01 to 1 wt % of the naphthenic acids, but the invention is not limited to this range. Useful distillates, especially middle distillates, are generally those which were subjected to refinement under hydrogenating conditions and which therefore contain only small amounts of polyaromatic and polar compounds that impart natural lubricating activity to them. The alkanolamines according to the invention may also find good use in those distillates that have 95% distillation points of less than 370° C., in particular 350° C. and in special cases less than 330° C.
  • The untreated fuel typically contains a minor amount of one or more fatty acids and/or naphthenic acids as impurities, although it need not contain either of them. Thus, in some embodiments, the untreated fuel may consist essentially of those impurities and the esters or hydrocarbons of the fuels themselves. In the case of biodiesel, the acids will typically be fatty acids, while naphthenic acids may often be found in petroleum distillates. The amount of fatty and/or naphthenic acids present in the untreated fuels is typically from 0.01 to 5 wt %, more typically from 0.01 to 2 wt %, and most typically between 0.05 and 1 wt %.
  • An untreated fuel may consist essentially of the biodiesel and/or the petroleum distillates, along with their acid impurities, or it may also contain other optional additives such as those detailed below. Similarly, the treated fuel may consist essentially of the untreated fuel combined with one or more alkanolamines of formula (I), or it may also contain those other additives. It should be noted that certain additives, when used in combination with the alkanolamine(s), may have a substantial effect on certain important properties of the treated fuel. Such properties include the viscosity of the treated fuel at 35° C. (or more generally, at engine operating temperature), the pour point of the treated fuel, the rate or extent of rust formation or other corrosion of metals in contact with the treated fuel, and the growth of bacteria, molds, fungi, slimes, and other microbial forms in the fuel. The effects of such changes may or may not be desirable in a given situation, and therefore some embodiments of the invention preclude the use of such additives in an amount that materially affects one or more of these properties.
  • Examples of materials that may have a material effect on one or more of the above-mentioned properties, when used in a high enough amount in combination with the alkanolamines of formula (I), include esters or amides of the alkanolamines of formula (I) with fatty or naphthenic acids, and polymers containing vinyl ester and olefin repeat groups. Other such materials include carboxylic acid esters of alkoxylated phenol-aldehyde resins, and certain biological control agents. Examples of the latter include certain triazines, thiazolinones, halogenated compounds, thiocyanates, carbamates, pyrithiones, quaternary ammonium compounds, aldehydes, heterocyclic compounds, soluble metal ions and reactive alkylating agents. Specific examples of biological control agents that may or may not be included in an effective amount include 1,3,5-(2-hydroxyethyl)-s-triazine and benzoisothiazolone.
  • As distinct from the foregoing list of additives, certain other additives may typically be included in the treated fuel in an amount sufficient to achieve certain performance advantages. For example, surfactants may be included to help reduce the buildup of deposits. Other ingredients might also include fatty acids as friction modifiers, octane boosters, cetane enhancers, and explosion suppressors (e.g., tetraethyllead or manganocene tricarbonyl). Water may also be present in the treated fuel. If present, it may be in only small amounts, i.e., at less than 2 wt % or even less than 0.5 wt %, most typically less than 500 ppm. It may however be present in larger amounts, for example from 2 to 25 wt % based on the total weight of the resulting mixture, more commonly 10 to 15 wt %, in the form of a solution, stabilized emulsion, or other dispersion.
  • The alkanolamines of formula (I) may simply be blended with fuel, without any heating or other special processing steps. Thus they may be blended at ambient temperatures, although lower or higher temperatures may be used as long as mixing is reasonably facile and undesired reactions do not occur. Typically, the temperature will be from 10 to 50° C. The pH of the fuel will be increased by the addition of the amine, and the corrosion-reducing effect of the alkanolamine will be realized following the addition. It should be noted that the measured acid number of the fuel will not necessarily change after the alkanolamine is added, since titration in the usual manner (with KOH) may still pick up protons bound by amino nitrogen. However, even though the fuel's acid number does not decrease as much as it would if a stronger base were used instead of the alkanolamine, the fuel still shows marked reduction in corrosiveness. Therefore, in some cases, producers may wish to modify their specification test to account for the fact that amine neutralizing agents are being employed.
  • Treated fuels according to the invention generally provide relatively low rates of corrosion, making them suitable for use in a number of applications. For example, many applications involve the use of brass parts, either leaded or unleaded, and corrosion caused by some prior art fuels can lead to excessive and deleterious levels of copper and other metals in the fuel. Low corrosion of copper, brass and iron is an important property for many fuels, and such low corrosion is particularly important in biodiesel type fuels, since these fuels need to be compatible with existing engines that contain iron, iron alloy, aluminum alloy, copper, and copper alloy parts. Corrosion of brass in the presence of the treated fuel may produce less than 70 ppm of copper in the treated fuel, as measured by the test methods described in Example 1 below. Without wishing to be bound by any particular theory or explanation, it is believed that the alkanolamines of formula (I) neutralize at least some of the free acids, and that this reduces corrosion.
  • EXAMPLES Example 1 Corrosion Inhibition in Aqueous Solutions of Alkanolamine and Fatty Acid
  • The following data provide an indication of corrosion performance in situations where diesel fuel is exposed to pools of standing water (e.g., fuel tanks, storage containers) and the fatty acids and amines within the fuel are extracted into the pools. Eight aqueous solutions each containing a different alkanolamine at a concentration of 0.3 M along with octanoic acid at a concentration of 0.2 M and with the pH adjusted to 8.5 (at room temperature) by H3PO4 and/or KOH addition were prepared as models of heavily neutralized biodiesel type fuel. A 450-gram portion of each of these solutions was weighed carefully and transferred to a wide-mouth screw-cap glass bottle. Brass panels (2″×2″×0.032″) panels were washed with 10% liquid-Nox (Alcanox), buffed dry with a paper towel, and immersed in the solutions described above. Caps were placed tightly on all bottles to insure that no evaporation took place. A 5-gram sample of each solution was collected after 30 days and analyzed by ICP (Inductively Coupled Plasma) atomic emission spectroscopy for metals content. Two types of brass were tested—leaded (CA-360, 3% Pb) and unleaded (CA-260) alloy. The results (passive dissolution of copper, zinc and lead) are shown below.
  • Day 30, Alkanolamine & Octanoic Acid, Unleaded Brass
  • Alkanolamine Cu (ppm) Pb (ppm) Zn (ppm)
    Alkanolamines of formula (I)
    Butylaminoethanol 10 <0.02 7
    Butyldiethanolamine 44 <0.02 9
    Diisopropylaminoethanol 2 <0.02 0.8
    Isopropylaminoethanol 44 <0.02 16
    Prior Art Alkanolamines
    2-Amino-2-methyl-1-propanol 123 <0.02 66
    Diglycolamine 234 <0.02 19
    Monoethanolamine 211 <0.02 14
    Triethanolamine 171 <0.02 3
  • Day 30, Alkanolamine & Octanoic Acid, Leaded Brass
  • Alkanolamine Cu (ppm) Pb (ppm) Zn (ppm)
    Alkanolamines of formula (I)
    Butylaminoethanol 9 0.2 5
    Butyldiethanolamine 66 0.7 12
    Diisopropylaminoethanol 1 0.06 0.6
    Isopropylaminoethanol 19 0.3 7
    Prior Art Alkanolamines
    2-Amino-2-methyl-1-propanol 74 1 37
    Diglycolamine 168 2 31
    Monoethanolamine 134 2 4
    Triethanolamine 165 7 2
  • As can be seen from the results shown in the above tables, solutions containing fatty acids (i.e., octanoic acid) and the alkanolamines of this invention have far less tendency to corrode brass than do solutions in which prior art alkanolamines are used instead.
  • Although the invention is illustrated and described herein with reference to specific embodiments, it is not intended that the subjoined claims be limited to the details shown. Rather, it is expected that various modifications may be made in these details by those skilled in the art, which modifications may still be within the spirit and scope of the claimed subject matter and it is intended that these claims be construed accordingly.

Claims (21)

1. A treated fuel comprising:
a) an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof; and
b) one or more alkanolamines according to formula (I)

Rn—N(CH2CHR1OH)3-n   (I);
wherein n is 1 or 2, R1 is H or CH3, and each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen, and wherein the treated fuel is essentially free of added biological control agents.
2. The treated fuel of claim 1, wherein the treated fuel comprises less than 2 wt % water.
3. The treated fuel of claim 1, wherein the treated fuel further comprises from 2 to 25 wt % water.
4. The treated fuel of claim 1, wherein the untreated fuel consists of said blend and wherein the biodiesel constitutes at least about 5 wt % of the blend.
5. The treated fuel of claim 1, wherein the untreated fuel consists of said blend and wherein the biodiesel constitutes at least about 20 wt % of the blend.
6. The treated fuel of claim 1, wherein the untreated fuel consists of said blend and wherein the biodiesel constitutes at least about 80 wt % of the blend.
7. The treated fuel of claim 1, wherein the untreated fuel consists of the biodiesel.
8. The treated fuel of claim 1, wherein the untreated fuel consists of the petroleum distillate.
9. The treated fuel of claim 1, wherein the biodiesel or the petroleum distillate comprises one or more fatty or naphthenic acid impurities, or both, and wherein the one or more alkanolamines of formula (I) are present in an amount equal to at least 0.8 mol equivalents relative to a total of the fatty and naphthenic acid impurities.
10. The treated fuel of claim 1, wherein the one or more alkanolamines of formula (I) are present in an amount equal to from 0.01 to 2 wt % relative to the untreated fuel.
11. The treated fuel of claim 1, wherein corrosion of brass in the presence of the treated fuel produces less than 70 ppm of copper in the treated fuel.
12. The treated fuel of claim 1, wherein the biodiesel or the petroleum distillate comprises one or more fatty or naphthenic acid impurities, or both, and wherein the biodiesel comprises from 0.01 to 5 wt % of the fatty acid impurities.
13. The treated fuel of claim 1, wherein the untreated fuel consists of said blend.
14. The treated fuel of claim 1, wherein the petroleum distillate comprises No. 2 fuel oil.
15. The treated fuel of claim 1, wherein the petroleum distillate comprises a jet fuel.
16. The treated fuel of claim 1, wherein the biodiesel or the petroleum distillate comprises one or more fatty or naphthenic acid impurities, or both, and wherein the petroleum distillate comprises from 0.01 to 1 wt % of the naphthenic acid impurities.
17. The treated fuel of claim 1, wherein a total number of carbon atoms in the R groups is from 4 to 24.
18. The treated fuel of claim 1, wherein a total number of carbon atoms in the R groups is from 6 to 20.
19. A method of treating a fuel, comprising blending together:
a) an untreated fuel consisting of a biodiesel, a petroleum distillate, or a blend thereof; and
b) one or more alkanolamines according to formula (I)

Rn—N(CH2CHR1OH)3-n   (I);
wherein n is 1 or 2, R1 is H or CH3, and each R is independently selected from the group consisting of hydrogen and branched, linear, and cyclic C3-C24 alkyl groups, provided that at least one R is not hydrogen, and wherein the treated fuel is essentially free of added biological control agents.
20. The method of claim 19, wherein the blending is performed at a temperature from 10 to 50° C.
21. The method of claim 19, further comprising blending from 2 to 25 wt % of water, based on the total weight of the resulting mixture, with any of the biodiesel, the petroleum distillates, the untreated fuel, or the treated fuel.
US11/996,129 2005-07-21 2006-06-26 Method of Reducing Fuel Corrosiveness Abandoned US20080209798A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/996,129 US20080209798A1 (en) 2005-07-21 2006-06-26 Method of Reducing Fuel Corrosiveness

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US70113605P 2005-07-21 2005-07-21
PCT/US2006/024703 WO2007018782A2 (en) 2005-07-21 2006-06-26 Method of reducing fuel corrosiveness
US11/996,129 US20080209798A1 (en) 2005-07-21 2006-06-26 Method of Reducing Fuel Corrosiveness

Publications (1)

Publication Number Publication Date
US20080209798A1 true US20080209798A1 (en) 2008-09-04

Family

ID=37727791

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/996,129 Abandoned US20080209798A1 (en) 2005-07-21 2006-06-26 Method of Reducing Fuel Corrosiveness

Country Status (4)

Country Link
US (1) US20080209798A1 (en)
EP (1) EP1917331A4 (en)
BR (1) BRPI0613421A2 (en)
WO (1) WO2007018782A2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940314A1 (en) * 2008-12-23 2010-06-25 Total Raffinage Marketing GASOLINE FUEL FOR DIESEL ENGINE HAVING HIGH CARBON CONTENT OF RENEWABLE ORIGIN AND OXYGEN
WO2012068633A1 (en) * 2010-11-25 2012-05-31 Gane Energy & Resources Pty Ltd Fuel and process for powering a compression ignition engine

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008088632A2 (en) 2007-01-12 2008-07-24 Angus Chemical Company Aminoalcohol and biocide compositions for aqueous based systems
US7918905B2 (en) 2007-05-17 2011-04-05 Baker Hughes Incorporated Method for improving biodiesel fuel
EP2282634B1 (en) * 2008-05-15 2016-11-23 ANGUS Chemical Company Aminoalcohol and biocide compositions for aqueous based systems
MX2010012447A (en) * 2008-05-15 2010-12-20 Angus Chemical Improved corrosion and microbial control in hydrocarbonaceous compositions.

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410334A (en) * 1981-10-30 1983-10-18 Parkinson Harold B Hydrocarbon fuel composition
US6270541B1 (en) * 1994-08-12 2001-08-07 Bp Corporation North America Inc. Diesel fuel composition
US20040154219A1 (en) * 2001-05-07 2004-08-12 Killick Robert William Fuel blends
US20050166447A1 (en) * 2002-03-14 2005-08-04 Corkwell Keith C. Ethanol-diesel fuel composition and methods thereof
US20060005464A1 (en) * 2004-07-08 2006-01-12 Gernon Michael D Alkyl ethanolamine and biocide combination for hydrocarbon based fuels

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL292413A (en) * 1962-05-08
US3372009A (en) * 1964-06-18 1968-03-05 Mobil Oil Corp Liquid fuel compositions containing as anti-corrosion agent an alkyl monoalkanol amino compound
US3629119A (en) * 1969-12-22 1971-12-21 Shell Oil Co Water-in-oil emulsions

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4410334A (en) * 1981-10-30 1983-10-18 Parkinson Harold B Hydrocarbon fuel composition
US6270541B1 (en) * 1994-08-12 2001-08-07 Bp Corporation North America Inc. Diesel fuel composition
US20040154219A1 (en) * 2001-05-07 2004-08-12 Killick Robert William Fuel blends
US20050166447A1 (en) * 2002-03-14 2005-08-04 Corkwell Keith C. Ethanol-diesel fuel composition and methods thereof
US20060005464A1 (en) * 2004-07-08 2006-01-12 Gernon Michael D Alkyl ethanolamine and biocide combination for hydrocarbon based fuels

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940314A1 (en) * 2008-12-23 2010-06-25 Total Raffinage Marketing GASOLINE FUEL FOR DIESEL ENGINE HAVING HIGH CARBON CONTENT OF RENEWABLE ORIGIN AND OXYGEN
WO2010073233A3 (en) * 2008-12-23 2010-09-30 Total Raffinage Marketing Diesel fuel for a diesel engine with high carbon from renewable sources and oxygen contents
WO2012068633A1 (en) * 2010-11-25 2012-05-31 Gane Energy & Resources Pty Ltd Fuel and process for powering a compression ignition engine
WO2012068634A1 (en) * 2010-11-25 2012-05-31 Gane Energy & Resources Pty Ltd Process for powering a compression ignition engine and fuel therefor
US9447724B2 (en) 2010-11-25 2016-09-20 Gane Energy & Resources Pty Ltd. Fuel and process for powering a compression ignition engine
US10023818B2 (en) 2010-11-25 2018-07-17 Gane Energy & Resources Pty Ltd. Process for powering a compression ignition engine and fuel therefor
US10815441B2 (en) 2010-11-25 2020-10-27 Gane Energy & Resources Pty Ltd. Fuel and process for powering a compression ignition engine

Also Published As

Publication number Publication date
WO2007018782A2 (en) 2007-02-15
EP1917331A4 (en) 2010-12-01
EP1917331A2 (en) 2008-05-07
BRPI0613421A2 (en) 2011-05-31
WO2007018782A3 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US8097570B2 (en) Lubricating composition for hydrocarbonated mixtures and products obtained
DE102012020501B4 (en) Use of a fuel composition for improved performance of direct fuel injection diesel engines
DE60306250T2 (en) Friction modification additives for fuel compositions and methods of use thereof
AU2006350703B2 (en) Stabilizer compositions for blends of petroleum and renewable fuels
US6562086B1 (en) Fatty acid amide lubricity aids and related methods for improvement of lubricity of fuels
US20080209798A1 (en) Method of Reducing Fuel Corrosiveness
US8546386B2 (en) Corrosion and microbial control in hydrocarbonaceous compositions
CN104302744A (en) Corrosion inhibitor compositions for oxygenated gasolines
CN102239238A (en) Additives to reduce metal pick-up in fuels
CA2326295C (en) Low nitrogen content fuel with improved lubricity
US20050126073A1 (en) Lubricity additives for low sulfur hydrocarbon fuels
DE102007008532A1 (en) Fuel lubrication additives
EP3414303B1 (en) Uses of additives for demulsifying
CN108699464B (en) Method for reducing iron corrosion
WO2007094171A1 (en) Fuel oil composition
EP0991738A1 (en) Fuel compositions containing lubricity enhancing salt compositions
US20070074449A1 (en) Additive concentrate
WO2007076203A2 (en) Low temperature stable fatty acid composition
CA2244152C (en) Distillate fuel composition of reduced nickel corrosivity
US20230028644A1 (en) Low Greenhouse Gas Fuel Compositions
EP2038378B1 (en) Stabilized alkyl ester fuels comprising alkylalkanolamines and alkylhydroxylamines
WO2001021739A1 (en) Fuel composition with improved lubricity performance
PL188160B1 (en) Diesel oil of new generation

Legal Events

Date Code Title Description
AS Assignment

Owner name: TAMINCO N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERNON, MICHAEL;MARTYAK, NICHOLAS;DOWLING, CONOR;AND OTHERS;REEL/FRAME:020637/0721;SIGNING DATES FROM 20080116 TO 20080128

Owner name: TAMINCO N.V., BELGIUM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GERNON, MICHAEL;MARTYAK, NICHOLAS;DOWLING, CONOR;AND OTHERS;SIGNING DATES FROM 20080116 TO 20080128;REEL/FRAME:020637/0721

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION