EP1910893A1 - Doppelseitiges haftklebeband zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften - Google Patents

Doppelseitiges haftklebeband zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften

Info

Publication number
EP1910893A1
EP1910893A1 EP05816325A EP05816325A EP1910893A1 EP 1910893 A1 EP1910893 A1 EP 1910893A1 EP 05816325 A EP05816325 A EP 05816325A EP 05816325 A EP05816325 A EP 05816325A EP 1910893 A1 EP1910893 A1 EP 1910893A1
Authority
EP
European Patent Office
Prior art keywords
sensitive adhesive
light
pressure
adhesive tape
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05816325A
Other languages
English (en)
French (fr)
Inventor
Marc Husemann
Reinhard Storbeck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesa SE
Original Assignee
Tesa SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tesa SE filed Critical Tesa SE
Publication of EP1910893A1 publication Critical patent/EP1910893A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133605Direct backlight including specially adapted reflectors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/50Adhesives in the form of films or foils characterised by a primer layer between the carrier and the adhesive
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133308Support structures for LCD panels, e.g. frames or bezels
    • G02F1/133317Intermediate frames, e.g. between backlight housing and front frame
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/10Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet
    • C09J2301/12Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers
    • C09J2301/124Additional features of adhesives in the form of films or foils characterized by the structural features of the adhesive tape or sheet by the arrangement of layers the adhesive layer being present on both sides of the carrier, e.g. double-sided adhesive tape
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/41Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the carrier layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition
    • C09K2323/05Bonding or intermediate layer characterised by chemical composition, e.g. sealant or spacer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/28Adhesive materials or arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/28Web or sheet containing structurally defined element or component and having an adhesive outermost layer
    • Y10T428/2848Three or more layers

Definitions

  • the invention relates to double-sided pressure-sensitive adhesive tapes with multilayer support structures, with multilayer pressure-sensitive adhesive compositions and with light-reflecting and absorbing properties for the production of liquid crystal displays (LCDs).
  • LCDs liquid crystal displays
  • Pressure sensitive adhesive tapes are widely used processing aids in the age of industrialization. Especially for use in the computer industry very high demands are placed on pressure-sensitive adhesive tapes. In addition to a low outgassing behavior, the pressure-sensitive adhesive tapes should be usable over a wide temperature range and fulfill certain optical properties.
  • FIG. 1 shows the concept of a double-sided adhesive tape with a black absorption layer and a reflection layer according to the prior art
  • LEDs light-emitting diodes
  • black double-sided pressure-sensitive adhesive tapes are usually used. The purpose of the black coloring is to ensure that no light penetrates from the inside to the outside and vice versa in the region of the double-sided pressure-sensitive adhesive tape.
  • a concept for the production of black double-sided pressure-sensitive adhesive tapes consists in the coloring of the carrier material.
  • very preferably double-sided pressure-sensitive adhesive tapes with polyester film carriers (PET) are used, since they can be punched very well.
  • PET supports can also be dyed with carbon black or black color pigments to achieve absorption of the light.
  • the disadvantage of this existing concept is the low absorption of the light. In very thin carrier layers, only a relatively small number of carbon black particles or other black pigment particles can be introduced, with the result that complete absorption of the light is not achieved. With the eye and also with more intense light sources (light intensity greater than 600 candela) then the lack of absorption can be determined.
  • double-sided adhesive tape should continue to be reflective.
  • double-sided pressure-sensitive adhesive tapes which have on one side a metallic layer and a black support. With these pressure-sensitive adhesive tapes, significant improvement has been achieved in terms of light reflection on one side and absorption on the opposite side, but the anti-blocking agents in the support layer cause irregularities in the reflective side.
  • the PSA may in turn be provided with reflective particles.
  • the achievable reflective properties are only relatively insufficient.
  • JP 2002-350612 describes double-sided adhesive tapes for LCD panels with light-protective properties.
  • the function is achieved by a metal layer, which is applied on one or both sides of the carrier film, wherein the carrier film may additionally be colored. Due to the metallization, the production of the adhesive tape is relatively expensive and the adhesive tape itself has a poor flatness.
  • DE 102 43 215 describes double-sided adhesive tapes for LC displays with light-absorbing properties on the one hand and light-reflecting properties on the other hand.
  • This document describes black / silver double-sided pressure-sensitive adhesive tapes.
  • a transparent or colored carrier foil is metallized on one side and dyed black on the other side. Good reflective properties but still poor absorbent properties are already achieved in this way since defects, e.g. from the film by antiblocking agent, only to be painted over and thus the light at this point (pinholes) can shine through.
  • the object of the invention is therefore to provide a double-sided pressure-sensitive adhesive tape which avoids the presence of pinholes, which is able to completely absorb light and has improved reflection of light.
  • the problem is solved by the pressure-sensitive adhesive tapes according to the invention, as shown in the main claim.
  • the pressure-sensitive adhesive tapes according to the invention it has surprisingly been found that these properties can be achieved with a film which is metallized on at least one side and is provided with at least a white lacquer layer.
  • the subclaims relate to advantageous embodiments of the subject invention as well as the use of pressure-sensitive adhesive tapes according to the invention.
  • the pressure-sensitive adhesive tape according to the invention exhibits light-reflecting properties both on its upper side and on its underside and is preferably light-absorbing at least in so far as non-reflected light can only reduce or not penetrate the adhesive tape.
  • the pressure-sensitive adhesive layers (b) and (b ') on the two sides of the pressure-sensitive adhesive tape according to the invention may each be identical or different, in particular as regards their design (layer thickness and the like) and their chemical composition.
  • the PSA is transparent on both sides of the pressure-sensitive adhesive tape.
  • it can also be advantageous in the inventive sense to color the PSAs on both sides of the PSA tape white.
  • the inventive pressure-sensitive adhesive tape consists of a carrier film layer (a), two white color-bearing resist layer (c), two metallic layers (d) and two transparent pressure-sensitive adhesive layers (b) and (b 1 ). This embodiment is shown in FIG.
  • the double-sided pressure-sensitive adhesive tape consists of a carrier film (a), two white color-carrying paint layer layers (c), one metallic layer (d) and two pressure-sensitive adhesive layers (b) and (b 1 ).
  • the specified limit values are to be understood as inclusive values, ie they are contained in the specified limit range.
  • the pressure-sensitive adhesive tapes according to the invention can be further characterized as follows:
  • the carrier film (a) is preferably between 5 and 250 ⁇ m, more preferably between 8 and
  • the film can also be colored differently to the
  • the lacquer layers (c) are light-reflecting and at the same time light-absorbing.
  • the layer thickness of the layers (c) is preferably between 1 .mu.m and 15 .mu.m and may also consist of several layers of lacquer.
  • the layer thickness of the layer (s) (d) is preferably between 0.01 ⁇ m and 5 ⁇ m.
  • aluminum or silver is applied to the carrier film
  • the pressure-sensitive adhesive layers (b) and (b 1 ) preferably have a thickness of between 5 ⁇ m and 250 ⁇ m in each case.
  • the individual layers (a), (c), (d), (b) and (b 1 ) may differ within the double-sided pressure-sensitive adhesive tape with respect to the layer thickness, so that, for example, different thickness PSA layers (b) and (b 1 ), or single, multiple or even all layers can be selected identically.
  • film-like polymer carriers which are transparent, semitransparent or colored can be used as film carriers.
  • Polyethylene, polypropylene, polyimide, polyester, polyamide, polymethacrylate, fluorinated polymer films, etc. use.
  • polyester films are used, particularly preferably PET films (polyethylene terephthalate).
  • PET films polyethylene terephthalate
  • the films may be relaxed or have one or more preferred directions. Preferred directions are achieved by stretching in one or two directions.
  • antiblocking agents e.g. Silica, chalk or chalk, zeolites used.
  • Anti-blocking agents are intended to prevent the caking of flat plastic films under pressure and temperature to form blocks.
  • the antiblocking agents are usually worked into the thermoplastic mixture.
  • the particles then act as spacers.
  • Such films are advantageously used for the inventive double-sided adhesive tapes.
  • inventive pressure-sensitive adhesive tapes it is also possible to use films which contain no antiblocking agents or only to a very small extent.
  • An example of such films is, for example, the Hostaphan TM 5000 series from Mitsubishi Polyester Film (PET 5211, PET 5333 PET 5210).
  • PET films are very preferable because they leave very good adhesive properties for the double-sided tape, since the film is very flexible and can easily adapt to the surface roughness of the substrates to be bonded.
  • the films are pretreated.
  • the films may be etched (e.g., trichloroacetic acid or trifluoroacetic acid), pretreated with corona or plasma, or provided with a primer (e.g., saran).
  • color pigments or color-carrying particles it is advantageous - especially when a transparent or semi-transparent film material is present - to add color pigments or color-carrying particles to the film material.
  • color pigments or color-carrying particles for example, Titanium dioxide and barium sulfate for whitening.
  • the pigments or particles should preferably always be smaller in diameter than the final layer thickness of the carrier film. Optimal colorations can be achieved with 10 to 40 wt .-% of particles, based on the film material.
  • the lacquer layer (c) fulfills various functions.
  • the color layer has the function of the additional absorption of the external light.
  • the transmission must be in a wavelength range of 300-800 nm at ⁇ 0.5%, more preferably ⁇ 0.1%, most preferably ⁇ 0.01%.
  • the lacquer layer (c) fulfills the light reflection.
  • the light reflection should be greater than 65% according to test method c.
  • this is achieved with a white lacquer layer.
  • Paints can be coated as 100% systems, solution or dispersion. Paints consist of a hardening binder matrix (preferably thermosetting system, but also radiation-curing system) and white color pigments and are then applied with a printing unit (eg applied in flexographic printing). To achieve a sufficient opacity, this can also be done in several steps and thus apply several layers of ink. Furthermore, the ink can also be applied with an anilox roller applicator. With this, higher layer thicknesses of paint can be applied in one step.
  • a hardening binder matrix preferably thermosetting system, but also radiation-curing system
  • a printing unit eg applied in flexographic printing
  • the ink can also be applied with an anilox roller applicator. With this, higher layer thicknesses of paint can be applied in one step.
  • the paints may e.g. based on polyesters, polyurethanes, polyacrylates or polymethacrylates. Furthermore, coating additives known to the person skilled in the art may be added.
  • the varnish furthermore has a crosslinking component for curing, which is activated either by radiation curing (ES curing, for example, di- or multifunctional vinyl compounds, UV curing, for example in conjunction with UV photocatalyst generators, di- or multifunctional epoxides, or with UV radical generators by type Norrish I or II in turn di- or multifunctional vinylic compounds, such as acrylates or methacrylates) or thermally activatable compounds, such as di- or multifunctional isocyanates, di- or multifunctional epoxies, di- or multifunctional hydroxides, depending on the dependence of the base matrix of the paint.
  • ES curing for example, di- or multifunctional vinyl compounds
  • UV curing for example in conjunction with UV photocatalyst generators, di- or multifunctional ep
  • titanium dioxide or barium sulfate are admixed to the lacquer layer as color-carrying particles. Due to this additivation, in addition to the complete light absorption, a light reflection is additionally achieved with a very high additive content (> 20% by weight).
  • the particle size distribution of the white color pigments is of great importance.
  • the particles should be at least smaller than the total layer thickness of the lacquer layer (c). In a preferred embodiment, particles having an average diameter of 50 nm to 5 ⁇ m, more preferably between 100 nm and 3 ⁇ m, most preferably between 200 nm and 1 ⁇ m are used.
  • Such qualities can be achieved, for example, by targeted grinding in ball mills with subsequent targeted screening.
  • a homogeneous distribution of the color particles in the lacquer layer is furthermore required.
  • an intensive mixing process must be used which, in an optimal design, involves mixing with the Ultraturrax. With this step, then again the color particles can be digested and homogenized in the white paint.
  • a silver-colored lacquer can be applied to the film layer (a) or the film layer (a) can be coated on one or both sides with a metal, e.g. Aluminum or silver are vaporized.
  • a binder matrix is mixed with silver color pigments.
  • the binder matrix e.g. Polyurethanes or polyesters which have a high refractive index and a high transparency.
  • the color pigments can also be incorporated in a polyacrylate or polymethacrylate matrix and then cured as a lacquer.
  • the film layer (a) is vapor-deposited on both sides with aluminum or silver.
  • the sputtering process must be controlled so that the aluminum or silver is applied very evenly to achieve optimum reflection (avoidance of scattering effects).
  • the PET film is pretreated with plasma or corona before being steamed with aluminum or silver.
  • the use of the reflective layer (b) specifically reflects the light on the one hand and, on the other hand, reduces or avoids the transmission of the light through the carrier material and compensates for surface roughnesses of the carrier film.
  • the pressure-sensitive adhesives (b) and (b ') are identical in a preferred embodiment on both sides of the pressure-sensitive adhesive tape. However, in a specific embodiment it may also be advantageous if the pressure-sensitive adhesives (b) and (b 1 ) differ from one another, in particular by their layer thickness and / or their chemical composition. Thus, for example, different adhesive properties can be set in this way.
  • pressure-sensitive adhesive systems for the inventive double-sided pressure-sensitive adhesive tape preference is given to using acrylate, natural rubber, synthetic rubber, silicone or EVA adhesive.
  • the PSA has a high transparency or is colored white.
  • the natural rubber adhesives is preferably ground to a molecular weight (weight average) not less than about 100,000 daltons, preferably not less than 500,000 daltons, and additized.
  • Natural rubbers or synthetic rubbers or any blends of natural rubbers and / or synthetic rubbers can be used, the natural rubber or the natural rubbers in principle from all available qualities such as Crepe, RSS, ADS, TSR or CV types, depending on the required purity and viscosity level, and the synthetic rubber or synthetic rubbers from the group of the random copolymerized styrene-butadiene rubbers (SBR), the butadiene rubbers (BR), the synthetic polyisoprenes (IR), the butyl rubbers (NR), the halogenated Butyl rubbers (XIIR), the acrylate rubbers (ACM), the ethylene-vinyl acetate copolymers (EVA) and the polyurethanes and / or their blends can be selected.
  • SBR random copolymerized styrene-butadiene rubbers
  • BR butadiene rubbers
  • IR synthetic polyisoprenes
  • NR butyl rubbers
  • XIIR hal
  • thermoplastic elastomers having a weight proportion of 10 to 50% by weight, based on the total elastomer content.
  • SIS styrene-isoprene-styrene
  • SBS styrene-butadiene-styrene
  • (meth) acrylate PSAs are preferably used.
  • (Meth) acrylate PSAs used according to the invention which are obtainable by free-radical polymerization, preferably contain at least 50% by weight of at least one acrylic monomer from the group of compounds of the following general formula:
  • the monomers are preferably chosen such that the resulting polymers can be used as pressure-sensitive adhesives at room temperature or higher temperatures, in particular such that the resulting polymers have pressure-sensitive adhesive properties according to the Handbook of Pressure Sensitive Adhesive Technology by Donatas Satas (van Nostrand, New York 1989).
  • the comonomer composition is selected such that the PSAs can be used as heat-activable PSAs.
  • the molar masses M w (weight average) of the polyacrylates used are preferably M w > 200,000 g / mol.
  • acrylic or methacrylic monomers which consist of acrylic and methacrylic acid esters having alkyl groups of 4 to 14 carbon atoms, preferably 4 to 9 carbon atoms.
  • Specific examples are methyl acrylate, methyl methacrylate, ethyl acrylate, n-butyl acrylate, n-butyl methacrylate, n-pentyl acrylate, n-hexyl acrylate, n-heptyl acrylate, n-octyl acrylate, n-octyl methacrylate, n-nonyl acrylate, lauryl acrylate, stearyl acrylate, behenyl acrylate, and their branched isomers, such as Isobutyl acrylate, 2-ethylhexyl acrylate, 2-ethylhexyl methacrylate, isooct
  • cycloalkyl alcohols consisting of at least 6 C atoms.
  • the cycloalkyl alcohols may also be substituted, e.g. by C 1-6 -alkyl groups, halogen atoms or cyano groups.
  • Specific examples are cyclohexyl methacrylates, isobornyl acrylate, isobornyl methacrylates and 3,5-
  • dimethyladamantyl Dimethyladamantyl.
  • monomers which contain polar groups such as carboxyl radicals, sulfonic and phosphonic acids, hydroxyl radicals, lactam and lactone, N-substituted amide, N-substituted amine, carbamate, epoxy, thiol, alkoxy. Cyan radicals, ethers or the like wear.
  • Moderate basic monomers are N, N-dialkyl-substituted amides, such as N 1 N-dimethylacrylamide, NN-Dimethylmethylmethacrylamid, N-tert-butylacrylamide, N-vinylpyrrolidone, N-vinyllactam, dimethylaminoethyl methacrylate,
  • hydroxyethyl acrylate hydroxypropyl acrylate, hydroxyethyl methacrylate, hydroxypropyl methacrylate, allyl alcohol, maleic anhydride, itaconic anhydride, itaconic acid, glyceridyl methacrylate, phenoxyethyl acrylate, phenoxyethyl methacrylate, 2-butoxyethyl methacrylate, 2-butoxyethyl acrylate,
  • the monomers used are vinyl esters, vinyl ethers, vinyl halides, vinylidene halides, vinyl compounds having aromatic rings and heterocycles in the ⁇ -position.
  • photoinitiators having a copolymerizable double bond are used.
  • Suitable photoinitiators are Norrish I and II photoinitiators. Examples are, for example, benzoin acrylate and an acrylated benzophenone from the company. UCB (Ebecryl P 36 ® ).
  • all photoinitiators known to those skilled in the art can be copolymerized, which can crosslink the polymer via UV irradiation via a radical mechanism.
  • An overview of possible usable photoinitiators which are functionalized with a double bond in Fouassier “Photoinitiation, Photopolymerization and Photocuring: Fundamentals and Applications", Hanser Verlag, Kunststoff 1995.
  • Carroy et al. in “Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints” , Oldring (ed.), 1994, SITA, London.
  • monomers which have a high static glass transition temperature are added to the comonomers described.
  • Suitable components are aromatic vinyl compounds, such as, for example, styrene, wherein the aromatic nuclei preferably consist of C 4 - to cis units and may also contain heteroatoms.
  • Particularly preferable examples are 4-vinylpyridine, N-vinylphthalimide, methylstyrene, 3,4-dimethoxystyrene, 4-vinylbenzoic acid, benzylacrylate, benzylmethacrylate, phenylacrylate, phenylmethacrylate, t-butylphenylacrylate, t-butylphenylmethacrylate, 4-biphenylacrylate and -methacrylate, 2-naphthylacrylate and methacrylate and mixtures of those monomers, this list is not meant to be exhaustive.
  • the refractive index of the PSA increases and the scattering between the LCD glass and the PSA by e.g. Ambient light is minimized.
  • the PSAs may be mixed with resins.
  • tackifying resins to be added all previously known adhesive resins described in the literature can be used without exception. Mention may be made representative of the pinene, indene and rosin resins, their disproportionated, hydrogenated, polymerized, esterified derivatives and salts, the aliphatic and aromatic hydrocarbon resins, terpene resins and terpene phenolic resins and C5, C9 and other hydrocarbon resins. Any combination of these and other resins can be used to adjust the properties of the resulting adhesive as desired. In general, all compatible with the corresponding polyacrylate (soluble) resins can be used, in particular reference is made to all aliphatic, aromatic, alkylaromatic hydrocarbon resins,
  • Hydrocarbon resins based on pure monomers, hydrogenated hydrocarbon resins, functional hydrocarbon resins and natural resins.
  • the presentation of the state of knowledge in the "Handbook of Pressure Sensitive Adhesive Technology" by Donatas Satas (van Nostrand, 1989) is expressly pointed out.
  • transparent and very well compatible with the polymer resins are preferably used to improve the transparency.
  • Hydrogenated or partially hydrogenated resins often have these properties.
  • plasticizers plasticizers
  • other fillers such as fibers, carbon black, zinc oxide, chalk, solid or hollow glass spheres, microspheres of other materials, silicic acid, silicates
  • nucleating agents electrically conductive materials, e.g. conjugated polymers, doped conjugated polymers, metal pigments, metal particles, metal salts, graphite, etc.
  • blowing agents compounding agents and / or anti-aging agents, e.g. be added in the form of primary and secondary antioxidants or in the form of sunscreens.
  • the pressure-sensitive adhesive (b) and / or (b 1 ) contains light-reflecting particles, such as, for example, white color pigments (titanium dioxide or barium sulfate) as filler.
  • crosslinkers and promoters can be mixed for crosslinking.
  • Suitable crosslinkers for electron beam crosslinking and UV crosslinking are, for example, difunctional or polyfunctional acrylates, difunctional or polyfunctional isocyanates (also in blocked form) or difunctional or polyfunctional epoxides.
  • thermally activatable crosslinkers such as e.g. Lewis acid, metal chelates or multifunctional isocyanates may be added.
  • UV-absorbing photoinitiators can be added to the PSAs.
  • Useful photoinitiators which are very useful are benzoin ethers, such as benzoin ethers.
  • 2-methoxy-2-hydroxypropiophenone aromatic sulfonyl chlorides, such as.
  • 2-naphthyl sulfonyl chloride and photoactive oximes, such as.
  • the above-mentioned and other usable photoinitiators and others of the type Norrish I or Norrish II may contain the following radicals: benzophenone, Acetophenone, benzil, benzoin, hydroxyalkylphenone, phenylcyclohexylketone, anthraquinone, trimethylbenzoylphosphine oxide, methylthiophenylmorpholinketone, aminoketone, azobenzoin, thioxanthone, hexarylbisimidazole, triazine or fluorenone, each of these radicals additionally having one or more a plurality of halogen atoms and / or one or more alkoxy groups and / or one or more amino groups or hydroxy groups may be substituted.
  • the monomers are chosen such that the resulting polymers can be used as PSAs at room temperature or higher temperatures, in particular such that the resulting polymers have pressure-sensitive adhesive properties according to the Handbook of Pressure Sensitive Adhesive Technology by Donatas Satas (van Nostrand, New In order to obtain a preferred glass transition temperature T G of the polymers of T G ⁇ 25 ° C., according to what has been stated above, the monomers are preferably selected in such a way and the quantitative composition of the monomer mixture is advantageously selected such that according to equation (G 1) in analogy to the Fox equation (see TG Fox, Bull. Am. Phys Soc., 1 (1956) 123) gives the desired T G value for the polymer.
  • equation (G 1) in analogy to the Fox equation (see TG Fox, Bull. Am. Phys Soc., 1 (1956) 123) gives the desired T G value for the polymer.
  • n the number of runs via the monomers used
  • W n the mass fraction of the respective monomer n (wt .-%)
  • T G , n the respective glass transition temperature of the homopolymer of the respective monomers n in K.
  • Initiator systems which additionally comprise further free-radical initiators for the polymerization, in particular thermally decomposing radical-forming azo or peroxy initiators, are preferably used for the free-radical polymerizations. In principle, however, all acrylates customary to the person skilled in the art are suitable. The production of C-centered radicals is described in Houben Weyl, Methods of Organic Chemistry, Vol.
  • radical sources are peroxides, hydroperoxides and azo compounds
  • typical free-radical initiators are potassium peroxodisulfate, dibenzoyl peroxide, cumene hydroperoxide, cyclohexanone peroxide, di-t-butyl peroxide, Azodiisoklarebutyronitril, Cyclohexylsulfonylacetylperoxid, diisopropyl percarbonate, t-butyl peroctoate, Benzpinacol.
  • the radical initiator used is 1, 1'-azobis (cyclohexanecarboxylic acid nitrile) (Vazo 88 TM from DuPont) or azodisobutyronitrile (AIBN).
  • the weight-average molecular weights M w of the PSAs formed in the free-radical polymerization are very preferably selected such that they are in a range from 200,000 to 4,000,000 g / mol; PSAs of average molecular weights M w of from 400,000 to 1,400,000 g / mol are produced especially for further use as electrically conductive hotmelt PSAs with resilience.
  • the determination of the average molecular weight is about
  • the polymerization may be carried out neat, in the presence of one or more organic solvents, in the presence of water or in mixtures of organic solvents and water.
  • Suitable organic solvents are pure alkanes (eg hexane, heptane, octane, isooctane), aromatic hydrocarbons (eg benzene, toluene, xylene), esters (eg ethyl acetate, propyl, butyl or hexyl acetate), halogenated hydrocarbons (eg chlorobenzene) , Alkanols (eg methanol, ethanol, ethylene glycol,
  • Ethylene glycol monomethyl ether Ethylene glycol monomethyl ether
  • ethers eg, diethyl ether, dibutyl ether
  • the aqueous polymerization reactions can be combined with one with water miscible or hydrophilic cosolvents are added to ensure that the reaction mixture is in the form of a homogeneous phase during the monomer conversion.
  • cosolvents for the present invention are selected from the following group consisting of aliphatic alcohols, glycols, ethers, glycol ethers, pyrrolidines, N-alkylpyrrolidinones, N-alkylpyrrolidones, polyethylene glycols, polypropylene glycols, amides, carboxylic acids and salts thereof, esters, organosulfides, Sulfoxides, sulfones, alcohol derivatives, hydroxy ether derivatives, aminoalcohols, ketones and the like, as well as derivatives and mixtures thereof.
  • the polymerization time is - depending on the conversion and temperature - between 2 and 72 hours.
  • the polymerization can be initiated for the thermally decomposing initiators by heating to 50 to 160 ° C., depending on the type of initiator.
  • the preparation it may also be advantageous to polymerize the (meth) acrylate PSAs in substance.
  • the recuperymerisationstechnik is suitable here.
  • the polymerization is initiated with UV light, but only to a low conversion about 10 - 30% out.
  • this polymer syrup may e.g. are shrink-wrapped in films (in the simplest case ice cubes) and then polymerized in water to high sales.
  • These pellets can then be used as acrylate hotmelt adhesives, with film materials which are compatible with the polyacrylate being used with particular preference for the melting process.
  • the thermally conductive material additives can be added before or after the polymerization.
  • poly (meth) acrylate PSAs Another advantageous preparation process for the poly (meth) acrylate PSAs is anionic polymerization.
  • inert inert solvents are preferably used as the reaction medium, such as aliphatic and cycloaliphatic hydrocarbons, or aromatic hydrocarbons.
  • the living polymer in this case is generally represented by the structure P L (A) -Me, where Me is a Group I metal, such as lithium, sodium or potassium, and P L (A) is a growing polymer of the acrylate monomers ,
  • the molecular weight of the polymer to be prepared is controlled by the ratio of initiator concentration to monomer concentration. Suitable polymerization initiators are, for.
  • n-propyllithium n-butyllithium, sec-butyllithium, 2-naphthyllithium, cyclohexyllithium or octyllithium
  • this list is not exhaustive.
  • initiators based on samarium complexes for the polymerization of acrylates are known (Macromolecules, 1995, 28, 7886) and can be used here.
  • difunctional initiators for example 1,1,1,4,4-tetraphenyl-1,4-dilithiobutane or 1,1,1,4,4-tetraphenyl-1,4-dilithioisobutane.
  • Co-initiators can also be used. Suitable coinitiators include lithium halides, alkali metal alkoxides or alkylaluminum compounds.
  • the ligands and coinitiators are chosen such that acrylate monomers, e.g. n-butyl acrylate and 2-ethylhexyl acrylate, can be polymerized directly and need not be generated in the polymer by transesterification with the corresponding alcohol.
  • control reagent of the general formula is then preferably used:
  • R and R 1 are independently selected or the same and
  • Ci 8 -alkyl radicals C 3 to C 8 alkenyl radicals; C 3 to Cis alkynyl radicals;
  • Cr to cis alkoxy residues By at least one OH group or a halogen atom or a silyl ether substituted d- to Ci 8 alkyl radicals; C 3 to C 8 alkenyl radicals; C 3 to C 8 -alkynyl radicals;
  • Cie-alkyl radicals C 3 -C 8 alkenyl radicals, C 3 -C 8 -alkynyl radicals; C 3 -C 2 -cycloalkyl radicals
  • Control reagents of type (I) preferably consist of the following further restricted compounds:
  • Halogen atoms are in this case preferably F, Cl, Br or I, more preferably Cl and Br.
  • Alkyl, alkenyl and alkynyl radicals in the various substituents are outstandingly suitable for both linear and branched chains.
  • alkyl radicals containing 1 to 18 carbon atoms are methyl, ethyl,
  • alkenyl radicals having 3 to 18 carbon atoms are propenyl, 2-butenyl, 3
  • alkynyl of 3 to 18 carbon atoms examples include propynyl, 2-butynyl, 3-butynyl, n-2-octynyl and n-2-octadecynyl.
  • hydroxy-substituted alkyl radicals are hydroxypropyl, hydroxybutyl or
  • halogen-substituted alkyl radicals are dichlorobutyl, monobromobutyl or
  • Carbon chain is, for example, -CH 2 -CH 2 -O-CH 2 -CH 3 .
  • C 3 -C 2 cycloalkyl radicals for example, cyclopropyl, cyclopentyl, cyclohexyl or trimethylcyclohexyl serve.
  • the C 6 -C 8 -aryl radicals used are, for example, phenyl, naphthyl, benzyl, 4-tert-butylbenzyl or further substituted phenyl, such as, for example, ethyl, toluene, xylene, mesitylene, isopropylbenzene, dichlorobenzene or bromotoluene.
  • R 2 can also be selected independently of R and R 1 from the above-mentioned group for these radicals.
  • polymerisation is usually carried out only to low conversions (WO 98/01478 A1) in order to realize the narrowest possible molecular weight distributions. Due to the low conversions, however, these polymers can not be used as pressure-sensitive adhesives and in particular not as hotmelt PSAs, since the high proportion of residual monomers adversely affects the adhesive properties, the residual monomers in the concentration process contaminate the solvent recycled and the corresponding self-adhesive tapes show a very high outgassing behavior. In order to avoid this disadvantage of lower conversions, in a particularly preferred procedure the polymerization is initiated several times.
  • nitroxide-controlled polymerizations can be carried out.
  • radical stabilization nitroxides of the type (Va) or (Vb) are used in a favorable procedure:
  • R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R 10 independently of one another are the following compounds or
  • Atoms are: i) halides, e.g. Chlorine, bromine or iodine ii) linear, branched, cyclic and heterocyclic hydrocarbons having 1 to 20
  • controlled regulators are used for the polymerization of compounds of the type:
  • TEMPO 2,2,6,6-tetramethyl-1-piperidinyloxy
  • 4-benzoyloxy-TEMPO 4-methoxy-TEMPO
  • 4-chloro-TEMPO 4-hydroxy-TEMPO
  • 4-oxo-TEMPO 4- Amino-TEMPO, 2,2,6,6, -tetraethyl-1-piperidinyloxy, 2,2,6-trimethyl-6-ethyl-1-piperidinyloxy
  • No. 4,581,429 A discloses a controlled-free radical polymerization process which uses as initiator a compound of the formula R'R "NOY, in which Y is a free radical species capable of polymerizing unsaturated monomers, but the reactions generally have low conversions WO 98/13392 A1 describes open-chain alkoxyamine compounds which have a symmetrical substitution pattern
  • EP 735 052 A1 discloses a process for the preparation of thermoplastic elastomers having narrow molecular weight distributions
  • WO 96/24620 A1 describes a polymerization process employing very specific radical compounds such as phosphorus-containing nitroxides based on imidazolidine
  • WO 98/44008 A1 discloses specific nitroxyls based on morpholines, piperazinones and piperazine diones DE 199 49 352 A1 describes heterocyclic compounds al koxyamine as regulators in controlled radical polymerizations.
  • ATRP polyacrylate PSA atom transfer radical polymerization
  • initiator preferably monofunctional or difunctional secondary or tertiary halides and for the abstraction of the (r) halide (s) Cu, Ni , Fe, Pd, Pt, Ru, Os, Rh, Co, Ir, Ag or Au complexes (EP 0 824 111 A1, EP 826 698 A1, EP 824 110 A1, EP 841 346 A1, EP 850 957 A1).
  • the PSA is coated from solution onto the carrier material.
  • the layer (a) can be pretreated.
  • it can be pretreated with corona or with plasma.
  • the solvent is removed via heat supply, for example in a drying tunnel, and optionally the crosslinking reaction is initiated.
  • the polymers described above can furthermore also be coated as hotmelt systems (ie from the melt). For the production process, it may therefore be necessary to remove the solvent from the PSA.
  • a very preferred method is concentration over a single or twin screw extruder.
  • the twin-screw extruder can be operated in the same direction or in opposite directions.
  • the solvent or water is preferably distilled off over several vacuum stages. In addition, depending on the distillation temperature of the solvent is heated counter.
  • the residual solvent contents are preferably ⁇ 1%, more preferably ⁇ 0.5% and very preferably ⁇ 0.2%.
  • the hotmelt is processed from the melt.
  • the PSAs are coated by a roll coating method. Different roll coating processes are described in the Handbook of Pressure Sensitive Adhesive Technology by Donatas Satas (van Nostrand, New York 1989), in another embodiment a melt die is coated, in another preferred process extrusion is applied
  • the extrusion dies used can advantageously come from one of the following three categories: T-die, fishtail die and stirrup die The individual types differ in the shape of their flow channel and the coating can also be used to orient the PSAs ,
  • the PSAs may be crosslinked.
  • thermal crosslinking with electron and / or UV radiation may be necessary for the PSAs to be crosslinked.
  • UV crosslinking is irradiated by short-wave ultraviolet irradiation in a wavelength range of 200 to 400 nm, depending on the UV photoinitiator used, in particular using high-pressure or medium-pressure mercury lamps at a power of 80 to 240 W / cm ,
  • the irradiation intensity becomes the matched to the respective quantum yield of the UV photoinitiator and the degree of crosslinking to be set.
  • the PSAs are crosslinked in an advantageous embodiment of the invention with electron beams.
  • Typical irradiation devices which are advantageously used are linear cathode systems, scanner systems or segment cathode systems, if they are electron beam accelerators.
  • the typical acceleration voltages are in the range between 50 kV and 500 kV, preferably 80 kV and 300 kV.
  • the applied waste cans range between 5 and 150 kGy, in particular between 20 and 100 kGy. Both crosslinking methods or other methods enabling high-energy irradiation can also be used.
  • the invention further relates to the use of the inventive double-sided pressure-sensitive adhesive tapes for bonding or producing optical liquid-crystal data displays (LCDs), the use for bonding LCD glasses and liquid-crystal data displays and devices with liquid-crystal data displays which comprise a pressure-sensitive adhesive tape according to the invention in its product structure exhibit.
  • the double-sided pressure-sensitive adhesive tapes may be covered with one or two release films and / or release papers.
  • siliconized PET films are used as the cover.
  • Particularly advantageous are the pressure-sensitive adhesive tapes according to the invention for bonding light-emitting diodes (LED) as a light source with the LCD module. Examples
  • a commercially very strong light source for example overhead projector type Liesegangtrainer 400 KC type 649, halogen lamp 36 V, 400 W
  • This mask contains in the middle a circular opening with a diameter of 5 cm.
  • the double-sided LCD tape is placed on this circular opening. In fully darkened surroundings, the number of pinholes is then counted electronically or visually. These are recognizable as translucent dots when the light source is switched on.
  • the reflection test is carried out according to DIN standard 5036 part 3, DIN 5033 part 3 and DIN 5033 part 4.
  • the measuring instrument used was an integrating sphere type LMT (diameter 50 cm) in combination with a digital indicator TYP LMT Tau-p-Meter.
  • the integral measurements are made with a light source according to standard light A and V (A) - matched Si photoelement. It was measured against a glass reference sample.
  • the reflectance is given as the sum of directed and scattered light fractions in%.
  • a 200 L reactor conventional for free-radical polymerizations was charged with 2400 g of acrylic acid, 64 kg of 2-ethylhexyl acrylate, 6.4 kg of methyl acrylate and 53.3 kg of acetone / isopropanol (95: 5). After passing through nitrogen gas with stirring for 45 minutes, the reactor was heated to 58 ° C and 40 g of 2,2'-azoisobutyronitrile (AIBN) was added. Subsequently, the outer heating bath was heated to 75 0 C and the reaction was carried out constantly at this external temperature. After 1 h reaction time again 40 g of AIBN was added. After 5 h and 10 h each was diluted with 15 kg acetone / isopropanol (95: 5).
  • AIBN 2,2'-azoisobutyronitrile
  • a 12 ⁇ m or 38 ⁇ m thick PET film (12 ⁇ m, for example from Mitsubishi (Hostaphan TM 5210, 38 ⁇ m, for example from Toray Lumirror TM 38E20) is coated on one or both sides with aluminum until a full-surface aluminum layer has been applied
  • the film was vapor-deposited at a width of 300 mm by the sputtering process, where positively charged, ionized argon gas is introduced into a high-vacuum chamber, where the charged ions strike a negatively charged Al plate and dissolve aluminum particles at the molecular level deposit the polyester film passed over the plate.
  • Titanium White JR603 (Teikoku Kako Co. Ltd.), 6 parts of xylene, 6 parts of toluene, 6 parts
  • Example 1 Methyl ethyl ketone dispersed for 30 minutes. The mixture is then further homogenized in an Ultraturrax.
  • Example 1 Methyl ethyl ketone dispersed for 30 minutes. The mixture is then further homogenized in an Ultraturrax.
  • Example 1 Methyl ethyl ketone dispersed for 30 minutes. The mixture is then further homogenized in an Ultraturrax.
  • Example 1 Example 1 :
  • the lacquer composition 1 is mixed with a Meyer
  • the application weight is 8 g / m 2 .
  • the lacquer composition 1 On a 38 micron PET film extruded with white pigments as filler, the company Toray (Lumirror TM 38E20) and aluminized on both sides, the lacquer composition 1 is applied flat with a Meyer bar and dried at 120 0 C for 10 minutes. The application weight is 8 g / m 2 .
  • polymer 1 is applied flatly from this solution to this layer and dried at 100 ° C. for 10 minutes.
  • the application is 50 g / m 2 for this layer.
  • the side is covered with a 50 ⁇ m thick and double-sided siliconized PET film.
  • On the opposite side of the lacquer composition 1 is then applied flat with a Meyer bar and dried for 10 minutes at 120 0 C.
  • the application weight is 8 g / m 2 .
  • the polymer 1 is then subsequently applied at a surface area of 50 g / m 2 , again drying at 100 ° C. for 10 minutes.
  • the paint compound 1 is mixed with a Meyer
  • the application weight is 8 g / m 2 .
  • the lacquer mass 1 is applied flat with a Meyer bar and dried for 10 minutes at 120 0 C.
  • the application weight is 8 g / m 2 .
  • polymer 1 is applied flatly from this solution to this layer and dried at 100 ° C. for 10 minutes.
  • the application is 50 g / m 2 for this layer.
  • the side is covered with a 50 ⁇ m thick and double-sided siliconized PET film.
  • On the opposite side of the lacquer composition 1 is then applied flat with a Meyer bar and dried for 10 minutes at 120 0 C.
  • the application weight is 8 g / m 2 .
  • the polymer 1 is then subsequently applied at a surface area of 50 g / m 2 , again drying at 100 ° C. for 10 minutes.
  • Examples 1 and 2 are examples of the inventive design of the use of two metallic layers for light absorption and thus for reducing light transmission.
  • a white carrier film was used.
  • Examples 3 and 4 are examples of the inventive design of the use of a metallic layer for light absorption and thus for reducing light transmission.
  • Example 3 is an example of the use of a thin transparent film
  • Example 4 an example of the use of a thicker white film.
  • Examples 1 to 4 have excellent properties in terms of optical defects (pinhole freedom) and transmission. Furthermore, it could be shown with Test C that Examples 1 to 4 not only have light-absorbing properties, but also have very high light-reflecting properties. For the application in the LCD, this means that the light output in the light channel is significantly increased. Furthermore, it could be shown that for the production of a light-reflecting and light-absorbing tape, it is not absolutely necessary to use a double-sided pressure-sensitive adhesive tape which must be black on one side and light-reflecting on the other side (ie white or metallic).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laminated Bodies (AREA)

Abstract

Die Erfindung betrifft ein Haftklebeband, insbesondere zur Herstellung oder Verklebung von optischen Flüssigkristall-Datenanzeigen, aufweisend zwei Haftklebeschichten (b, b' ) und zumindest eine Trägerfolie (a) , dadurch gekennzeichnet, dass das Haftklebeband sowohl auf seiner Ober- als auch auf seiner Unterseite lichtreflektierende Eigenschaften aufweist und zumindest in sofern gleichzeitig lichtabsorbierend ist, als dass nicht reflektiertes Licht das Klebeband nicht durchdringen kann. Das Haftklebeband ist insbesondere derart ausgeführt, dass zumindest zwischen einer Seite der Trägerfolie und der auf dieser Seite befindlichen Haftklebeschicht eine weiße Lacksshicht (c) vorgesehen ist. Bevorzugt ist zwischen der Trägerfolie und der weißen Lackschicht eine metallische Schicht (d) vorgesehen.

Description

DOPPELSEITIGES HAFTKLEBEBAND ZUR HERSTELLUNG VON LC-DISPLAYS MIT LICHTREFLEKTIERENDEN UND -ABSORBIERENDEN EIGENSCHAFTEN
Die Erfindung betrifft doppelseitige Haftklebebänder mit mehrschichtigen Trägeraufbauten, mit mehrschichtigen Haftklebemassenaufbauten und mit Lichtreflektierenden und absorbierenden Eigenschaften zur Herstellung von Flüssigkristall- Datenanzeigen (Liquid Crystal Displays, LCDs).
Haftklebebänder sind im Zeitalter der Industrialisierung weitverbreitete Verarbeitungshilfsmittel. Insbesondere für den Einsatz in der Computerindustrie werden an Haftklebebänder sehr hohe Anforderungen gestellt. Neben einem geringen Ausgasungsverhalten sollten die Haftklebebänder in einem weiten Temperaturbereich einsetzbar sein und bestimmte optische Eigenschaften erfüllen.
Ein Einsatzgebiet sind optische Flüssigkristall-Datenanzeigen (Liquid Crystal Displays, LCDs), die für Computer, Fernsehgeräte, Laptops, PDA's, Mobiltelefone, Digitalkameras etc. benötigt werden. Fig. 1 zeigt das Konzept für ein doppelseitiges Klebeband mit einer schwarzen Schicht zur Absorption und einer Schicht zur Reflexion gemäß dem Stande der Technik; dabei bedeuten:
1 LCD-Glas 8 Reflektionsfolie
2 doppelseitiges schwarz-weißes 9 LCD-Gehäuse
Klebeband 10 schwarze absorbierende
3 Haftklebemasse Klebebandseite
4 Lichtquelle (LED) 11 reflektierende Seite
5 Lichtstrahlen 12 sichtbarer Bereich
6 doppelseitiges Klebeband 13 „blinder" Bereich
7 Lichtleiter Zur Herstellung von LC-Displays werden Leuchtdioden (Light Emitting Diode, LED) als Lichtquelle mit dem LCD Modul verklebt. Hierfür werden in der Regel schwarze doppelseitige Haftklebebänder eingesetzt. Durch die schwarze Einfärbung soll erreicht werden, dass im Bereich des doppelseitigen Haftklebebandes kein Licht von innen nach außen und umgekehrt dringt.
Es existieren bereits viele Konzepte, solch eine Schwarzfärbung zu erreichen. Auf der anderen Seite möchte man die Lichteffizienz des rückseitigen Lichtmoduls erhöhen, so dass bevorzugt doppelseitige Klebebänder eingesetzt werden, die auf einer Seite schwarz sind (lichtabsorbierend) und auf der anderen Seite lichtreflektierend.
Zur Herstellung der schwarzen Seite existieren viele Konzepte.
Ein Konzept zur Herstellung von schwarzen doppelseitigen Haftklebebändern besteht in der Einfärbung der Trägermaterials. In der Elektronik-Industrie werden sehr bevorzugt doppelseitige Haftklebebänder mit Polyesterfilm-Trägern (PET) eingesetzt, da diese sich sehr gut stanzen lassen. Die PET-Träger kann man ebenfalls mit Ruß oder schwarzen Farbpigmenten einfärben, um eine Absorption des Lichtes zu erreichen. Der Nachteil dieses bestehenden Konzeptes ist die geringe Absorption des Lichtes. In sehr dünnen Trägerschichten lassen sich nur eine relativ geringe Anzahl Ruß- oder anderer schwarzer Pigmentpartikel einbringen mit der Folge, dass keine vollständige Absorption des Lichtes erreicht wird. Mit dem Auge und auch mit intensiveren Lichtquellen (Lichtstärke größer 600 Candela) kann dann die mangelnde Absorption ermittelt werden.
Bei der Entwicklung von LC-Displays entwickelt sich ein Trend. Zum einen sollen die LC- Displays leichter und sowie flacher werden und es besteht ein stark steigender Bedarf für immer größere Displays mit immer höherer Auflösung.
Aus diesem Grund wurde das Design der Displays geändert, und die Lichtquelle rückt entsprechend immer näher an das LCD-Panel, mit der Konsequenz, dass die Gefahr steigt, dass immer mehr Licht von außen in die Randzone des LCD-Panels eindringt ("blind area") (vgl. Figur 1). Mit dieser Entwicklung steigen auch die Anforderungen an die Abschattungseigenschaften (black out Eigenschaften) des doppelseitigen Klebebandes und es besteht somit der Bedarf nach neuen Konzepten für Klebebänder.
Auf der anderen Seite soll weiterhin das doppelseitige Klebeband reflektierend sein. Dazu sind doppelseitige Haftklebebänder bekannt, die auf einer Seite eine metallische Schicht und einen schwarzen Träger besitzen. Mit diesen Haftklebebändern wurde im Hinblick auf Lichtreflektion auf der einen Seite und Absorption auf der gegenüber liegenden Seite eine deutliche Verbesserung erzielt, aber durch die Antiblockmittel in der Trägerschicht treten Unregelmäßigkeiten in der reflektierenden Seite auf.
Zur Erzielung einer reflektierenden Schicht kann nun wiederum die Haftklebemasse mit reflektierenden Partikeln versehen werden. Die erzielbaren reflektieren Eigenschaften sind aber nur relativ unzureichend.
In der JP 2002-350612 werden doppelseitige Klebebänder für LCD Panels mit lichtschützenden Eigenschaften beschrieben. Die Funktion wird durch eine Metallschicht, welche ein- oder beidseitig auf die Trägerfolie aufgetragen ist, erreicht, wobei die Trägerfolie zusätzlich noch eingefärbt sein kann. Durch die Metallisierung ist die Herstellung des Klebebandes relativ aufwendig und das Klebeband selbst besitzt eine mangelhafte Planlage.
In der DE 102 43 215 werden doppelseitige Klebebänder für LC-Displays mit lichtabsorbierenden Eigenschaften auf der einen Seite und lichtreflektierenden Eigenschaften auf der anderen Seite beschrieben. In dieser Schrift werden schwarz/silberne doppelseitige Haftklebebänder beschrieben. Eine transparente oder gefärbte Trägerfolie wird einseitig metallisiert und auf der anderen Seite schwarz eingefärbt. Auf diesem Weg werden bereits gute reflektierende Eigenschaften, aber noch mangelhafte absorbierende Eigenschaften erreicht, da Fehlstellen, z.B. aus der Folie durch Antiblockmittel, nur überlackiert werden und somit das Licht an dieser Stelle (Pinholes) noch durchscheinen kann.
Für die Verklebung von LC-Displays bzw. zur deren Herstellung besteht somit weiterhin der Bedarf für doppelseitige Haftklebebänder, welche die oben beschriebenen Mängel nicht oder nur in verminderter Weise aufweisen.
Aufgabe der Erfindung ist es daher ein doppelseitiges Haftklebeband zur Verfügung zu stellen, welches die Anwesenheit von Pinholes vermeidet, welches in der Lage ist, Licht vollständig zu absorbieren und eine verbesserte Reflexion von Licht aufweist. Gelöst wird die Aufgabe durch die erfindungsgemäßen Haftklebebänder, wie sie im Hauptanspruch dargestellt sind. Im Rahmen dieser Erfindung wurde überraschender Weise gefunden, dass mit einer Folie, die zumindest einseitig metallisiert ist und zumindest mit einer weißen Lackschicht versehen ist, diese Eigenschaften erreicht werden können. Die Unteransprüche betreffen vorteilhafte Ausführungsformen des Erfindungsgegenstandes sowie die Verwendung der erfindungsgemäßen Haftklebebänder.
Das erfindungsgemäße Haftklebeband zeigt sowohl auf seiner Ober- als auch auf seiner Unterseite lichtreflektierende Eigenschaften und ist bevorzugt zumindest in sofern gleichzeitig lichtabsorbierend, als dass nicht reflektiertes Licht das Klebeband nur vermindert oder nicht durchdringen kann.
Im folgenden werden einige vorteilhafte Ausführungsformen des erfindungsgemäßen Klebebandes dargestellt, ohne sich durch die Wahl der Beispiele unnötig beschränken zu wollen.
Die Haftklebeschichten (b) und (b') auf den beiden Seiten des erfindungsgemäßen Haftklebebandes können jeweils identisch oder unterschiedlich sein, insbesondere was ihre Ausgestaltung (Schichtdicke und dergl.) und ihre chemische Zusammensetzung angeht. In besonders bevorzugter Weise ist die Haftklebemasse auf beiden Seiten des Haftklebebandes transparent. Es kann im erfinderischen Sinne aber auch vorteilhaft sein, die Haftklebemassen auf beiden Seiten des Haftklebebandes weiß einzufärben.
In einer ersten vorteilhaften Ausführungsform besteht das erfinderische Haftklebeband aus einer Trägerfolienschicht (a), zwei weißen farbtragenden Lackschichtenschicht (c), zwei metallischen Schichten (d) und zwei transparenten Haftklebeschichten (b) und (b1). Diese Ausführungsform ist in der Figur 2 dargestellt.
In einer weiteren bevorzugten Ausführungsform der Erfindung, wie sie die Figur 3 zeigt, besteht das doppelseitige Haftklebeband aus einer Trägerfolie (a), zwei weißen farbtragenden Lackschichtenschichten (c), einer metallischen Schicht (d) und zwei Haftklebeschichten (b) und (b1).
Im folgenden wird die Erfindung weiter erläutert. Die angegebenen Grenzwerte sind als Inklusivwerte zu verstehen, also im angegebenen Grenzbereich enthalten. Die erfindungsgemäßen Haftklebebänder lassen sich weiter wie folgt charakterisieren:
Die Trägerfolie (a) ist bevorzugt zwischen 5 und 250 μm, mehr bevorzugt zwischen 8 und
50 μm, äußerst bevorzugt zwischen 12 und 36 μm dick und bevorzugt transparent, weiß oder semitransparent. Die Folie kann aber auch anders gefärbt sein, um die
Lichttransmission des Klebebandes zu verringern. Die Lackschichten (c) sind lichtreflektierend und gleichzeitig Lichtabsorbierend.
Die Schichtdicke der Schichten (c) liegt bevorzugt zwischen 1 μm und 15 μm und können auch aus mehreren Lackschichten bestehen.
Die Schichtdicke der Schicht(en) (d) liegt bevorzugt zwischen 0.01 μm und 5 μm. Hier wird in einer besonders bevorzugten Auslegung Aluminium oder Silber auf die Trägerfolie
(a) gedampft.
Die Haftklebemasseschichten (b) und (b1) besitzen bevorzugt eine Dicke von jeweils zwischen 5 μm und 250 μm. Die einzelnen Schichten (a), (c), (d), (b) und (b1) können sich innerhalb des doppelseitigen Haftklebebandes im Hinblick auf die Schichtdicke unterscheiden können, so dass z.B. unterschiedlich dicke Haftklebemassenschichten (b) und (b1) aufgetragen werden können, oder einzelne, mehrere oder auch alle Schichten können identisch gewählt werden.
Trägerfolie (a)
Als Folienträger können prinzipiell alle filmischen Polymerträger eingesetzt werden, die transparent, semitransparent oder gefärbt sind. So lassen sich z.B. Polyethylen, Polypropylen, Polyimid, Polyester, Polyamid, Polymethacrylat, fluorierte Polymerfolien, etc. einsetzen. In einer besonders bevorzugten Ausführungsform werden Polyesterfolien eingesetzt, besonders bevorzugt PET-Folien (Polyethylenterephthalat). Die Folien können entspannt sein oder eine oder mehrere Vorzugsrichtungen aufweisen. Vorzugsrichtungen werden erzielt durch Streckung in einer oder in zwei Richtungen. Normalerweise werden für den Herstellprozess von Folien, beispielsweise PET-Folien, Antiblockmittel, wie z.B. Siliciumdioxid, Kieselkreide oder Kreide, Zeolithe, eingesetzt.
Antiblockmittel sollen das Zusammenbacken flächiger Kunstofffolien unter Druck und Temperatur zu Blöcken verhindern. Üblicherweise arbeitet man die Antiblockmittel in die Thermoplastenmischung ein. Die Partikel fungieren dann als Abstandshalter. Solche Folien sind für die erfinderischen doppelseitigen Klebebänder vorteilhaft einsetzbar. Für die erfinderischen Haftklebebänder lassen sich aber auch Folien einsetzen, die keine Antiblockmittel oder nur zu einem sehr geringen Anteil enthalten. Ein Beispiel für eine solche Folien ist z.B. die Hostaphan™ 5000 Serie von Mitsubishi Polyester Film (PET 5211 , PET 5333 PET 5210).
Weiterhin sind sehr dünne, beispielsweise 6 oder 12 μm dicke, PET Folien sehr zu bevorzugen, da diese sehr gute klebtechnische Eigenschaften für das doppelseitige Klebeband zu lassen, da hier die Folie sehr flexibel ist und sich gut den Oberflächenrauhigkeiten der zu verklebenden Substrate anpassen kann.
Zur Verbesserung der Verankerung der Lackschichten ist es sehr vorteilhaft, wenn die Folien vorbehandelt werden. Die Folien können geätzt sein (z.B. Trichloressigäure oder Trifluoressigsäure), mit Corona oder Plasma vorbehandelt sein oder mit einem Primer (z.B. Saran) ausgestattet sein.
Des Weiteren können vorteilhaft - insbesondere wenn ein transparentes oder semitransparentes Folienmaterial vorliegt - Farbpigmente oder farbtragende Partikel zum Folienmaterial hinzugegeben werden. So eignen sich z.B. Titandioxid und Bariumsulfat zur Weißfärbung. Die Pigmente oder Partikel sollten aber bevorzugt immer kleiner im Durchmesser sein als die finale Schichtdicke der Trägerfolie. Optimale Einfärbungen lassen sich mit 10 bis 40 Gew.-% Partikelanteilen, bezogen auf das Folienmaterial, erzielen.
Lackschicht (c)
Die Lackschicht (c) erfüllt verschiedene Funktionen. In einer Auslegung der Erfindung besitzt die Farbschicht die Funktion der der zusätzlichen Absorption des Außenlichtes.
Daher muss in diesem Fall für das doppelseitige Haftklebeband die Transmission in einem Wellenlängenbereich von 300 - 800 nm bei < 0.5 % mehr bevorzugt bei < 0.1 %, äußerst bevorzugt bei < 0.01 % liegen.
In einer weiteren Funktion erfüllt die Lackschicht (c) die Lichtreflektion. Die Lichtreflektion sollte nach Prüfmethode c größer 65 % liegen.
In einer sehr bevorzugten Auslegung wird dies mit einer weißen Lackschicht erreicht.
Lacke können als 100 % Systeme, aus Lösung oder aus Dispersion beschichtet werden. Lacke bestehen aus einer aushärtenden Bindermatrix (bevorzugt thermisch aushärtendes System, aber auch Strahlenhärtendes System) und weißen Farbpigmenten und werden dann mit einem Druckwerk (z.B. im Flexodruck aufgebracht). Um eine genügende Blickdichtigkeit zu erreichen, kann dies auch in mehreren Schritten erfolgen und somit mehrere Schichten Druckfarbe aufzubringen. Weiterhin kann die Farbe auch mit einem Rasterwalzenauftragswerk aufgebracht werden. Hiermit lassen sich in einem Schritt höhere Schichtdicken Farbe aufbringen.
Die Lacke können z.B. auf Polyester, Polyurethane, Polyacrylate oder Polymethacrylate basieren. Weiterhin können dem Fachmann bekannte Lackadditive zugesetzt sein. Der Lack des weiteren eine vernetzende Komponente zur Aushärtung, die entweder über Strahlenhärtung aktiviert wird (ES-Härtung z.B. di- oder multifunktionelle Vinylische Verbindungen, UV-Härtung, z.B. in Verbingung mit UV-Photokationenerzeugern di- oder multifunktionelle Epoxide, oder mit UV-Radikalerzeugern nach Typ Norrish I oder Il wiederum di- oder multifunktionelle Vinylische Verbindungen, wie z.V. Acrylate oder Methacrylate) oder thermisch aktivierbare Verbindungen, wie z.B. di- oder multifunktionellen Isocyanate, di- oder multifunktionelle Epoxide, di- oder multifunktionelle Hydroxide, je nach Abhängigkeit von der Basismatrix des Lackes.
In einer sehr zu bevorzugenden erfinderischen Auslegung werden als farbtragende Partikel Titandioxid oder Bariumsulfat der Lackschicht zugemischt. Durch diese Additivierung wird bei sehr hohem Additivierungsgehalt (>20 Gew.-%), neben der vollständigen Lichtabsortion, zusätzlich eine Lichtreflektion erzielt. Für die optimale Einfärbung der Lackschicht (c) ist die Partikelgrößenverteilung der weißen Farbpigmente von großer Bedeutung. So sollten die Partikel zumindestens kleiner als die Gesamtschichtdicke der Lackschicht (c) sein. In einer bevorzugten Auslegung werden Partikel mit einem durchschnittlichen Durchmesser von 50 nm bis 5 μm, mehr bevorzugt zwischen 100 nm und 3 μm, äußerst bevorzugt zwischen 200 nm und 1 μm eingesetzt. Solche Qualitäten lassen sich z.B. durch gezielte Vermahlung in Kugelmühlen mit anschließender gezielter Siebung erzielen. Für die Qualität der Einfärbung ist weiterhin eine homogene Verteilung der Farbpartikel in der Lackschicht erforderlich. Hierfür muss ein intensiver Mischprozess eingesetzt werden, der in einer optimalen Auslegung eine Vermischung mit dem Ultraturrax beinhaltet. Mit diesem Schritt können dann noch einmal die Farbpartikel aufgeschlossen und in dem weißen Lack homogenisiert werden. Metallische Schicht (d)
Für die Herstellung einer hochreflektierenden und lichtabsorbierenden Seite kann zum einen ein silberfarbener Lack auf die Folienschicht (a) aufgetragen werden oder die Folienschicht (a) einseitig oder beidseitig mit einem Metall, z.B. Aluminium oder Silber bedampft werden. Für die Variante silberfarbener Lack wird eine Bindermatrix mit silbernen Farbpigmenten abgemischt. Als Bindermatrix eignen sich z.B. Polyurethane oder Polyester, die einen hohen Brechungsindex und eine hohe Transparenz aufweisen. Die Farbpigmente können aber auch in einer Polyacrylat oder Polymethacrylatmatrix eingebunden werden und dann als Lack ausgehärtet werden.
In einer sehr bevorzugten Auslegung wird die Folienschicht (a) beidseitig mit Aluminium oder Silber bedampft. Um besonders hervorragende reflektierende Eigenschaften zu erreichen, muss der Sputterprozeß zur Bedampfung so gesteuert werden, dass das Aluminium oder Silber sehr gleichmäßig aufgetragen ist, um eine optimale Reflektion zu erzielen (Vermeidung von Streueffekten). Weiterhin wird in einer sehr bevorzugten Ausführung die PET-Folie mit Plasma oder Corona vorbehandelt bevor mit Aluminium oder Silber bedampft wird. Durch den Einsatz der reflektierenden Schicht (b) wird zum einen gezielt das Licht reflektiert und zum anderen die Transmission des Lichtes durch das Trägermaterial vermindert bzw. vermieden sowie Oberflächenrauhigkeiten der Trägerfolie kompensiert.
Haftklebemassen (b) und (b')
Die Haftklebemassen (b) und (b') sind in einer bevorzugten Ausführungsform auf beiden Seiten des Haftklebebandes identisch. Es kann aber in einer speziellen Ausführungsform auch von Vorteil sein, wenn sich die Haftklebemassen (b) und (b1) voneinander unterscheiden, insbesondere durch ihre Schichtdicke und/oder ihre chemische Zusammensetzung. So lassen sich auf diesem Weg z.B. unterschiedliche haftklebrige Eigenschaften einstellen. Als Haftklebemassensysteme für das erfinderische doppelseitige Haftklebeband werden bevorzugt Acrylat-, Naturkautschuk-, Synthesekautschuk-, Silikon- oder EVA-Kleber eingesetzt. Die Haftklebemasse weist eine hohe Transparenz oder ist weiß eingefärbt.
Weiterhin lassen sich auch die weiteren, dem Fachmann bekannten Haftklebemassen verarbeiten, wie sie z.B im „Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, New York 1989) aufgeführt sind. Für Naturkautschukklebemassen wird der Naturkautschuk bevorzugt bis zu einem Molekulargewicht (Gewichtsmittel) nicht unter etwa 100.000 Dalton, bevorzugt nicht unter 500.000 Dalton gemahlen und additiviert.
Bei Kautsch u k/Synthese kautsch u k als Ausgangsmaterial für den Kleber sind weite Variationsmöglichkeiten gegeben. Eingesetzt werden können Naturkautschuke oder Synthesekautschuke oder beliebige Blends aus Naturkautschuken und/oder Synthesekautschuken, wobei der Naturkautschuk oder die Naturkautschuke grundsätzlich aus allen erhältlichen Qualitäten wie zum Beispiel Crepe-, RSS-, ADS-, TSR- oder CV- Typen, je nach benötigtem Reinheits- und Viskositätsniveau, und der Synthesekautschuk oder die Synthesekautschuke aus der Gruppe der statistisch copolymerisierten Styrol- Butadien-Kautschuke (SBR), der Butadien-Kautschuke (BR), der synthetischen Polyisoprene (IR), der Butyl-Kautschuke (NR), der halogenierten Butyl-Kautschuke (XIIR), der Acrylatkautschuke (ACM), der Etylen-Vinylacetat-Copolymeren (EVA) und der Polyurethane und/oder deren Blends gewählt werden können.
Weiterhin vorzugsweise können den Kautschuken zur Verbesserung der Verarbeitbarkeit thermoplastische Elastomere mit einem Gewichtsanteil von 10 bis 50 Gew.-% zugesetzt werden, und zwar bezogen auf den Gesamtelastomeranteil. Stellvertretend genannt seien an dieser Stelle vor allem die besonders verträglichen Styrol-Isopren-Styrol- (SIS) und Styrol-Butadien-Styrol (SBS) -Typen.
In einer erfinderisch bevorzugten Ausführungsform werden bevorzugt (Meth)acrylathaftklebemassen eingesetzt.
Erfindungsgemäß eingesetzte (Meth)Acrylathaftklebemassen, welche durch radikalische Polymerisation erhältlich sind, bestehen bevorzugt zu mindestens 50 Gew.-% auf zumindest einem acrylischen Monomer aus der Gruppe der Verbindungen der folgenden allgemeinen Formel:
O
R1 Dabei ist der Rest R1 = H oder CH3; und der Rest R2 = H oder CH3 oder wird gewählt aus der Gruppe beinhaltend die verzweigten und unverzweigten, gesättigten Alkylgruppen mit 1 - 30 Kohlenstoffatomen.
Die Monomere werden bevorzugt dermaßen gewählt, dass die resultierenden Polymere bei Raumtemperatur oder höheren Temperaturen als Haftklebemassen eingesetzt werden können, insbesondere derart, dass die resultierenden Polymere haftklebende Eigenschaften entsprechend des „Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, New York 1989) besitzen.
In einer weiteren erfinderischen Ausführungsform wird die Comonomerzusammensetzung derart gewählt, dass sich die Haftklebemassen als hitzeaktivierbare Haftklebemassen einsetzen lassen.
Die Polymere lassen sich bevorzugt durch Polymerisation einer Monomermischung gewinnen, welche sich aus Acrylsäureestem und/oder Methacrylsäureestem und/oder deren freien Säuren mit der Formel CH2 = CH(R1)(COOR2) zusammensetzt, wobei R1 = H oder CH3 und R2 eine Alkylkette mit 1 - 20 C-Atomen oder H ist.
Die Molmassen Mw (Gewichtsmittel) der eingesetzten Polyacrylate betragen bevorzugt Mw > 200.000 g/mol.
In einer sehr bevorzugten Weise werden Acryl- oder Methacrylmomonere eingesetzt, die aus Acryl- und Methacrylsäureester mit Alkylgruppen aus 4 bis 14 C-Atomen bestehen, bevorzugt 4 bis 9 C-Atomen umfassen. Spezifische Beispiele, ohne sich durch diese Aufzählung einschränken zu wollen, sind Methlacrylat, Methyl methacrylat, Ethylacrylat, n- Butylacrylat, n-Butyl methacrylat, n-Pentylacrylat, n-Hexylacrylat, n-Heptylacrylat, n- Octylacrylat, n-Octyl methacrylat, n-Nonylacrylat, Laurylacrylat, Stearylacrylat, Behenylacrylat, und deren verzweigten Isomere, wie z.B. Isobutylacrylat, 2- Ethylhexylacrylat, 2-Ethylhexyl methacrylat, Isooctylacrylat, Isooctyl methacrylat. Weitere einzusetzende Verbindungsklassen sind monofunktionelle Acrγlate bzw. Methacrylate von überbrückten Cycloalkylalkoholen, bestehend aus zumindest 6 C- Atomen. Die Cycloalkylalkohole können auch substituiert sein, z.B. durch C-1-6- Alkylgruppen, Halogenatomen oder Cyanogruppen. Spezifische Beispiele sind Cyclohexylmethacrylate, Isobomylacrylat, Isobomylmethacrylate und 3,5-
Dimethyladamantylacrylat. In einer vorteilhaften Vorgehensweise werden Monomere eingesetzt, die polare Gruppen wie Carboxylreste, Sulfon- und Phosphonsäure, Hydroxyreste, Lactam und Lacton, N- substituiertes Amid, N-substituiertes Amin, Carbamat-, Epoxy-, Thiol-, Alkoxy-. Cyanreste, Ether oder ähnliches tragen.
Moderate basische Monomere sind z.B. N,N-Dialkylsubstituierte Amide, wie z.B. N1N- Dimethylacrylamid, N.N-Dimethylmethylmethacrylamid, N-tert.-Butylacrylamid, N- Vinylpyrrolidon, N-Vinyllactam, Dimethylaminoethylmethacrylat,
Dimethylaminoethylacrylat, Diethylaminoethylmethacrylat, Diethylaminoethylacrylat, N- Methylolmethacrylamid, N-(Buthoxymethyl)methacrylamid, N-Methylolacrylamid, N- (Ethoxymethyl)acrylamid, N-Isopropylacrylamid, wobei diese Aufzählung nicht abschließend zu verstehen ist.
Weitere bevorzugte Beispiele sind Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Allylalkohol, Maleinsäureanhydrid, Itaconsäureanhydrid, Itaconsäure, Glyceridylmethacrylat, Phenoxyethylacrlylat, Phenoxyethylmethacrylat, 2-Butoxyethylmethacrylat, 2-Butoxyethylacrylat,
Cyanoethylmethacrylat, Cyanoethylacrylat, Glycerylmethacrylat, 6-
Hydroxyhexylmethacrylat, Vinylessigsäure, Tetrahydrofufurylacrlyat, ß-
Acryloyloxypropionsäure, Trichloracrylsäure, Fumarsäure, Crotonsäure, Aconitsäure, Dimethylacrylsäure, wobei diese Aufzählung nicht abschließend zu verstehen ist.
In einer weiteren sehr bevorzugten Vorgehensweise werden als Monomere Vinylester, Vinylether, Vinylhalogenide, Vinylidenhalogenide, Vinylverbindungen mit aromatischen Cyclen und Heterocyclen in α-Stellung eingesetzt. Auch hier seien nicht ausschließlich einige Beispiele genannt: Vinylacetat, Vinylformamid, Vinylpyridin, Ethylvinylether, Vinylchlorid, Vinylidenchlorid und Acrylonitril.
Weiterhin werden in einer vorteilhaften Vorgehensweise Photoinitiatoren mit einer copolymerisierbaren Doppelbindung eingesetzt. Als Photoinitiatoren sind Norrish-I- und -Il-Photoinitiatoren geeignet. Beispiele sind z.B. Benzoinacrylat und ein acryliertes Benzophenon der Fa. UCB (Ebecryl P 36®). Im Prinzip können alle dem Fachmann bekannten Photoinitiatoren copolymerisiert werden, die das Polymer über einen Radikalmechnismus unter UV-Bestrahlung vernetzen können. Ein Überblick über mögliche einsetzbare Photoinitiatoren die mit einer Doppelbindung funktionalisiert werden können, wird in Fouassier: „Photoinititation, Photopolymerization and Photocuring: Fundamentals and Applications", Hanser- Verlag, München 1995, gegeben. Ergänzend wird Carroy et al. in „Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints", Oldring (Hrsg.), 1994, SITA, London eingesetzt.
In einer weiteren bevorzugten Vorgehensweise werden zu den beschriebenen Comonomeren Monomere hinzugesetzt, die eine hohe statische Glasübergangstemperatur besitzen. Als Komponenten eigenen sich aromatische Vinylverbindungen, wie z.B. Styrol, wobei bevorzugt die aromatischen Kerne aus C4- bis Cis-Bausteinen bestehen und auch Heteroatome enthalten können. Besonders bevorzugte Beispiele sind 4-Vinylpyridin, N-Vinylphthalimid, Methylstyrol, 3,4- Dimethoxystyrol, 4-Vinylbenzoesäure, Benzylacrylat, Benzylmethacrylat, Phenylacrylat, Phenylmethacrylat, t-Butylphenylacrylat, t-Butylphenylmethacrylat, 4-Biphenylacrylat und -methacrylat, 2-Naphthylacrylat und -methacrylat sowie Mischungen aus denjenigen Monomeren, wobei diese Aufzählung nicht abschließend zu verstehen ist.
Durch die Erhöhung des aromatischen Anteils steigt der Brechungsindex der Haftklebemasse an und die Streuung zwischen LCD-Glas und Haftklebemasse durch z.B. Fremdlicht wird minimiert.
Zur Weiterentwicklung können den Haftklebemassen Harze beigemischt sein. Als zuzusetzende klebrigmachende Harze sind ausnahmslos alle vorbekannten und in der Literatur beschriebenen Klebharze einsetzbar. Genannt seien stellvertretend die Pinen-, Inden- und Kolophoniumharze, deren disproportionierte, hydrierte, polymerisierte, veresterte Derivate und Salze, die aliphatischen und aromatischen Kohlenwasserstoffharze, Terpenharze und Terpenphenolharze sowie C5-, C9- sowie andere Kohlenwasserstoffharze. Beliebige Kombinationen dieser und weiterer Harze können eingesetzt werden, um die Eigenschaften der resultierenden Klebmasse wunschgemäß einzustellen. Im allgemeinen lassen sich alle mit dem entsprechenden Polyacrylat kompatiblen (löslichen) Harze einsetzen, insbesondere sei verwiesen auf alle aliphatischen, aromatischen, alkylaromatischen Kohlenwasserstoffharze,
Kohlenwasserstoffharze auf Basis reiner Monomere, hydrierte Kohlenwasserstoffharze, funktionelle Kohlenwasserstoffharze sowie Naturharze. Auf die Darstellung des Wissensstandes im „Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, 1989) sei ausdrücklich hingewiesen. Auch hier werden zur Verbesserung der Transparenz bevorzugt transparente und sehr gut mit dem Polymer verträgliche Harze eingesetzt. Hydrierte oder teilhydrierte Harze weisen häufig diese Eigenschaften auf.
Weiterhin können optional Weichmacher (Plastifizierungsmittel), weitere Füllstoffe (wie. z.B. Fasern, Ruß, Zinkoxid, Kreide, Voll- oder Hohlglaskugeln, Mikrokugeln aus anderen Materialien, Kieselsäure, Silikate), Keimbildner, elektrisch leitfähige Materialien, wie z.B. konjugierte Polymere, dotierte konjugierte Polymere, Metallpigmente, Metallpartikel, Metallsalze, Graphit, etc., Blähmittel, Compoundierungsmittel und/oder Alterungsschutzmittel, z.B. in Form von primären und sekundären Antioxidantien oder in Form von Lichtschutzmitteln zugesetzt sein.
In einer weiteren günstigen Ausführungsform der Erfindung enthält die Haftklebemasse (b) und/oder (b1) lichtreflektierende Partikel, wie z.B. weiße Farbpigmente (Titandioxid oder Bariumsulfat) als Füllstoff.
Zusätzlich können Vernetzer und Promotoren zur Vernetzung beigemischt werden. Geeignete Vernetzer für die Elektronenstrahlvemetzung und UV-Vernetzung sind beispielsweise bi- oder multifunktionelle Acrylate, bi- oder multifunktionelle Isocyanate (auch in blockierter Form) oder bi- oder multifunktionelle Epoxide. Weiterhin können auch thermisch aktivierbare Vernetzer, wie z.B. Lewis-Säure, Metallchelate oder multifunktionelle Isocyanate zugesetzt sein.
Zu einer optionalen Vernetzung mit UV-Licht können den Haftklebemassen UV- absorbierende Photoinitiatoren zugesetzt werden. Nützliche Photoinitiatoren, welche sehr gut zu verwenden sind, sind Benzoinether, wie z. B. Benzoinmethylether und Benzoinisopropylether, substituierte Acetophenone, wie z. B. 2,2-Diethoxyacetophenon (erhältlich als Irgacure 651® von Fa. Ciba Geigy®), 2,2-Dimethoxy-2-phenyl-1- phenylethanon, Dimethoxyhydroxyacetophenon, substituierte α-Ketole, wie z. B. 2-Methoxy-2-hydroxypropiophenon, aromatische Sulfonylchloride, wie z. B. 2-Naphthyl sulfonylchlorid, und photoaktive Oxime, wie z. B. 1-Phenyl-1,2-propandion-2-(O- ethoxycarbonyl)oxim.
Die oben erwähnten und weitere einsetzbare Photoinititatioren und andere vom Typ Norrish I oder Norrish Il können folgenden Reste enthalten: Benzophenon-, Acetophenon-, Benzil-, Benzoin-, Hydroxyalkylphenon-, Phenylcyclohexylketon-, Anthrachinon-, Trimethylbenzoylphosphinoxid-, Methylthiophenylmorpholinketon-, Aminoketon-, Azobenzoin-, Thioxanthon-, Hexarylbisimidazol-, Triazin-, oder Fluorenon, wobei jeder dieser Reste zusätzlich mit einem oder mehreren Halogenatomen und/oder einer oder mehreren Alkyloxygruppen und/oder einer oder mehreren Aminogruppen oder Hydroxygruppen substituiert sein kann. Ein repräsentativer Überblick wird von Fouassier: „Photoinititation, Photopolymerization and Photocuring: Fundamentals and Applications", Hanser-Verlag, München 1995, gegeben. Ergänzend kann Carroy et al. in „Chemistry and Technology of UV and EB Formulation for Coatings, Inks and Paints", Oldring (Hrsg.), 1994, SITA, London herangezogen werden.
Herstellverfahren für die Acrylathaftklebemassen
Zur Polymerisation werden die Monomere dermaßen gewählt, dass die resultierenden Polymere bei Raumtemperatur oder höheren Temperaturen als Haftklebemassen eingesetzt werden können, insbesondere derart, dass die resultierenden Polymere haftklebende Eigenschaften entsprechend des „Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, New York 1989) besitzen. Zur Erzielung einer für Haftklebemassen bevorzugten Glasübergangstemperatur TG der Polymere von TG < 25 °C werden entsprechend dem vorstehend gesagten die Monomere sehr bevorzugt derart ausgesucht und die mengenmäßige Zusammensetzung der Monomermischung vorteilhaft derart gewählt, dass sich nach Gleichung (G 1) in Analogie zur Fox-Gleichung (vgl. T.G. Fox, Bull. Am. Phys. Soc. 1 (1956) 123) der gewünschte TG- Wert für das Polymer ergibt.
Hierin repräsentiert n die Laufzahl über die eingesetzten Monomere, Wn den Massenanteil des jeweiligen Monomers n (Gew.-%) und TG,n die jeweilige Glasübergangstemperatur des Homopolymers aus den jeweiligen Monomeren n in K. Zur Herstellung der Poly(meth)acrylathaftklebemassen werden vorteilhaft konventionelle radikalische Polymerisationen durchgeführt. Für die radikalisch verlaufenden Polymerisationen werden bevorzugt Initiatorsysteme eingesetzt, die zusätzlich weitere radikalische Initiatoren zur Polymerisation enthalten, insbesondere thermisch zerfallende radikalbildende Azo- oder Peroxo- Initiatoren. Prinzipiell eignen sich jedoch alle für Acrylate dem Fachmann geläufigen, üblichen Initiatoren. Die Produktion von C-zentrierten Radikalen ist im Houben Weyl, Methoden der Organischen Chemie, Vol. E 19a, S. 60 - 147 beschrieben. Diese Methoden werden in bevorzugter Weise in Analogie angewendet. Beispiele für Radikalquellen sind Peroxide, Hydroperoxide und Azoverbindungen, als einige nicht ausschließliche Beispiele für typische Radikalinitiatoren seien hier genannt Kaliumperoxodisulfat, Dibenzoylperoxid, Cumolhydroperoxid, Cyclohexanonperoxid, Di-t-butylperoxid, Azodiisosäurebutyronitril, Cyclohexylsulfonylacetylperoxid, Diisopropyl- percarbonat, t-Butylperoktoat, Benzpinacol. In einer sehr bevorzugten Ausführungsform wird als radikalischer Initiator 1 ,1'-Azo-bis-(cyclohexancarbonsäurenitril) (Vazo 88™ der Fa. DuPont) oder Azodisobutyronitril (AIBN) verwendet.
Die gewichtsmittleren Molekulargewichte Mw der bei der radikalischen Polymerisation entstehenden Haftklebemassen werden sehr bevorzugt derart gewählt, dass sie in einem Bereich von 200.000 bis 4.000.000 g/mol liegen; speziell für die weitere Verwendung als elektrisch-leitfähiger Schmelzhaftkleber mit Rückstellvermögen werden Haftklebemassen mit mittleren Molekulargewichten Mw von 400.000 bis 1.400.000 g/mol hergestellt. Die Bestimmung des mittleren Molekulargewichtes erfolgt über
Größenausschlußchromatographie (GPC) oder Matrix-unterstützte Laser- Desorption/Ionisations-Massenspektrometrie (MALDI-MS).
Die Polymerisation kann in Substanz, in Gegenwart eines oder mehrerer organischer Lösungsmittel, in Gegenwart von Wasser oder in Gemischen aus organischen Lösungsmitteln und Wasser durchgeführt werden. Es wird dabei angestrebt, die verwendete Lösungsmittelmenge so gering wie möglich zu halten. Geeignete organische Lösungsmittel sind reine Alkane (z.B. Hexan, Heptan, Octan, Isooctan), aromatische Kohlenwasserstoffe (z.B. Benzol, Toluol, XyIoI), Ester (z.B. Essigsäureethylester, Essigsäurepropyl-, -butyl- oder -hexylester), halogenierte Kohlenwasserstoffe (z.B. Chlorbenzol), Alkanole (z.B. Methanol, Ethanol, Ethylenglycol,
Ethylenglycolmonomethylether) und Ether (z.B. Diethylether, Dibutylether) oder Gemische davon. Die wässrigen Polymerisationsreaktionen können mit einem mit Wasser mischbaren oder hydrophilen Colösungsmittel versetzt werden, um zu gewährleisten, dass das Reaktionsgemisch während des Monomerumsatzes in Form einer homogenen Phase vorliegt. Vorteilhaft verwendbare Colösungsmittel für die vorliegende Erfindung werden gewählt aus der folgenden Gruppe, bestehend aus aliphatischen Alkoholen, Glycolen, Ethern, Glycolethern, Pyrrolidinen, N-Alkylpyrrolidinonen, N-Alkylpyrrolidonen, Polyethylenglycolen, Polypropylenglycolen, Amiden, Carbonsäuren und Salzen davon, Estern, Organosulfiden, Sulfoxiden, Sulfonen, Alkoholderivaten, Hydroxyetherderivaten, Aminoalkoholen, Ketonen und dergleichen, sowie Derivaten und Gemischen davon.
Die Polymerisationszeit beträgt - je nach Umsatz und Temperatur - zwischen 2 und 72 Stunden. Je höher die Reaktionstemperatur gewählt werden kann, das heißt, je höher die thermische Stabilität des Reaktionsgemisches ist, desto geringer kann die Reaktionsdauer gewählt werden.
Zur Initiierung der Polymerisation ist für die thermisch zerfallenden Initiatoren der Eintrag von Wärme essentiell. Die Polymerisation kann für die thermisch zerfallenden Initiatoren durch Erwärmen auf 50 bis 160 0C, je nach Initiatortyp, initiiert werden.
Für die Herstellung kann es auch von Vorteil sein, die (Meth)acrylathaftklebemassen in Substanz zu polymerisieren. Hier eignet sich insbesondere die Präpolymerisationstechnik. Die Polymerisation wird mit UV-Licht iniitiert, aber nur zu einem geringen Umsatz ca. 10 - 30 % geführt. Anschließend kann dieser Polymersirup z.B. in Folien eingeschweißt werden (im einfachsten Fall Eiswürfel) und dann in Wasser zu hohem Umsatz durchpolymerisiert. Diese Pellets lassen sich dann als Acrylatschmelzkleber einsetzen, wobei für den Aufschmelzvorgang besonders bevorzugt Folienmaterialien eingesetzt werden, die mit dem Polyacrylat kompatibel sind. Auch für diese Präparationsmethode lassen sich die thermisch-leitfähigen Materialzusätze vor oder nach der Polymerisation zusetzen.
Ein anderes vorteilhaftes Herstellungsverfahren für die Poly(meth)acrylathaftklebemassen ist die anionische Polymerisation. Hier werden als Reaktionsmedium bevorzugt inerte Lösungsmittel verwendet, wie z.B. aliphatische und cycloaliphatische Kohlenwasserstoffe, oder auch aromatische Kohlenwasserstoffe. Das lebende Polymer wird in diesem Fall im allgemeinen durch die Struktur PL(A)-Me repräsentiert, wobei Me ein Metall der Gruppe I, wie z.B. Lithium, Natrium oder Kalium, und PL(A) ein wachsendes Polymer aus den Acrylatmonomeren ist. Die Molmasse des herzustellenden Polymers wird durch das Verhältnis von Initiatorkonzentration zu Monomerkonzentration kontrolliert. Als geeignete Polymerisationsinitiatoren eignen sich z. B. n-Propyllithium, n-Butyllithium, sec-Butyllithium, 2-Naphthyllithium, Cyclohexyllithium oder Octyllithium, wobei diese Aufzählung nicht den Anspruch auf Vollständigkeit besitzt. Ferner sind Initiatoren auf Basis von Samarium-Komplexen zur Polymerisation von Acrylaten bekannt (Macromolecules, 1995, 28, 7886) und hier einsetzbar.
Weiterhin lassen sich auch difunktionelle Initiatoren einsetzen, wie beispielsweise 1 ,1 ,4,4-Tetraphenyl-1,4-dilithiobutan oder 1 ,1 ,4,4-Tetraphenyl-1,4-dilithioisobutan. Coinitiatoren lassen sich ebenfalls einsetzen. Geeignete Coinitiatoren sind unter anderem Lithiumhalogenide, Alkalimetallalkoxide oder Alkylaluminium-Verbindungen. In einer sehr bevorzugten Version sind die Liganden und Coinitiatoren so gewählt, dass Acrylatmonomere, wie z.B. n-Butylacrylat und 2-Ethylhexylacrylat, direkt polymerisiert werden können und nicht im Polymer durch eine Umesterung mit dem entsprechenden Alkohol generiert werden müssen.
Zur Herstellung von Poly(meth)acrylathaftklebemassen mit einer engen Molekulargewichtsverteilung eignen sich auch kontrollierte radikalische Polymerisationsmethoden. Zur Polymerisation wird dann bevorzugt ein Kontrollreagenz der allgemeinen Formel eingesetzt:
(I) (H)
worin R und R1 unabhängig voneinander gewählt oder gleich sind und
- verzweigte und unverzweigte d- bis Ci8-Alkylreste; C3- bis Ci8-Alkenylreste; C3- bis Cis-Alkinylreste;
- Cr bis Cis-Alkxoyreste - durch zumindest eine OH-Gruppe oder ein Halogenatom oder einen Silylether substituierte d- bis Ci8-Alkylreste; C3- bis Ci8-Alkenylreste; C3- bis Ci8- Alkinylreste;
C2-Ci8-Hetero-Alkylreste mit mindestens einem O-Atom und/oder einer NR*- Gruppe in der Kohlenstoffkette, wobei R* ein beliebiger (insbesondere organischer) Rest sein kann,
- mit zumindest einer Estergruppe, Amingruppe, Carbonatgruppe, Cyanogruppe, Isocyanogruppe und/oder Epoxidgruppe und/oder mit Schwefel substituierte Cr Cie-Alkylreste, C3-Ci8-Alkenylreste, C3-Ci8-Alkinylreste; C3-Ci2-Cycloalkylreste
- C6-Ci8- Aryl- oder Benzylreste
- Wasserstoff darstellen.
Kontrollreagenzien des Typs (I) bestehen bevorzugt aus folgenden weiter eingeschränkten Verbindungen:
Halogenatome sind hierbei bevorzugt F, Cl, Br oder I, mehr bevorzugt Cl und Br. Als
Alkyl-, Alkenyl- und Alkinylreste in den verschiedenen Substituenten eignen sich hervorragend sowohl lineare als auch verzweigte Ketten.
Beispiele für Alkylreste, welche 1 bis 18 Kohlenstoffatome enthalten, sind Methyl, Ethyl,
Propyl, Isopropyl, Butyl, Isobutyl, t-Butyl, Pentyl, 2-Pentyl, Hexyl, Heptyl, Octyl, 2-
Ethylhexyl, t-Octyl, Nonyl, Decyl, Undecyl, Tridecyl, Tetradecyl, Hexadecyl und Octadecyl.
Beispiele für Alkenylreste mit 3 bis 18 Kohlenstoffatomen sind Propenyl, 2-Butenyl, 3-
Butenyl, Isobutenyl, n-2,4-Pentadienyl, 3-Methyl-2-butenyl, n-2-Octenyl, n-2-Dodecenyl,
Isododecenyl und Oleyl.
Beispiele für Alkinyl mit 3 bis 18 Kohlenstoffatomen sind Propinyl, 2-Butinyl, 3-Butinyl, n-2-Octinyl und n-2-Octadecinyl.
Beispiele für Hydroxy-substituierte Alkylreste sind Hydroxypropyl, Hydroxybutyl oder
Hydroxyhexyl.
Beispiele für Halogen-substituierte Alkylreste sind Dichlorobutyl, Monobromobutyl oder
Trichlorohexyl.
Ein geeigneter C2-Ci8-Hetero-Alkylrest mit mindestens einem O-Atom in der
Kohlenstoffkette ist beispielsweise -CH2-CH2-O-CH2-CH3.
Als C3-Ci2-Cycloalkylreste dienen beispielsweise Cyclopropyl, Cyclopentyl, Cyclohexyl oder Trimethylcyclohexyl. Als C6-Ci8-Arylreste dienen beispielsweise Phenyl, Naphthyl, Benzyl, 4-tert.-Butylbenzyl- oder weitere substituierte Phenyl, wie z.B. Ethyl, Toluol, XyIoI, Mesitylen, Isopropylbenzol, Dichlorobenzol oder Bromtoluol.
Die vorstehenden Auflistungen dienen nur als Beispiele für die jeweiligen Verbindungsgruppen und besitzen keinen Anspruch auf Vollständigkeit.
Weiterhin sind auch Verbindungen der folgenden Typen als Kontrollreagenzien einsetzbar
wobei R2 ebenfalls unabhängig von R und R1 aus der oben aufgeführten Gruppe für diese Reste gewählt werden kann.
Beim konventionellen ,RAFT-Prozeß' wird zumeist nur bis zu geringen Umsätzen polymerisiert (WO 98/01478 A1), um möglichst enge Molekulargewichtsverteilungen zu realisieren. Durch die geringen Umsätze lassen sich diese Polymere aber nicht als Haftklebemassen und insbesondere nicht als Schmelzhaftkleber einsetzen, da der hohe Anteil an Restmonomeren die klebtechnischen Eigenschaften negativ beeinflusst, die Restmonomere im Aufkonzentrationsprozeß das Lösemittelrecyclat verunreinigen und die entsprechenden Selbstklebebänder ein sehr hohes Ausgasungsverhalten zeigen würden. Um diesen Nachteil niedriger Umsätze zu umgehen, wird in einer besonders bevorzugten Vorgehensweise die Polymerisation mehrfach initiiert.
Als weitere kontrollierte radikalische Polymerisationsmethode können Nitroxid-gesteuerte Polymerisationen durchgeführt werden. Zur Radikalstabilisierung werden in günstiger Vorgehensweise Nitroxide des Typs (Va) oder (Vb) eingesetzt:
(Va) (Vb)
wobei R3, R4, R5, R6, R7, R8, R9, R10 unabhängig voneinander folgende Verbindungen oder
Atome bedeuten: i) Halogenide, wie z.B. Chlor, Brom oder lod ii) lineare, verzweigte, cyclische und heterocyclische Kohlenwasserstoffe mit 1 bis 20
Kohlenstoffatomen, die gesättigt, ungesättigt oder aromatisch sein können, iii) Ester -COOR11, Alkoxide -OR12 und/oder Phosphonate -PO(OR13J2, wobei R11, R12 oder R13 für Reste aus der Gruppe ii) stehen.
Verbindungen der Formeln (Va) oder (Vb) können auch an Polymerketten jeglicher Art gebunden sein (vorrangig in dem Sinne, dass zumindest einer der oben genannten Reste eine derartige Polymerkette darstellt) und somit zum Aufbau von Polyacrylathaftklebemassen genutzt werden.
Mehr bevorzugt werden kontrollierte Regler für die Polymerisation von Verbindungen des Typs eingesetzt:
• 2,2,5,5-Tetramethyl-1-pyrrolidinyloxyl (PROXYL), 3-Carbamoyl-PROXYL, 2,2-dimethyl-4,5-cyclohexyl-PROXYL, 3-oxo-PROXYL, 3-Hydroxylimine-PROXYL, 3-Aminomethyl-PROXYL, 3-Methoxy-PROXYL, 3-t-Butyl-PROXYL, 3,4-Di-t-butyl- PROXYL
• 2,2,6,6-Tetramethyl-1-piperidinyloxyl (TEMPO), 4-Benzoyloxy-TEMPO, 4-Methoxy- TEMPO, 4-Chloro-TEMPO, 4-Hydroxy-TEMPO, 4-Oxo-TEMPO, 4-Amino-TEMPO, 2,2,6,6,-Tetraethyl-1 -piperidinyloxyl, 2,2,6-Trimethyl-6-ethyl-1 -piperidinyloxyl
• N-tert.-Butyl-1-phenyl-2-methyl propyl Nitroxid
• N-tert.-Butyl-1-(2-naphtyl)-2-methyl propyl Nitroxid
• N-tert.-Butyl-1-diethylphosphono-2,2-dimethyl propyl Nitroxid
• N-tert.-Butyl-1-dibenzylphosphono-2,2-dimethyl propyl Nitroxid
• N-(1-Phenyl-2-methyl propyl)-1-diethylphosphono-1-methyl ethyl Nitroxid
• Di-t-Butylnitroxid
• Diphenyl nitroxid
• t-Butyl-t-amyl Nitroxid Eine Reihe weiterer Polymerisationsmethoden, nach denen die Haftklebemassen in alternativer Vorgehensweise hergestellt werden können, lassen sich aus dem Stand der Technik wählen:
US 4,581,429 A offenbart ein kontrolliert radikalisches Polymerisationsverfahren, das als Initiator eine Verbindung der Formel R'R"N-O-Y anwendet, worin Y eine freie radikalische Spezies ist, die ungesättigte Monomere polymerisieren kann. Die Reaktionen weisen aber im allgemeinen geringe Umsätze auf. Besonders problematisch ist die Polymerisation von Acrylaten, die nur zu sehr geringen Ausbeuten und Molmassen abläuft. WO 98/13392 A1 beschreibt offenkettige Alkoxyaminverbindungen, die ein symmetrisches Substitutionsmuster aufweisen. EP 735 052 A1 offenbart ein Verfahren zur Herstellung thermoplastischer Elastomere mit engen Molmassenverteilungen. WO 96/24620 A1 beschreibt ein Polymerisationsverfahren, bei dem sehr spezielle Radikalverbindungen wie z. B. phosphorhaltige Nitroxide, die auf Imidazolidin basieren, eingesetzt werden. WO 98/44008 A1 offenbart spezielle Nitroxyle, die auf Morpholinen, Piperazinonen und Piperazindionen basieren. DE 199 49 352 A1 beschreibt heterozyklische Alkoxyamine als Regulatoren in kontrolliert radikalischen Polymerisationen. Entsprechende Weiterentwicklungen der Alkoxyamine bzw. der korrespondierenden freien Nitroxide verbessern die Effizienz zur Herstellung von Polyacrylaten (Hawker, Beitrag zur Hauptversammlung der American Chemical Society, Frühjahr 1997; Husemann, Beitrag zum IUPAC World-Polymer Meeting 1998, Gold Coast).
Als weitere kontrollierte Polymerisationsmethode lässt sich in vorteilhafter Weise zur Synthese der Polyacrylathaftklebemassen die Atom Transfer Radical Polymerization (ATRP) einsetzen, wobei als Initiator bevorzugt monofunktionelle oder difunktionelle sekundäre oder tertiäre Halogenide und zur Abstraktion des(r) Halogenids(e) Cu-, Ni-, Fe- , Pd-, Pt-, Ru-, Os-, Rh-, Co-, Ir-, Ag- oder Au-Komplexe (EP 0 824 111 A1 ; EP 826 698 A1; EP 824 110 A1 ; EP 841 346 A1 ; EP 850 957 A1) eingesetzt werden. Die unterschiedlichen Möglichkeiten der ATRP sind ferner in den Schriften US 5,945,491 A, US 5,854,364 A und US 5,789,487 A beschrieben.
Beschichtungsverfahren, Ausrüstung des Trägermaterials
Zur Herstellung wird in einer bevorzugten Ausführungsform die Haftklebemasse aus Lösung auf das Trägermaterial beschichtet. Zur Steigerung der Verankerung der Haftklebemasse kann optional die Schicht (a) vorbehandelt werden. So kann z.B. mit Corona oder mit Plasma vorbehandelt werden. Für die Beschichtung der Haftklebemasse aus Lösung wird über Wärmezufuhr z.B. in einem Trockenkanal das Lösemittel entfernt und gegebenenfalls die Vernetzungsreaktion initiiert.
Die oben beschriebenen Polymere können weiterhin auch als Hotmelt-Systeme (also aus der Schmelze) beschichtet werden. Für das Herstellungsverfahren kann es daher erforderlich sein, das Lösemittel von der Haftklebemasse zu entfernen. Hier können im Prinzip alle dem Fachmann bekannten Verfahren eingesetzt werden. Ein sehr bevorzugtes Verfahren ist die Aufkonzentration über einen Ein- oder Doppelschneckenextruder. Der Doppelschneckenextruder kann gleich- oder gegenläufig betrieben werden. Das Lösemittel oder Wasser wird bevorzugt über mehrere Vakuumstufen abdestilliert. Zudem wird je nach Destillationstemperatur des Lösemittels gegengeheizt. Die Restlösemittelanteile betragen bevorzugt < 1 %, mehr bevorzugt < 0,5 % und sehr bevorzugt < 0,2 %. Der Hotmelt wird aus der Schmelze weiterverarbeitet.
Zur Beschichtung als Hotmelt können unterschiedliche Beschichtungsverfahren herangezogen werden. In einer vorteilhaften Ausführung werden die Haftklebemassen über ein Walzenbeschichtungsverfahren beschichtet. Unterschiedliche Walzenbeschichtungsverfahren sind im „Handbook of Pressure Sensitive Adhesive Technology" von Donatas Satas (van Nostrand, New York 1989) beschrieben. In einer weiteren Ausführung wird über eine Schmelzdüse beschichtet. In einem weiteren bevorzugten Verfahren wird durch Extrusion beschichtet. Die Extrusionsbeschichtung wird bevorzugt mit einer Extrusionsdüse vorgenommen. Die verwendeten Extrusionsdüsen können vorteilhaft aus einer der drei folgenden Kategorien stammen: T-Düse, Fischschwanz-Düse und Bügel-Düse. Die einzelnen Typen unterscheiden sich durch die Gestalt ihres Fließkanals. Durch die Beschichtung können die Haftklebemassen auch eine Orientierung erfahren.
Weiterhin kann es erforderlich sein, dass die Haftklebemassen vernetzt werden. In einer bevorzugten Ausführung wird thermisch, mit Elektronen- und/oder UV-Strahlung vernetzt.
Zur UV-Vernetzung wird mittels kurzwelliger ultravioletter Bestrahlung in einem Wellenlängenbereich von 200 bis 400 nm, je nach verwendetem UV-Photoinitiator, bestrahlt, insbesondere unter Verwendung von Quecksilber-Hochdruck- oder -Mitteldruck- Lampen bei einer Leistung von 80 bis 240 W/cm. Die Bestrahlungsintensität wird der jeweiligen Quantenausbeute des UV-Photoinitiators und dem einzustellenden Vernetzungsgrad angepasst.
Weiterhin werden die Haftklebemassen in einer vorteilhaften Ausführungsform der Erfindung mit Elektronenstrahlen vernetzt. Typische Bestrahlungsvorrichtungen, die vorteilhaft eingesetzt werden, sind Linearkathodensysteme, Scannersysteme bzw. Segmentkathodensysteme, sofern es sich um Elektronenstrahlbeschleuniger handelt. Eine ausführliche Beschreibung des Stands der Technik und die wichtigsten Verfahrensparameter findet man bei Skelhome, Electron Beam Processing, in Chemistry and Technology of UV and EB formulation for Coatings, Inks and Paints, Vol. 1 , 1991 , SITA, London. Die typischen Beschleunigungsspannungen liegen im Bereich zwischen 50 kV und 500 kV, vorzugsweise 80 kV und 300 kV. Die angewandten Streudosen bewegen sich zwischen 5 und 150 kGy, insbesondere zwischen 20 und 100 kGy. Es können auch beide Vernetzungsverfahren angewendet werden oder andere Verfahren, die hochenergetische Bestrahlung ermöglichen.
Weiterhin ist Gegenstand der Erfindung die Verwendung der erfinderischen doppelseitigen Haftklebebänder zur Verklebung oder Herstellung von optischen Flüssigkristall-Datenanzeigen (LCDs), die Verwendung zur Verklebung von LCD-Gläsern sowie Flüssigkristall-Datenanzeigen und Geräte mit Flüssigkristall-Datenanzeigen, welche ein erfindungsgemäßes Haftklebeband in ihrem Produktaufbau aufweisen. Für die Verwendung als Haftklebeband können die doppelseitigen Haftklebebänder mit einem oder zwei Trennfolien und/oder Trennpapieren abgedeckt sein. Bevorzugt werden silikonisierte oder fluorierte Folien oder Papiere, wie z.B. Glassine, HPDE oder LDPE gecoatete Papiere eingesetzt, die wiederum mit einer Releaseschicht basierend auf Silikonen oder fluorierten Polymeren versehen sind. In einer besonders bevorzugten Ausführungsform werden als Abdeckung silikonisierte PET Folien eingesetzt. Insbesondere vorteilhaft sind die erfindungsgemäßen Haftklebebänder zur Verklebung von Leuchtdioden (Light Emitting Diode, LED) als Lichtquelle mit dem LCD-Modul geeignet. Beispiele
Die Erfindung wird im Folgenden beschrieben, ohne sich durch die Wahl der Beispiele unnötig beschränken zu wollen.
Folgende Prüfmethoden wurden angewendet.
Prüfmethoden
A.Xiansmissjoη
Die Transmission wurde im Wellenlängenbereich von 190 bis 900 nm mit einem Uvikon 923 der Fa. Biotek Kontron gemessen. Die Messung wird bei 23°C durchgeführt. Die Absolute Transmission wird als Wert bei 550 nm in % angegeben bezogen auf die vollständige Lichtabsorption (Transmission 0 % = kein Lichtdurchlass; Transmission 100 % = vollständiger Lichtdurchlass).
B. PjnhoJes
Eine handelsübliche sehr starke Lichtquelle (z.B. Overheadprojektor Typ Liesegangtrainer 400 KC Typ 649, Halogenlampe 36 V, 400 W) wird komplett lichtdicht mit einer Maske abgedeckt. Diese Maske enthält in der Mitte eine kreisrunde Öffnung mit einem Durchmesser von 5 cm. Auf diese kreisrunde Öffnung wird das doppelseitige LCD- Klebeband aufgelegt. In vollständig abgedunkelter Umgebung werden dann die Anzahl der Pinholes elektronisch oder visuell ausgezählt. Diese sind bei eingeschalteter Lichtquelle als durchscheinende Punkte erkennbar.
C.__Reflektjon
Der Reflektionstest wird nach DIN Norm 5036 Teil 3, DIN 5033 Teil 3 und DIN 5033 Teil 4 durchgeführt. Als Meßgerät wurde eine Ulbrichtsche Kugel Typ LMT (50 cm Durchmesser) eingesetzt in Verbindung mit einem Digitalem Anzeigegerät TYP LMT Tau- p-Meter. Die integralen Messungen erfolgen mit einer Lichtquelle entsprechend Normlicht A und V(A)- angepasstem Si-Photoelement. Es wurde gegen eine Glas-Referenzprobe gemessen. Der Reflektionsgrad wird als Summe aus gerichteten und gestreuten Lichtanteilen in % angegeben. Ppjymer.1
Ein für radikalische Polymerisationen konventioneller 200 L-Reaktor wurde mit 2400 g Acrylsäure, 64 kg 2-Ethylhexylacrylat, 6,4 kg Methylacrylat und 53,3 kg Aceton/Isopropanol (95:5) befüllt. Nach 45 Minuten Durchleiten mit Stickstoffgas unter Rühren wurde der Reaktor auf 58 °C hochgeheizt und 40 g 2,2'-Azoisobuttersäurenitril (AIBN) hinzugegeben. Anschließend wurde das äußere Heizbad auf 75 0C erwärmt und die Reaktion konstant bei dieser Außentemperatur durchgeführt. Nach 1 h Reaktionszeit wurde wiederum 40 g AIBN hinzugegeben. Nach 5 h und 10 h wurde mit jeweils 15 kg Aceton/Isopropanol (95:5) verdünnt. Nach 6 und 8 h wurden jeweils 100 g Dicyclohexylperoxydicarbonat (Perkadox 16®, Fa. Akzo Nobel) gelöst in jeweils 800 g Aceton hinzugegeben. Die Reaktion wurde nach 24 h Reaktionszeit abgebrochen und auf Raumtemperatur abgekühlt. Bevor die Masse beschichtet wird, wird das Polymer 1 mit Isopropanol auf 30 % Feststoffgehalt verdünnt. Anschließend wird unter kräftigem Rühren 0,3 Gew.-% Aluminium-(lll)-acetylacetonat (3-%ige Lösung Isopropanol) bezogen auf das Polymer 1 hinzugemischt.
Folie (AI-Bedampfung):
Eine 12 μm oder 38 μm dicke PET-Folie (12 μm z.B. der Fa. Mitsubishi (Hostaphan™ 5210, 38 μm z.B. der Fa. Toray Lumirror™ 38E20) wird einseitig oder beidseitig mit Aluminium bedampft, bis eine vollflächige Aluminiumschicht aufgetragen war. Die Folie wurde in einer Breite von 300 mm nach dem Sputtering Verfahren bedampft. Hier wird positiv geladenes, ionisiertes Argongas in eine Hochvakuumkammer geleitet. Die geladenen Ionen treffen dann auf eine negativ geladenen AI-Platte und lösen auf molekularer Ebene Aluminiumpartikel ab, die sich dann auf den Polyesterfilm, der über die Platte geführt wird, ablagern.
Lack i
In einem Farbenmischer von Red Devil werden 42 Teile Acrydic A-910 (Stickstoffhaltiges
Acrylharz mit einem Feststoffanteil von 50 % von Dainippon Ink and Chemicals), 80 Teile
Titanweiss JR603 (Teikoku Kako Co. Ltd.), 6 Teile XyIoI, 6 Teile Toluol, 6 Teile
Methylethylketon für 30 Minuten dispergiert. Anschließend wird in einem Ultraturrax weiter homogenisiert. Beispiel 1 :
Auf der 12 μm PET-Folie, beidseitig aluminisiert, wird die Lackmasse 1 mit einem Meyer
Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2.
Dann wird auf diese Schicht Polymer 1 aus Lösung flächig aufgebracht und für 10
Minuten bei 100 0C getrocknet. Der Masseauftrag beträgt für diese Schicht 50 g/m2. Die
Seite wird mit einer 50 μm dicken und beidseitig silikonisierten PET-Folie abgedeckt. Auf der gegenüberliegenden Seite wird dann die Lackmasse 1 mit einem Meyer Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2. Das Polymer 1 wird dann anschließend mit 50 g/m2 flächig aufgebracht, wobei wiederum 10 Minuten bei 100 °C getrocknet wird.
Beispiel 2
Auf einer 38 μm PET-Folie, extrudiert mit weißen Pigmenten als Füllstoff, der Fa. Toray (Lumirror™ 38E20) und beidseitig aluminisiert, wird die Lackmasse 1 mit einem Meyer Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2.
Dann wird auf diese Schicht Polymer 1 aus Lösung flächig aufgebracht und für 10 Minuten bei 100 °C getrocknet. Der Masseauftrag beträgt für diese Schicht 50 g/m2. Die Seite wird mit einer 50 μm dicken und beidseitig silikonisierten PET-Folie abgedeckt. Auf der gegenüberliegenden Seite wird dann die Lackmasse 1 mit einem Meyer Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2. Das Polymer 1 wird dann anschließend mit 50 g/m2 flächig aufgebracht, wobei wiederum 10 Minuten bei 100 0C getrocknet wird.
Beispiel 3
Auf der 12 μm PET-Folie, einseitig aluminisiert, wird die Lackmasse 1 mit einem Meyer
Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2.
Dann wird auf diese Schicht Polymer 1 aus Lösung flächig aufgebracht und für 10
Minuten bei 100 °C getrocknet. Der Masseauftrag beträgt für diese Schicht 50 g/m2. Die
Seite wird mit einer 50 μm dicken und beidseitig silikonisierten PET-Folie abgedeckt. Auf der gegenüberliegenden Seite wird dann die Lackmasse 1 mit einem Meyer Bar flächig aufgebracht und für 10 Minuten bei 120°C getrocknet. Das Auftragsgewicht beträgt 8 g/m2. Das Polymer 1 wird dann anschließend mit 50 g/m2 flächig aufgebracht, wobei wiederum 10 Minuten bei 100 °C getrocknet wird.
Beispiel 4
Auf einer 38 μm PET-Folie, extrudiert mit weißen Pigmenten als Füllstoff, der Fa. Toray (Lumirror™ 38E20) und einseitig aluminisiert, wird die Lackmasse 1 mit einem Meyer Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2.
Dann wird auf diese Schicht Polymer 1 aus Lösung flächig aufgebracht und für 10 Minuten bei 100 °C getrocknet. Der Masseauftrag beträgt für diese Schicht 50 g/m2. Die Seite wird mit einer 50 μm dicken und beidseitig silikonisierten PET-Folie abgedeckt. Auf der gegenüberliegenden Seite wird dann die Lackmasse 1 mit einem Meyer Bar flächig aufgebracht und für 10 Minuten bei 1200C getrocknet. Das Auftragsgewicht beträgt 8 g/m2. Das Polymer 1 wird dann anschließend mit 50 g/m2 flächig aufgebracht, wobei wiederum 10 Minuten bei 100 0C getrocknet wird.
Ergebnisse
Beispiel 1 und 2 sind Beispiele für die erfinderische Auslegung der Verwendung von zwei metallischen Schichten zur Lichtabsorption und somit zur Verringerung der Lichttransmission. In Beispiel 2 wurde eine weiße Trägerfolie eingesetzt. Beispiele 3 und 4 sind Beispiele für die erfinderische Auslegung der Verwendung von einer metallischen Schichten zur Lichtabsorption und somit zur Verringerung der Lichttransmission. Beispiel 3 ist ein Beispiel für die Verwendung einer dünnen transparenten Folie, Beispiel 4 ein Beispiel für die Verwendung einer dickeren weißen Folie.
Die Beispiele 1 bis 4 wurden nach den Prüfmethoden A, B und C ausgetestet. Die Ergebnisse sind in Tabelle 1 dargestellt.
Den Ergebnissen aus Tabelle 1 kann entnommen werden, dass die Beispiele 1 bis 4 im Hinblick auf optische Fehlstellen (Pinhole-Freiheit) und Transmission hervorragende Eigenschaften aufweisen. Weiterhin konnte mit Test C gezeigt werden, dass die Beispiele 1 bis 4 nicht nur lichtabsorbierende Eigenschaften aufweisen, sondern auch sehr hohe lichtreflektierende Eigenschaften besitzen. Für den Anwendungsfall im LCD bedeutet dies, dass die Lichtausbeute im Lichtkanal deutlich erhöht wird. Weiterhin konnte gezeigt werden, dass für die Herstellung eines lichtreflektierenden und lichtabsorbierenden Tapes nicht unbedingt ein doppelseitiges Haftklebeband eingesetzt werden muss, welches auf einer Seite schwarz und auf der anderen Seite lichtreflektierend (also weiß oder metallisch) sein muss.

Claims

Patentansprüche
1. Haftklebeband, insbesondere zur Herstellung oder Verklebung von optischen Flüssigkristall-Datenanzeigen, aufweisend zwei Haftklebeschichten und zumindest eine Trägerfolie, dadurch gekennzeichnet, dass das Haftklebeband sowohl auf seiner Ober- als auch auf seiner Unterseite lichtreflektierende Eigenschaften aufweist und zumindest in sofern gleichzeitig lichtabsorbierend ist, als dass nicht reflektiertes Licht das Klebeband nicht durchdringen kann.
2. Haftklebeband, insbesondere zur Herstellung oder Verklebung von optischen Flüssigkristall-Datenanzeigen, aufweisend zwei Haftklebeschichten und zumindest eine Trägerfolie, dadurch gekennzeichnet, dass zumindest zwischen einer Seite der Trägerfolie und der auf dieser Seite befindlichen Haftklebeschicht eine weiße Lackschicht vorgesehen ist.
3. Haftklebeband nach Anspruch 2, dadurch gekennzeichnet, dass zwischen der Trägerfolie und der weißen Lackschicht eine metallische Schicht, insbesondere eine Metallisierung vorgesehen ist.
4. Haftklebeband nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass beidseitig zwischen der Trägerfolie und der jeweiligen Haftklebeschicht jeweils eine weiße Lackschicht vorgesehen ist.
5. Haftklebeband nach Anspruch 4, dadurch gekennzeichnet, dass beidseitig zwischen der Trägerfolie und der jeweiligen Lackschicht jeweils eine metallische Schicht, insbesondere eine Metallisierung vorgesehen ist.
6. Verwendung eines Haftklebebandes nach einem der vorangehenden Ansprüche zur Herstellung oder zur Verklebung von optischen Flüssigkristall-Datenanzeigen.
7. Verwendung nach Anspruch 6 zur Verklebung von LCD-Gläsern.
8. Flüssigkristall-Datenanzeige-Gerät aufweisend ein Haftklebeband nach zumindest einem der Ansprüche 1 bis 5.
EP05816325A 2005-07-21 2005-12-02 Doppelseitiges haftklebeband zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften Withdrawn EP1910893A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005034746A DE102005034746A1 (de) 2005-07-21 2005-07-21 Doppelseitiges Haftklebeband zur Herstellung von LC-Displays mit lichtreflektierenden und -absorbierenden Eigenschaften
PCT/EP2005/056410 WO2007009500A1 (de) 2005-07-21 2005-12-02 Doppelseitiges haftklebeband zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften

Publications (1)

Publication Number Publication Date
EP1910893A1 true EP1910893A1 (de) 2008-04-16

Family

ID=35852656

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05816325A Withdrawn EP1910893A1 (de) 2005-07-21 2005-12-02 Doppelseitiges haftklebeband zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften

Country Status (8)

Country Link
US (1) US20080206491A1 (de)
EP (1) EP1910893A1 (de)
JP (1) JP2009501947A (de)
KR (1) KR20080039406A (de)
CN (1) CN101218535A (de)
DE (2) DE102005034746A1 (de)
TW (1) TWI378281B (de)
WO (1) WO2007009500A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI419953B (zh) * 2007-12-04 2013-12-21 Innolux Corp 液晶顯示裝置
KR101514355B1 (ko) * 2008-04-14 2015-04-22 쇼와 덴코 가부시키가이샤 경화 필름 및 그 제조 방법
JP2012103683A (ja) * 2010-10-14 2012-05-31 Semiconductor Energy Lab Co Ltd 表示装置及び表示装置の駆動方法
WO2012128011A1 (ja) * 2011-03-22 2012-09-27 日本電気株式会社 移動体管理システム、移動体管理サーバ、移動体管理方法および移動体管理プログラム
TWI494410B (zh) * 2013-04-10 2015-08-01 Hon Hai Prec Ind Co Ltd 膠帶
EP4227376A1 (de) * 2022-02-14 2023-08-16 Hueck Folien Gesellschaft m.b.H. Klebefolie

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3952668B2 (ja) * 2000-07-10 2007-08-01 株式会社コスモテック 粘着シート及びそれを用いた液晶表示装置
JP2002350612A (ja) * 2001-05-25 2002-12-04 Dainippon Ink & Chem Inc 遮光性フィルム、遮光性粘着シート、およびそれを使用した表示パネル
JP3886121B2 (ja) * 2002-07-29 2007-02-28 日東電工株式会社 粘着テープ
KR100987679B1 (ko) * 2002-08-12 2010-10-13 디아이씨 가부시끼가이샤 광반사성과 차광성을 겸비한 lcd 모듈용 점착 테이프
JP3902162B2 (ja) * 2002-08-12 2007-04-04 大日本インキ化学工業株式会社 光反射性と遮光性を併有するlcdモジュール用粘着テープ
DE10243215A1 (de) * 2002-09-17 2004-03-25 Tesa Ag Haftklebeband für LCDs
US7070051B2 (en) * 2004-03-26 2006-07-04 Atrion Medical Products, Inc. Needle counter device including troughs of cohesive material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007009500A1 *

Also Published As

Publication number Publication date
KR20080039406A (ko) 2008-05-07
DE112005003594A5 (de) 2008-07-10
WO2007009500A1 (de) 2007-01-25
US20080206491A1 (en) 2008-08-28
TWI378281B (en) 2012-12-01
JP2009501947A (ja) 2009-01-22
TW200705012A (en) 2007-02-01
DE102005034746A1 (de) 2007-01-25
CN101218535A (zh) 2008-07-09

Similar Documents

Publication Publication Date Title
EP1910490B1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften
EP1902111B1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und absorbierenden eigenschaften
EP1893711B1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften
EP1893710B1 (de) Doppelseitige haftklebebänder zur herstellung bzw. verklebung von lc-displays mit lichtabsorbierenden eigenschaften
EP1542865B1 (de) HAFTKLEBEBAND F R LCDs
WO2006058913A1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und lichtabsorbierenden eigenschaften
EP1902110B1 (de) Doppelseitige haftklebebänder zur herstellung bzw. verklebung von lc-displays mit lichtabsorbierenden eigenschaften
WO2006058911A1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und absorbierenden eigenschaften
WO2006133746A1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und absorbierenden eigenschaften
EP1828337A1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und absorbierenden eigenschaften
WO2007062692A1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften
WO2007009502A1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und absorbierenden eigenschaften
WO2006058914A1 (de) Doppelseitige haftklebebänder zur herstellung bzw. verklebung von lc-displays mit lichtabsorbierenden eigenschaften
EP1910893A1 (de) Doppelseitiges haftklebeband zur herstellung von lc-displays mit lichtreflektierenden und -absorbierenden eigenschaften
EP1958020B1 (de) Doppelseitige haftklebebänder zur herstellung von flüssigkristallanzeigen mit lichtreflektierenden und -absorbierenden eigenschaften
EP1828338B1 (de) Doppelseitige haftklebebänder zur herstellung von lc-displays mit lichtreflektierenden und absorbierenden eigenschaften

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20080716

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: TESA SE

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701