EP1913356A1 - Procede et dispositif pour verifier la stabilite et/ou la resistance a la flexion de poteaux - Google Patents

Procede et dispositif pour verifier la stabilite et/ou la resistance a la flexion de poteaux

Info

Publication number
EP1913356A1
EP1913356A1 EP06762785A EP06762785A EP1913356A1 EP 1913356 A1 EP1913356 A1 EP 1913356A1 EP 06762785 A EP06762785 A EP 06762785A EP 06762785 A EP06762785 A EP 06762785A EP 1913356 A1 EP1913356 A1 EP 1913356A1
Authority
EP
European Patent Office
Prior art keywords
mast
force
determined
acceleration values
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06762785A
Other languages
German (de)
English (en)
Inventor
Sven Homburg
Günter Jost
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LGA Beteiligungs GmbH
Original Assignee
LGA Beteiligungs GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LGA Beteiligungs GmbH filed Critical LGA Beteiligungs GmbH
Publication of EP1913356A1 publication Critical patent/EP1913356A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0041Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress
    • G01M5/005Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems
    • G01M5/0058Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining deflection or stress by means of external apparatus, e.g. test benches or portable test systems of elongated objects, e.g. pipes, masts, towers or railways
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/08Shock-testing

Definitions

  • the masts to be tested can be used for any purpose, for example as masts for power or telephone lines, railway masts, antenna masts, flagpoles, ⁇ loads from wind turbines, lampposts and traffic light masts and / or traffic signs. Masts made of all conceivable materials can also be tested, for example masts made of wood, plastic, concrete and / or metal.
  • Both masts made of solid material and masts with an inner cavity are known.
  • the masts are delimited laterally outwards by side surfaces, the side surface in the case of round and oval masts being able to be referred to as the outer surface
  • masts are continuously exposed to weather, especially wind.
  • the masts In order to withstand the forces acting on them and not topple over or buckle, the masts, in particular the masts that are not braced, must therefore have sufficient stability and bending strength.
  • these properties in particular can deteriorate over time due to the numerous environmental influences to which masts are exposed, such as moisture, temperature fluctuations, solar radiation and industrial or traffic emissions, in particular due to material fatigue in the mast or anchoring (foundation).
  • a corresponding test can be useful immediately after production or when repositioning a mast (zero measurement) in order to determine manufacturing, material and / or anchoring errors right at the start.
  • a comparable device is known from DE 1 00 62 795 A1. These methods and devices basically work with a quasi static force, for which the mast deflection is measured in response. This static state is measured one after the other for different forces, so that a force-distance characteristic is obtained which is used for a corresponding evaluation.
  • the d) namic reaction that occurs in practice to natural forces, for example due to wind, is not recorded and is therefore not available for evaluation
  • accelerometers or: accelerometers
  • These work for example, according to the spring-mass principle, with micromechanical methods and capacitive analysis, with magnetic field sensors, with pressure sensors or with piezoelectricity.
  • Artificially generated force in contrast to natural wind power, is to be understood as a targeted force effect, usually by means of a suitable device, which acts on a mast.
  • the test is not dependent on random, naturally occurring forces, but can be reproduced be carried out by appropriate regulation of the artificially generated force on the basis of a predetermined or predefinable test plan. This also means that not all measurements have to be carried out in parallel, but because of the reproducibility of the forces it is also possible to measure parameters one after the other, the measured values subsequently being able to be correlated with one another.
  • the force expediently lies essentially in a plane perpendicular to a longitudinal axis (or: longitudinal central axis, longitudinal axis of the mast, mast axis) of the mast, in particular it is directed radially to a longitudinal axis of the mast.
  • the artificial force attacks like the natural wind power on the side of the mast.
  • the force acting on the mast is preferably generated by a device which is arranged on the mast, in particular in the upper third of the mast height and / or on an outside, preferably an outer side or jacket surface of the mast. Attaching the device in the upper third ensures that the artificially generated force engages in this area and thus, due to the distance to the anchored mast base - compared to an attachment in the lower mast area - for the greatest possible reaction of the mast to the exciting force.
  • the attachment on the outside or in the case of round or oval masts on the surface of the jacket makes sense, since this means that the device does not have to be laboriously inserted into the interior of the mast, which would only be possible with appropriately trained masts.
  • the mass or the masses of the unbalance exciter is or are moved about the longitudinal axis of the mast and / or about the mast.
  • the masses should be moved radially outside an outside or - in the case of round or oval masts - a lateral surface of the mast.
  • the masses should therefore circle the mast, i.e. preferably move in a circle around the mast, in a plane perpendicular to the longitudinal axis of the mast.
  • the mass or the masses is driven by one or more linear drives, in particular one or more linear motors respectively.
  • a linear motor is composed of individual elements (linear or excitation windings) which, with an appropriate arrangement, can also produce a circular movement of the masses around the mast.
  • a linear motor 256 can have elements arranged in a ring.
  • the mass or masses form, among other things, the rotor of the linear motor.
  • an elliptically rotating mass can also be achieved by a two-part mass rotating on a circular path consisting of a basic mass and a trimming mass, if the distance between the basic mass and the trimming mass is periodically changed - coordinated with the circulating frequency on the circular path.
  • a circular mast deflection movement (in contrast to the linear deflection movement here, the mast revolves around the mast axis in the idle state) can be achieved with such a device with two masses, for example, by a synchronous, i.e. unidirectional orbital movement, cause both masses, in particular by masses rotating in parallel to each other.
  • horizontal acceleration values are determined in one or more measurement planes distributed over the mast height, in particular in three measurement planes, with a first measurement plane preferably in the lower third of the Mast height and a 7 ⁇ eite measurement level in the middle third of the mast height and a third measurement level in the top third of the mast height.
  • the acceleration values can be determined in parallel in different measurement levels by arranging a corresponding number of acceleration sensors. Alternatively, it is also possible to measure or
  • two or more, preferably four, measurement or acceleration values are determined in at least one measurement level, in particular in the uppermost measurement level, the measurement points being distributed uniformly in the measurement level on the mast.
  • the measurement or acceleration values of a measurement level can be determined by a corresponding number of acceleration recorders, i.e. With four measured values, four accelerometers, which are arranged perpendicular to each other with respect to the longitudinal axis of the mast, are determined in parallel.
  • the measurement or acceleration values of a measurement plane can also be determined one after the other, for example by arranging a robot with one or more acceleration sensors on the mast, the robot or the
  • the method provides for evaluation that a) the mast deflection in the respective measurement planes is calculated by double integration of the determined horizontal acceleration values and from this a measured (i.e. actual) bending line of the mast is determined, b) the measured bending line with a sample Bend line, in particular a bending line theoretically determined taking into account stimulating force and / or mast cross section and / or mast material is compared, and c) deviations between measured and sample bend line are determined.
  • FIG. 3 shows an exemplary embodiment of a robot of a device according to the
  • FIG. 4 shows the robot according to FIG. 3 in a state attached to the mast.
  • the unbalance of the unbalance exciter 12 is based on a mass (not shown).
  • This mass encircles the mast 11 during operation of the unbalance exciter 12 within the unbalance exciter 12, ie the mass runs in a circle (or elliptical) around the mast axis 19, radially outside the side or lateral surface 20 of the mast 11.
  • the individual components of the device can be connected to each other for the transmission of control commands and / or measured values, in particular, but radio transmission is also possible.
  • the energy supply of the individual components can in each case be carried out autonomously via batteries or accumulators or via cable connections from a central energy source.
  • the device 10 can be used to carry out the method according to the invention for checking the stability and / or bending strength of masts 11, in particular masts 11 which are not braced.
  • the test method described has the advantage that the course of the bending lines in the elastic range of the material is proportional to the load and can therefore be worked with small unbalances and therefore with low forces during excitation. There is therefore no risk of overloading the mast, so that the likelihood of the mast being damaged by the test is low, in any case significantly less than in the case of the methods known from the prior art and explained at the outset, which require mast loading that clearly is above the expected maximum natural wind load.
  • the device described is particularly suitable for round and / or oval masts with a diameter of at most 50 cm, in particular of at most 30 cm.
  • the robot 22 comprises a base frame 23 which, in a state attached to a mast 11, has an annular shape and thus surrounds the mast 11 in a ring shape.
  • a plurality of wheels 24 are attached to the base frame 23 via suspensions 25.
  • the wheels 24 lie (in the attached state of the robot 22) on a circle around the mast axis.
  • the position of the wheels can be adjusted via their suspensions 25, so that the radius of the circular arrangement of the wheels 24 can be adjusted.
  • the robot 22 can be adapted to different mast diameters.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

L'invention concerne un procédé et un dispositif (10) pour vérifier la stabilité et/ou la résistance à la flexion de poteaux (11), en particulier de poteaux (11) non haubanés. Selon l'invention : a) cette vérification est réalisée de manière dynamique ; b) le poteau (11) est soumis à l'action d'une force générée artificiellement de manière à effectuer des mouvements, en particulier des oscillations , et ; c) les mouvements du poteau (11) sont déterminés par un ou plusieurs capteurs (capteur(s) d'accélération) qui est/sont disposé(s) sur le poteau (11) et qui détectent des valeurs d'accélération au niveau de leur position relative sur le poteau (11). Le dispositif selon l'invention (11) comprend : a) un générateur de déséquilibre (12) servant à générer une force qui agit sur le poteau (11) à vérifier, en particulier une force périodique, ce générateur de déséquilibre étant placé ou pouvant être placé sur le poteau (11), en particulier dans le troisième tiers de la hauteur (h) du poteau ; b) un ou plusieurs capteur(s) d'accélération (13, 14) placé(s) ou pouvant être placé(s) sur le poteau (11) pour détecter des valeurs d'accélération, et ; c) un dispositif d'évaluation (21) pour déterminer la stabilité et/ou la résistance à la flexion du poteau (11) à vérifier et/ou les défauts de qualité du poteau (11) à vérifier.
EP06762785A 2005-08-09 2006-07-24 Procede et dispositif pour verifier la stabilite et/ou la resistance a la flexion de poteaux Withdrawn EP1913356A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005038033A DE102005038033A1 (de) 2005-08-09 2005-08-09 Verfahren und Vorrichtung zur Prüfung der Stand- und/oder Biegefestigkeit von Masten
PCT/EP2006/007285 WO2007017090A1 (fr) 2005-08-09 2006-07-24 Procede et dispositif pour verifier la stabilite et/ou la resistance a la flexion de poteaux

Publications (1)

Publication Number Publication Date
EP1913356A1 true EP1913356A1 (fr) 2008-04-23

Family

ID=37114533

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06762785A Withdrawn EP1913356A1 (fr) 2005-08-09 2006-07-24 Procede et dispositif pour verifier la stabilite et/ou la resistance a la flexion de poteaux

Country Status (4)

Country Link
US (1) US20080223134A1 (fr)
EP (1) EP1913356A1 (fr)
DE (1) DE102005038033A1 (fr)
WO (1) WO2007017090A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0806681D0 (en) 2008-04-14 2008-05-14 New And Renewable Energy Ct Lt Specimen loading apparatus and method
DE102009002818B4 (de) * 2009-05-05 2022-02-10 Axel Meyer Verfahren und Vorrichtung zur Prüfung der Standsicherheit eines Mastes
CZ2009727A3 (cs) * 2009-11-04 2011-05-11 CVUT v Praze, Fakulta strojní Zpusob a zarízení pro urcení míry poškození konstrukce
DE102010047831A1 (de) * 2010-10-05 2012-04-05 Alfred Johannes Bergmann Verfahren und Vorrichtung zur Erfassung einer Absenkung eines Fundaments eines Bauwerks
IT1402893B1 (it) * 2010-11-23 2013-09-27 L I R A Lab Italiano Di Ricerca Sulle Attrezzature Per La Sicurezza Passiva Nell Ambito Del Traffico Macchina per l'analisi della resistenza del terreno, o di un manufatto di ancoraggio, alla flessione di un palo per barriera di sicurezza autostradale
WO2015015060A1 (fr) * 2013-07-29 2015-02-05 Osmos Sa Bâtiment capteur
WO2016060569A1 (fr) * 2014-10-14 2016-04-21 Comrod Système et procédé de protection d'un mât déployable vis-à-vis de conditions anormales de fonctionnement
DE102017114651A1 (de) * 2017-06-30 2019-01-03 Rudi Hachenberg Verfahren und Vorrichtung zur Bewertung der Verbindungsqualität von Anschlageinrichtungen
RU2654897C1 (ru) * 2017-08-17 2018-05-23 Линар Салихзанович Сабитов Способ динамических испытаний опор воздушных линий электропередачи
CN108362453B (zh) * 2018-04-28 2023-12-15 福州大学 球铰加载横截面各向同性轴心受压构件侧向挠度的测量装置及测量方法
CN110276146B (zh) * 2019-06-26 2023-09-05 同济大学建筑设计研究院(集团)有限公司 一种基于随机缺陷的桅杆稳定性设计方法
CN113221206B (zh) * 2021-04-02 2022-05-13 中铁第四勘察设计院集团有限公司 加筋垫层刚性桩复合地基的稳定性确定方法及装置
CN113932762A (zh) * 2021-10-19 2022-01-14 广东电网有限责任公司 一种电缆变形测量方法、装置和计算机存储介质
DE102022103042B3 (de) 2022-02-09 2023-05-25 Dekra E.V. Vorrichtung und Verfahren zur Überprüfung der Standsicherheit von Masten

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4926691A (en) * 1986-03-11 1990-05-22 Powertech Labs, Inc. Apparatus and method for testing wooden poles
US4838085A (en) * 1986-03-25 1989-06-13 Washington State University Research Foundation, Inc. Methods and appartaus for non-destructing evaluation of the mechanical properties of composite materials
US4702111A (en) * 1986-04-01 1987-10-27 American Energy Services, Inc. Sonic wood testing apparatus and method
FR2695206A1 (fr) * 1992-09-02 1994-03-04 Dune Travaux Specialises Procédé pour l'établissement d'un diagnostic d'état d'ouvrages d'art et appareillage pour sa mise en Óoeuvre.
DE4409481A1 (de) * 1993-08-14 1995-02-23 Mathias Roch Verfahren und Einrichtung zum Prüfen der Stand- und Biegefestigkeit von Masten
DE59405694D1 (de) * 1993-08-14 1998-05-20 Mathias Roch Verfahren und Einrichtung zum Prüfen der Stand- und Biegefestigkeit von Masten
US5621172A (en) * 1995-04-03 1997-04-15 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of Oregon State University Method and apparatus for testing material strengths
DE29607045U1 (de) * 1996-04-18 1996-07-11 Roch, Mathias, 23566 Lübeck Einrichtung zur Prüfung der Festigkeit von stehend verankerten Masten
WO2000068682A2 (fr) * 1999-05-11 2000-11-16 Frank Rinn Dispositif pour essais de materiaux
DE10008201A1 (de) * 2000-02-23 2001-08-30 Christa Reiners Verfahren zum Prüfen der Biegefestigkeit eines Mastes
DE10062795B4 (de) * 2000-07-20 2006-09-28 Christa Reiners Anlage zum Prüfen der Biegefestigkeit eines Mastes und Verfahren zum Betrieb der Anlage
DE10229448A1 (de) * 2002-07-01 2004-01-29 Christa Reiners Einrichtung zum Kontrollieren eines Mastes
DE10300947A1 (de) * 2003-01-13 2004-07-22 Mh Technologie Gmbh Verfahren zum Prüfen von Masten, Antennen und ähnlichen verankert stehenden Systemen
DE102004041061A1 (de) * 2004-08-25 2006-03-16 Christa Reiners Vorrichtung zum Prüfen der Stabilität eines Mastes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007017090A1 *

Also Published As

Publication number Publication date
WO2007017090A1 (fr) 2007-02-15
US20080223134A1 (en) 2008-09-18
DE102005038033A1 (de) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1913356A1 (fr) Procede et dispositif pour verifier la stabilite et/ou la resistance a la flexion de poteaux
DE102009002818B4 (de) Verfahren und Vorrichtung zur Prüfung der Standsicherheit eines Mastes
DE102012205153B4 (de) Prüfvorrichtung und Schwingmassenanordnung für ein Rotorblatt einer Windenergieanlage
EP2479425B1 (fr) Procédé de surveillance d'une stabilité statique et/ou dynamique d'une éolienne
EP2426352B1 (fr) Méthode de régulation de la vitesse de rotation d'une éolienne
EP3610172A1 (fr) Amortissement des vibrations d'une tour de centrale éolienne
EP3296715B1 (fr) Procédé d'acquisition de données concernant une pale de rotor pour une éolienne
EP3516362A1 (fr) Générateur de vibrations pour essai de charge d'une pale de rotor, système, banc d'essai et ensemble comprenant ce générateur de vibrations et procédé de fonctionnement
EP3517687A1 (fr) Procédé de détection et de commande de compactage lors du compactage d'un sol au moyen d'un vibreur en profondeur
DE10300947A1 (de) Verfahren zum Prüfen von Masten, Antennen und ähnlichen verankert stehenden Systemen
EP1630537B1 (fr) Dispositif et procédé d'essai de stabilité d'un poteau
DE19531858B4 (de) Messverfahren für Abspannseile
EP2732259B9 (fr) Procédé pour déterminer la stabilité d'un poteau installé de manière confrome à un emplacement
EP1016759A1 (fr) Méthode et dispositif d'amélioration du sol de fondation avec détermination du degré de compaction
EP2913553A2 (fr) Dispositif d'amortissement d'oscillation et éolienne dotée d'un dispositif d'amortissement d'oscillation
DE102012013361B4 (de) Rotorblatt einer Windkraftanlage mit einer Mess- und Überwachungseinrichtung
DE102009037457A1 (de) Vorrichtung zur Standsicherheitsprüfung eines Objekts
DE202007019622U1 (de) System zum Dämpfen von Schwingungen in einem Bauwerk
EP1295994B1 (fr) Méthode pour déterminer le degré de compaction d'une fondation
DE3622908C2 (fr)
DE19750601A1 (de) Auswuchtvorrichtung und Auswuchtverfahren
EP4400653A1 (fr) Système de vibrateur de profondeur et procédé de compactage du sol au moyen d'un système de vibrateur de profondeur
DE1945356C (de) Meßanordnung zur Erregung von Biegeschwingungen in einem horizontal verlaufenden Stab
EP2511561B1 (fr) Amortisseur d'oscillations actif pour un système capable d'osciller
EP3636951A1 (fr) Dispositif et procédé d'amortissement des vibrations d'une construction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080305

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: JOST, GUENTHER

Inventor name: HOMBURG, SVEN

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOMBURG, SVEN

Inventor name: JOST, GUENTHER

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100811