EP1910652A2 - Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange - Google Patents

Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange

Info

Publication number
EP1910652A2
EP1910652A2 EP06778948A EP06778948A EP1910652A2 EP 1910652 A2 EP1910652 A2 EP 1910652A2 EP 06778948 A EP06778948 A EP 06778948A EP 06778948 A EP06778948 A EP 06778948A EP 1910652 A2 EP1910652 A2 EP 1910652A2
Authority
EP
European Patent Office
Prior art keywords
oil
derivative
pressure
engine
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06778948A
Other languages
German (de)
English (en)
Inventor
Sébastien GAUCHARD
Michel Bleusse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PSA Automobiles SA
Original Assignee
Peugeot Citroen Automobiles SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Peugeot Citroen Automobiles SA filed Critical Peugeot Citroen Automobiles SA
Publication of EP1910652A2 publication Critical patent/EP1910652A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M2011/14Indicating devices; Other safety devices for indicating the necessity to change the oil
    • F01M2011/1446Indicating devices; Other safety devices for indicating the necessity to change the oil by considering pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M11/00Component parts, details or accessories, not provided for in, or of interest apart from, groups F01M1/00 - F01M9/00
    • F01M11/10Indicating devices; Other safety devices
    • F01M2011/14Indicating devices; Other safety devices for indicating the necessity to change the oil
    • F01M2011/148Indicating devices; Other safety devices for indicating the necessity to change the oil by considering viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2200/00Condition of lubricant
    • F16N2200/02Oxidation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2200/00Condition of lubricant
    • F16N2200/12Viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2250/00Measuring
    • F16N2250/04Pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2260/00Fail safe
    • F16N2260/02Indicating
    • F16N2260/18Indicating necessity of changing oil

Definitions

  • the present invention generally relates to the lubrication systems of internal combustion engines and more particularly to a method for estimating the oxidation level of a motor oil and recommend draining wisely.
  • the recommendations of the manufacturers are based on relatively empirical basic criteria such as the mileage traveled and / or the time elapsed since the last emptying.
  • the wear of an engine oil certainly depends on the mileage traveled but also, and especially, the conditions in which these kilometers were traveled, in particular the type of journey (urban cycle, motorway, etc.), speed the vehicle and the type of conduct adopted by the driver.
  • the wear of a motor oil is mainly related to its oxidation which has four direct consequences: the increase in the viscosity of the oil, the increase in the acidity of the oil, the formation of deposits , varnish and sludge and blackening of the oil. These factors are used, alone or in combination, by laboratory techniques based on sampling. Clearly, these techniques are not suitable for individual vehicles and per se, are not a solution to the demand for simplified maintenance.
  • this object is achieved by a device for optimizing the maintenance of a motor vehicle comprising means for determining a derivative over time of the pressure of the lubricating oil. motor input and means for alerting the driver when said derivative (s) reach predefined thresholds.
  • the implementation of the invention thus assumes the acquisition of the lubricating oil pressure at the engine inlet, at a known temperature and means for calculating the drift of this pressure over time. Note that the scale from here considered is that time of the operating time of the engine véhicuie, time does not flow when the engine is at standstill.
  • this measurement is made under conditions of constant temperature and engine speed.
  • these conditions are chosen outside the starting phase of the engine, and this pressure measurement is preferably carried out when the temperature reaches for example a minimum of 50 ° C. and when the engine rotates at least 1500 rpm.
  • these reference points are not too high in order to be reached on a majority of the journeys made by the vehicle, in particular not imposing an engine speed that would not be systematically achieved if the vehicle is essentially used. for courses in urban areas.
  • the method according to the invention is based on the study of a derived function, it can predict the evolution of the viscosity and therefore to recommend a drain for example before having traveled a thousand kilometers again, without broadcast a threatening message that could unnecessarily alert some drivers.
  • the drift of the viscosity gradient is also calculated, which makes the alerts more robust, especially avoiding the disturbance during oil replenishments.
  • Figure 1 is a schematic view of the lubrication system of an engine
  • Figure 2 is a simplified model of the lubrication circuit at constant speed and iso temperature oil
  • Figure 4 shows the evolution of the viscosity of the lubricating oil according to the mileage traveled for different types of oil
  • ® 5 shows the change in viscosity, and the viscosity gradient, depending on the distance traveled after a complete renewal of the lubricating oil
  • Figure 6 shows the evolution of the viscosity, and the viscosity gradient in the first hours after a drain corresponding to the circled part of Figure 5;
  • Figure 7 is a view similar to Figure 5 wherein there is shown more of the shape of the second derivative of the function of the viscosity versus time.
  • FIG. 1 a diagram of a lubrication system of an engine.
  • An oil pump 1 sucks the oil from the housing not shown here through a strainer 2, the oil is supplied to an oil filter 3 and an exchanger 4 for cooling.
  • the clean oil is cooled and is fed to the main boom 5 for pressure distribution to the different elements to be lubricated.
  • a discharge valve 8 makes it possible to regulate the oil pressure whatever the speed of rotation of the engine.
  • This distribution is effected according to a first circuit 7 to the mechanical parts contained in the casing of the engine block, in particular the pins of the crankshaft (8 nozzles) and the crossheads.
  • the oil is also directed to the bodies of the cylinder head, via the rise to the cylinder head 9, to lubricate in particular the bearings of the camshaft and the hydraulic pushers (nozzles 10). ).
  • the solenoid valve 11 which feeds the camshaft dephaser.
  • the main ramp is equipped with a pressure switch for example at position 12 which generates an alarm signal if the pressure falls below a certain critical pressure, ie if the engine is no longer lubricated.
  • This alarm signal is typically relayed to the level of the dashboard by a bright red light directing the driver to stop the vehicle in the most promptly.
  • This pressure switch is of the all-or-nothing type and in fact, rarely triggers before the stop lubrication causes a break engine.
  • the main ramp is also equipped with a pressure sensor (which may optionally play more the function of the pressure switch),
  • the pressure at the engine inlet in other words in the main ramp 25, is a resultant of the oil flow at the outlet of the pump 21, the pressure drop of the engine and the viscosity of the oil.
  • a pressure sensor is thus placed in the main ramp 25.
  • the flow generator is typically a volumetric type pump. For a given speed and oil temperature, the pump is therefore designed to provide a fixed output flow. Assuming that the pump performance drift (whereas its wear) is much slower than the oxidation of the oil, it can be assumed that the flow rate is a constant for the conditions of engine speed and temperature fixed.
  • the inlet pressure can be considered as a direct image of the viscosity of the oil, as represented in FIG. 3 which shows the evolution of the viscosity as a function of the pressure in the main ramp.
  • this function can be considered as affine, that is to say that the viscosity is assumed to be proportional to the pressure in the main ramp.
  • the evolution of the oil pressure in the main ramp is itself a reflection of the evolution of this viscosity.
  • the knowledge of the temperature of oil, pressure in the manifold and engine speed are therefore the only éivers necessary for evaluating the oil viscosity.
  • the pressure can be measured by a pressure sensor.
  • the temperature is either determined by the system in known manner, or also measured by a temperature sensor also placed in the ramp.
  • the engine speed must be known at all times, but this data is generally already available because necessary especially for the control of the injection.
  • Figure 4 illustrates the evolution of the viscosity of the oil according to the mileage traveled.
  • a basic oil H1 taking as kilometer zero the mileage corresponding to the last oil change, it is observed that the viscosity is initially almost constant, then increases significantly to exceed a maximum reference viscosity tolerated.
  • K1 it is desirable to renew the oil.
  • Another oil such as, for example, the oil H2, while at the same time having a viscosity similar to the viscosity of the oil H1, can age better and allow a higher oil content.
  • K2 kiior ⁇ agerie higher than K1.
  • Patent application US 2004/0211246 proposes to use this affine relation pressure / viscosity for generating a warning to the driver when the oil is worn.
  • this application does not take into account another factor illustrated in Figure 4 that the deterioration is not identical to an oil to another.
  • the temperature behavior (and in particular the reduction in viscosity with increase in temperature) depends on an oil to the other. A more viscous cold oil is not necessarily a problem if its hot viscosity remains below a certain threshold.
  • the measurement by the derivative as according to the invention makes it possible to overcome this problem. For example, in the case of oil H2, the viscosity remains good for longer than with the other two oils but the degradation is very marked. Conversely, in the case of oil H3, the limit viscosity is reached faster but does not significantly increases right after. Delay the oil change after the alarm indicator is triggered is less dangerous in practice with the oil H3 with oil H2 yet intrinsically better.
  • the present invention obviates this problem by not only considering the value of the pressure (and therefore indirectly the viscosity) but also the derivative over time of this pressure.
  • [0028] in a first variant of the invention can be measured repeatedly, for example every 5 minutes, the pressure value and the engine speed and the oil temperature at the time of this measurement.
  • These measures provide an entire set of values which can be extracted representative values, for example the corresponding points at an average engine speed (typically between 1500 and 2500 rpm) and an average temperature (typically between 50 0 C and 150 0 C. .. note that these values are preferably such that they are reached on most journeys made by the vehicle even if the vehicle is used almost exclusively in the urban cycle is, however, avoid choosing too low a temperature - which risks be routinely exceeded in the hot season, or too low a regime that can suffer disturbances independent of the wear of the oil.
  • the pressure value measured n ' is stored only if it meets the steady conditions and temperature. This variant is preferred insofar as it makes it possible to avoid an excessive increase in the mass of stored data.
  • T critical viscosity
  • the first derivative corresponds to a stage where the first derivative of the viscosity is substantially constant and above of a certain critical threshold here noted Seu ⁇ M.
  • the emptying alert can therefore be triggered if
  • this critical value Threshold 2 does not depend on the type of lubricant used by the customer, which makes the method much more robust.
  • FIG. 7 further shows that the representative curve of the second derivative has an extremum and is decreasing in the zone corresponding to the stabilization of the first derivative. To avoid untimely alerts, it is therefore desirable to check that we are in the decreasing part of the curve, which is to prohibit an alert if the third derivative is positive (a criterion which in fact can be substituted for the two criteria on the first derivative mentioned above, namely non-negative slope and at least equal to the Threshold).
  • the oxidation of the state of observation method lubricating oil supplied according to the invention is not only based on the actual state of oxidation oil but is not affected by the type of oil used by the customer or by punctual contributions of new oil.
  • knowledge of the second derivative, and the sign of the third derivative allows to calculate the rate of degradation of the oil and therefore to announce in advance when a drain will become desirable.
  • a recommended stop light may thus be lit if the system observes a too rapid degradation of the oil, then recommending the driver to stop the vehicle before the engine has actually been damaged.
  • the pressure values measured by the pressure sensor can also be used as absolute references, for example to alert the driver if the pressure becomes greater than the limit pressure allowable by the engine or if, on the contrary, the pressure is below a floor value
  • the pressure sensor is used as a pressure switch. In other words, as soon as the engine inlet pressure deviates from the recommended range for optimal engine operation, an alert can be activated.
  • the invention thus provides a robust method, inexpensive and reliable.

Abstract

La présente invention concerne un dispositif d'optimisation de la maintenance d'un véhicule automobile comportant des moyens pour déterminer au moins une dérivée au cours du temps de la pression de l'huile de lubrification en entrée de moteur et des moyens pour alerter le conducteur lorsque ladite dérivée atteint un seuil prédéfini.

Description

[0001] La présente invention revendique la priorité de la demande française 0551567 déposée le 10/06/2005 dont le contenu (description, revendications, dessins) est incorporé ici par référence,
[0002] La présente invention concerne généralement les systèmes de lubrification des moteurs à combustion interne et plus particulièrement une méthode pour estimer le niveau d'oxydation d'une huile moteur et recommander une vidange à bon escient.
[0003] Ces dernières années, les nombreuses améliorations apportées tant au niveau des moteurs à combustion interne qu'au niveau des huiles de lubrification ont permis d'espacer de façon notable la fréquence des vidanges recommandées par le constructeur pour un fonctionnement optimal du véhicule. Néanmoins, la clientèle automobile reste sensible sur ce point et exprime un vœu persistant de réduction encore accrue de la fréquence des vidanges.
[0004] Le plus souvent, les recommandations des constructeurs sont basées sur des critères élémentaires relativement empiriques tels que le kilométrage parcouru et/ou la durée écoulée depuis la dernière vidange. Or, l'usure d'une huile moteur dépend certes du kilométrage parcouru mais aussi, et surtout, des conditions dans lesquelles ces kilomètres ont été parcourus, en particulier du type de parcours (cycle urbain. autoroute, etc.), de la vitesse du véhicule et du type de conduite adoptée par le conducteur.
[0005] Pour mieux prendre en compte certains de ces paramètres, on a proposé des algorithmes qui pondèrent le facteur par la température de l'huile. Néanmoins, ces algorithmes ne font qu'estimer l'usure supposée de l'huile et non son usure effective essentiellement liée à son oxydation. Or cette usure effective dépend également de paramètres extrinsèques très difficilement pris en compte. Par exemple, la rapidité avec laquelle une huile pour moteurs se dégrade dépend aussi de la qualité de l'huile utilisée. Si les algorithmes sont basés sur l'hypothèse de l'utilisation d'une huile de relativement mauvaise qualité (peu fluide), les usagers qui privilégient la qualité sont incites à remplacer une huile pourtant faiblement oxydée. [0006] Un autre facteur à prendre en compte est celui du rafraîchissement de l'huile par appoint. En effet, il est bien connu que la fréquence des vidanges peut être réduite si le volume d'huile est augmenté. Et de fait, de nombreux véhicules sont de nos jours équipés de réservoir à huile de contenance accrue par rapport à ce qui existait il y a quelques années. Néanmoins, il est clair qu'un tel accroissance du volume du réservoir à des limites, tant au niveau de l'encombrement qu'au niveau de l'acceptabilité par la clientèle sensible au coût du remplacement de tout le volume d'huile. Mais de nombreux usagers obtiennent un effet similaire en ajoutant des petites quantités d'huile « fraîche » de façon régulière entre deux opérations de vidange. Là encore, ceci contribue à une moindre dégradation de l'huile et donc à la possibilité d'un espacement des vidanges, possibilité qui ne pourra certes pas être prise en compte par un algorithme basé sur un modèle simple comme ceux évoqués plus haut.
[0007] L'usure d'une huile moteur est essentiellement liée à son oxydation qui a quatre conséquences directe : l'augmentation de la viscosité de l'huile, l'augmentation de l'acidité de l'huile, la formation de dépôts, vernis et boues et le noircissement de l'huile. Ces facteurs sont utilisés, seuls ou en combinaison, par des techniques de laboratoire basées sur des prélèvements. A l'évidence, ces techniques ne sont pas adaptées pour des véhicules de particulier et en soi, ne sont pas une solution à la demande d'un entretien simplifié.
[0008] II subsiste donc un besoin d'un moyen simple pour recommander une vidange de façon opportune, en tenant compte de l'état réel d'oxydation de l'huile de lubrification.
[0009] Selon une première variante de l'invention, ce but est atteint par un dispositif d'optimisation de la maintenance d'un véhicule automobile comportant des moyens pour déterminer une dérivée au cours du temps de la pression de l'huile de lubrification en entrée de moteur et des moyens pour alerter le conducteur lorsque la ou lesdites dérivées atteignent des seuils prédéfinis.
[0010] La mise en œuvre de l'invention suppose ainsi l'acquisition de la pression d'huile de lubrification en entrée de moteur, à une température connue et des moyens pour calculer la dérive de cette pression avec le temps. A noter que l'échelle de temps ici considérée est celle du temps de fonctionnement du moteur du véhicuie, le temps ne s'écoulant pas lorsque le moteur est à l'arrêt.
[0011] Selon un mode de réalisation de l'invention plus particulièrement préféré, cette mesure se fait dans des conditions de température et de régime moteur constante. De préférence, ces conditions sont choisies hors de la phase de démarrage du moteur, aussi cette mesure de pression est effectuée de préférence lorsque la température atteint par exemple un minimum de 500C et lorsque le moteur tourne au moins à 1500 tours par minute. Par contre, il est souhaitable que ces points de référence ne soient pas trop élevés afin d'être atteints sur une majorité des parcours effectués par le véhicule, notamment ne pas imposés un régime moteur qui ne serait pas systématiquement atteint si le véhicule est essentiellement utilisé pour des parcours en zone urbaine.
[0012] Le procédé selon l'invention étant basé sur l'étude d'une fonction dérivée, il permet de prédire l'évolution de la viscosité et donc de recommander une vidange par exemple avant d'avoir à nouveau parcouru mille kilomètres, sans diffusion d'un message comminatoire qui pourrait alerter inutilement certains conducteurs.
[0013] Dans une variante plus particulièrement préférée de l'invention, la dérive du gradient de viscosité est également calculée ce qui permet de rendre les alertes plus robustes, en évitant notamment la perturbation lors des appoints d'huile.
[0014] D'autres détails et caractéristiques avantageuses de l'invention ressortent de l'exemple de réalisation décrit ci-dessous en se référant aux dessins annexés dans lesquels :
* la figure 1 est une vue simplifiée du circuit de graissage d'un moteur ;
* la figure 2 est un modèle simplifié du circuit de lubrification à iso régime et iso température d'huile ;
* la figure 3 montre la relation entre la viscosité d'une huile et la pression en entrée de moteur ;
* la figure 4 montre l'évolution de la viscosité de l'huile de lubrification en fonction du kilométrage parcouru pour différents types d'huile ; ® la figure 5 montre l'évolution de la viscosité, et du gradient de viscosité, en fonction du kilométrage parcouru après un renouvellement complet de l'huile de lubrification ;
* la figure 6 montre l'évolution de la viscosité, et du gradient de viscosité, dans les premières heures suivant une vidange, correspondant à la partie cerclée de la figure 5 ;
* la figure 7 est une vue analogue à la figure 5, dans laquelle on a représenté de plus l'allure de la dérivée seconde de la fonction de la viscosité en fonction du temps.
[0015] On a représenté sur la figure 1 un schéma d'un circuit de graissage d'un moteur. Une pompe à huile 1 aspire le l'huile du carter ici non représenté au travers d'une crépine 2, L'huile est acheminée vers un filtre à huile 3 et un échangeur 4 pour son refroidissement. L'huile propre est refroidie est conduite vers la rampe principale 5 pour une distribution sous pression aux différente éléments à lubrifier. Un clapet de décharge 8 permet de réguler la pression d'huile quelque soit la vitesse de rotation du moteur.
[0018] Cette distribution s'effectue selon un premier circuit 7 vers les organes mécaniques contenus dans le carter du bloc moteur, notamment les tourillons du vilebrequin (buses 8) et les têtes de bielles.
[0017] Par un second circuit de lubrification, l'huile est également dirigée vers les organes de la culasse, via la montée vers la culasse 9, pour lubrifier en particulier les paliers de l'arbre à cames et les poussoirs hydrauliques (buses 10). Sur cette figure, on a également schématisé l'éiectrovanne 11 qui alimente le déphaseur d'arbre à cames.
[0018] De façon générale, la rampe principale est équipée d'un manocontact par exemple en position 12 qui génère un signal d'alarme si la pression descend en dessous d'une certaine pression critique, autrement dit si le moteur n'est plus lubrifié. Ce signal d'alarme est typiquement relayé au niveau du tableau de bord par un témoin lumineux rouge ordonnant au conducteur de stopper le véhicule dans les plus brefs délais. Ce manocontact est donc du type tout ou rien et de fait, se déclenche rarement avant que l'arrêt de la lubrification n'entraîne une casse moteur.
[0019] Selon l'invention, la rampe principale est également équipée d'un capteur de pression (qui peut éventuellement jouer de plus la fonction du manocontact),
[0020] Si l'on considère le schéma simplifié du circuit de lubrification tel que représenté figure 2, dans l'hypothèse d'un clapet de décharge fermé, on peut le résumer comme comportant un carter d'huile 20, une pompe à huile 21 , un filtre à huile 22, des pertes de charge du moteur 23 et un clapet de décharge 24. La rampe principale 25 correspond au conduit entre le filtre 22 et le moteur,
[0021] Si on suppose le clapet de décharge fermé, la pression en entrée de moteur, autrement dit dans la rampe principale 25, est une résultante du débit d'huile en sortie de la pompe 21 , de la perte de charge du moteur et de la viscosité de l'huile. Selon l'invention, un capteur de pression est ainsi placé dans la rampe principale 25.
[0022] Le générateur de débit est typiquement une pompe de type volumétrique. Pour un régime et une température d'huile donnée, la pompe est donc conçue pour fournir un débit de sortie fixe. Si on admet que la dérive de performance de la pompe (considérant à son usure) est beaucoup plus lente que l'oxydation de l'huile, on peut admettre que le débit est bien une constante pour des conditions de régime moteur et température fixes.
[0023] Les pertes de charge du moteur sont supposées constantes à régime moteur N et température d'huile T constants. Donc, la pression d'entrée peut être considérée comme une image directe de la viscosité de l'huile, comme représenté figure 3 qui montre l'évolution de la viscosité en fonction de la pression dans la rampe principale. Dans une première approximation, cette fonction peut être considérée comme affine, c'est-à-dire que la viscosité est supposée proportionnelle à la pression dans la rampe principale.
[viscosité — K * Pression wmpe)r v
[0024] L'évolution de la pression d'huile dans la rampe principale est donc elle-même le reflet de l'évolution de cette viscosité. La connaissance de la température de l'huile, de la pression dans la rampe et du régime moteur sont donc les seuls éiéments nécessaires pour évaluer la viscosité de l'huile. Comme indiqué précédent, la pression peut être mesurée par un capteur de pression. La température est soit déterminée par le système de façon connue, soit également mesurée par un capteur de température placé également dans la rampe. Le régime moteur doit être aussi connu à tout instant, mais cette donnée est généralement déjà disponible car nécessaire notamment pour le pilotage de l'injection.
[0025] La figure 4 illustre l'évolution de la viscosité de l'huile en fonction du kilométrage parcouru. Avec une huile H1 de base, en prenant comme kilomètre zéro le kilométrage correspondant à la dernière vidange, on observe que la viscosité est initialement pratiquement constante, puis croît significativement pour dépasser une viscosité de référence maxima tolérée. Quand le kilométrage K1 est atteint, il est souhaitable de renouveler l'huile, Une autre huile, comme par exempie l'huile H2, tout en ayant au dépari une viscosité semblable à la viscosité de l'huile H1 peut mieux vieillir et autoriser un kiiorπétrage K2 plus élevé que K1. A noter que l'expression « autre type d'huile » recouvre également le cas d'une huile soumise à un autre type de conduite, et qui aura un vieillissement différent du fait du conducteur non nécessairement de la qualité intrinsèque de l'huile utilisée. Une huile d'un grade inférieure (plus visqueuse au départ) peut en fonction de son vieillissement n'autoriser qu'un kilométrage encore moindre.
[0026] La demande de brevet US 2004/0211246 propose d'utiliser cette relation affine pression/viscosité pour générer un signal avertissant le conducteur lorsque son huile est usagée. Pour autant, cette demande de brevet ne tient pas compte d'un autre facteur illustré figure 4 à savoir que la dégradation n'est pas identique d'une huile à l'autre. Le comportement en température (et notamment la diminution de la viscosité avec une augmentation de la température) dépend d'une huile à l'autre. Une huile plus visqueuse à froid n'est donc pas nécessairement un problème si sa viscosité à chaud reste en dessous d'un certain seuil. La mesure par la dérivée comme selon l'invention, permet par contre de bien s'affranchir de ce problème. Par exemple, dans le cas de l'huile H2, la viscosité reste bonne pendant plus longtemps qu'avec les deux autres huiles mais la dégradation est très marquée. A l'inverse, dans le cas de l'huile H3, la viscosité limite est atteinte plus rapidement mais ne croît pas significativement juste après. Retarder le changement d'huile après que le témoin d'alarme se soit déclenché est donc en pratique moins dangereux avec l'huile H3 qu'avec l'huile H2 pourtant intrinsèquement de meilleure qualité.
[0027] La présente invention permet d'obvier ce problème en ne considérant pas uniquement la valeur de la pression (et donc indirectement de la viscosité) mais aussi la dérivée au fil du temps de cette pression.
[0028] Dans une première variante de l'invention, on peut mesurer de façon répétée, par exemple toutes les 5 minutes, la valeur de la pression ainsi que le régime moteur et la température d'huile à l'instant de cette mesure. Ces mesures donnent tout un échantillon de valeurs dont on peut extraire des valeurs représentatives, par exemple les points correspondants à un régime moteur moyen (typiquement compris entre 1500 et 2500 tours) et une température moyenne (typiquement comprise entre 500C et 1500C. A noter que ces valeurs sont de préférence telles qu'elles sont atteintes sur la plupart des trajets effectués par le véhicule, même si le véhicule est utilisé presque exclusivement en cycle urbain. On évitera toutefois de choisir une température trop basse - qui risque d'être systématiquement dépassée en saison chaude, ni un régime trop bas qui peut subir des perturbations indépendantes de l'usure de l'huile.
[0029] Dans une seconde variante de l'invention, la valeur de la pression mesurée n'est mémorisée que si elle répond aux conditions de régime et de température. Cette variante est préférée dans la mesure où elle permet d'éviter un trop grand d'accroissement de la masse de données mémorisées.
[0030] Si on choisit de se piacer dans des conditions T, N connues et qui se produisent de façon répétées dans la vie d'un véhicule, par exemple un régime moteur de 2000 tours minute, et une température de 80°C, on observe comme illustré figure 5 que lorsque la viscosité critique (notée Seuil 0) est atteinte, la dérivée première (gradient par rapport au temps ou au kilométrage) correspond à un stade où la dérivée première de la viscosité est pratiquement constante et au dessus d'un certain seuil critique ici noté SeuïM .
[0031] Selon un premier mode de réalisation de l'invention, l'alerte vidange peut donc être déclenchée si
~ > Seιul 1 Q
[0032] Dans une seconde variante de l'invention, un critère supplémentaire est imposé, à savoir que la dérivée première ne doit pas être négative.
[0033] En effet, suite à un apport d'huile neuve du fait d'une vidange, dans les premières heures de fonctionnement du moteur, l'huile est soumise à des efforts de cisaillement qui entraînent une diminution initiale de sa viscosité. C'est ce qui est illustré figure 6 qui montre l'évolution de la viscosité et du gradient de viscosité pendant cette phase initiale de « rodage » de l'huile. A noter qu'un phénomène similaire de diminution de la viscosité de l'huile se produit également suite à un remplissage d'appoint, et là encore ce second critère permet d'éliminer des alertes intempestives. Lors de la phase de rattrapage, lorsque la viscosité de l'huile recommence à augmenter, la valeur de la dérivée première redevient positive, mais reste inférieure à la valeur Seuil 1 (les courbes ne sont données que pour illustrer les différents phénomènes et les valeurs de pentes ne doivent pas être interpolées d'une figure à l'autre).
[0034] II est aussi avantageux de calculer la dérivée seconde de l'évolution de la viscosité dans le temps. En effet, comme schématisé figure 7, lorsque la viscosité est supérieure à une valeur critique Seuil__G, la dérivée est supérieure à SeuiM et la dérivée seconde est inférieure à une troisième valeur critique Seuil_2. Cette valeur Seuil__2 est atteinte quand l'oxydation de l'huile commence à se stabiliser.
[0035] II est donc avantageux de fixer un nouveau critère pour une alerte vidange, à savoir
— d2 i(.vis cos ité L) ^ Seui .l, 2 ώ2
[0036] Avantageusement, cette valeur critique Seuil 2 ne dépend pas du type de lubrifiant utilisée par le client, ce qui rend la méthode beaucoup plus robuste.
[0037] L'observation de la figure 7 montre de plus que la courbe représentative de la dérivée seconde présente un extremum et est décroissante dans la zone correspondant à la stabilisation de la dérivée première. Pour éviter des alertes intempestives, il est donc souhaitable de vérifier que l'on se situe bien dans la partie décroissante de la courbe, ce qui revient interdire une alerte si la dérivée troisième est positive (critère qui en fait peut se substituer aux deux critères sur la dérivée première énoncés plus haut, à savoir pente non négative et au moins égale au SeuïM ).
[0038] Comme il ressort de la description faite ci-dessus, la méthode d'observation de l'état d'oxydation de l'huile de lubrification proposée selon l'invention est non seulement basée sur l'état réel d'oxydation de l'huile mais n'est pas perturbée par le type d'huile utilisé par le client ou par des apports ponctuels d'huile neuve.
[0039] Par ailleurs, la connaissance de la dérivée seconde, et du signe de la dérivée troisième permet de calculer la vitesse de dégradation de l'huile et donc d'annoncer par avance quand une vidange deviendra souhaitable. Un témoin d'arrêt recommandé peut ainsi être allumé si le système observe une dégradation trop rapide de l'huile, recommandant alors au conducteur l'arrêt du véhicule avant que le moteur n'est été effectivement endommagé.
[0040] II est à noter que les valeurs de pression mesurées par le capteur de pression peuvent également être utilisées comme références absolues, par exemple pour alerter le conducteur si la pression devient supérieure à la pression limite admissible par le moteur ou si au contraire, la pression est inférieure à une valeur plancher
(dans ce cas, le capteur de pression est utilisé comme manocontact). En d'autres termes, dès que la pression en entrée de moteur s'écarte de la plage recommandée pour un fonctionnement optimal du moteur, une alerte peut être actionnée.
[0041] L'invention assure ainsi une méthode robuste, peu onéreuse et fiable.

Claims

Dispositif d'optimisation de la maintenance d'un véhicule automobiie comportant des moyens pour déterminer, à une température et un régime moteur de référence, au moins une dérivée au cours du temps de la pression de l'huile de lubrification en entrée de moteur et des moyens pour alerter le conducteur lorsque ladite dérivée atteint un seuil prédéfini.
Dispositif selon la revendication 1 , caractérisé en ce que ladite température de référence est comprise entre 500C et 150° C. 3. Dispositif selon la revendication 1. caractérisé en ce que ledit régime moteur de référence est compris entre 1500 et 2500 tours minute.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'une des dérivées est la dérivée première correspondant au gradient de pression au cours du temps. 5. Dispositif selon la revendication 4, caractérisé en ce que l'alerte n'est actionnée que si le gradient de pression est de plus positif.
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'une des dérivées est la dérivée seconde de l'évolution de la pression de l'huile de lubrification en entrée de moteur et en ce que lesdits moyens pour alerter le conducteur ne sont actionnés que si de plus ladite dérivée seconde est inférieure à seuil de référence Seuil__2.
7. Dispositif selon la revendication 8, caractérisé en ce qu'il comporte de plus des moyens pour calculer la dérivée troisième de l'évolution de la pression de l'huile de lubrification en entrée de moteur et en ce que lesdits moyens pour alerter le conducteur ne sont actionnés que si de plus ladite dérivée troisième a une valeur négative.
8. Dispositif selon l'une des revendications 6 à 7, caractérisé en ce qu'il comporte de plus des moyens pour calculer le moment où la viscosité de l'huile atteindra une valeur critique et pour alerter le conducteur en conséquence.
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la valeur de la pression de l'huile de lubrification en entrée de moteur est utilisée pour actionner une alarme si cette valeur s'écarte d'une plage de fonctionnement optimal du moteur.
EP06778948A 2005-06-10 2006-06-08 Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange Withdrawn EP1910652A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551567A FR2886976A1 (fr) 2005-06-10 2005-06-10 Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange
PCT/FR2006/050601 WO2006131686A2 (fr) 2005-06-10 2006-06-08 Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange

Publications (1)

Publication Number Publication Date
EP1910652A2 true EP1910652A2 (fr) 2008-04-16

Family

ID=35840680

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06778948A Withdrawn EP1910652A2 (fr) 2005-06-10 2006-06-08 Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange

Country Status (3)

Country Link
EP (1) EP1910652A2 (fr)
FR (1) FR2886976A1 (fr)
WO (1) WO2006131686A2 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4793369B2 (ja) * 2007-10-18 2011-10-12 トヨタ自動車株式会社 油圧システムの制御装置及びバルブタイミング制御装置
FR2962764B1 (fr) * 2010-07-15 2014-10-10 Peugeot Citroen Automobiles Sa Procede de controle moteur comprenant la detection d'une vidange d'huile
CN112765789B (zh) * 2020-12-31 2023-07-28 联合汽车电子有限公司 机油老化程度预测方法、装置、设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2533623A1 (fr) * 1982-09-24 1984-03-30 Renault Procede de detection de chute de pression d'huile et dispositif de mise en oeuvre
DE3506705C2 (de) * 1984-03-09 1995-08-17 Volkswagen Ag Anordnung zur Gewinnung eines Ölmangelsignals bei einer druckölgeschmierten Maschine
FR2621122A1 (fr) * 1987-09-25 1989-03-31 Applic Electro Tech Avance Systeme de surveillance de parametres d'un vehicule motorise, notamment du moteur de ce vehicule
US6901788B2 (en) * 2003-04-25 2005-06-07 Delphi Technologies, Inc. Apparatus and method for determining oil change based upon oil viscosity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006131686A3 *

Also Published As

Publication number Publication date
WO2006131686A2 (fr) 2006-12-14
FR2886976A1 (fr) 2006-12-15
WO2006131686A3 (fr) 2007-11-22

Similar Documents

Publication Publication Date Title
EP2458161B1 (fr) Méthode de monitoring du système d'huile d'une turbomachine
CN107949782B (zh) 基于介电和粘度传感器识别粘度等级和新油状态
EP2573338B1 (fr) Contrôle du sur-remplissage d'un système de lubrification d'un moteur d'aéronef
EP1956203B1 (fr) Dispositif et procède d'estimation de la consommation d'huile d'un moteur de véhicule
EP1689986B1 (fr) Systeme d'aide a la maintenance d'un filtre a particules integre dans une ligne d'echappement d'un moteur de vehicule automobile
EP1910652A2 (fr) Methode pour detecter le niveau d'oxydation d'une huile moteur et recommander une vidange
FR3056002B1 (fr) Procede d’analyse de donnees de composants de vehicules
EP2989308A1 (fr) Procede de declenchement d'une regeneration d'un filtre a particules
CN110382827B (zh) 使过滤器元件和润滑剂流体的维护警报同步的系统和方法
FR2928193A1 (fr) Dispositif et procede de protection thermique d'une boite de vitesses
FR2814841A1 (fr) Procede et systeme de diagnostic de l'usure d'un vehicule
FR2941909A1 (fr) Procede et dispositif de controle d'un systeme de motorisation pour vehicule automobile
CN112377283B (zh) 机油自动补偿控制方法、装置及发动机系统
EP2653676B1 (fr) Procédé de contrôle d'une qualité d'un lubrifiant d'un moteur à combustion interne
FR2961252A1 (fr) Procede de detection de la realisation d'une vidange pour un moteur a combustion interne
EP2324214A1 (fr) Strategie de controle de la qualite du lubrifiant d'un moteur diesel
FR3033440A1 (fr) Procede de prediction du carburant dilue dans une huile de lubrification d’un moteur thermique
EP1953373B1 (fr) Processus de conception d'un élément organique d'un véhicule automobile et procédé de supervision du fonctionnement de cet élément organique
FR2912458A1 (fr) Procede et dispositif de prediction de l'intervalle de vidange de l'huile de lubrification d'un moteur a combustion interne de vehicule.
FR2970040A1 (fr) Dispositif de regeneration d'un filtre a particules equipant une ligne d'echappement d'un moteur thermique
FR3088399A1 (fr) Evaluation dynamique de l’usure d’une courroie d’un vehicule automobile
FR2897650A1 (fr) Procede de commande d'un moteur de vehicule pour le declenchement d'une phase de regeneration d'un filtre a particules
FR3133896A1 (fr) Véhicule automobile avec boîte de vitesses et procédé de surveillance automatique
US20080302709A1 (en) Method for Monitoring the Degree of Clogging of the Filtration Surface of an Oil Filter
FR2808085A1 (fr) Dispositif d'estimation de la quantite de carburant dans un reservoir de vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071031

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090511

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090923