EP1906096B1 - Method for regulating the exhaust air volume flow from the cooking chamber of an oven - Google Patents

Method for regulating the exhaust air volume flow from the cooking chamber of an oven Download PDF

Info

Publication number
EP1906096B1
EP1906096B1 EP07016042.9A EP07016042A EP1906096B1 EP 1906096 B1 EP1906096 B1 EP 1906096B1 EP 07016042 A EP07016042 A EP 07016042A EP 1906096 B1 EP1906096 B1 EP 1906096B1
Authority
EP
European Patent Office
Prior art keywords
time interval
speed
cooking chamber
fan
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP07016042.9A
Other languages
German (de)
French (fr)
Other versions
EP1906096A3 (en
EP1906096A2 (en
Inventor
Herbert BERKENKÖTTER
Thomas Dr. Krümpelmann
Ulrich Dr. Sillmen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miele und Cie KG
Original Assignee
Miele und Cie KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miele und Cie KG filed Critical Miele und Cie KG
Priority to PL07016042T priority Critical patent/PL1906096T3/en
Publication of EP1906096A2 publication Critical patent/EP1906096A2/en
Publication of EP1906096A3 publication Critical patent/EP1906096A3/en
Application granted granted Critical
Publication of EP1906096B1 publication Critical patent/EP1906096B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2007Removing cooking fumes from oven cavities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C15/00Details
    • F24C15/20Removing cooking fumes
    • F24C15/2021Arrangement or mounting of control or safety systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24CDOMESTIC STOVES OR RANGES ; DETAILS OF DOMESTIC STOVES OR RANGES, OF GENERAL APPLICATION
    • F24C7/00Stoves or ranges heated by electric energy
    • F24C7/08Arrangement or mounting of control or safety devices
    • F24C7/087Arrangement or mounting of control or safety devices of electric circuits regulating heat

Definitions

  • the invention relates to a method for controlling the exhaust air volume flow from a cooking chamber of a baking oven, wherein the exhaust air volume flow is discharged through a blower to the environment whose speed is controlled in dependence of a gas concentration measured by a gas sensor in the cooking chamber of the oven.
  • a method for controlling the exhaust air flow from a cooking chamber is known.
  • a suction fan is controlled as a function of a humidity measured during the cooking process in the vapor extraction channel.
  • the DE 29 25 947 C2 moreover shows the general context that in a first time interval a measured value is determined and in a subsequent second time interval the manipulated variable determined therefrom is used.
  • the temperature is measured over a period of time, wherein a predetermined setpoint, when the temperature exceeds this setpoint, then the speed of the fan controls high, up to the point where the temperature falls below a predetermined setpoint again, until a change in temperature takes place, which is above the upper setpoint, in which case the control of the fan is increased again, etc.
  • a method is proposed, wherein the evaluation of the gas sensor signal and a special control of the Wrasenabsauggebläses on the pressure conditions in the cooking chamber can be closed to control the fan speed.
  • Vapors are gaseous or aerosol-like and are formed by the heat treatment or, more generally, by the energy input from the previously liquid and solid components of the food to be cooked. This extra. Gases try by the slight overpressure that they produce in the cooking chamber through all possible openings, eg. B. leaks to leave.
  • a demand-adapted suction sucks just Wrasen through the exhaust opening just so strong that just no more vapors exits through all other intentional or random air openings of the oven, but dry kitchen room air is drawn into the oven.
  • the strength of the suction is varied at intervals. If you start with low suction, the vapor signal does not change at first, as long as no dry kitchen room air is drawn through the supply air openings in the cooking chamber. For this purpose, first in a first time interval, the gas concentration is measured and determined in an electrical control of the oven from a speed for the fan. Only when it is extracted so strongly that dry kitchen room air is drawn into the cooking chamber, the concentration of fumes begins to decrease.
  • the speed is then kept constant in a subsequent second time interval, wherein no gas concentration is measured in this time interval.
  • another first time interval follows, in which, in particular, the gas concentration is measured, which then becomes significantly lower, so that the fan speed is then reduced in the subsequent second time interval, until a further gas concentration measurement during a renewed first time interval, which in turn then entails another second time interval which continues to be constant with the speed, for example, once again driven down.
  • the respective time intervals are repeated alternately during the cooking process, and the duration of the second interval is greater than that of the first, so that set via the cooking process, a fan control that generates an exhaust air volume flow, which generates or regulates a demand-adapted suction of Wrasengases.
  • the degree of Wrasenabsaugung at the point at which just dry kitchen room air is drawn into the oven, is for this second time interval, z. B. of a few minutes, used as an orientation threshold.
  • z. B. of a few minutes
  • the result is a minimum low threshold for the suction, for example, no suction, which is raised during the gas concentration measuring phase up to a fan speed sufficient to just kitchen room air in the oven to suck in, so that sets an upper threshold, then the fan speed is kept constant over the second time interval, which has a fixed period of time, until the first time interval begins, in which the gas concentration is measured again. This results in alternating threshold values, so that the demand-oriented extraction takes place over the time axis.
  • the entire speed range of the fan is traversed from low to maximum, but it is expedient to end the first time interval when the o.g. Threshold for the fan speed, so the orientation threshold for the second time interval has been reached.
  • the duration of the first time interval is selected to be so short that the gas concentration in the cooking chamber remains substantially constant for a constant exhaust air volume flow during the first time interval.
  • the speed of the fan during the first time interval starting from a low speed, in which only a part of the resulting Wrasens during cooking Wrasens is discharged by the fan to the environment, increases automatically or continuously in stages until the gas sensor measures a gas concentration , which is not equal to a measured at the beginning of the first time interval start-gas concentration, and which is automatically set depending on the last speed, the speed of the fan for the second time interval.
  • the oxygen concentration in the cooking chamber is measured as a gas concentration by the gas sensor designed as an oxygen sensor.
  • the concentration of a gas generated by the cooking process in the cooking chamber as a gas concentration measured the gas sensor. If instead of Wrasens z. B. oxygen is measured in the cooking chamber, the concentration at low extraction also remains at a constant level, but then begins to rise at higher suction at the threshold, instead of sinking as in the case of vapor.
  • the oxygen signal begins to increase in the moment in which due to the suction through the supply air vents no longer escape vapors, but oxygen is drawn from the kitchen room air. So the oxygen measurement is exactly the reverse, as with the vapor concentration or the moisture concentration.
  • FIG. 1 shows in the schematic representation of the inventive control of an exhaust air volume flow 1 from a cooking chamber 2 of a baking oven 3 by a fan 4 to the environment.
  • the rotational speed 5 is measured as a function of a gas sensor 6 Gas concentration in the cooking chamber 2 of the oven 3 controlled.
  • an electronics 7 is provided between the blower 4 and the sensor 6, which processes the sensor signals for speed control.
  • supply air 8 can enter the cooking chamber 2 due to leakage points.
  • the electronics 7 for changing the exhaust air volume flow 1 is prior art and can, for. B. the speed of the blower 4 or the control of the opening cross-section of a bypass damper 9 on the suction side of the fan 4, as shown in the FIG. 2 is shown, regulate.
  • a supply air opening 8 may be a structurally provided opening, can be tightened by the dry kitchen room air into the cooking chamber 2 when it is sucked out of the cooking chamber 2.
  • the supply air opening 8 may also be one or more air leaks 8 on the oven 3, which are almost always inevitable there, z. B. column in the door or lamp sealing area or on the bushings for radiators, Gargutthermometer or the like. This is especially true in the FIG. 3 shown.
  • FIG. 4 shows the gas sensor 6 in particular in the exhaust air duct.
  • the FIG. 5 is different from the FIG. 4 only in that the gas sensor 6 is arranged in the flow direction behind an exhaust catalyst 10, or behind a heatable exhaust catalyst or a heated temperature-controlled exhaust catalyst.
  • FIG. 8 In the method according to the invention is shown in FIG. 8 in a first time interval, such as in FIG. 6 is shown at low Wrasenanfall, the gas concentration (dashed line) and the rotational speed (solid line) measured for the fan 4 and automatically determined and set the fan speed for the subsequent second time interval in the electrical control 7 of the oven 3.
  • the thus determined speed of the fan 4 is kept substantially constant. Both time intervals, once with varying speed or at constant speed, repeat alternately during the cooking process, wherein the duration of the second time interval is greater than that of the first time interval. That's how it shows FIG. 8 a time course of Wrasenabgabe over time from the food (dashed line). This is about the same time course of the moisture delivery / time or the time course of (02-depletion) / time. The time course of the relevant fan speed in the graph is shown by a solid line. Two measuring cycles I and II are shown over the time axis, in which the blower speed required for the respective subsequent second time interval until the next measuring cycle is determined.
  • a quantity of vapor / time from the food is now measured (one last time before the fan speed is changed).
  • the blower speed (solid line) is eg from min. after max. hazards.
  • the fan speed at which the vapor concentration or the moisture concentration begins to fall below the last measured value for the first time, or the oxygen concentration begins to rise above the last measured value before the measuring cycle for the first time, is a parameter for the required fan speed, represented in FIG FIG. 8 in measuring cycle I through the projection line.
  • the desired blower speed is now determined with respect to the suction power found after the measuring cycle I for a follow-up time until a new value in a further measurement cycle, here II, is determined.
  • the duration of the first time interval is selected to be so short that the gas concentration in the cooking chamber 2 remains substantially constant for a constant exhaust air volume flow during the first time interval.
  • the speed of the blower 4 is automatically increased continuously or in stages during the first time interval, starting from a low speed, low threshold at which only a portion of the steam generated during the cooking process is delivered by the blower 4 to the environment in the FIG. 8 2, until the gas sensor 6 measures a gas concentration which is not equal to a starting gas concentration measured at the beginning of the first time interval.
  • the speed of the fan 4 is automatically set for the second time interval, and kept constant over the second time interval. If the second time interval has expired, the measurement begins again with the first time interval in which, in particular, the gas concentration is measured.
  • the gas concentration in the cooking chamber 2 is measured by the gas sensor 6 formed as an oxygen sensor as a gas concentration
  • the curve is correspondingly different, because with increasing cooking time, the oxygen concentration in the furnace chamber 3 is lower.
  • the oxygen signal begins to increase in the moment in which due to the suction through the supply air openings 8 no longer vapors escapes, but oxygen is drawn from the kitchen air. Then again starts the first time interval, in which in particular the oxygen concentration is measured.
  • the gas concentration of a gas generated by the cooking process in the cooking chamber 2 is measured by the gas sensor 6.
  • FIG. 6 Examples of different volume flow conditions due to vapor formation and vapor extraction and supply air are in the FIG. 6 shown here, where the Figures 6a and 6b shows no dilution of the Wrasens by supply air 8, and in both cases, the same Wrasenkonzentration is measured.
  • the FIG. 6c shows, however, a dilution of Wrasens by supply air 8, so that sets a lower Wrasenkonzentration or moisture concentration or a higher oxygen concentration in the cooking chamber 2.
  • FIG. 7 shows the time course of the moisture accumulation in the furnace chamber with a suction of 10 l / min and at 20 l / min.

Description

Die Erfindung betrifft ein Verfahren zur Regelung des Abluftvolumenstromes aus einem Garraum eines Backofens, wobei der Abluftvolumenstrom durch ein Gebläse an die Umgebung abgegeben wird, dessen Drehzahl in Abhängigkeit einer durch einen Gassensor gemessenen Gaskonzentration im Garraum des Backofens gesteuert wird.The invention relates to a method for controlling the exhaust air volume flow from a cooking chamber of a baking oven, wherein the exhaust air volume flow is discharged through a blower to the environment whose speed is controlled in dependence of a gas concentration measured by a gas sensor in the cooking chamber of the oven.

Es ist bekannt Backöfen mit Kühlventilatoren auszustatten, die einerseits empfindliche Komponenten, vor allem elektronische Steuerungen sowie Teile der Umgebung vor Überhitzung schützen und andererseits den Garraum von übermäßigem Dampf befreien. Außerdem soll eine zu hohe Dampfkonzentration im Garraum sowie der Austritt von Dampf an Leckagestellen verhindert werden. Denn aufgrund von unterschiedlichen Dampfentwicklungen, hervorgerufen durch verschiedenes Backgut, bei vergleichbaren Temperaturen sowie wegen der stark vom momentanen Zustand, insbesondere der Backofenwand abhängigen Kondensation von Dampf an kühleren Flächen, ist die bisher verwendete Steuerung des Kühlventilators aufgrund der Heizleistung des Ofens oder seiner Innentemperatur unbefriedigend.It is known to equip ovens with cooling fans, on the one hand protect sensitive components, especially electronic controls and parts of the environment from overheating and on the other hand, free the cooking chamber of excessive steam. In addition, too high a vapor concentration in the cooking chamber and the escape of steam at leakage points should be prevented. Because due to different steam developments, caused by different baked goods, at comparable temperatures and because of the current state, in particular the oven wall dependent condensation of steam to cooler surfaces, the previously used control of the cooling fan due to the heating power of the furnace or its internal temperature is unsatisfactory.

Ein typ. Regelungsverfahren nach dem Stand der Technik zeigt die Schrift US-B1-6920874 .A typ. Control method according to the prior art shows the font US-B1-6920874 ,

Aus der DE 38 04 678 A1 ist beispielsweise ein Verfahren zur Regelung des Abluftstroms aus einem Garraum bekannt. Hierzu wird ein Absauggebläse in Abhängigkeit einer während des Garvorgangs in dem Wrasenabzugskanal gemessene Feuchte geregelt.From the DE 38 04 678 A1 For example, a method for controlling the exhaust air flow from a cooking chamber is known. For this purpose, a suction fan is controlled as a function of a humidity measured during the cooking process in the vapor extraction channel.

Ferner ist es aus der DE 102 11 522 A1 bekannt, die Drehzahl eines Gebläses zur Erzeugung einer Luftströmung in dem Garraum zwischen Null und einer Höchstdrehzahl einzustellen und so die Luftabsaugung aus dem Garraum zu regulieren. Zur Steuerung der Abluftmenge wird die Verwendung eines Sauerstoffsensors vorgeschlagen.Furthermore, it is from the DE 102 11 522 A1 It is known to set the speed of a fan for generating an air flow in the cooking chamber between zero and a maximum speed and thus to regulate the air extraction from the cooking chamber. To control the amount of exhaust air, the use of an oxygen sensor is proposed.

Die DE 29 25 947 C2 zeigt darüber hinaus den allgemeinen Zusammenhang, dass in einem ersten Zeitintervall ein Messwert ermittelt und in einem darauf folgenden zweiten Zeitintervall die daraus bestimmte Stellgröße verwendet wird.The DE 29 25 947 C2 moreover shows the general context that in a first time interval a measured value is determined and in a subsequent second time interval the manipulated variable determined therefrom is used.

Um insbesondere hier eine auf den Garvorgang abgestimmte Regelung des Abluftvolumenstromes herbeizuführen, die durch die Regelung der Drehzahl des Gebläses erfolgt, wird gemäß der EP 1 156 282 vorgeschlagen, als Regelungsparameter mindestens einen Wert mit dem Druckgefälle zwischen dem Inneren des Ofens und seiner Umgebung variierenden, physikalischen Parameter zu messen. Somit wird gewährleistet, dass die Gebläsedrehzahl an den jeweiligen Garvorgang anpassend geregelt wird. Bei der Ausführungsform des Standes der Technik wird hierzu die Temperatur über einen Zeitraum gemessen, wobei ein vorgegebener Sollwert, wenn die Temperatur diesen Sollwert überschreitet, dann die Drehzahl des Gebläses hoch regelt, bis zu dem Punkt, wo die Temperatur wieder einen vorgegebenen Sollwert unterschreitet, bis wieder eine Temperaturänderung erfolgt, die über dem oberen Sollwert erfolgt, wobei dann die Regelung des Gebläses wieder erhöht wird u. s. w..In order to bring about, in particular, a regulation of the exhaust air volumetric flow which is coordinated with the cooking process and which takes place through the regulation of the rotational speed of the fan, is carried out according to EP 1 156 282 proposed to measure as control parameters at least one value with the pressure gradient between the interior of the furnace and its surroundings varying physical parameters. This ensures that the fan speed is adapted to the particular cooking process is regulated. In the embodiment of the prior art, for this purpose, the temperature is measured over a period of time, wherein a predetermined setpoint, when the temperature exceeds this setpoint, then the speed of the fan controls high, up to the point where the temperature falls below a predetermined setpoint again, until a change in temperature takes place, which is above the upper setpoint, in which case the control of the fan is increased again, etc.

Bei dieser nach dem Stand der Technik bekannten Regelung der Gebläsedrehzahl ist diese abhängig von der Heiztemperatur im Ofen, wobei insbesondere durch den Abblas- oder Abluftvolumenstrom entsprechend die Temperaturen herunter geregelt werden, so dass über den Garprozess ein Temperaturverlauf erzielt wird, der sich zwischen einem unteren und einem oberen Sollwert einstellt.In this known in the prior art control of the fan speed, this is dependent on the heating temperature in the oven, in particular by the blow-off or exhaust air volume flow according to the temperatures are controlled down, so that over the cooking process, a temperature profile is achieved, extending between a lower and an upper setpoint.

Als nachteilig bei dieser Art der Gebläse-Drehzahlregelung wird es angesehen, dass eine kontinuierliche Drehzahlregelung erfolgt, was insbesondere Rechenkapazitäten in der Steuerung bindet.A disadvantage of this type of fan speed control, it is considered that a continuous speed control takes place, which binds particular computing capacity in the controller.

Zum optimalen Betrieb eines Gerätes ist es erforderlich, dass die Wrasenabsaugung am Garraum so betrieben wird, dass Wrasen den Garraum nicht durch Überdruck an unerlaubten Stellen, Zuluftöffnungen, Lecks, verlässt. Wrasen soll den Backofen mittels einer volumenstromsteuerbaren Absaugung nur über die dafür vorgesehene Ablüftung und den sich dort ggf. befindlichen Oxidations-Katalysator verlassen. Dafür ist eine Mindestabsaugung erforderlich. Eine Sensorik, wie beschrieben, gibt die Information, wie stark für dieses Vorhaben abgesaugt werden muss. Je weniger abgesaugt wird, je geringer sind die Energieverluste des Gargerätes. Die erforderliche Absaugleistung ist bisher in der Regel nur unzureichend an den Bedarf angepasst. Die Realisierung, dass die Gebläsedrehzahl mit der Backofentemperatur korreliert wird im Stand der Technik gemäß der EP 1 156 282 beschrieben. Dabei wird davon ausgegangen, dass bei hoher Temperatur mehr Wrasen im Ofenraum entsteht als bei niedriger, und dass deshalb stärker abgesaugt werden muss. Es gibt aber keine enge Ankopplung an den tatsächlichen Bedarf.For optimal operation of a device, it is necessary that the fume extraction is operated on the cooking chamber so that Wrasen does not leave the cooking chamber by overpressure at unauthorized locations, supply air openings, leaks. Wrasen should leave the oven by means of a volumetric flow controllable suction only on the designated vent and there possibly located oxidation catalyst. For a minimum extraction is required. A sensor system, as described, gives the information on how much has to be extracted for this project. The less suctioned, the lower the energy losses of the cooking appliance. The required extraction capacity has hitherto generally been insufficiently adapted to the requirements. The realization that the fan speed is correlated with the oven temperature in the prior art according to the EP 1 156 282 described. It is assumed that at high temperature more vapors in the furnace chamber is formed than at lower, and therefore must be extracted more strongly. But there is no close link to the actual needs.

Somit stellt sich für die Erfindung das Problem ein alternatives Verfahren zu beschreiben bzw. bereitzustellen, das eine enge Ankopplung an den Bedarf hat, und das ohne eine zusätzliche Öffnung im Garraum auskommt.Thus, the problem arises for the invention to describe or provide an alternative method which has a close connection to the requirements and which manages without an additional opening in the cooking chamber.

Das Problem wird durch Anspruch 1 gelöst, vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.The problem is solved by claim 1, advantageous developments emerge from the dependent claims.

Gemäß der Erfindung wird ein Verfahren vorgeschlagen, wobei zur Steuerung der Gebläsedrehzahl die Auswertung des Gassensorsignals und einer speziellen Ansteuerung des Wrasenabsauggebläses auf die Druckverhältnisse im Garraum geschlossen werden kann. Denn beim Garrprozess entsteht je nach Gargut und Zeitpunkt des Garens eine bestimmte unterschiedliche Menge Wrasen. Wrasen ist gasförmig oder aerosolartig und entsteht durch die Wärmebehandlung oder allgemeiner durch die Energiezufuhr aus den zuvor flüssigen und festen Komponenten des zu garenden Lebensmittels. Diese zusätzlichen. Gase versuchen durch den leichten Überdruck, den sie im Garraum erzeugen, durch alle möglichen Öffnungen, z. B. Lecks, zu verlassen. Eine bedarfsangepasste Absaugung saugt nur Wrasen durch die Abluftöffnung gerade so stark ab, dass durch alle anderen gewollten oder zufälligen Luftöffnungen des Ofens gerade kein Wrasen mehr austritt, sondern trockene Küchenraumluft in den Garraum nachgezogen wird. Um dies zu ermitteln, wie stark zu einem Zeitpunkt abgesaugt werden muss, wird die Stärke der Absaugung in Intervallen variiert. Beginnt man mit niedriger Absaugung ändert sich das Wrasensignal zunächst nicht, solange keine trockene Küchenraumluft durch die Zuluftöffnungen in den Garraum nachgezogen wird. Hierzu wird zunächst in einem ersten Zeitintervall die Gaskonzentration gemessen und in einer elektrischen Steuerung des Backofens daraus eine Drehzahl für das Gebläse ermittelt. Erst wenn so stark abgesaugt wird, dass trockene Küchenraumluft in den Garraum nachgezogen wird, beginnt sich die Wrasenkonzentration zu verringern. Die Drehzahl wird dann in einem darauf folgenden zweiten Zeitintervall konstant gehalten, wobei in diesem Zeitintervall keine Gaskonzentration gemessen wird. Ist das Zeitintervall beendet, so schließt sich wieder ein weiteres erstes Zeitintervall an, in dem insbesondere die Gaskonzentration gemessen wird, die dann wesentlich geringer ausfällt, so dass dann in dem darauf folgenden zweiten Zeitintervall die Gebläse-Drehzahl reduziert wird, bis zu einer weiteren Gaskonzentrationsmessung während eines erneuten ersten Zeitintervalls, die wiederum dann ein weiteres zweites Zeitintervall nach sich zieht, welches mit der beispielsweise erneut herunter gefahrenen Drehzahl konstant weiterfährt.According to the invention, a method is proposed, wherein the evaluation of the gas sensor signal and a special control of the Wrasenabsauggebläses on the pressure conditions in the cooking chamber can be closed to control the fan speed. Because during the cooking process, depending on the food to be cooked and the time of cooking, a certain amount of steam is produced. Vapors are gaseous or aerosol-like and are formed by the heat treatment or, more generally, by the energy input from the previously liquid and solid components of the food to be cooked. This extra. Gases try by the slight overpressure that they produce in the cooking chamber through all possible openings, eg. B. leaks to leave. A demand-adapted suction sucks just Wrasen through the exhaust opening just so strong that just no more vapors exits through all other intentional or random air openings of the oven, but dry kitchen room air is drawn into the oven. To determine how much to aspirate at a time, the strength of the suction is varied at intervals. If you start with low suction, the vapor signal does not change at first, as long as no dry kitchen room air is drawn through the supply air openings in the cooking chamber. For this purpose, first in a first time interval, the gas concentration is measured and determined in an electrical control of the oven from a speed for the fan. Only when it is extracted so strongly that dry kitchen room air is drawn into the cooking chamber, the concentration of fumes begins to decrease. The speed is then kept constant in a subsequent second time interval, wherein no gas concentration is measured in this time interval. Once the time interval has ended, another first time interval follows, in which, in particular, the gas concentration is measured, which then becomes significantly lower, so that the fan speed is then reduced in the subsequent second time interval, until a further gas concentration measurement during a renewed first time interval, which in turn then entails another second time interval which continues to be constant with the speed, for example, once again driven down.

Die jeweiligen Zeitintervalle werden während des Garvorganges alternierend wiederholt, und die Dauer des zweiten Intervalls ist dabei größer als die des ersten, so dass sich über den Garprozess eine Gebläsesteuerung einstellt, die einen Abluftvolumenstrom erzeugt, der eine bedarfsangepasste Absaugung des Wrasengases erzeugt bzw. regelt. Das Maß der Wrasenabsaugung an dem Punkt, an dem gerade trockene Küchenraumluft in den Garraum hineingezogen wird, wird für dieses zweite Zeitintervall, z. B. von einigen Minuten, als Orientierungsschwelle verwendet. Je nach Wunsch ist in der Elektronik eine Gleichung oder eine Tabelle hinterlegt, die die tatsächliche Wrasenabsaugung für das jeweilige zweite Zeitintervall als Funktion dieser Schwelle realisiert. Das kann z. B. auf der erkannten Schwelle sein, leicht darunter oder darüber. Nach dem zweiten Zeitintervall wird der Mess- und Auswertezyklus für ein weiteres erstes Zeitintervall erneut gestartet, um die erforderliche Absaugung für das nächste zweite Zeitintervall zu ermitteln u. s. w..The respective time intervals are repeated alternately during the cooking process, and the duration of the second interval is greater than that of the first, so that set via the cooking process, a fan control that generates an exhaust air volume flow, which generates or regulates a demand-adapted suction of Wrasengases. The degree of Wrasenabsaugung at the point at which just dry kitchen room air is drawn into the oven, is for this second time interval, z. B. of a few minutes, used as an orientation threshold. Depending on Desired in electronics an equation or a table is deposited, which realizes the actual fume extraction for the respective second time interval as a function of this threshold. This can z. On the recognized threshold, slightly below or above it. After the second time interval, the measurement and evaluation cycle is restarted for another first time interval to determine the required suction for the next second time interval, and so on.

Wird beispielsweise der Abluftvolumenstrom bzw. die Gebläsedrehzahl über die Zeit aufgetragen, so ergibt sich ein minimaler niedriger Schwellenwert für die Absaugung, beispielsweise auch keine Absaugung, der während der Gaskonzentrations-Messphase hochgefahren wird bis auf eine Gebläsedrehzahl die ausreicht, um gerade Küchenraumluft in den Garraum hinein zu saugen, so dass sich ein oberer Schwellenwert einstellt, auf dem dann die Gebläse-Drehzahl über das zweite Zeitintervall konstant gehalten wird, welches eine festgesetzte Zeitspanne aufweist, bis wieder das erste Zeitintervall einsetzt, in dem die Gaskonzentration gemessen wird. Somit ergeben sich alternierende Schwellenwerte, so dass sich über die Zeitachse die bedarfgerechte Absaugung vollzieht.If, for example, the exhaust air volume flow or the fan speed is plotted over time, the result is a minimum low threshold for the suction, for example, no suction, which is raised during the gas concentration measuring phase up to a fan speed sufficient to just kitchen room air in the oven to suck in, so that sets an upper threshold, then the fan speed is kept constant over the second time interval, which has a fixed period of time, until the first time interval begins, in which the gas concentration is measured again. This results in alternating threshold values, so that the demand-oriented extraction takes place over the time axis.

Grundsätzlich ist es zwar möglich, dass während des ersten Zeitintervalls der gesamte Drehzahlbereich des Gebläses von niedrig bis maximal durchfahren wird, jedoch ist es zweckmäßig das erste Zeitintervall dann zu beenden, wenn der o.g. Schwellenwert für die Gebläsedrehzahl, also die Orientierungsschwelle für das zweite Zeitintervall, erreicht worden ist.In principle, it is possible that during the first time interval, the entire speed range of the fan is traversed from low to maximum, but it is expedient to end the first time interval when the o.g. Threshold for the fan speed, so the orientation threshold for the second time interval has been reached.

Dabei wird die Dauer des ersten Zeitintervalls derart kurz gewählt, dass die Gaskonzentration in dem Garraum bei einem gleich bleibenden Abluftvolumenstrom während des ersten Zeitintervalls im Wesentlichen konstant bleibt. Dabei wird die Drehzahl des Gebläses während des ersten Zeitintervalls, ausgehend von einer niedrigen Drehzahl, bei der lediglich ein Teil des während des Garvorganges entstehenden Wrasens durch das Gebläse an die Umgebung abgegeben wird, kontinuierlich oder in Stufen automatisch erhöht, bis der Gassensor eine Gaskonzentration misst, die ungleich einer zu Beginn des ersten Zeitintervalls gemessenen Start-Gas-Konzentration liegt, und das in Abhängigkeit der letzten Drehzahl, die Drehzahl des Gebläses für das zweite Zeitintervall automatisch festgelegt wird.In this case, the duration of the first time interval is selected to be so short that the gas concentration in the cooking chamber remains substantially constant for a constant exhaust air volume flow during the first time interval. In this case, the speed of the fan during the first time interval, starting from a low speed, in which only a part of the resulting Wrasens during cooking Wrasens is discharged by the fan to the environment, increases automatically or continuously in stages until the gas sensor measures a gas concentration , which is not equal to a measured at the beginning of the first time interval start-gas concentration, and which is automatically set depending on the last speed, the speed of the fan for the second time interval.

Nach einer besonders vorteilhaften Ausgestaltung der Erfindung wird als Gaskonzentration die Sauerstoffkonzentration in dem Garraum durch den als Sauerstoffsensor ausgebildeten Gassensor gemessen. In Weiterbildung wird als Gaskonzentration die Konzentration eines durch den Garvorgang erzeugten Gases in dem Garraum durch den Gassensor gemessen. Wenn statt des Wrasens z. B. Sauerstoff im Garraum gemessen wird, bleibt die Konzentration bei niedriger Absaugung auch erst auf einem konstanten Niveau, beginnt dann aber bei höherer Absaugung an der Schwelle zu steigen, anstatt wie beim Wrasen zu sinken. Das Sauerstoffsignal beginnt in dem Moment zu steigen, in dem aufgrund der Absaugung durch die Zuluftöffnungen nicht länger Wrasen austritt, sondern Sauerstoff aus der Küchenraumluft nachgezogen wird. Also verhält es sich bei der Sauerstoffmessung genau in umgekehrter Weise, wie bei der Wrasenkonzentration oder bei der Feuchtekonzentration.According to a particularly advantageous embodiment of the invention, the oxygen concentration in the cooking chamber is measured as a gas concentration by the gas sensor designed as an oxygen sensor. In a further development, the concentration of a gas generated by the cooking process in the cooking chamber as a gas concentration measured the gas sensor. If instead of Wrasens z. B. oxygen is measured in the cooking chamber, the concentration at low extraction also remains at a constant level, but then begins to rise at higher suction at the threshold, instead of sinking as in the case of vapor. The oxygen signal begins to increase in the moment in which due to the suction through the supply air vents no longer escape vapors, but oxygen is drawn from the kitchen room air. So the oxygen measurement is exactly the reverse, as with the vapor concentration or the moisture concentration.

Ein Ausführungsbeispiel der Erfindung wird anhand der nachstehenden Figuren 1 bis 8 näher erläutert; dabei zeigen:

Figur 1:
Eine erste Prinzipskizze zur erfindungsgemäßen Regelung des Abluftvolumenstroms aus einem Garraum eines Backofens;
Figur 2:
Eine nicht erfindungsgemäße Ausführung ähnlich der Figur 1 mit einer Klappensteuerung;
Figur 3:
Eine weitere nicht erfindungsgemäße Ausführung gemäß der Figur 2;
Figur 4:
Eine weitere erfindungsgemäße Ausführung gemäß der Figur 1 mit Anordnung des Sensors in der Abluftführung;
Figur 5:
Eine weitere Ausführung gemäß der Figur 4 mit Anordnung des Sensors hinter einem Abluftkatalysator;
Figur 6:
Beispiele für unterschiedliche Volumenstromverhältnisse aufgrund von Wrasenentstehung und Wrasenabsaugung und Zuluft;
Figur 7:
Zeigt den zeitlichen Verlauf der Feuchteanreicherung im Ofenraum bei einer Absaugung von 10 l/min und bei 20 l/min;
Figur 8:
Zeigt eine Grafik von Messzyklen über die Zeit zur Bestimmung der erforderlichen Gebläsedrehzahl.
An embodiment of the invention will become apparent from the following FIGS. 1 to 8 explained in more detail; show:
FIG. 1:
A first schematic diagram of the inventive regulation of the exhaust air volume flow from a cooking chamber of a baking oven;
FIG. 2:
A non-inventive embodiment similar to FIG. 1 with a flap control;
FIG. 3:
Another non-inventive embodiment according to the FIG. 2 ;
FIG. 4:
Another embodiment of the invention according to the FIG. 1 with arrangement of the sensor in the exhaust air duct;
FIG. 5:
Another embodiment according to the FIG. 4 with arrangement of the sensor behind an exhaust air catalyst;
FIG. 6:
Examples of different volume flow conditions due to vapor formation and vapor extraction and supply air;
FIG. 7:
Shows the time course of the moisture accumulation in the furnace chamber with a suction of 10 l / min and at 20 l / min;
FIG. 8:
Displays a graph of measurement cycles over time to determine the required fan speed.

Die Figur 1 zeigt in der Prinzipdarstellung die erfindungsgemäße Regelung eines Abluftvolumenstroms 1 aus einem Garraum 2 eines Backofens 3 durch ein Gebläse 4 an die Umgebung. Dabei wird die Drehzahl 5 in Abhängigkeit einer durch einen Gassensor 6 gemessenen Gaskonzentration im Garraum 2 des Backofens 3 gesteuert. Hierzu ist zwischen dem Gebläse 4 und dem Sensor 6 eine Elektronik 7 vorgesehen, die die Sensorsignale zur Drehzahlregelung verarbeitet. Dabei kann in den Garraum 2 aufgrund von Leckagestellen Zuluft 8 eintreten.The FIG. 1 shows in the schematic representation of the inventive control of an exhaust air volume flow 1 from a cooking chamber 2 of a baking oven 3 by a fan 4 to the environment. In this case, the rotational speed 5 is measured as a function of a gas sensor 6 Gas concentration in the cooking chamber 2 of the oven 3 controlled. For this purpose, an electronics 7 is provided between the blower 4 and the sensor 6, which processes the sensor signals for speed control. In this case, supply air 8 can enter the cooking chamber 2 due to leakage points.

Die Elektronik 7 zur Veränderung des Abluftvolumenstroms 1 ist Stand der Technik und kann z. B. die Drehzahl des Gebläses 4 oder die Ansteuerung des Öffnungsquerschnittes einer Bypassklappe 9 an der Saugseite des Gebläses 4, wie dies in der Figur 2 dargestellt ist, regeln. Eine Zuluftöffnung 8 kann eine konstruktiv vorgesehene Öffnung sein, durch die trockene Küchenraumluft in den Garraum 2 nachgezogen werden kann, wenn aus dem Garraum 2 abgesaugt wird. Die Zuluftöffnung 8 kann aber auch eine oder mehrere Luftlecks 8 am Backofen 3 sein, die beinahe unvermeidlich immer da sind, z. B. Spalte im Tür- oder Lampendichtungsbereich oder an den Durchführungen für Heizkörper, Gargutthermometer oder dergleichen. Dies ist insbesondere in der Figur 3 dargestellt.The electronics 7 for changing the exhaust air volume flow 1 is prior art and can, for. B. the speed of the blower 4 or the control of the opening cross-section of a bypass damper 9 on the suction side of the fan 4, as shown in the FIG. 2 is shown, regulate. A supply air opening 8 may be a structurally provided opening, can be tightened by the dry kitchen room air into the cooking chamber 2 when it is sucked out of the cooking chamber 2. The supply air opening 8 may also be one or more air leaks 8 on the oven 3, which are almost always inevitable there, z. B. column in the door or lamp sealing area or on the bushings for radiators, Gargutthermometer or the like. This is especially true in the FIG. 3 shown.

Eine andere Variante zeigt die Figur 4, bei der der Gassensor 6 insbesondere in der Abluftführung angeordnet ist.Another variant shows the FIG. 4 in which the gas sensor 6 is arranged in particular in the exhaust air duct.

Die Figur 5 unterscheidet sich gegenüber der Figur 4 nur dadurch, dass der Gassensor 6 in Strömungsrichtung hinter einem Abluftkatalysator 10 angeordnet ist, bzw. hinter einem beheizbaren Abluftkatalysator oder einem beheizten temperaturgeregelten Abluftkatalysator.The FIG. 5 is different from the FIG. 4 only in that the gas sensor 6 is arranged in the flow direction behind an exhaust catalyst 10, or behind a heatable exhaust catalyst or a heated temperature-controlled exhaust catalyst.

Bei dem erfindungsgemäßen Verfahren wird, dargestellt in Figur 8, in einem ersten Zeitintervall, wie dies beispielsweise in Figur 6 bei geringem Wrasenanfall dargestellt ist, die Gaskonzentration (gestrichelte Linie) und die Drehzahl (durchgezogene Linie) für das Gebläse 4 gemessen und in der elektrischen Steuerung 7 des Backofens 3 daraus die Gebläsedrehzahl für das darauf folgende zweite Zeitintervall automatisch ermittelt und festgelegt.In the method according to the invention is shown in FIG. 8 in a first time interval, such as in FIG. 6 is shown at low Wrasenanfall, the gas concentration (dashed line) and the rotational speed (solid line) measured for the fan 4 and automatically determined and set the fan speed for the subsequent second time interval in the electrical control 7 of the oven 3.

In dem folgenden zweiten Zeitintervall wird die so ermittelte Drehzahl des Gebläses 4 im Wesentlichen konstant gehalten. Beide Zeitintervalle, einmal mit variierender Drehzahl bzw. mit konstanter Drehzahl, wiederholen sich alternierend während des Garvorganges, wobei die Dauer des zweiten Zeitintervalls größer als die des ersten Zeitintervalls ist. So zeigt die Figur 8 einen zeitlichen Verlauf der Wrasenabgabe über die Zeit aus dem Lebensmittel (gestrichelte Linie). Dabei ist diese etwa gleich dem zeitlichen Verlauf der Feuchteabgabe/Zeit oder dem zeitlichen Verlauf der (02-Abreicherung)/Zeit. Der zeitliche Verlauf der relevanten Gebläsedrehzahl in der Grafik ist mit einer durchgezogenen Linie dargestellt. Über die Zeitachse sind zwei Messzyklen I und II dargestellt, in denen die für das jeweils nachfolgende zweite Zeitintervall bis zum nächsten Messzyklus erforderliche Gebläsedrehzahl bestimmt wird.In the following second time interval, the thus determined speed of the fan 4 is kept substantially constant. Both time intervals, once with varying speed or at constant speed, repeat alternately during the cooking process, wherein the duration of the second time interval is greater than that of the first time interval. That's how it shows FIG. 8 a time course of Wrasenabgabe over time from the food (dashed line). This is about the same time course of the moisture delivery / time or the time course of (02-depletion) / time. The time course of the relevant fan speed in the graph is shown by a solid line. Two measuring cycles I and II are shown over the time axis, in which the blower speed required for the respective subsequent second time interval until the next measuring cycle is determined.

Für das Funktionieren des Verfahrens wird unterstellt, dass in jedem Messzyklus zur Bestimmung der erforderlichen Gebläsedrehzahl die zeitliche Änderung der Wrasenabsaugung durch Änderung der Gebläsedrehzahl (sehr) groß ist, gegenüber der Änderung des pro Zeit aus dem Lebensmittel abgegebenen Wrasens oder der Änderung der pro Zeit in Abhängigkeit des erzeugten Wrasens abnehmenden Sauerstoffkonzentration. Das ist in der Regel erfüllt, weil Änderungsprozesse im Lebensmittel beim Garen typischerweise langsam vonstatten gehen, während eine Gebläsedrehzahl vergleichsweise schnell durch das erste Zeitintervall gefahren werden kann.For the operation of the method, it is assumed that in each measuring cycle for determining the required fan speed, the time change of the vapor suction by changing the fan speed is (very) large, compared to the change in the Wrasens released from the food per time or the change in the time in Dependence of the generated vapor on decreasing oxygen concentration. This is usually true because cooking change processes typically are slow during cooking, while a fan speed can be driven relatively quickly through the first time interval.

Vor Beginn eines Messintervalls, also eines ersten Zeitintervalls, wird nun (ein letztes Mal vor Verändern der Gebläsedrehzahl) eine Wrasenmenge/Zeit aus dem Lebensmittel gemessen. Jetzt wird, wie oben beschrieben, unterstellt, dass diese Wrasenmenge/Zeit aus dem Lebensmittel und damit die Gaskonzentration bei konstantem Abluftvolumenstrom über den Messzyklus in ausreichender Genauigkeit konstant bleibt. Die Gebläsedrehzahl (durchgezogene Linie) wird z.B. von min. nach max. gefahren. Die Gebläsedrehzahl, bei der die Wrasenkonzentration bzw. die Feuchtekonzentration erstmals unter den letzten Messwert abzufallen oder die Sauerstoffkonzentration erstmals über den letzten Messwert vor dem Messzyklus anzusteigen beginnt, ist eine Kenngröße für die erforderliche Gebläsedrehzahl, dargestellt in der Figur 8 im Messzyklus I durch die Projektionslinie. Um das erstmalige Abfallen oder Ansteigen sicher zu erkennen, ist es sinnvoll, etwas weiter über diesen Punkt zu fahren. Das geschieht i. d .R. automatisch beim Durchfahren des min.-max. Bereiches für die Gebläsedrehzahl bzw. des Abluftvolumenstroms.Before the start of a measurement interval, ie a first time interval, a quantity of vapor / time from the food is now measured (one last time before the fan speed is changed). Now, as described above, it is assumed that this quantity of fume / time from the food and thus the gas concentration at a constant exhaust air volume flow remains constant with sufficient accuracy over the measuring cycle. The blower speed (solid line) is eg from min. after max. hazards. The fan speed, at which the vapor concentration or the moisture concentration begins to fall below the last measured value for the first time, or the oxygen concentration begins to rise above the last measured value before the measuring cycle for the first time, is a parameter for the required fan speed, represented in FIG FIG. 8 in measuring cycle I through the projection line. In order to recognize the first falling or rising safely, it makes sense to drive a little further on this point. This happens i. d .R. automatically when passing through the min.-max. Range for the fan speed and the exhaust air volume flow.

Die gewünschte Gebläsedrehzahl wird nun bezüglich der so gefundenen Absaugleistung nach dem Messzyklus I für eine Folgezeit so lange festgestellt, bis ein neuer Wert in einem weiteren Messzyklus, hier II, ermittelt wird.The desired blower speed is now determined with respect to the suction power found after the measuring cycle I for a follow-up time until a new value in a further measurement cycle, here II, is determined.

Die gewünschte Gebläsedrehzahl kann je nach Vorhaben genau in dem Punkt liegen, wo der Messwert der Wrasenabgabe/Zeit erstmals unter den Wert vor dem Messzyklus zu sinken beginnt (gewünschte Absaugdrehzahl = Kenngröße). Sie kann aber auch gewollt etwas höher (gewünschte Absaugdrehzahl > Kenngröße) oder niedriger (gewünschte Absaugdrehzahl < Kenngröße) liegen, z.B. um einen hinterlegten Prozentwert von der Kenngröße (z.B. + 10 % oder - 10 %).Depending on the project, the desired blower speed can be exactly at the point where the measured value of the vapor delivery / time first begins to drop below the value before the measuring cycle (desired extraction speed = parameter). But it can also be intentionally slightly higher (desired extraction speed> characteristic) or lower (desired extraction speed <characteristic), e.g. a stored percentage of the characteristic (for example + 10% or - 10%).

Aufgrund dieser Ausbildung wird insbesondere Rechenkapazität eingespart, weil nur in dem kürzeren ersten Zeitintervall, hier Messzyklus I und II, die Gaskonzentration gemessen wird.Due to this design, in particular computing capacity is saved, because only in the shorter first time interval, here measuring cycle I and II, the gas concentration is measured.

Dabei ist die Dauer des ersten Zeitintervalls derart kurz gewählt, dass die Gaskonzentration in dem Garraum 2 bei einem gleich bleibenden Abluftvolumenstrom während des ersten Zeitintervalls im Wesentlichen konstant bleibt. Die Drehzahl des Gebläses 4 wird während des ersten Zeitintervalls, ausgehend von einer niedrigen Drehzahl, niedriger Schwellenwert, bei der lediglich ein Teil des während des Garvorgangs entstehenden Wrasens durch das Gebläse 4 an die Umgebung abgegeben wird, kontinuierlich oder in Stufen automatisch erhöht, wie dies in der Figur 8 zu erkennen ist, bis der Gassensor 6 eine Gaskonzentration misst, die ungleich einer zu Beginn des ersten Zeitintervalls gemessenen Start-GasKonzentration ist. In Abhängigkeit der letzten Drehzahl wird die Drehzahl des Gebläses 4 für das zweite Zeitintervall automatisch festgelegt, und über das zweite Zeitintervall konstant gehalten. Ist das zweite Zeitintervall abgelaufen, beginnt die Messung wieder mit dem ersten Zeitintervall, in dem insbesondere die Gaskonzentration gemessen wird.In this case, the duration of the first time interval is selected to be so short that the gas concentration in the cooking chamber 2 remains substantially constant for a constant exhaust air volume flow during the first time interval. The speed of the blower 4 is automatically increased continuously or in stages during the first time interval, starting from a low speed, low threshold at which only a portion of the steam generated during the cooking process is delivered by the blower 4 to the environment in the FIG. 8 2, until the gas sensor 6 measures a gas concentration which is not equal to a starting gas concentration measured at the beginning of the first time interval. Depending on the last speed, the speed of the fan 4 is automatically set for the second time interval, and kept constant over the second time interval. If the second time interval has expired, the measurement begins again with the first time interval in which, in particular, the gas concentration is measured.

Es versteht sich von selbst, dass, wenn als Gaskonzentration die Sauerstoffkonzentration in dem Garraum 2 durch den als Sauerstoffsensor ausgebildeten Gassensor 6 gemessen wird, sich der Kurvenverlauf entsprechend anders darstellt, weil mit zunehmender Garzeit die Sauerstoffkonzentration im Ofenraum 3 geringer wird. Das Sauerstoffsignal beginnt in dem Moment zu steigen, in dem aufgrund der Absaugung durch die Zuluftöffnungen 8 nicht länger Wrasen austritt, sondern Sauerstoff aus der Küchenumluft nachgezogen wird. Dann fängt auch wieder das erste Zeitintervall an, in dem insbesondere die Sauerstoffkonzentration gemessen wird. In vorteilhafter Weiterbildung wird die Gaskonzentration eines durch den Garvorgang erzeugten Gases in dem Garraum 2 durch den Gassensor 6 gemessen.It goes without saying that when the oxygen concentration in the cooking chamber 2 is measured by the gas sensor 6 formed as an oxygen sensor as a gas concentration, the curve is correspondingly different, because with increasing cooking time, the oxygen concentration in the furnace chamber 3 is lower. The oxygen signal begins to increase in the moment in which due to the suction through the supply air openings 8 no longer vapors escapes, but oxygen is drawn from the kitchen air. Then again starts the first time interval, in which in particular the oxygen concentration is measured. In an advantageous embodiment, the gas concentration of a gas generated by the cooking process in the cooking chamber 2 is measured by the gas sensor 6.

Beispiele für unterschiedliche Volumenstromverhältnisse aufgrund von Wrasenentstehung und Wrasenabsaugung und Zuluft sind in der Figur 6 dargestellt, wobei hier die Figuren 6a und 6b keine Verdünnung des Wrasens durch Zuluft 8 zeigt, und wobei in beiden Fällen die gleiche Wrasenkonzentration gemessen wird. Die Figur 6c zeigt hingegen eine Verdünnung des Wrasens durch Zuluft 8, so dass sich im Garraum 2 eine niedrigere Wrasenkonzentration bzw. Feuchtekonzentration bzw. eine höhere Sauerstoffkonzentration einstellt.Examples of different volume flow conditions due to vapor formation and vapor extraction and supply air are in the FIG. 6 shown here, where the Figures 6a and 6b shows no dilution of the Wrasens by supply air 8, and in both cases, the same Wrasenkonzentration is measured. The FIG. 6c shows, however, a dilution of Wrasens by supply air 8, so that sets a lower Wrasenkonzentration or moisture concentration or a higher oxygen concentration in the cooking chamber 2.

Die Figur 7 zeigt den zeitlichen Verlauf der Feuchteanreicherung im Ofenraum bei einer Absaugung von 10 l/min und bei 20 l/min.The FIG. 7 shows the time course of the moisture accumulation in the furnace chamber with a suction of 10 l / min and at 20 l / min.

Claims (3)

  1. Method for regulating the exhaust air volume flow (1) from a cooking chamber (2) of an oven (3), the exhaust air volume flow (1) being discharged to the surroundings by a fan (4), the speed (5) of which is controlled depending on a gas concentration in the cooking chamber (2) of the oven (3) measured by a gas sensor (6), characterised in that, in a first time interval, the gas concentration is measured and the speed (5) of the fan (4) is increased continuously or in stages during the first time interval, starting from a low speed at which only some of the fumes arising during cooking are discharged to the surroundings by the fan (4), until the gas sensor (6) measures a gas concentration that is different to a starting gas concentration measured at the beginning of the first time interval, and in that, depending on the final speed (5), the speed (5) of the fan (4) is automatically set in an electrical control means (7) for a second time interval hollowing the first time interval, the speed (5) of the fan (2) thus determined being kept substantially constant, the two time intervals being alternately repeated during the cooking process and the second time interval being longer than the first time interval, and the first time interval being selected to be short such that, in the event of a constant exhaust air volume flow (1), the gas concentration in the cooking chamber (2) remains substantially constant during the first time interval.
  2. Method according to claim 1,
    characterised in that
    the oxygen concentration in the cooking chamber (2) is measured as the gas concentration by the gas sensor (6) configured as an oxygen sensor.
  3. Method according to claim 1,
    characterised in that
    the concentration of a gas, produced by the cooking process, in the cooking chamber (2) is measured as the gas concentration by the gas sensor (6).
EP07016042.9A 2006-09-14 2007-08-16 Method for regulating the exhaust air volume flow from the cooking chamber of an oven Not-in-force EP1906096B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL07016042T PL1906096T3 (en) 2006-09-14 2007-08-16 Method for regulating the exhaust air volume flow from the cooking chamber of an oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006043933A DE102006043933A1 (en) 2006-09-14 2006-09-14 Method for controlling the exhaust air volume flow from a cooking chamber of a baking oven

Publications (3)

Publication Number Publication Date
EP1906096A2 EP1906096A2 (en) 2008-04-02
EP1906096A3 EP1906096A3 (en) 2011-04-06
EP1906096B1 true EP1906096B1 (en) 2014-06-18

Family

ID=38640110

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016042.9A Not-in-force EP1906096B1 (en) 2006-09-14 2007-08-16 Method for regulating the exhaust air volume flow from the cooking chamber of an oven

Country Status (5)

Country Link
US (1) US7997263B2 (en)
EP (1) EP1906096B1 (en)
DE (1) DE102006043933A1 (en)
ES (1) ES2480197T3 (en)
PL (1) PL1906096T3 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006044039B3 (en) * 2006-09-14 2007-12-27 Miele & Cie. Kg Baking oven`s cooking area air volume flow controlling method, involves selecting period of one of time intervals as short interval, where temperature difference between temperatures remains constant with same and stable air volume flow
DE102008036683B4 (en) * 2008-08-06 2013-12-24 Rational Ag Cooking appliance and method for controlling a cooking process
ES2596322T3 (en) * 2009-12-22 2017-01-05 Arçelik Anonim Sirketi Method for operating an oven comprising an odor sensor
DE102012200304A1 (en) * 2012-01-11 2013-07-11 BSH Bosch und Siemens Hausgeräte GmbH Cooking appliance with sensor for cooking space
US10119708B2 (en) * 2013-04-23 2018-11-06 Alto-Shaam, Inc. Oven with automatic open/closed system mode control
DE102016215650A1 (en) * 2016-08-19 2018-02-22 BSH Hausgeräte GmbH Haushaltsgargerät
US20180228169A1 (en) * 2017-02-14 2018-08-16 Haier Us Appliance Solutions, Inc. Method for operating an indoor pizza oven appliance
CN110542139A (en) * 2019-09-30 2019-12-06 佛山市顺德区美的洗涤电器制造有限公司 Control method of range hood and range hood
CN114052462A (en) * 2020-07-31 2022-02-18 佛山市顺德区美的电热电器制造有限公司 Cooking appliance, control method, control device, and computer-readable storage medium
CN111998415A (en) * 2020-09-11 2020-11-27 华帝股份有限公司 Cooking equipment and oil smoke emission control method
CN112426025B (en) * 2020-10-21 2022-04-05 华帝股份有限公司 Exhaust control method of cooking equipment after cooking is finished and cooking equipment
KR20220153892A (en) 2021-05-12 2022-11-21 엘지전자 주식회사 Cooking appliance and method for controlling the same

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3625135A (en) * 1970-04-22 1971-12-07 Honeywell Inc Automatically controlled cooking area ventilating system
DE2925947A1 (en) * 1979-06-27 1981-01-22 Siemens Ag Magnetic tape recording head heater - has power transistor used as both temp. sensor and heating element
DE3804678A1 (en) * 1988-02-15 1989-08-24 Buderus Kuechentechnik Method for operating a baking oven with microwaves and electrical resistance heating
US4954694A (en) * 1989-01-31 1990-09-04 Matsushita Electric Industrial Co., Ltd. Cooking oven having function to automatically clean soils attached to inner walls thereof
DE50108057D1 (en) * 2000-05-17 2005-12-22 V Zug Ag Zug Oven vent
JP2002190686A (en) * 2000-12-22 2002-07-05 Toshiba Corp Cooling device for electronic equipment
US6462319B1 (en) * 2001-05-29 2002-10-08 Bsh Home Appliances Corporation Multi-stage self-cleaning control for oven
DE10211522A1 (en) * 2002-03-15 2003-09-25 Bsh Bosch Siemens Hausgeraete Oven, especially with a mechanism for pyrolytic self-cleaning comprises a controllable flap for controlling the airflow into oven
US20040129800A1 (en) * 2002-10-24 2004-07-08 Valois S.A.S. Fluid dispenser
US6913012B2 (en) * 2002-10-25 2005-07-05 Fisher & Paykel Appliances Limited Cooking appliance venting system
US6787738B2 (en) * 2003-01-27 2004-09-07 General Electric Company Carbon monoxide sensed oven cleaning apparatus and method
US6920874B1 (en) * 2004-03-01 2005-07-26 Robert Paul Siegel Intelligent ventilating safety range hood
DE102004049927A1 (en) * 2004-10-14 2006-04-27 Miele & Cie. Kg Method for controlling a cooking process in a cooking appliance

Also Published As

Publication number Publication date
DE102006043933A1 (en) 2008-04-03
PL1906096T3 (en) 2014-10-31
ES2480197T3 (en) 2014-07-25
EP1906096A3 (en) 2011-04-06
US7997263B2 (en) 2011-08-16
US20080066732A1 (en) 2008-03-20
EP1906096A2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
EP1906096B1 (en) Method for regulating the exhaust air volume flow from the cooking chamber of an oven
EP1906095B1 (en) Method for regulating the exhaust air volume flow from the cooking chamber of an oven
EP2469173B1 (en) Method for controlling a cooking process in a cooking device and cooking device
EP3390916B1 (en) Method for operating a commercial cooking device and such a cooking device
EP2775215B1 (en) Baking oven with temperature limitation depending on the climate in the oven
EP3437476B1 (en) Cooking device and method for using a cooking device
EP2154435A2 (en) Cooking device and method for monitoring a cooking process
EP1619443B1 (en) Oven with controllable ventilation
EP2390587B1 (en) Cooking device with a steam generation function
EP1156282B1 (en) Cooking oven with venting system
EP2992760B1 (en) Baking oven and baking method with optimized baking area pressure
EP3437477B1 (en) Cooking device and method for operating a cooking device
EP2383556A2 (en) Method for calculating the approximate operating temperature of a room
EP1855058A1 (en) Process and apparatus to cook dishes with vapour
EP0845234B2 (en) Device and method to control the amount of humidity in a cooking device
EP2510826A1 (en) Manually operated dryer
DE60202550T2 (en) Extractor hood and control system for a trigger system
DE102018207615B4 (en) Method for operating a household microwave device and household microwave device for carrying out the method
EP2860458A1 (en) Method for operating a cooking appliance in the form of a combi-steamer and cooking appliance for carrying out the said method
EP2220970B2 (en) Refining preparation with detection of a cooling rate
DE102017128743B3 (en) Method for influencing a cooking process
DE102005035564A1 (en) Household baking-oven controlling method involves collecting and evaluating air humidity in baking muffle as baking-or-cooking parameter during cooking process, and adjusting air humidity by influence of air removal or air supply of muffle
DE10129885C1 (en) Process for regulating the heating power of a baking oven used in bakeries comprises integrating the difference between the theoretical temperature and the actual temperature over the baking time; and correcting the theoretical temperature
DE10327864A1 (en) Method for touch-free control of cooking/baking process of ovens has atmospheric gas concentration sensor, to trigger automatic heater switch-off or cooking timer signal
WO2023247182A1 (en) Operation of a domestic cooking appliance with a moisture sensor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007013198

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F24C0015000000

Ipc: F24C0015200000

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F24C 15/20 20060101AFI20110225BHEP

Ipc: F24C 7/08 20060101ALI20110225BHEP

17P Request for examination filed

Effective date: 20110510

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140205

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: ES

Ref legal event code: GC2A

Effective date: 20140709

Ref country code: AT

Ref legal event code: REF

Ref document number: 673567

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140715

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2480197

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20140725

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007013198

Country of ref document: DE

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502007013198

Country of ref document: DE

Effective date: 20140628

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140919

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

Ref country code: PL

Ref legal event code: LICE

Effective date: 20140806

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140618

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141020

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141018

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007013198

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140816

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

26N No opposition filed

Effective date: 20150319

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140918

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140918

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140816

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 673567

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180823

Year of fee payment: 12

Ref country code: ES

Payment date: 20180927

Year of fee payment: 12

Ref country code: DE

Payment date: 20180831

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180807

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20190702

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502007013198

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190817

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200816