EP1910582B1 - Method for producing a copper alloy having a high damping capacity and its use - Google Patents

Method for producing a copper alloy having a high damping capacity and its use Download PDF

Info

Publication number
EP1910582B1
EP1910582B1 EP06775757A EP06775757A EP1910582B1 EP 1910582 B1 EP1910582 B1 EP 1910582B1 EP 06775757 A EP06775757 A EP 06775757A EP 06775757 A EP06775757 A EP 06775757A EP 1910582 B1 EP1910582 B1 EP 1910582B1
Authority
EP
European Patent Office
Prior art keywords
alloy
process according
temperature
temperatures
transformation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06775757A
Other languages
German (de)
French (fr)
Other versions
EP1910582A2 (en
Inventor
Hennadiy Zak
Sönke VOGELGESANG
Agnieszka Mielczarek
Babette Tonn
Werner Riehemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Technische Universitaet Clausthal
Original Assignee
Technische Universitaet Clausthal
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universitaet Clausthal filed Critical Technische Universitaet Clausthal
Publication of EP1910582A2 publication Critical patent/EP1910582A2/en
Application granted granted Critical
Publication of EP1910582B1 publication Critical patent/EP1910582B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/01Alloys based on copper with aluminium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent

Definitions

  • the invention relates to a method for producing a copper alloy with adjusted to the application of the components alloy properties and specifically with targeted improved, or optimally adjusted mechanical damping, which is particularly suitable for mechanically, for example, by vibration, impact or shock, loaded components. Furthermore, the invention relates to the use of the alloy obtained by the method for reducing vibrations and noise attenuation of mechanically loaded components.
  • HIDAMETs Hlgh DAmping METals
  • high mechanical damping capacity is desirable for reducing vibration and noise reduction.
  • Such alloys are therefore particularly suitable for the manufacture of ship propellers and pump housings, as well as for use in vibrating machines and for preventing vibration disturbances in various precision apparatuses and electronic instruments.
  • the alloys are also suitable for use in various tools that are exposed to vibrations and / or shocks during operation, such as punches or dies in sheet metal forming or in lathes and milling machines.
  • HIDAMETs There are a variety of HIDAMETs known that can be used for noise damping and vibration absorption.
  • the fields of application of a large part of these materials, in particular of magnesium and magnesium alloys, are severely limited by their insufficient mechanical and corrosion properties.
  • HIDAMETs with martensitic phase transformations are of particular importance in the art for achieving high attenuation properties. Alloys with martensitic phase transformations have a different atomic arrangement in the solid state at high temperatures than at low temperatures.
  • the high temperature phase is referred to as "austenite” and the low temperature phase as “martensite”.
  • austenite The transformation of austenite into martensite takes place on cooling of the material from the austenitic state and begins at the martensite start temperature MS.
  • the martensitic transformation is completed when the martensite finish temperature MF is reached.
  • Ni-Ti alloy (“Nitinol”), Cu-Zn-Al alloys (“Proteus”) and Mn-Cu alloys (“Sonoston”).
  • Ni-Ti alloys must be produced consuming under vacuum and are also very expensive due to the alloying elements involved.
  • Cu-Zn-Al alloys are much cheaper.
  • the limited corrosion resistance and the tendency to brittle fracture behavior are significant disadvantages of these alloys.
  • they are extremely severe in both the austenitic and the martensitic state to aging.
  • Mn-Cu alloys have been specially developed for the manufacture of ship propellers. Due to the relatively wide solidification interval of about 130 ° C, these alloys are prone to hot cracking. In addition, aging effects also occur here, so that a significant decrease in the damping effect occurs already at room temperature after storage for about 1000 hours.
  • the patent US Pat. No. 3,868,279 discloses high-damping Cu-Mn-Al alloys and a way to improve their damping properties by heat treatment.
  • These ternary alloys contain 32-42% by weight of Mn, 2-4% by weight of Al and the remainder of Cu, the Mn content preferably being 40% and the Al content preferably being 2-3%.
  • These alloys are cold rolled and heat treated at temperatures between 649 ° C and 760 ° C, quenched in water, then aged at 204 ° C to 482 ° C for 1.5 to 24 hours and cooled in air. It is described a significant improvement in damping properties with less brittleness compared to the prior art Heusler alloys.
  • a technically interesting material alternative to the HIDAMETs described above are Cu-Al-Mn shape memory alloys. These materials also exhibit a thermoelastic martensite transformation.
  • the patent US 4,146,392 describes Cu-Al-Mn shape memory alloys containing in addition to the main constituent copper as alloying constituents 4.6 to 13 wt .-% manganese and 8.6 to 12.8 wt .-% aluminum and have a good resistance to aging. These are alloys whose austenite-martensite transformation takes place at temperatures below 0 ° C. and whose shape memory effect is exploited, for example to produce pipe connection elements.
  • the alloys proposed for this purpose contain, in addition to copper and aluminum, for example, an element from the group of zinc, silicon, manganese and iron.
  • the invention therefore an object of the invention to provide heavy-duty and corrosion-resistant HIDAMETs with a precisely adjustable even in the decisive for the intended application temperature range high damping capacity and a method for their production.
  • the object of the invention is achieved by the method according to claim 1 and the use according to claim 13.
  • Steps c) and d) may be repeated as many times as necessary until the desired adaptation of the transformation temperatures or intervals is achieved.
  • the alloys obtained by the process according to the invention are otherwise produced by conventional melting and casting processes. Apart from cast alloy, the alloy can also be used as wrought alloy. The alloy can be cold or hot formed.
  • the alloys described herein are particularly advantageous for all applications where a high mechanical damping capacity is required, i. especially for mechanically loaded components, devices or housings that are subject to vibrations, impacts or shocks.
  • the alloys differ from Sonoston in significantly higher aluminum and significantly lower manganese contents.
  • the high aluminum content improves the strength of the material according to the invention and at the same time increases its resistance to abrasion, erosion and cavitation.
  • the reduced manganese concentration has a positive effect on the cast-technological properties of the alloy due to the reduction in the solidification interval.
  • dense, oxide and warm crack-free casts can be produced with unit weights of several tons without quality problems.
  • the proportions of the alloy components are usually varied, for. B. as described in more detail below. It has been found that the mechanical damping capacity, which frequently fluctuates greatly with variation of the composition , can be optimized and set to higher values with the aid of a targeted fine tuning of the contents of the individual alloy components than if only the martensitic region were preferred for better reproducible damping properties. as is usual in the prior art.
  • the martensit austenitic transformation temperatures or the associated intervals M s to M F and / or A s to A F adapted to a predetermined operating or operating temperature which will occur in the intended use of the alloy in a "component".
  • component is intended to cover all conceivable practical applications and include both individual parts, such as more complex composite components, housings, machines and the like.
  • Both the operating temperature and the working temperature can be medium temperatures, ie average values from a working or application area.
  • both transition temperature intervals, the martensitic and the austenitic may be used to set to one or more different operating temperature ranges. The adjustment is made by varying the weight proportions of the above alloying ingredients during the melting of the alloy.
  • nickel, iron, cobalt, zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, carbon it is possible to specially adapt the properties of the alloy obtained by the process to the particular application.
  • addition of nickel or silicon increases corrosion resistance and strength properties.
  • the elements iron, vanadium, niobium, molybdenum, chromium, tungsten, yttrium, cerium, scandium, calcium, titanium, zirconium, boron are important for achieving grain refining.
  • Nitrogen and carbon together with transition elements improve the mechanical properties of the alloy obtained according to the invention.
  • the aging resistance of the alloy in both austenitic and martensitic states is increased by the addition of cobalt.
  • Beryllium and phosphorus protect the melt from oxidation.
  • the alloy therefore preferably contains between 1 and 4% by weight of nickel.
  • a preferred embodiment of the alloy contains between 11.6 and 12% by weight, preferably about 11.8% by weight of aluminum.
  • manganese contents between 8 and 10 wt .-% are preferred in the alloy.
  • the alloy may further preferably contain between 0.01 and 1% by weight of cobalt.
  • the structure of the cast alloy is characterized by relatively large cast grains and is preferably grain-fined to achieve optimum mechanical properties. become. Boron additions between 0.001 and 0.05% by weight and / or chromium additions between 0.01 and 0.8% by weight and / or iron additions of 2 to 4% by weight are particularly effective for this purpose.
  • the grain refining can be carried out by adding rare earths up to 0.3% by weight.
  • the alloy may further contain between 2 and 6% zinc.
  • the alloys may preferably have MS temperatures> 0 ° C, without the invention being limited thereto.
  • the invention provides a significant improvement in the damping properties, since only by the invention, the optimal adjustment of these properties while taking into account other desired properties is possible.
  • the method according to the invention makes it possible to adapt the transformation temperatures in the material to the respective conditions of use such that the specific damping capacity of the alloys according to the invention reaches up to 80% and more at the intended application temperature.
  • a particularly composed copper alloy contains as alloying components more than 4% by weight of manganese, more than 10% by weight of aluminum, 0.01 to 0.8 wt .-% chromium and individually or in total 0 to 18% by weight of one or more of the elements nickel, iron, cobalt, Zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, Carbon, but each element does not exceed 6% and contains 100 wt .-% copper.
  • a selected copper alloy which is suitable in particular for mechanically loaded components with specifically improved mechanical damping, contains as alloy constituents > 4 to 12% by weight of manganese, > 10 to 14% by weight of aluminum, 0.01 to 0.8 wt .-% chromium and individually or in total 0 to 18% by weight of one or more of the elements nickel, iron, cobalt, Zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, carbon, but each element not more than 6% and ad 100% by weight of copper.
  • the copper alloy may preferably contain between 1 and 4 wt% nickel.
  • the copper alloy may preferably contain between 11.6 and 12% by weight, more preferably about 11.8% by weight of aluminum.
  • the copper alloy may preferably contain between 8 and 10% by weight of manganese.
  • the copper alloy may preferably contain between 2 and 4% by weight of iron and / or between 0.001 and 0.05% by weight of boron.
  • the copper alloy may preferably contain between 0.01 and 1 wt% cobalt.
  • the copper alloy may preferably contain between 0.01 and 0.3 wt% of rare earths.
  • the copper alloy may furthermore preferably contain between 2 and 6% by weight of zinc.
  • This abovementioned copper alloy can be obtained according to the invention by adapting the martensit-austenitic transformation temperatures or the associated intervals MS to MF and / or AS to AF to a predetermined operating or operating temperature of the component, as described above.
  • Affinity to oxygen is preferable to adding aluminum to lower the transition temperatures to an addition of manganese.
  • the maximum values for the specific damping capacity occur in the alloy according to the invention during cooling from the austenite state in the range between M s and M F and when heating from the Martensitschreib between A s and A F.
  • the temperature in the middle of the martensitic or austenitic phase transition interval should be as close as possible to the operating temperature of components made from the alloy of the invention. It is therefore possible with the invention to produce alloys for specific predetermined service or operating temperatures or temperature ranges, which are then particularly suitable for certain applications and components.
  • the exact adjustment of the transformation temperatures is made with a sample taken during the melting process which allows an express control of the transformation temperatures for the liquid alloy.
  • a sample for the express control it is preferable to use a cast wire drawn from the melt by means of a quartz tube in which a negative pressure is generated.
  • the determination of the transformation temperatures can be carried out on this sample, depending on the expected application either in the casting state or after the heat treatment by known experimental methods for the detection of Phasentiber réellen.
  • the transformation temperature on the sample may be by calorimetry, dilatometry, electrical conductivity measurement, light microscopy, or acoustic emission measurement.
  • the martensitic transformation can also be initiated in a defined temperature range via externally applied voltages.
  • the transformation temperatures in the material increase linearly with the load. This increase in the transformation temperatures must already be considered in the production of components made from the alloy according to the invention, if mechanical stresses are to be expected there.
  • the damping maximum is also considerably influenced by the microstructure of the alloy, with larger grains leading to better damping properties.
  • the grain size of the alloy can be adjusted so that for each specific application, an optimal compromise between the damping capacity and the mechanical properties is achieved.
  • an improvement of the damping properties can be achieved by a heat treatment.
  • a heat treatment As particularly effective has an annealing at temperatures of 650 ° C to 950 ° C with subsequent cooling or quenching (quenching) in liquid or gaseous media such.
  • quenching quenching
  • the temperature of the quenching medium should preferably be above the M s temperature in order to avoid uncontrollable shifts in the transformation temperatures in the material.
  • the aging sensitivity of the transition temperatures can be reduced according to the invention by an additional aging of the quenched alloy at a temperature of 150 ° C to 250 ° C. Expediently, such outsourcing takes 5 to 120 minutes.
  • a martensitic structure can be produced in the surface layer according to a further feature of the invention by laser remelting.
  • the surface layer takes over the damping role, without the entire component must be subjected to a costly heat treatment.
  • the transformation temperatures of the alloy during melting by the express control are adjusted so that, taking into account the cooling conditions in the laser remelting, the transition temperatures in the surface layer correspond to the application temperature of the component.
  • the alloys obtained by the process according to the invention can be used particularly advantageously for reducing vibrations for noise damping on mechanically loaded components, in particular in ship propellers, machine housings, in particular pump housings, generator housings, vibrating machines, precision apparatus, electronic instruments, tools which, during operation, oscillate and / or or are exposed to blows or generate them, in particular stamps, dies, machine hammers, turning and milling tools.
  • the sample is a cast wire having a length of 10 to 150 mm (preferably 15 to 100 mm) and a cross-sectional area of 0.2 to 7 mm 2 , preferably 0.7 to 3.2 mm 2 . This is pulled out of the melt with the help of a quartz tube, in which a negative pressure is generated. This sample can be used directly and very quickly with known detection methods. In a preferred method also used here, the acoustic emission is tracked over a temperature profile.
  • Fig. 1 Formation of specific damping capacity of the alloy of the example taken for a heating and cooling cycle
  • FIG. 1 shows a measurement diagram that have been taken to the example described above.
  • the specific damping capacity is plotted in% above the temperature in ° C.
  • the temperatures were passed through in a heating and cooling cycle from below zero to 200 ° C and back.
  • the example alloy in the austenitic interval much higher attenuation can be achieved than in the martensitic, so that the frequently occurring in the art restriction to martensitic structures must lead to significant disadvantages for the alloy properties.
  • the example alloy achieves its maximum damping properties at a temperature of 120 ° C and thus successfully fulfills the stated task.
  • the achievable damping is over 70%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Herstellung einer Kupferlegierung mit auf den Anwendungszweck der Bauteile eingestellten Legierungseigenschaften und speziell mit gezielt verbesserter, bzw. optimal eingestellter mechanischer Dämpfung, die besonders für mechanisch, beispielsweise durch Vibration, Stoß oder Schlag, belastete Bauteile geeignet ist. Weiterhin betrifft die Erfindung die Verwendung der mit dem Verfahren erhaltenen Legierung zur Verringerung von Vibrationen und zur Geräuschsdämpfung an mechanisch belasteten Bauteilen.The invention relates to a method for producing a copper alloy with adjusted to the application of the components alloy properties and specifically with targeted improved, or optimally adjusted mechanical damping, which is particularly suitable for mechanically, for example, by vibration, impact or shock, loaded components. Furthermore, the invention relates to the use of the alloy obtained by the method for reducing vibrations and noise attenuation of mechanically loaded components.

Metallische Werkstoffe, bzw. Legierungen mit hoher Dämpfungskapazität sind grundsätzlich bekannt und werden auch als HIDAMETs (Hlgh DAmping METals) bezeichnet.Metallic materials or alloys with high damping capacity are known in principle and are also referred to as HIDAMETs (Hlgh DAmping METals).

Eine hohe mechanische Dämpfungskapazität ist zum Beispiel erwünscht zur Verringerung von Vibrationen und zur Geräuschdämpfung. Derartige Legierungen eignen sich deshalb besonders zur Herstellung von Schiffspropellern und Pumpengehäusen, sowie zum Einsatz in vibrierenden Maschinen und zur Verhinderung von Störungen durch Vibration bei verschiedenen Präzisionsapparaturen und elektronischen Instrumenten. Bei gleichzeitig hoher Verschleißbeständigkeit eigenen sich die Legierungen darüber hinaus zum Einsatz in diversen Werkzeugen, die beim Betrieb Schwingungen und/oder Schlägen ausgesetzt sind, beispielsweise Stempel bzw. Matrizen bei der Blechumformung oder bei Dreh- und Fräsmaschinen.For example, high mechanical damping capacity is desirable for reducing vibration and noise reduction. Such alloys are therefore particularly suitable for the manufacture of ship propellers and pump housings, as well as for use in vibrating machines and for preventing vibration disturbances in various precision apparatuses and electronic instruments. At the same time high wear resistance, the alloys are also suitable for use in various tools that are exposed to vibrations and / or shocks during operation, such as punches or dies in sheet metal forming or in lathes and milling machines.

Es ist eine Vielzahl von HIDAMETs bekannt, die zur Geräuschdämpfung und zur Absorption von Vibrationen einsetzbar sind. Die Anwendungsgebiete eines Großteils dieser Werkstoffe, insbesondere von Magnesium und Magnesium-Legierungen, sind jedoch durch ihre ungenügenden mechanischen und Korrosionseigenschaften stark eingeschränkt.There are a variety of HIDAMETs known that can be used for noise damping and vibration absorption. However, the fields of application of a large part of these materials, in particular of magnesium and magnesium alloys, are severely limited by their insufficient mechanical and corrosion properties.

HIDAMETs mit martensitischen Phasenumwandlungen sind im Stand der Technik zum Erzielen von hohen Dämpfungseigenschaften von besonderer Bedeutung. Legierungen mit martensitischen Phasenumwandlungen weisen im festen Zustand bei hohen Temperaturen eine andere Atomanordnung auf als bei niedrigen Temperaturen. Die Hochtemperaturphase wird als "Austenit" und die Niedertemperaturphase als "Martensit" bezeichnet. Die Umwandlung des Austenits in Martensit erfolgt bei Abkühlung des Werkstoffes aus dem austenitischen Zustand und beginnt bei der Martensit-Starttemperatur MS. Die martensitische Umwandlung ist bei Erreichen der Martensit-Finishtemperatur MF abgeschlossen. Die Umwandlung von Martensit in Austenit findet bei Erwärmung des Werkstoffes aus dem martensitischen Zustand statt, beginnt bei der Austenit-Starttemperatur AS und ist mit Erreichen der Austenit-Finishtemperatur AF abgeschlossen. Im Allgemeinen ist die Dämpfung im Martensitbereich (T<MF) wegen der sehr viel höheren Defektdichte höher als im Austenitbereich (T>AF).HIDAMETs with martensitic phase transformations are of particular importance in the art for achieving high attenuation properties. Alloys with martensitic phase transformations have a different atomic arrangement in the solid state at high temperatures than at low temperatures. The high temperature phase is referred to as "austenite" and the low temperature phase as "martensite". The transformation of austenite into martensite takes place on cooling of the material from the austenitic state and begins at the martensite start temperature MS. The martensitic transformation is completed when the martensite finish temperature MF is reached. The transformation of martensite into austenite takes place when the material is heated from the martensitic state, starts at the austenite start temperature AS and is completed when the austenite finish temperature AF is reached. In general, the attenuation in the martensite range (T <MF) is higher because of the much higher defect density than in the austenite range (T> AF).

Die bekanntesten Legierungen der genannten Art sind Ni-Ti-Legierung ("Nitinol"), Cu-Zn-Al-Legierungen ("Proteus") und Mn-Cu-Legierungen ("Sonoston"). Diese drei Legierungstypen weisen jedoch Nachteile auf, die ihre Anwendungsmöglichkeiten wesentlich einschränken. Ni-Ti-Legierungen müssen aufwändig unter Vakuum hergestellt werden und sind zudem bedingt durch die beteiligten Legierungselemente sehr teuer. Im Vergleich mit Nitinol sind Cu-Zn-Al Legierungen wesentlich kostengünstiger. Die eingeschränkte Korrosionsbeständigkeit und die Neigung zum Sprödbruchverhalten stellen wesentliche Nachteile dieser Legierungen dar. Zusätzlich neigen sie sowohl im austenitischen als auch im martensitischen Zustand außerordentlich stark zur Alterung. Die weit verbreiteten Mn-Cu-Legierungen wurden speziell zur Herstellung von Schiffspropellern entwickelt. Durch das mit ca. 130 °C relativ breite Erstarrungsintervall neigen diese Legierungen stark zur Warmrissbildung. Zusätzlich treten auch hier Alterungseffekte auf, so dass bei Raumtemperatur bereits nach einer Lagerung von ca. 1000 h ein deutlicher Rückgang der Dämpfungswirkung auftritt.The best known alloys of the type mentioned are Ni-Ti alloy ("Nitinol"), Cu-Zn-Al alloys ("Proteus") and Mn-Cu alloys ("Sonoston"). However, these three types of alloys have disadvantages that significantly limit their applications. Ni-Ti alloys must be produced consuming under vacuum and are also very expensive due to the alloying elements involved. In comparison with nitinol, Cu-Zn-Al alloys are much cheaper. The limited corrosion resistance and the tendency to brittle fracture behavior are significant disadvantages of these alloys. In addition, they are extremely severe in both the austenitic and the martensitic state to aging. The widely used Mn-Cu alloys have been specially developed for the manufacture of ship propellers. Due to the relatively wide solidification interval of about 130 ° C, these alloys are prone to hot cracking. In addition, aging effects also occur here, so that a significant decrease in the damping effect occurs already at room temperature after storage for about 1000 hours.

Die Patentschrift US 3 868 279 offenbart hochdämpfende Cu-Mn-Al-Legierungen sowie eine Möglichkeit zur Verbesserung ihrer Dämpfungseigenschaften durch Wärmebehandlung. Diese ternären Legierungen enthalten 32 - 42 Gew.-% Mn, 2 - 4 Gew.-% Al und den Rest Cu, wobei der Mn-Gehalt vorzugsweise 40 % und der Al-Gehalt vorzugsweise 2 - 3 % beträgt. Diese Legierungen werden im kalten Zustand gewalzt und einer Wärmebehandlung bei Temperaturen zwischen 649 °C und 760 °C unterzogen, in Wasser abgeschreckt, anschließend bei 204 °C bis 482 °C für 1,5 bis 24 Stunden gealtert und an Luft abgekühlt. Es wird eine deutliche Verbesserung der Dämpfungseigenschaften bei geringerer Sprödigkeit im Vergleich zu den vorbekannten Heusler-Legierungen beschrieben.The patent US Pat. No. 3,868,279 discloses high-damping Cu-Mn-Al alloys and a way to improve their damping properties by heat treatment. These ternary alloys contain 32-42% by weight of Mn, 2-4% by weight of Al and the remainder of Cu, the Mn content preferably being 40% and the Al content preferably being 2-3%. These alloys are cold rolled and heat treated at temperatures between 649 ° C and 760 ° C, quenched in water, then aged at 204 ° C to 482 ° C for 1.5 to 24 hours and cooled in air. It is described a significant improvement in damping properties with less brittleness compared to the prior art Heusler alloys.

< ZHENG CHENG-QI, CHENG XIAO-NONG: "High-damping capacity of shape memory alloys" THE CHINESE JOURNAL OF NONFERROUS METALS, Bd. 14, Nr. 2, Februar 2004 (2004-02), Seiten 194-198, XP001248141 > zeigt die Dämpfungseigenschaften von Cu-Al-Mn-Formgdächtnislegierungen in Abhängigkeit von deren Zusammensetzung. Dabei, wurden für Martensit und Mutterphase (parent phase) in beiden Fällen hohe Dämpfungskapazitäten festgestellt.< Zheng-Qi, Cheng Xiao-Nong: "High-performance capacity of shape memory alloys" CHINESE JOURNAL OF NONFERROUS METALS, Vol. 14, No. 2, February 2004 (2004-02), pages 194-198, XP001248141 > shows the damping properties of Cu-Al-Mn shape memory alloys, depending on their composition. Here, high damping capacities were found for martensite and mother phase (parent phase) in both cases.

Eine technisch interessante Werkstoffalternative zu den oben beschriebenen HIDAMETs stellen Cu-Al-Mn-Formgedächtnislegierungen dar. Auch diese Werkstoffe weisen eine thermoelastische Martensitumwandlung auf. Das Patent US 4 146 392 beschreibt Cu-Al-Mn-Formgedächtnislegierungen die neben dem Hauptbestandteil Kupfer als Legierungsbestandteile 4,6 bis 13 Gew.-% Mangan und 8,6 bis 12,8 Gew.-% Aluminium enthalten und eine gute Beständigkeit gegen Alterung aufweisen. Es handelt sich hierbei um Legierungen, deren Austenit-MartensitUmwandlung bei Temperaturen unterhalb von 0 °C stattfindet und deren Formgedächtniseffekt ausgenutzt wird, um beispielsweise Rohrverbindungselemente herzustellen.A technically interesting material alternative to the HIDAMETs described above are Cu-Al-Mn shape memory alloys. These materials also exhibit a thermoelastic martensite transformation. The patent US 4,146,392 describes Cu-Al-Mn shape memory alloys containing in addition to the main constituent copper as alloying constituents 4.6 to 13 wt .-% manganese and 8.6 to 12.8 wt .-% aluminum and have a good resistance to aging. These are alloys whose austenite-martensite transformation takes place at temperatures below 0 ° C. and whose shape memory effect is exploited, for example to produce pipe connection elements.

Aus der DE 2055755 ist ein Verfahren zur Herstellung von Gegenständen aus Kupfer-Basis-Legierungen bekannt, die in der Lage sind, bei Änderung der Temperatur ihre Gestalt zu ändern. Die hierfür vorgeschlagenen Legierungen enthalten neben Kupfer und Aluminium beispielsweise zusätzlich ein Element aus der Gruppe Zink, Silizium, Mangan und Eisen.From the DE 2055755 For example, a method of manufacturing copper base alloy articles capable of changing shape as the temperature changes is known. The alloys proposed for this purpose contain, in addition to copper and aluminum, for example, an element from the group of zinc, silicon, manganese and iron.

Trotz der sehr günstigen Kombination von mechanischen Eigenschaften und erzielbaren martensitischen Umwandlungstemperaturen ist die Anwendung von Cu-Al-Mn-Formgedächtnislegierungen für geräusch- und schwingungsdämpfende Werkstoffe bislang nicht in Betracht gezogen worden, da die mechanischen Dämpfungseigenschaften bislang nicht gezielt eingestellt werden konnten und unter Umständen sogar von Charge zu Charge stark schwankten.Despite the very favorable combination of mechanical properties and achievable martensitic transformation temperatures, the use of Cu-Al-Mn shape memory alloys for noise and vibration damping materials has not yet been considered, as the mechanical damping properties could not previously be targeted and possibly even varied greatly from batch to batch.

Der Erfindung lag daher die Aufgabe zugrunde, hochbelastbare und korrosionsbeständige HIDAMETs mit einer gerade auch in dem für den geplanten Anwendungszweck entscheidenden Temperaturbereich zuverlässig einstellbaren hohen Dämpfungskapazität und ein Verfahren zu deren Herstellung bereitzustellen.The invention therefore an object of the invention to provide heavy-duty and corrosion-resistant HIDAMETs with a precisely adjustable even in the decisive for the intended application temperature range high damping capacity and a method for their production.

Die Aufgabe der Erfindung wird gelöst durch das Verfahren nach Anspruch 1 und die Verwendung nach Anspruch 13.The object of the invention is achieved by the method according to claim 1 and the use according to claim 13.

Die Schritte c) und d) können so oft wie erforderlich wiederholt werden bis die gewünschte Anpassung der Umwandlungstemperaturen bzw. -intervalle erreicht ist.Steps c) and d) may be repeated as many times as necessary until the desired adaptation of the transformation temperatures or intervals is achieved.

Die Zusammensetzung für die Legierung wird ausgewählt aus den Bestandteilen:

  • 2 bis 12 Gew.-% Mangan,
  • 5 bis 14 Gew.-% Aluminium und
  • einzeln oder in Summe
  • 0 bis 18 Gew.-% eines oder mehrerer der Elemente Nickel, Eisen, Cobalt, Zink,
  • Silizium, Vanadin, Niob, Molybdän, Chrom, Wolfram, Beryllium, Lithium, Yttrium,
  • Cer, Scandium, Calzium, Titan, Phosphor, Zirkonium, Bor, Stickstoff, Kohlenstoff,
    jedoch je Element nicht mehr als 6 % und
    ad 100 Gew.-% Kupfer.
The composition for the alloy is selected from the components:
  • From 2 to 12% by weight of manganese,
  • 5 to 14 wt .-% aluminum and
  • individually or in total
  • 0 to 18% by weight of one or more of the elements nickel, iron, cobalt, zinc,
  • Silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium,
  • Cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, carbon,
    however, each item does not exceed 6% and
    ad 100% by weight of copper.

Die mit dem erfindungsgemäßen Verfahren erhaltenen Legierungen werden ansonsten durch konventionelle Schmelz- und Gießverfahren erzeugt. Außer als Gusslegierung kann die Legierung auch als Knetlegierung zum Einsatz kommen. Die Legierung lässt sich kalt oder warm umformen. Die hier beschriebenen Legierungen sind für alle Anwendungsfälle besonders vorteilhaft, bei denen es auf eine hohe mechanische Dämpfungskapazität ankommt, d.h. besonders für mechanisch belastete Bauteile, Geräte oder Gehäuse, die Vibrationen, Schlägen oder Stößen ausgesetzt sind.The alloys obtained by the process according to the invention are otherwise produced by conventional melting and casting processes. Apart from cast alloy, the alloy can also be used as wrought alloy. The alloy can be cold or hot formed. The alloys described herein are particularly advantageous for all applications where a high mechanical damping capacity is required, i. especially for mechanically loaded components, devices or housings that are subject to vibrations, impacts or shocks.

Die Legierungen unterscheiden sich von Sonoston durch erheblich höhere Aluminium- und deutlich niedrigere Mangangehalte. Der hohe Aluminiumgehalt verbessert die Festigkeit des erfindungsgemäßen Werkstoffs und erhöht gleichzeitig seine Beständigkeit gegenüber Abrasion, Erosion und Kavitation. Die verringerte Mangan-Konzentration wirkt sich durch die Verkleinerung des Erstarrungsintervalls positiv auf die gießtechnologischen Eigenschaften der Legierung aus. Somit können dichte, oxid- und warmrissfreie Abgüsse auch mit Stückgewichten von mehreren Tonnen ohne Qualitätsprobleme gefertigt werden.The alloys differ from Sonoston in significantly higher aluminum and significantly lower manganese contents. The high aluminum content improves the strength of the material according to the invention and at the same time increases its resistance to abrasion, erosion and cavitation. The reduced manganese concentration has a positive effect on the cast-technological properties of the alloy due to the reduction in the solidification interval. Thus, dense, oxide and warm crack-free casts can be produced with unit weights of several tons without quality problems.

Um die für einen gewünschten Einsatzzweck optimalen Eigenschaften zu erhalten, werden die Mengenanteile der Legierungskomponenten üblicherweise variiert, z. B. wie nachfolgend noch genauer beschrieben. Es wurde gefunden, dass sich die bei Variation der Zusammensetzung häufig stark schwankende mechanische Dämpfungskapazität mit Hilfe eines gezielten Fein-Tunings der Gehalte der einzelnen Legierungskomponenten optimieren und auf höhere Werte einstellen lässt, als wenn man für besser reproduzierbare Dämpfungseigenschaften ausschließlich den martensitischen Bereich bevorzugen würde, wie es sonst im Stand der Technik üblich ist.In order to obtain the optimum properties for a desired application, the proportions of the alloy components are usually varied, for. B. as described in more detail below. It has been found that the mechanical damping capacity, which frequently fluctuates greatly with variation of the composition , can be optimized and set to higher values with the aid of a targeted fine tuning of the contents of the individual alloy components than if only the martensitic region were preferred for better reproducible damping properties. as is usual in the prior art.

Für die gezielte Verbesserung der mechanischen Dämpfung werden die martensit-austenitischen Umwandlungstemperaturen oder die zugehörigen Intervalle Ms bis MF und/oder As bis AF an eine vorbestimmte Einsatz- oder Arbeitstemperatur angepasst, die bei der bestimmungsgemäßen Verwendung der Legierung in einem "Bauteil" auftreten wird. Hierdurch wird zugleich eine hohe innere Reibung eingestellt. Der Begriff "Bauteil" soll sich auf alle denkbaren praktischen Einsatzmöglichkeiten beziehen und sowohl Einzelteile, wie komplexere zusammengesetzte Bauteile, Gehäuse, Maschinen und dergleichen umfassen. Sowohl bei der Einsatz- wie auch der Arbeitstemperatur kann es sich um mittlere Temperaturen, d.h. Mittelwerte aus einem Arbeits- oder Einsatzbereich handeln. Gegebenenfalls können beide Umwandlungstemperaturintervalle, das martensitische und das austenitische, für die Einstellung auf einen größeren oder zwei verschiedenen Arbeitstemperaturbereiche verwendet werden. Die Anpassung geschieht mittels Variation der Gewichtsanteile der oben angegebenen Legierungsbestandteile während des Erschmelzens der Legierung.For the targeted improvement of the mechanical damping, the martensit austenitic transformation temperatures or the associated intervals M s to M F and / or A s to A F adapted to a predetermined operating or operating temperature, which will occur in the intended use of the alloy in a "component". As a result, a high internal friction is set at the same time. The term "component" is intended to cover all conceivable practical applications and include both individual parts, such as more complex composite components, housings, machines and the like. Both the operating temperature and the working temperature can be medium temperatures, ie average values from a working or application area. Optionally, both transition temperature intervals, the martensitic and the austenitic, may be used to set to one or more different operating temperature ranges. The adjustment is made by varying the weight proportions of the above alloying ingredients during the melting of the alloy.

Mit Hilfe der Elemente Nickel, Eisen, Cobalt, Zink, Silizium, Vanadin, Niob, Molybdän, Chrom, Wolfram, Beryllium, Lithium, Yttrium, Cer, Scandium, Calcium, Titan, Phosphor, Zirkonium, Bor, Stickstoff, Kohlenstoff ist es möglich, die Eigenschaften der durch das Verfahren erhaltenen Legierung auf den jeweiligen Verwendungszweck speziell anzupassen. So erhöht beispielsweise eine Zugabe von Nickel oder Silizium die Korrosionsbeständigkeit und Festigkeitseigenschaften. Die Elemente Eisen, Vanadin, Niob, Molybdän, Chrom, Wolfram, Yttrium, Cer, Scandium, Calcium, Titan, Zirkonium, Bor sind zum Erzielen einer Kornfeinung von Bedeutung. Stickstoff und Kohlenstoff verbessern gemeinsam mit Übergangselementen die mechanischen Eigenschaften der erfindungsgemäß erhaltenen Legierung. Die Alterungsbeständigkeit der Legierung sowohl im austenitischen als auch im martensitischen Zustand wird durch Zugabe von Cobalt erhöht. Beryllium und Phosphor schützen die Schmelze vor Oxidation. Durch diverse Kombinationen der Legierungselemente kann darüber hinaus ein unterschiedlich starker Einfluss auf die Umwandlungstemperaturen der erfindungsgemäßen Legierung genommen werden, um das Anforderungsprofil für einen konkreten Anwendungsfall optimal zu erfüllen.With the help of the elements nickel, iron, cobalt, zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, carbon it is possible to specially adapt the properties of the alloy obtained by the process to the particular application. For example, addition of nickel or silicon increases corrosion resistance and strength properties. The elements iron, vanadium, niobium, molybdenum, chromium, tungsten, yttrium, cerium, scandium, calcium, titanium, zirconium, boron are important for achieving grain refining. Nitrogen and carbon together with transition elements improve the mechanical properties of the alloy obtained according to the invention. The aging resistance of the alloy in both austenitic and martensitic states is increased by the addition of cobalt. Beryllium and phosphorus protect the melt from oxidation. By various combinations of the alloying elements, an influence of varying influence on the transformation temperatures of the alloy according to the invention can furthermore be taken in order to optimally fulfill the requirement profile for a specific application.

Vorzugsweise enthält die Legierung daher zwischen 1 und 4 Gew.-% Nickel. Eine bevorzugte Ausführungsform der Legierung enthält zwischen 11.6 und12 Gew.-%, vorzugsweise etwa 11,8 Gew.-% Aluminium. Weiterhin sind Mangangehalte zwischen 8 und 10 Gew.-% in der Legierung bevorzugt. Die Legierung kann weiter vorzugsweise zwischen 0,01 und 1 Gew.-% Cobalt enthalten.The alloy therefore preferably contains between 1 and 4% by weight of nickel. A preferred embodiment of the alloy contains between 11.6 and 12% by weight, preferably about 11.8% by weight of aluminum. Furthermore, manganese contents between 8 and 10 wt .-% are preferred in the alloy. The alloy may further preferably contain between 0.01 and 1% by weight of cobalt.

Das Gefüge der gegossenen Legierung zeichnet sich durch relativ große Gusskörner aus und wird vorzugsweise zum Erzielen der optimalen mechanischen Eigenschaften korngefeint. werden. Dafür sind Borzusätze zwischen 0,001 und 0,05 Gew.-% und/oder Chromzusätze zwischen 0,01 und 0,8 Gew.-% und/oder Eisenzusätze von 2 bis 4 Gew.-% besonders effektiv. Darüber hinaus kann die Kornfeinung durch Zugabe von Seltenen Erden bis zu 0,3 Gew.-% erfolgen.The structure of the cast alloy is characterized by relatively large cast grains and is preferably grain-fined to achieve optimum mechanical properties. become. Boron additions between 0.001 and 0.05% by weight and / or chromium additions between 0.01 and 0.8% by weight and / or iron additions of 2 to 4% by weight are particularly effective for this purpose. In addition, the grain refining can be carried out by adding rare earths up to 0.3% by weight.

Die Legierung kann weiter zwischen 2 und 6% Zink enthalten.The alloy may further contain between 2 and 6% zinc.

Die Legierungen können vorzugsweise MS-Temperaturen > 0 °C besitzen, ohne dass die Erfindung hierauf beschränkt ist.The alloys may preferably have MS temperatures> 0 ° C, without the invention being limited thereto.

Die Erfindung schafft eine deutliche Verbesserung der Dämpfungseigenschaften, da erst durch die Erfindung die optimale Einstellung dieser Eigenschaften bei gleichzeitiger Berücksichtigung anderer gewünschter Eigenschaften möglich wird. Das erfindungsgemäße Verfahren ermöglicht es, die Umwandlungstemperaturen im Material so an die jeweiligen Einsatzbedingungen anzupassen, dass die spezifische Dämpfungskapazität der erfindungsgemäßen Legierungen bei der vorgesehenen Anwendungstemperatur bis zu 80 % und mehr erreicht.The invention provides a significant improvement in the damping properties, since only by the invention, the optimal adjustment of these properties while taking into account other desired properties is possible. The method according to the invention makes it possible to adapt the transformation temperatures in the material to the respective conditions of use such that the specific damping capacity of the alloys according to the invention reaches up to 80% and more at the intended application temperature.

Eine besonders zusammengesetzte Kupferlegierung enthält als Legierungsbestandteile
mehr als 4 Gew.-% Mangan,
mehr als 10 Gew.-% Aluminium,
0,01 bis 0,8 Gew.-% Chrom und
einzeln oder in Summe
0 bis 18 Gew.-% eines oder mehrerer der Elemente Nickel, Eisen, Cobalt,
Zink, Silizium, Vanadin, Niob, Molybdän, Chrom, Wolfram, Beryllium, Lithium, Yttrium, Cer, Scandium, Calzium, Titan, Phosphor, Zirkonium, Bor, Stickstoff,
Kohlenstoff, jedoch je Element nicht mehr als 6% und
ad 100 Gew.-% Kupfer enthält.
A particularly composed copper alloy contains as alloying components
more than 4% by weight of manganese,
more than 10% by weight of aluminum,
0.01 to 0.8 wt .-% chromium and
individually or in total
0 to 18% by weight of one or more of the elements nickel, iron, cobalt,
Zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen,
Carbon, but each element does not exceed 6% and
contains 100 wt .-% copper.

Eine ausgewählte Kupferlegierung, die insbesondere für mechanisch belastete Bauteile mit gezielt verbesserter mechanische Dämpfung geeignet ist, enhält als Legierungsbestandteile
> 4 bis 12 Gew.-% Mangan,
> 10 bis 14 Gew.-% Aluminium,
0,01 bis 0,8 Gew.-% Chrom und
einzeln oder in Summe
0 bis 18 Gew.-% eines oder mehrerer der Elemente Nickel, Eisen, Cobalt,
Zink, Silizium, Vanadin, Niob, Molybdän, Chrom, Wolfram, Beryllium, Litihium, Yttrium, Cer, Scandium, Calzium, Titan, Phosphor, Zirkonium, Bor, Stickstoff, Kohlenstoff, jedoch je Element nicht mehr als 6% und
ad 100 Gew.-% Kupfer.
A selected copper alloy, which is suitable in particular for mechanically loaded components with specifically improved mechanical damping, contains as alloy constituents
> 4 to 12% by weight of manganese,
> 10 to 14% by weight of aluminum,
0.01 to 0.8 wt .-% chromium and
individually or in total
0 to 18% by weight of one or more of the elements nickel, iron, cobalt,
Zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, carbon, but each element not more than 6% and
ad 100% by weight of copper.

Die Kupferlegierung kann vorzugsweise zwischen 1 und 4 Gew.-% Nickel enthalten.The copper alloy may preferably contain between 1 and 4 wt% nickel.

Die Kupferlegierung kann vorzugsweise zwischen 11,6 und 12 Gew.-%, weiter vorzugsweise etwa 11,8 Gew.-% Aluminium enthalten.The copper alloy may preferably contain between 11.6 and 12% by weight, more preferably about 11.8% by weight of aluminum.

Die Kupferlegierung kann vorzugsweise zwischen 8 und 10 Gew.-% Mangan enthalten.The copper alloy may preferably contain between 8 and 10% by weight of manganese.

Die Kupferlegierung kann vorzugsweise zwischen 2 und 4 Gew.-% Eisen und/oder zwischen 0,001 und 0,05 Gew.-% Bor enthalten.The copper alloy may preferably contain between 2 and 4% by weight of iron and / or between 0.001 and 0.05% by weight of boron.

Die Kupferlegierung kann vorzugsweise zwischen 0,01 und 1 Gew.-% Cobalt enthalten.The copper alloy may preferably contain between 0.01 and 1 wt% cobalt.

Die Kupferlegierung kann vorzugsweise zwischen 0,01 und 0,3 Gew.-% seltene Erden enthalten.The copper alloy may preferably contain between 0.01 and 0.3 wt% of rare earths.

Die Kupferlegierung kann weiterhin vorzugsweise zwischen 2 und 6 Gew.-% Zink enthalten.The copper alloy may furthermore preferably contain between 2 and 6% by weight of zinc.

Diese vorgenannte Kupferlegierung ist erfindungsgemäß erhältlich durch Anpassung der martensit-austenitischen Umwandlungstemperaturen oder der zugehörigen Intervalle MS bis MF und/oder AS bis AF an eine vorbestimmte Einsatz- oder Arbeitstemperatur des Bauteils, wie oben beschrieben.This abovementioned copper alloy can be obtained according to the invention by adapting the martensit-austenitic transformation temperatures or the associated intervals MS to MF and / or AS to AF to a predetermined operating or operating temperature of the component, as described above.

Für existierenden HIDAMETs mit martensitischen Phasenumwandlungen wurde im Stand der Technik beschrieben, dass die maximale Dämpfung beim Abkühlen aus dem Austenitzustand nahe der MS-Temperatur und beim Erwärmen aus dem Martensitzustand im Bereich der AS-Temperatur auftritt. Diese Dämpfungsmaxima werden in der Technik nicht genutzt, da die Umwandlungstemperaturen des Materials mit den bestehenden Verfahren nur schlecht reproduzierbar sind. Scheinbar kleine Veränderungen der chemischen Zusammensetzung durch Oxidation bzw. Abbrand der Legierungselemente bewirken Verschiebungen der Umwandlungstemperaturen, die mehr als 100 °C betragen können. Daher ist es auch durch sehr genaues Gattieren und sorgfältige Schmelzeführung bisher nicht möglich, die MS- bzw. AS-Temperatur im Bereich ±10 °C reproduzierbar einzustellen. Bei der Herstellung konventioneller HIDAMETs wird daher bewusst auf das Erreichen des Dämpfungsmaximums zugunsten der kleineren aber besser reproduzierbaren Dämpfungswerte im rein martensitischen Zustand verzichtet.
Dieser Nachteil wird durch die Erfindung überwunden.
For existing HIDAMETs with martensitic phase transformations, it has been described in the prior art that the maximum attenuation upon cooling from the austenite state occurs near the MS temperature and when heated from the martensite state in the region of the AS temperature. These attenuation maxima are not used in the art because the transformation temperatures of the material with the existing methods are poorly reproducible. Apparently small changes in the chemical composition due to oxidation or burning of the alloying elements cause shifts in the transformation temperatures, which can be more than 100 ° C. Therefore, it is not yet possible to reproducibly set the MS or AS temperature in the range ± 10 ° C by very accurate gating and careful melt flow. In the production of conventional HIDAMETs, it is therefore deliberately avoided to achieve the maximum attenuation in favor of the smaller but better reproducible attenuation values in the purely martensitic state.
This disadvantage is overcome by the invention.

Versuche der Erfinder zeigen, dass eine Zugabe von Kupfer die Umwandlungstemperaturen anhebt. Zusätze von anderen Legierungselementen verringern die Umwandlungstemperaturen. Ein besonders starker Einfluss auf die martensitischen Umwandlungstemperaturen ist durch Zugabe von Aluminium und Mangan zu erzielen. In einer bevorzugten Ausführungsform wird daher die Korrektur der Umwandlungstemperaturen während des Schmelzens durch Zusätze von Kupfer oder Aluminium erzielt. Durch den hohen Schmelzpunkt des Mangans und die hoheExperiments by the inventors show that addition of copper raises the transformation temperatures. Additions of other alloying elements reduce the transformation temperatures. A particularly strong influence on the martensitic transformation temperatures can be achieved by adding aluminum and manganese. In a preferred embodiment, therefore, the correction of the transformation temperatures during melting by additions of copper or aluminum is achieved. Due to the high melting point of manganese and the high

Affinität zu Sauerstoff ist eine Zugabe von Aluminium zur Absenkung der Umwandlungstemperaturen einer Zugabe von Mangan vorzuziehen.Affinity to oxygen is preferable to adding aluminum to lower the transition temperatures to an addition of manganese.

Die maximalen Werte für die spezifische Dämpfungskapazität treten bei der erfindungsgemäßen Legierung beim Abkühlen aus dem Austenitzustand im Bereich zwischen Ms und MF und beim Erwärmen aus dem Martensitzustand zwischen As und AF auf.The maximum values for the specific damping capacity occur in the alloy according to the invention during cooling from the austenite state in the range between M s and M F and when heating from the Martensitzustand between A s and A F.

Daher sollte die Temperatur in der Mitte des martensitischen bzw. austenitischen Intervalls der Phasenumwandlung möglichst nah an der Einsatztemperatur von Bauteilen aus der erfindungsgemäßen Legierung liegen. Es ist daher mit der Erfindung möglich, Legierungen für spezielle vorbestimmte Einsatz- oder Arbeitstemperaturen oder -temperaturbereiche zu erzeugen, die dann für bestimmte Anwendungen und Bauteile besonders geeignet sind.Therefore, the temperature in the middle of the martensitic or austenitic phase transition interval should be as close as possible to the operating temperature of components made from the alloy of the invention. It is therefore possible with the invention to produce alloys for specific predetermined service or operating temperatures or temperature ranges, which are then particularly suitable for certain applications and components.

Die genaue Einstellung der Umwandlungstemperaturen wird mit einer während des Schmelzprozesses entnommenen Probe vorgenommen, die eine Express-Kontrolle der Umwandlungstemperaturen für die flüssige Legierung ermöglicht. Als Probe für die Express-Kontrolle kann vorzugsweise ein gegossener Draht verwendet werden, der mit Hilfe eines Quarzrohres, in dem ein Unterdruck erzeugt wird, aus der Schmelze gezogen wird. Die Ermittlung der Umwandlungstemperaturen kann an dieser Probe je nach dem voraussichtlichen Anwendungsfall entweder im Gusszustand oder nach der Wärmebehandlung durch bekannte experimentelle Methoden zur Detektion von Phasentibergängen erfolgen.The exact adjustment of the transformation temperatures is made with a sample taken during the melting process which allows an express control of the transformation temperatures for the liquid alloy. As a sample for the express control, it is preferable to use a cast wire drawn from the melt by means of a quartz tube in which a negative pressure is generated. The determination of the transformation temperatures can be carried out on this sample, depending on the expected application either in the casting state or after the heat treatment by known experimental methods for the detection of Phasentibergängen.

Vorzugsweise kann die Umwandlungstemperatur an der Probe durch Kalorimetrie, Dilatometrie, Messung der elektrischen Leitfähigkeit, Lichtmikroskopie oder Messung der akustischen Emission erfolgen.Preferably, the transformation temperature on the sample may be by calorimetry, dilatometry, electrical conductivity measurement, light microscopy, or acoustic emission measurement.

Basierend auf den Ergebnissen der Untersuchung der Express-Probe erfolgt eine unmittelbare Korrektur der chemischen Zusammensetzung der Schmelze, wie oben beschrieben vorzugsweise mit Kupfer oder Aluminium. Mit dem erfindungsgemäßen Verfahren ist es somit möglich, die Umwandlungstemperaturen im Material so einzustellen, dass die Legierung bei der angestrebten Anwendungstemperatur die maximal mögliche Dämpfungskapazität erreicht. Damit wird grundsätzlich eine effiziente Anpassung des Werkstoffs an die jeweiligen Einsatzbedingungen gewährleistet.Based on the results of the examination of the Express sample, an immediate correction of the chemical composition of the melt, as described above, preferably with copper or aluminum. With the method according to the invention it is thus possible, the transformation temperatures in the material so adjust the alloy to the maximum possible damping capacity at the intended application temperature. This ensures an efficient adaptation of the material to the respective conditions of use.

Die martensitische Umwandlung kann in einem definierten Temperaturbereich auch über von außen angelegte Spannungen eingeleitet werden. In diesem Fall steigen die Umwandlungstemperaturen im Material linear mit der Belastung an. Diese Steigerung der Umwandlungstemperaturen muss bereits bei der Herstellung von Bauteilen aus der erfindungsgemäßen Legierung berücksichtigt werden, wenn dort mechanische Spannungen zu erwarten sind.The martensitic transformation can also be initiated in a defined temperature range via externally applied voltages. In this case, the transformation temperatures in the material increase linearly with the load. This increase in the transformation temperatures must already be considered in the production of components made from the alloy according to the invention, if mechanical stresses are to be expected there.

Zusätzlich zu den bereits erwähnten Einflussfaktoren wird das Dämpfungsmaximum auch durch die Mikrostruktur der Legierung erheblich beeinflusst, wobei größere Körner zu besseren Dämpfungseigenschaften führen. Durch geeignete legierungstechnische Maßnahmen kann die Korngröße der Legierung so eingestellt werden, dass für jeden konkreten Anwendungsfall ein optimaler Kompromiss zwischen der Dämpfungskapazität und den mechanischen Eigenschaften erzielt wird.In addition to the influencing factors already mentioned, the damping maximum is also considerably influenced by the microstructure of the alloy, with larger grains leading to better damping properties. By appropriate alloying measures, the grain size of the alloy can be adjusted so that for each specific application, an optimal compromise between the damping capacity and the mechanical properties is achieved.

Es wurde darüber hinaus festgestellt, dass eine Verbesserung der Dämpfungseigenschaften durch eine Wärmebehandlung erreicht werden kann. Als besonders effektiv hat sich eine Glühung bei Temperaturen von 650 °C bis 950 °C mit anschließendem Abkühlen bzw. Abschrecken (quenchen) in flüssigen oder gasförmigen Medien, wie z. B. Luft, flüssigem Stickstoff, Wasser, Salzbad oder Öl erwiesen. Die Temperatur des Abschreckmediums sollte dabei vorzugsweise oberhalb der Ms-Temperatur liegen, um unkontrollierbare Verschiebungen der Umwandlungstemperaturen im Material zu vermeiden. Die Alterungsempfindlichkeit der Umwandlungstemperaturen kann erfindungsgemäß durch eine zusätzliche Auslagerung der abgeschreckten Legierung bei einer Temperatur von 150 °C bis 250 °C reduziert werden. Zweckmäßig dauert eine solche Auslagerung 5 bis 120 Minuten.It has also been found that an improvement of the damping properties can be achieved by a heat treatment. As particularly effective has an annealing at temperatures of 650 ° C to 950 ° C with subsequent cooling or quenching (quenching) in liquid or gaseous media such. As air, liquid nitrogen, water, salt bath or oil proved. The temperature of the quenching medium should preferably be above the M s temperature in order to avoid uncontrollable shifts in the transformation temperatures in the material. The aging sensitivity of the transition temperatures can be reduced according to the invention by an additional aging of the quenched alloy at a temperature of 150 ° C to 250 ° C. Expediently, such outsourcing takes 5 to 120 minutes.

An großen und massiven Gussstücken aus der erfindungsgemäßen Legierung, die keiner Wärmebehandlung und Abschreckung unterzogen werden können, kann nach einem weiteren Erfindungsmerkmal durch Laserumschmelzen ein martensitisches Gefüge in der Randschicht hergestellt werden. In diesem Fall übernimmt die Randschicht die dämpfende Rolle, ohne dass das ganze Bauteil einer kostenintensiven Wärmebehandlung unterzogen werden muss. Bei der Herstellung solcher Gussstücke werden die Umwandlungstemperaturen der Legierung beim Schmelzen durch die Express-Kontrolle so eingestellt, dass unter Berücksichtigung der Abkühlungsbedingungen beim Laserumschmelzen die Umwandlungstemperaturen in der Randschicht der Anwendungstemperatur des Bauteils entsprechen.On large and solid castings of the alloy according to the invention, which can not be subjected to heat treatment and quenching, a martensitic structure can be produced in the surface layer according to a further feature of the invention by laser remelting. In this case, the surface layer takes over the damping role, without the entire component must be subjected to a costly heat treatment. In the production of such castings, the transformation temperatures of the alloy during melting by the express control are adjusted so that, taking into account the cooling conditions in the laser remelting, the transition temperatures in the surface layer correspond to the application temperature of the component.

Die nach dem erfindungsgemäßen Verfahren erhaltenen Legierungen können besonders vorteilhaft zur Verringerung von Vibrationen zur Geräuschdämpfung an mechanisch belasteten Bauteilen verwendet werden, insbesondere bei Schiffspropellern, Maschinengehäusen, insbesondere Pumpengehäusen, Generatorgehäusen, vibrierenden Maschinen, Präzisionsapparaturen, elektronischen Instrumenten, Werkzeugen, die beim Betrieb Schwingungen und/oder Schlägen ausgesetzt sind oder diese erzeugen, insbesondere bei Stempeln, Matrizen, Maschinenhämmern, Dreh- und Fräswerkzeugen.The alloys obtained by the process according to the invention can be used particularly advantageously for reducing vibrations for noise damping on mechanically loaded components, in particular in ship propellers, machine housings, in particular pump housings, generator housings, vibrating machines, precision apparatus, electronic instruments, tools which, during operation, oscillate and / or or are exposed to blows or generate them, in particular stamps, dies, machine hammers, turning and milling tools.

Die Erfindung wird im Folgenden anhand eines Ausführungsbeispiels näher erläutert.The invention is explained in more detail below with reference to an embodiment.

Beispielexample

Zur Herstellung von geräuschdämpfenden Kompressorgehäusen bzw. diversen Hydraulikkomponenten kann eine Legierung eingesetzt werden, die ihre maximalen Dämpfungseigenschaften bei einer Temperatur von ca. 120 °C entfaltet.To produce noise-damping compressor housings or various hydraulic components, it is possible to use an alloy which unfolds its maximum damping properties at a temperature of approximately 120 ° C.

Zu diesem Zweck wurde folgende Legierung in einem Induktionsofen an der Luft hergestellt:

  • Grundzusammensetzung:
    • 84 Gew.% Kupfer
    • 12 Gew.-% Aluminium
    • 4 Gew.% Mangan
For this purpose, the following alloy was produced in an induction furnace in air:
  • Basic composition:
    • 84% by weight of copper
    • 12% by weight of aluminum
    • 4% by weight of manganese

Express-Probenentnahme:Express-sampling:

Für die Express-Kontrolle der Umwandlungstemperaturen wurde folgendes Verfahren entwickelt: Als Probe dient ein gegossener Draht mit der Länge von 10 bis 150 mm (vorzugsweise 15 bis 100 mm) und einer Querschnittsfläche von 0,2 bis 7 mm2, vorzugsweise 0,7 bis 3,2 mm2 . Dieser wird mit Hilfe eines Quarzrohres, in dem ein Unterdruck erzeugt wird, aus der Schmelze gezogen. An dieser Probe kann direkt und sehr schnell mit bekannten Detektionsverfahren gearbeitet werden. In einem auch hier verwendeten bevorzugten Verfahren wird die akustische Emission über ein Temperaturprofil verfolgt.For the express control of the transformation temperatures, the following procedure was developed: The sample is a cast wire having a length of 10 to 150 mm (preferably 15 to 100 mm) and a cross-sectional area of 0.2 to 7 mm 2 , preferably 0.7 to 3.2 mm 2 . This is pulled out of the melt with the help of a quartz tube, in which a negative pressure is generated. This sample can be used directly and very quickly with known detection methods. In a preferred method also used here, the acoustic emission is tracked over a temperature profile.

Die erste Probe für die Express-Kontrolle der Umwandlungstemperaturen an der Schmelze mit der Grundzusammensetzung lieferte AF = 100 °C; As = 52 °C; Ms = 68 °c und MF = 15 °C.The first sample for express control of the melt transition temperatures with the base composition provided A F = 100 ° C; A s = 52 ° C; M s = 68 ° C and M F = 15 ° C.

Durch Zugabe von Kupfer wurden die Umwandlungstemperaturen dieser Schmelze zu höheren Werten korrigiert. An der nachfolgend durchgeführten Express-Probe wurden AF = 145 °C, As = 74 °C; Ms = 102 °C und MF = 43 °C bestimmt. Diese Umwandlungstemperaturen sind für das Erzielen maximaler Dämpfungswerte bei 120 °C gut geeignet. Die Schmelze wurde in eine auf 300 °C vorgewärmte Kokille abgegossen. Aus den erhaltenen Gussstücken wurden Proben für die Dämpfungsmessung herausgearbeitet. Zur Charakterisierung des Dämpfungsverhaltens diente die spezifische Dämpfungskapazität. Die innere Reibung wurde bei einer Biegeschwingungsfrequenz von 0,1 Hz unter konstanter Aufheiz- und Abkühlrate (1 K/s) gemessen. Für diese Zwecke wurde das 2980 DTMA V1.7B von Firma TA Instruments verwendet. Die innere Reibung wird in Form des Phasenwinkels zwischen mechanischer Spannung und Dehnung parametisiert. Zur Charakterisierung des Dämpfungsverhaltens diente eine spezifische Dämpfungskapazität, die durch die Formel Spez . D a ¨ mpfungskapazität = 2 π tanφ

Figure imgb0001

wiedergegeben wird.By adding copper, the transformation temperatures of this melt were corrected to higher values. In the following express sample, A F = 145 ° C, A s = 74 ° C; M s = 102 ° C and M F = 43 ° C determined. These transformation temperatures are well suited for achieving maximum attenuation values at 120 ° C. The melt was poured into a preheated to 300 ° C mold. Samples for the damping measurement were worked out from the castings obtained. To characterize the damping behavior, the specific damping capacity was used. The internal friction was measured at a bending vibration frequency of 0.1 Hz under a constant heating and cooling rate (1 K / s). For these purposes, the 2980 DTMA V1.7B was used by TA Instruments. The internal friction is parameterized in terms of the phase angle between stress and strain. To characterize the damping behavior was a specific damping capacity, by the formula Spec , D a ¨ mpfungskapazität = 2 π tanφ
Figure imgb0001

is reproduced.

Das Dämpfungsverhalten der auf diese Weise hergestellten Legierung ist in Figur 1 wiedergeben.The damping behavior of the alloy produced in this way is in FIG. 1 play.

Fig. 1 : Ausbildung der spezifischen Dämpfungskapazität der Legierung aus dem Beispiel, aufgenommen für einen Erwärmungs- und Abkühlungszyklus Fig. 1 : Formation of specific damping capacity of the alloy of the example taken for a heating and cooling cycle

Figur 1 zeigt ein Messdiagramm das zu dem oben beschriebenen Beispiel aufgenommen wurden. Aufgetragen ist die spezifische Dämpfungskapazität in % über der Temperatur in °C. Die Temperaturen wurden in einem Aufheiz- und-Abkühl-Zyklus von unter Null bis 200 °C und zurück durchlaufen. Wie zu erkennen sind bei der Beispiellegierung im austenitischen Intervall wesentlich höhere Dämpfungen zu erzielen als im martensitischen, so dass die im Stande der Technik häufig erfolgende Beschränkung auf martensitische Strukturen zu deutlichen Nachteilen für die Legierungseigenschaften führen muss. FIG. 1 shows a measurement diagram that have been taken to the example described above. The specific damping capacity is plotted in% above the temperature in ° C. The temperatures were passed through in a heating and cooling cycle from below zero to 200 ° C and back. As can be seen, in the example alloy in the austenitic interval much higher attenuation can be achieved than in the martensitic, so that the frequently occurring in the art restriction to martensitic structures must lead to significant disadvantages for the alloy properties.

Die Beispiellegierung erreicht ihre maximalen Dämpfungseigenschaften bei einer Temperatur von 120 °C und erfüllt somit erfolgreich die gestellte Aufgabe. Die erreichbare Dämpfung liegt über 70 %.The example alloy achieves its maximum damping properties at a temperature of 120 ° C and thus successfully fulfills the stated task. The achievable damping is over 70%.

Claims (13)

  1. Process for specifically improving the mechanical damping of a mechanically stressed component by matching the martensite-austenite transformation temperatures of an alloy used in the component to a predetermined use or working temperature for the component in such a way that the planned use temperature for the component is between the transformation limits Ms and Mf and/or As and Af, where the matching of the transformation temperatures is effected by varying the alloy composition during melting of the alloy during its production, where the alloy comprises, as constituents of the alloy,
    from 2 to 12% by weight of manganese,
    from 5 to 14% by weight of aluminum and, individually or together,
    from 0 to 18% by weight of one or more of the elements nickel, iron, cobalt, zinc, silicon, vanadium, niobium, molybdenum, chromium, tungsten, beryllium, lithium, yttrium, cerium, scandium, calcium, titanium, phosphorus, zirconium, boron, nitrogen, carbon, but each element in an amount of not more than 6%, and copper to 100% by weight, and, in the process,
    a) a composition having a martensite-austenite transformation is selected for the alloy and the constituents are melted in a customary way at a suitable temperature,
    b) during this melting, at least one of the martensitic and austenitic transformation temperatures Ms, MF, As and AF is determined on a sample taken from the melt,
    c) these transformation temperatures are increased or reduced on the basis of a predetermined use or working temperature of the component by targeted addition of at least one constituent of the alloy and thus matched to the use or working temperature,
    d) the new transformation temperatures and, if appropriate, ranges are checked by means of a further sample and
    e) the alloy is cast into the desired mold.
  2. Process according to Claim 1, characterized in that the steps c) and d) are repeated as often as necessary.
  3. Process according to Claim 1 or 2, characterized in that correction of the transformation temperatures is carried out during melting by addition of copper or aluminum.
  4. Process according to any of Claims 1 to 3, characterized in that the transformation temperatures are set so that the temperatures in the middle of the martensitic or austenitic range of the phase transformation are very close to the predetermined use or working temperature.
  5. Process according to any of Claims 1 to 4, characterized in that the alloy in the form of a shaped part obtained initially by casting or forging and if appropriate forming is subjected to heat treatment at temperatures of from 650°C to 950°C and subsequent cooling or quenching in liquid or gaseous media, in particular air, liquid nitrogen, water, a salt bath or oil.
  6. Process according to Claim 5, characterized in that the temperature of the quenching medium is above the Ms temperature of the alloy.
  7. Process according to any of Claims 1 to 6, characterized in that the alloy in the form of a shaped part obtained initially by casting or forging and if appropriate forming is heat treated/aged at a temperature of from 100 to 300°C for from about 5 to 120 minutes.
  8. Process according to any of Claims 1 to 7, characterized in that the alloy is subjected to one or more thermal cycles between the austenitic state and the martensitic state and back.
  9. Process according to any of Claims 1 to 8, characterized in that heat treatment of the outer layer of a shaped part obtained from the alloy by casting or forging and if appropriate forming is effected by means of laser remelting of the outer zone.
  10. Process according to any of Claims 1 to 9, characterized in that the sample for quick monitoring of the transformation temperatures is taken by means of a fused silica tube in which a subatmospheric pressure is produced.
  11. Process according to any of Claims 1 to 10, characterized in that the transformation temperatures are determined on the sample by calorimetry, dilatometry, measurement of the electrical conductivity, optical microscopy or measurement of the acoustic emission.
  12. Process according to any of Claims 1 to 11, characterized in that the damping behavior is additionally influenced by targeted alteration of the grain size.
  13. Use of the copper alloy obtained by a process according to any of Claims 1 to 12 for the reduction of vibrations and for noise damping on mechanically stressed components, for ships' propellers, machine housings, in particular pump housings, generator housings, vibrating machines, precision apparatuses, electronic instruments, tools which are subjected to vibrations and/or impacts during operation or produce these, in particular for punches, dies, machine hammers, lathe tools and milling tools.
EP06775757A 2005-07-27 2006-07-27 Method for producing a copper alloy having a high damping capacity and its use Not-in-force EP1910582B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005035709A DE102005035709A1 (en) 2005-07-27 2005-07-27 Copper alloy with high damping capacity and process for its preparation
PCT/DE2006/001305 WO2007012320A2 (en) 2005-07-27 2006-07-27 Method for producing a copper alloy having a high damping capacity

Publications (2)

Publication Number Publication Date
EP1910582A2 EP1910582A2 (en) 2008-04-16
EP1910582B1 true EP1910582B1 (en) 2012-09-05

Family

ID=37309676

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06775757A Not-in-force EP1910582B1 (en) 2005-07-27 2006-07-27 Method for producing a copper alloy having a high damping capacity and its use

Country Status (5)

Country Link
US (1) US20080298999A1 (en)
EP (1) EP1910582B1 (en)
JP (1) JP2009503250A (en)
DE (2) DE102005035709A1 (en)
WO (1) WO2007012320A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250714A (en) * 2014-08-26 2014-12-31 无棣向上机械设计服务有限公司 Low density impact resistant metal material and producing method thereof

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007009996B4 (en) 2007-03-01 2014-03-27 Minebea Co., Ltd. electric motor
JP5005834B2 (en) * 2009-10-14 2012-08-22 独立行政法人科学技術振興機構 Fe-based shape memory alloy and method for producing the same
KR101231919B1 (en) 2010-12-14 2013-02-08 한욱희 Copper alloy composition for bending die of automobile wiper
CN102212714B (en) * 2011-05-11 2012-11-28 上海振嘉合金材料厂 High-precision manganese copper resistance alloy narrow flat belt and manufacturing method thereof
CN102296206B (en) * 2011-09-08 2012-11-07 中南大学 High-strength abrasion-resistant wrought aluminum bronze alloy
CN102808105B (en) * 2012-08-24 2014-11-26 朱育盼 Method for preparing shape memory copper alloy
CN103421981A (en) * 2013-08-08 2013-12-04 常熟市东方特种金属材料厂 High-damping shape memory alloy
EP3241919B1 (en) 2016-05-04 2020-01-08 Wieland-Werke AG Copper aluminium manganese alloy and its use
DE102017200645A1 (en) 2017-01-17 2017-12-28 Carl Zeiss Smt Gmbh Optical arrangement, in particular lithography system
CN108277535B (en) * 2018-01-10 2019-07-23 厦门大学 A kind of copper aluminium manganese base single crystal alloy
CN109266887B (en) * 2018-12-03 2019-12-10 河北工业大学 Preparation method of high-damping copper-based shape memory alloy
DE102019105453A1 (en) * 2019-03-04 2020-09-10 Kme Mansfeld Gmbh A method for continuously manufacturing a copper alloy product
CN111057886B (en) * 2019-10-29 2021-06-22 宁夏中色新材料有限公司 Preparation method of beryllium copper casting roll sleeve and beryllium copper casting roll sleeve
CN110952045A (en) * 2019-12-23 2020-04-03 安徽旭晶粉体新材料科技有限公司 High-performance alloy copper powder and preparation method thereof
DE102020002885A1 (en) 2020-05-14 2021-11-18 Wieland-Werke Aktiengesellschaft Wrought copper-manganese-aluminum-iron alloy

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE758862A (en) * 1969-11-12 1971-04-16 Fulmer Res Inst Ltd Improvements relating to the treatment of alloys
US3868279A (en) * 1971-10-08 1975-02-25 Int Copper Research Ass Inc High damping copper-manganese-aluminum alloy
GB1593498A (en) * 1976-03-18 1981-07-15 Raychem Corp Copper aluminium manganese alloy
JPS61124543A (en) * 1984-11-21 1986-06-12 Sumitomo Electric Ind Ltd Sound and vibration absorbing beta'-martensitic aluminum bronze alloy
AU588105B2 (en) * 1986-02-07 1989-09-07 Aluminum Company Of America System for on-line molten metal analysis
DD301198A7 (en) * 1990-03-19 1992-10-22 Rostock Dieselmotoren Manganese-aluminum multi-material bronze with weak magnetic structure and
JP3300684B2 (en) * 1999-07-08 2002-07-08 清仁 石田 Copper-based alloy having shape memory characteristics and superelasticity, member made of the same, and method of manufacturing the same
US6977017B2 (en) * 2001-10-25 2005-12-20 Council Of Scientific & Industrial Research Cu-ZN-A1(6%) shape memory alloy with low martensitic temperature and a process for its manufacture
JP2004010997A (en) * 2002-06-10 2004-01-15 Chuo Spring Co Ltd High damping material, spring having excellent damping property and methods of producing them

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104250714A (en) * 2014-08-26 2014-12-31 无棣向上机械设计服务有限公司 Low density impact resistant metal material and producing method thereof
CN104250714B (en) * 2014-08-26 2016-04-20 无棣向上机械设计服务有限公司 A kind of low density shock resistance metallic substance and preparation method thereof

Also Published As

Publication number Publication date
WO2007012320A2 (en) 2007-02-01
DE112006002577A5 (en) 2008-06-26
WO2007012320A3 (en) 2007-05-31
JP2009503250A (en) 2009-01-29
EP1910582A2 (en) 2008-04-16
US20080298999A1 (en) 2008-12-04
DE102005035709A1 (en) 2007-02-15

Similar Documents

Publication Publication Date Title
EP1910582B1 (en) Method for producing a copper alloy having a high damping capacity and its use
US11603583B2 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
EP2145967B1 (en) Titanium aluminide alloys
EP0091897B1 (en) Strain hardening austenitic manganese steel and process for the manufacture thereof
DE60120175T2 (en) TITANIUM ALLOY AND HEAT TREATMENT METHOD FOR LARGE DIMENSIONAL, SEMI-FINISHED MATERIALS FROM THIS ALLOY
DE69317971T2 (en) Super alloy with a set coefficient of thermal expansion
DE3280440T2 (en) Process for the production of a non-magnetic steel, resistant to cracking corrosion.
EP3481971A1 (en) Ribbons and powders from high strength corrosion resistant aluminum alloys
DE2517275B2 (en) Process for the production and further processing of a plastically deformable cast product based on an aluminum-silicon alloy and the use of the further processed cast product
WO2008017341A1 (en) Process for setting the thermal conductivity of a steel, tool steel, in particular hot-work steel, and steel object
WO2008138614A1 (en) Use of an al-mn alloy for high temperature resistant products
DE69414529T2 (en) Fe-based superalloy
WO2023181104A1 (en) Titanium alloy material, titanium alloy wire material, titanium alloy powder material, and method for producing titanium alloy material
DE102017109614A1 (en) Aluminum alloy casting and manufacturing process
DD284904A5 (en) METHOD FOR PRODUCING PARTS FROM ALUMINUM ALLOY THAT CONTAINS GOOD STRENGTH IN MATERIAL MANUFACTURE THROUGH LONG CONSUMPTION
WO2003008655A2 (en) Moulded piece made from an intermetallic gamma tial material
DE3041942A1 (en) CAST STRING MADE OF ALUMINUM NETWORK HIGH TENSILE STRENGTH ETC. AND METHOD FOR THE PRODUCTION THEREOF
EP0587960B1 (en) Production of iron aluminide materials
EP2339595B1 (en) Magnetic shape memory alloy material
EP1820871B1 (en) Process and device for precipitation hardening of highly alloyed light metals by induction
DE60309711T2 (en) Aluminum alloy forging material with excellent high temperature fatigue strength
DE4436670C2 (en) Objects made of nickel-based superalloys with improved machinability and method for producing a machined workpiece from such a superalloy
EP3458623B1 (en) Method for producing a steel material, and steel material
JP6812460B2 (en) High-strength low thermal expansion alloy
DE3346089A1 (en) METHOD FOR MANUFACTURING HIGH-STRENGTH, DUCTILE BODY FROM CARBON-BASED IRON-BASED ALLOYS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080114

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: RIEHEMANN, WERNER

Inventor name: TONN, BABETTE

Inventor name: ZAK, HENNADIY

Inventor name: MIELCZAREK, AGNIESZKA

Inventor name: VOGELGESANG, SOENKE

17Q First examination report despatched

Effective date: 20080527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR PRODUCING A COPPER ALLOY HAVING A HIGH DAMPING CAPACITY AND ITS USE

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 574194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006011947

Country of ref document: DE

Effective date: 20121025

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121216

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130105

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

26N No opposition filed

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006011947

Country of ref document: DE

Effective date: 20130606

BERE Be: lapsed

Owner name: TECHNISCHE UNIVERSITAT CLAUSTHAL

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130727

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130727

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130727

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 574194

Country of ref document: AT

Kind code of ref document: T

Effective date: 20130727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130727

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060727

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130727

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006011947

Country of ref document: DE

Representative=s name: GRAMM, LINS & PARTNER PATENT- UND RECHTSANWAEL, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150722

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006011947

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170201