EP1904940A1 - Vorrichtung zur zeitlich gesteuerten intravenösen verabreichung des narkosemittels propofol - Google Patents

Vorrichtung zur zeitlich gesteuerten intravenösen verabreichung des narkosemittels propofol

Info

Publication number
EP1904940A1
EP1904940A1 EP06743110A EP06743110A EP1904940A1 EP 1904940 A1 EP1904940 A1 EP 1904940A1 EP 06743110 A EP06743110 A EP 06743110A EP 06743110 A EP06743110 A EP 06743110A EP 1904940 A1 EP1904940 A1 EP 1904940A1
Authority
EP
European Patent Office
Prior art keywords
propofol
time
profile
parameters
anesthetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06743110A
Other languages
English (en)
French (fr)
Inventor
Andrea Nicole Edginton
Stefan Willmann
Walter Schmitt
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer Intellectual Property GmbH
Original Assignee
Bayer Technology Services GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Technology Services GmbH filed Critical Bayer Technology Services GmbH
Publication of EP1904940A1 publication Critical patent/EP1904940A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/14Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
    • A61M5/168Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body
    • A61M5/172Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic
    • A61M5/1723Means for controlling media flow to the body or for metering media to the body, e.g. drip meters, counters ; Monitoring media flow to the body electrical or electronic using feedback of body parameters, e.g. blood-sugar, pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P23/00Anaesthetics
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/10ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients
    • G16H20/17ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to drugs or medications, e.g. for ensuring correct administration to patients delivered via infusion or injection
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/50ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for simulation or modelling of medical disorders

Definitions

  • the invention relates to a device for the time-controlled dosing of the anesthetic propofol by means of a method for determining a corresponding dosing profile and corresponding control of an infusion pump as a dosing device.
  • anesthesia course should be similar to a rectangular pro 1, i.
  • the anesthesia should be initiated quickly at a precisely defined time, then maintained at a constant level over a certain period of time, and discharged again just as quickly after completing the procedure.
  • An anesthetic must be administered at an appropriate rate of infusion over time.
  • electronically controlled infusion pumps are used in medicine, via which the infusion rate can be programmed.
  • the temporal profile of action of the anesthetic which determines the course of anesthesia, in addition to the infusion rate but also by a number of patient-individual anatomical, physiological, biochemical and genetic factors is affected.
  • the anesthetic reaches the systemic circulation of the patient, the substance is distributed in the organism.
  • the anesthetic is transported via the blood flow into the various organs, where it finally spreads into the cells.
  • This organ distribution kinetics is e.g. individual blood flow rates of individual organs, which in some subpopulations (e.g., children, elderly, sick, pregnant women) differ markedly from those of typical, healthy adults.
  • the clearance ie the rate of metabolism in the excretory organ (usually the liver, sometimes also other organs such as the intestine or kidney) determines the kinetics of elimination, which is of central importance for the maintenance and discharge of anesthesia.
  • This clearance is also highly dependent on individual factors of the particular patient, e.g. Age, sex, level of expression of the metabolizing enzymes and blood flow rate of the eliminating organ.
  • the temporal concentration course of the narcosis agent at its site of action, the brain is of particular interest because it determines the course of anesthesia.
  • TCI Target Controlled Infusion
  • a commercial infusional pumpi control system exists, marketed as Diprifusor TM by AstraZeneca - product information "Diprifusor TM: Target Controlled Infusion (TCI) in anesthetic practice", AstraZeneca Anesthesia, New Edition (1998).
  • TCI Target Controlled Infusion
  • Another infusion system specifically for pediatric use is under development (Paedfusor, Munoz HR, Cortinez LI, Ibacache ME, Altmann C.
  • the central compartment in this three-compartment model represents the blood pool
  • the one peripheral compartment is the so-called "effect compartment", which describes the time course of the concentration of the anesthetic at its site of action
  • the third compartment represents organs with low blood perfusion
  • the Patient-individual input variables of these systems are the age, body weight, and a target concentration in the patient's blood
  • the infusion rate to be applied is determined on the basis of an open three-compartment experimental data.
  • the body weight normalized blood flow rate in a two-year-old child is twice as high as that of a five-year-old child (Wintermark M, Lepori D, Cotting J, Roulet E, van MG, Meuli R et al., Brain perfusion in children: evolution with age) by quantitative perfusion computed tomography, Pediatrics 2004; 113 (6): 1642-52), a fact that can not be described by an age-independent mass transfer rate in the effect compartment (k e o).
  • the age-related differences in the composition of the body in terms of its relative proportions of water, fat, and protein significantly affect the volume of distribution and thus the kinetics of propofol.
  • the pharmacokinetics of propofol in obese patients are not solely dependent on body weight but rather on fat content.
  • the volume of the central compartment is similar in obese and normal weight people, which can be explained by a comparatively small variability in the volume of well-perfused tissue between such individuals.
  • the peripheral compartments, in particular that which represents the poorly perfused tissues, on the other hand, are distinctly different, which leads to a larger distribution volume in obese individuals.
  • the times until induction of general anesthesia are similar, but the elimination is faster in obese patients (Servin F, Farinotti R, Haberer J, Desmonts J.
  • Newborns therefore wake up more quickly from general anesthesia after the end of the propofol infusion, but they only recover relatively slowly from the subsequent symptoms, which is attributable to reduced systemic clearance (Rigby-Jones AE, Nolan JA, Priston MJ, Wright P, Sneyd R, Wolf AR, Pharmacokinetics of propofol infusion in critically ill neonates, infants, and children in an intensive care unit., Anesthesiology 2002; 97: 1393-400.).
  • the influence of such physiological, anatomical and biochemical or genetic peculiarities on the course of anesthesia can only be insufficiently described with the device known from the prior art.
  • the use of an open three-compartment model limits the flexibility to consider different patient conditions such as age-related differences in body composition, blood flow rates and rate of metabolism, obesity or pregnancy, etc.
  • Lewitt et al. describes a physiology-based pharmacokinetic model for the simulation of propofol plasma pharmacokinetics after intravenous administration (Levitt DG, Schnider TW, Human physiologically based pharmacokinetic model for propofol, BMC Anesthesiol 2005 Apr 22; 5 (1): 4).
  • the model provides a good description of the concentration-time course of propofol in the plasma of adult patients, but does not describe the extent to which the model calculable concentrations in the brain are effective in determining the time course of the effect of propofol.
  • the applicability of this model is further limited by the fact that only the fat content of the patient on the basis of an empirical correlation equation and the propofol clearance are taken into account as individual parameters.
  • the invention is based on the object of developing an improved device which enables an exact time distribution of propofol taking into account individual physiological, anatomical, biochemical and genetic factors of the patient.
  • the invention therefore relates to a device in which a PBPK / PD model is used in order to optimize an optimal time course for the individual patient by iterative adaptation of either the concentration-time course in the brain or the pharmacodynamic effect-time course to determine a given temporal target profile.
  • This optimized time course of administration then serves as the input function for a dosing device.
  • a closed control loop which is clearly superior to the black box device mentioned in the prior art, which dispenses with the use of physiological knowledge.
  • the essential feature of the invention is the combination of a physiology-based pharmacokinetic and / or pharmacodynamic model (PBPK / PD) with an automated dosing device such as an electronically controlled infusion pump.
  • PBPK / PD models are advantageous over non-physiological compartment models because they are able to describe in detail the influence of individual physiological, anatomical, biochemical and genetic factors on pharmacokinetics and dynamics.
  • FIG. 1 A schematic representation of the device according to the invention is shown in Figure 1.
  • the main component is a PBPK / PD model (101), which describes a mammalian organism (especially human) and requires a number of different parameters as input variables:
  • Substance-specific parameters of the anesthetic agent to be administered (102).
  • Typical substance-specific parameters are e.g. physicochemical parameters such as lipophilicity, binding constant to human serum albumin and / or other plasma proteins, unbound plasma fraction, solubility in aqueous buffer solution or in intestinal fluid, size of the molecule (expressed by molecular weight or molar volume), hepatic and / or renal clearance, permeability coefficients, e.g. via artificial or biological membranes, and equilibrium distribution coefficients between plasma (or blood) and the various organs.
  • physicochemical parameters such as lipophilicity, binding constant to human serum albumin and / or other plasma proteins, unbound plasma fraction, solubility in aqueous buffer solution or in intestinal fluid, size of the molecule (expressed by molecular weight or molar volume), hepatic and / or renal clearance, permeability coefficients, e.g. via artificial or biological membranes, and equilibrium distribution coefficients between plasma (or blood) and
  • Species-specific physiological, anatomical, biochemical and / or genetic input parameters characteristic of the patient under consideration include, in particular, body weight, volume fractions of individual organs in the total body volume, blood flow rates of individual organs, water, fat and lipid content of the individual organs, as well as parameters that influence the expression and function of metabolically active enzymes (especially in the liver and intestine). or characterize the expression and function of proteins for the active transport of molecules across cell membranes.
  • a target profile which indicates the desired concentration-time course of the anesthetic agent to be administered in the plasma, blood or directly on the biochemical target in the target organ, or the desired effect-time course ("TARGET profile", 105).
  • TARGET profile a rectangular effect profile is sought with as steep flanks as possible, ie the desired anesthesia effect should be spontaneous, then remain as constant as possible over a defined period of time, and decay rapidly at the end of the treatment.
  • the target profile can be either a simple temporal function Z (t) or alternatively or additionally given as a tolerance range (defined as an interval over a maximum value and a minimum value [ ZnUn (O .. Z 013x (I)]).
  • the PBPK / PD model calculates the individual concentration-time profile or effect-time profile for the considered substance on the basis of the information from 1.) - 2.) ("IST Profile ", 106).
  • the dosage profile is varied until the simulated concentration-time profile or effect-time profile agrees with the TARGET profile (107, 108).
  • the temporal dosage profile is obtained which effects the desired concentration-time or effect-time profile for the substance under consideration in the individual patient or shows the slightest deviation from this.
  • Numerical optimization methods include, for example, gradient methods, gradient-free methods, stochastic methods or evolutionary methods.
  • the gradient methods the quasi-Newton or Newton method and in particular the interval box method are particularly preferred for the gradient-free methods.
  • the stochastic methods particularly prefer the Monte Carlo method
  • the method of genetic optimization represents a particularly preferred method Form of an evolutionary process.
  • This dosage profile is used in the last step to control an automatic dosing device.
  • the present invention thus relates to a device for the timed administration of the anesthetic propofol, characterized in that: a) a substance-dependent target profile, which indicates a desired concentration-time course in the brain or a desired effect time course,
  • a dosing device is controlled on the basis of the result under c).
  • the control of the dosing device may be useful not to make the control of the dosing device solely on the desired pharmacokinetic or pharmacodynamic target profile out, but an external measure, for example. to derive parameters derived from an electroencephalogram (EEG) as another input parameter.
  • EEG electroencephalogram
  • the depth of anesthesia is additionally monitored online by one or more suitable measuring probes and the measuring signals are integrated into the method as additional input variables.
  • the control of the dosing device is then not controlled purely by the pharmacodynamic or pharmacokinetic time profile, but involves external measurement signals.
  • the supply of an anesthetic can be increased if the measured depth of anesthesia falls below a critical value.
  • a closed loop can be realized, which optimizes the temporal dosage of the anesthetic using real-time online measurements and physiological simulations.
  • parameters measured using an electroencephalogram (EEG) such as the Bispectral Index (BIS) may be considered as online measurements.
  • EEG electroencephalogram
  • BIS Bispectral Index
  • the response of the pharmacodynamic or pharmacokinetic profile known from physiological simulation to changes in the rate of application is used to readjust the rate of anesthetic delivery to the patient's needs indicated by the probe.
  • only the signal of the measuring probe is briefly used for regulation if a critical condition exists (for example, if the patient threatens to wake up prematurely from the anesthetic).
  • DE-A-10 345 837 has also described how biochemical and genetic information, such as expression data of metabolically active enzymes or active transporters, can be used to determine a dosage individually adapted to the patient.
  • This simulation method in combination with a dosing device, enables the desired temporal dosage of propofol, taking into account individual physiological, anatomical, biochemical and genetic factors of the patient.
  • the device according to the invention As a target group for the application of the device according to the invention are humans and mammals, including in particular livestock, breeding, laboratory, experimental and hobby animals in question. Most preferably, the method is used as an adjuvant for the therapeutic treatment of humans or for clinical trials in humans.
  • the livestock and breeding animals include mammals such as e.g. Cattle, horses, sheep, pigs, goats, camels, water buffalos, donkeys, rabbits, fallow deer, reindeer and fur animals, e.g. Mink, chinchilla or raccoon.
  • Laboratory and experimental animals include mice, rats, guinea pigs, hamsters, rabbits, dogs, cats, pigs and monkeys in all species, subspecies and breeds.
  • Hobby animals include dogs and cats in particular.
  • Electronically controlled dosing devices are, in particular, electronically controlled infusion pumps.
  • the application example is based on simulations using the commercially available physiology-based pharmacokinetic model PK-Sim ® developed by Bayer Technology Services GmbH and the TIVA-Trainer published and available on the internet.
  • the following values for propofol were used as substance-dependent input parameters in PK-Sim® (Table 1):
  • Another important input is the clearance, ie the elimination rate of the substance.
  • Propofol is metabolised in the liver.
  • the activity of the metabolizing enzymes is known to be age-dependent.
  • Figure 2 shows a fit (line) through experimental data (symbols) describing propofol clearance as a function of age. Utilizing the Create Individual function, the studies cited in Table 2 were simulated. Likewise, these cases were simulated with the Diprifusor TM software TTVA-Trainer and in the case of the pediatric study with the Paedforsor model.
  • Figure 3 shows the predicted (lines) and experimental (symbols, data from Raoof AA, Van Obbergh LJ, Verbeeck RK, Propofol pharmacokinetics in children with biliary atresia, Br J Anesth 1995; 74: 46-9) Propofol concentrations in the blood after intravenous administration in children (mean age 1.9 years).
  • Figure 4 shows the predicted (lines) and experimental (symbols, data from Saint-Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL Pharmacokinetics of propofol in youn ' g children after a single dose., Br J Anaesth 1989; 63 (6): 667-70.) Propofol levels in the blood after intravenous administration in children (mean age 5.5 years).
  • Fig. 5 shows the predicted (lines) and experimental (symbols, data from Valtonen M, Iisa Io E, Kanto J, Rosenberg P. Propofol as an induction agent in children: pain on injection and pharmacokinetics, Acta Anesthesiol Scand 1989, 33 (2): 152-5) Propofol concentrations in blood after intravenous administration in children (mean age 6.5 years).
  • Figure 6 shows the predicted (lines) and experimental (symbols, data of Kanto J, Rosenberg P. Propofol in cesarean section, A pharmacokinetic and pharmacodynamic study, Methods and Findings in Experimental Clinical Pharmacology 1990, 12 (10): 707- l l.) Propofol concentrations in the blood after intravenous administration in pregnant women (mean age 27.1 years).
  • Figure 7 shows the predicted (lines) and experimental (symbols, data from Mertens MJ, Olofsen E, Burm AG, Bovill JG, Vuyk J. Mixed-effects modeling of the influence of alfentanil on propofol pharmacokinetics .Anesthesiology 2004; 4): 795-805.) Propofol levels in the blood after intravenous administration in young men (mean age 24 years).
  • Figure 8 shows the predicted (lines) and experimental (symbols, data from Ickx B, Cockshott ID, Barvais L, Byttebier G, De PL, Vandesteene A et al., Propofol infusion for induction and maintenance of anesthesia in patients with end-stage renal Br i Anesth 1998; 81 (6): 854-60.) Propofol levels in the blood after intravenous administration in adults (mean age 45.2 years).
  • the mean relative deviation (MRD) was calculated in each case for the curves predicted by PK-Sim® and by TFVA trainer according to the formula:
  • Figures 3 to 8 and the calculated MRD values from Table 3 show that the individual concentration-time courses of propofol can be better predicted with the physiology-based model in all cases than with the conventional open three-compartment models.
  • the relative standard deviation of these concentration values was determined.
  • the relative standard deviation of drug concentrations in the brain at the time of loss of consciousness was 27% in the normal weight population.
  • TrVA-Trainer model the relative standard deviation of the effect compartment concentration in this population was 32%.
  • the standard deviation obtained with PK-Sim® was marginally larger than in the normal-weight population (41%).
  • the standard deviation in the overweight population of the TIVA-Trainer was significantly higher at 93%.
  • the time of the reawakening is also correlated again with the concentration of propofol when discharging anesthesia. It is to be expected that induction and discharge of anesthesia are associated with very similar drug concentrations in the brain. As shown in Table 4, the drug levels predicted by PK-Sim® in the brain at the time of recovery (3.4 mg / L) are very well consistent with drug levels in the brain at the time of loss of consciousness. These threshold levels of brain concentration are in the absolute range of 2.2 to 4.0 mg / L. The concentration levels for the effect compartment calculated by the TIVA trainer were 2.2 for the time the consciousness was recovered and 1.0 to 1.6 for the simulated loss of consciousness, which is a significant mismatch between the two values.
  • PK-Sim® was able to predict very accurately the time of the minimum BIS value (relative deviation + 8.3 s), while the predictive model of the diffrusor model was almost a factor of 2 off.
  • Table 4 Pharmacodynamic endpoints predicted by PK-Sim ® and Diprifusor
  • a target profile Z (t) for propofol in the brain can be described.
  • Z m1n (O and Z max (t)) which must not be exceeded or fallen short of during the duration of an anesthesia If the patient falls below this threshold, the patient may be woken up during the procedure, while in case of exceeding this undesirable side effects are not excluded can.
  • a desired profile Z (t) for example, a rectangular profile for the drug concentration in the brain with a plateau value of 3.5 mg / L propofol during the anesthetic period (t N ⁇ kose ) makes sense.
  • the upper and lower limits are 3.0 mg / L and 4.0 mg / L in the brain, respectively.
  • the time t L oc defines the desired beginning of the anesthesia. This results in the following function for the target profile Z (t): 0 t ⁇ t LOC
  • a target profile for the BIS value can also be specified directly.
  • the iterative rate of infusion i. H. the intravenously administered dose per time interval varies.
  • the stepwise approach is usefully chosen so that it is adapted to the distribution and elimination kinetics of the substance.
  • the amount applied in the corresponding time step is varied until, overall, the actual profile within the tolerance range coincides with the nominal profile.
  • Suitable numerical optimization methods include, for example, gradient methods, in particular Quasi-Newton or Newton methods, as well as gradient-free methods such as interval hunching and stochastic methods such as Monte Carlo methods.
  • Figure 1 Schematic representation of the device for the timed dosing of anesthetics.
  • Figure 3 Predictive (lines) and experimental (symbols, data from Raoof et al.) Propofol concentrations in the blood after intravenous administration in children (mean age 1.9 years).
  • the solid line shows the concentrations calculated by PK-Sim® and the dashed line the concentrations calculated by the TTVA trainer.
  • Figure 4 Predictive (lines) and experimental (symbols, data from Saint-Maurice et al.) Propofol concentrations in the blood after intravenous administration in children (mean age 5.5 years).
  • the solid line shows the concentrations calculated by PK-Sim® and the dashed line the concentrations calculated by the TIVA trainer.
  • Figure 5 Predictive (lines) and experimental (symbols, data from Valtonen et al.) Propofol concentrations in the blood after intravenous administration in children
  • the solid line shows the concentrations calculated by PK-Sim® and " the dashed line the concentrations calculated by the TIVA trainer.
  • Figure 6 Predictive (lines) and experimental (symbols, data from Kanto et al.) Propofol concentrations in the blood after intravenous administration in pregnant women (mean age 27.1 years).
  • the solid line shows that of PK
  • Figure 7 Predictive (lines) and experimental (symbols, data from Mertens et al.) Propofol concentrations in the blood after intravenous administration in young men (mean age 24 years).
  • the solid line shows the concentrations calculated by PK-Sim® and the dashed line the concentrations calculated by the TIVA trainer.
  • Figure 8 Predictive (lines) and experimental (symbols, data from Ickx et al.) Propofol concentrations in the blood after intravenous administration in adults (mean age 45.2 years).
  • the solid line shows the concentrations calculated by PK-Sim® and the dashed line the concentrations calculated by the TIVA trainer.

Abstract

Die Erfindung betrifft eine Vorrichtung zur zeitlich gesteuerten Dosierung des Narkosemittels Propofol mittels eines Verfahrens zur Bestimmungen eines entsprechenden Dosierungsprofils und entsprechender Steuerung einer Infusionspumpe als Dosiereinrichtung.

Description

Vorrichtung zur zeitlich gesteuerten intravenösen Verabreichung des Narkosemittels Propo- fol
Die Erfindung betrifft eine Vorrichtung zur zeitlich gesteuerten Dosierung des Narkosemittels Propofol mittels eines Verfahrens zur Bestimmung eines entsprechenden Dosierungsprofils und entsprechender Steuerung einer Infusionspumpe als Dosiereinrichtung.
Viele medizinische Eingriffe, insbesondere invasive chirurgische Interventionen, können nur unter Vollnarkose durchgeführt werden. Eine exakte zeitliche Dosierung des Narkosemittels ist ausschlaggebend für die Sicherheit des Patienten und den Erfolg der Behandlung. Idealerweise sollte der Narkoseverlauf einem Rechteckprofi 1 gleichen, d.h. die Narkose sollte zu einem exakt definier- ten Zeitpunkt schnell eingeleitet, dann über einen bestimmten Zeitraum annähernd konstant aufrecht erhalten bleiben und nach Abschluss des Eingriffs ebenso schnell wieder ausgeleitet werden. Ein Narkosemittel muss mit einer entsprechenden zeitlich variablen Infusionsrate verabreicht werden. Zu diesem Zweck werden in der Medizin elektronisch gesteuerte Infusionspumpen eingesetzt, über die sich die Infusionsrate programmieren lässt. Erschwerend kommt aber der Umstand hinzu, dass das zeitliche Wirkprofil des Narkosemittels, welches den Narkoseverlauf bestimmt, neben der Infusionsrate aber auch von einer Reihe Patienten-individueller anatomischer, physiologischer, biochemischer und genetischer Faktoren beeinflusst wird. Sobald das Narkosemittel in die systemische Zirkulation des Patienten gelangt, verteilt sich die Substanz im Organismus. Das Narkosemittel wird über den Blutfluss in die diversen Organe transportiert, wo es sich schließlich in die Zellen hinein verteilt. Diese Organverteilungskinetik wird z.B. von den individuellen Blutflussraten der einzelnen Organe bestimmt, welche in bestimmten Subpopulationen (z.B. Kindern, ältere Menschen, kranke Menschen, schwangere Frauen) deutlich von denen typischer, gesunder Erwachsener unterscheiden. Weiterhin bestimmt die Clearance, also die Metabolisierungsrate in dem Ausscheidungsorgan (meist Leber, z. T. auch andere Organe wie Darm oder Niere) die Eliminati- onskinetik, welche für die Aufrechterhaltung und Ausleitung der Narkose von zentraler Bedeutung ist. Diese Clearance hängt ebenfalls im hohen Masse von individuellen Faktoren des jeweiligen Patienten wie z.B. Alter, Geschlecht, Expressionslevel der metabolisierenden Enzyme und Blutflussrate des eliminierenden Organs ab.
Aus pharmakodynamischer Sicht ist besonders der zeitliche Konzentrationsverlauf des Narkose- mittels an dessen Wirkort, dem Gehirn, von Interesse, da er den Verlauf der Narkose bestimmt.
Computergesteuerte Infusionspumpen, deren Eingabefunktion mittels eines pharmakokinetischen Modells ermittelt werden, sind nach dem Stand der Technik unter dem Stichwort "TCI" (= Target Controlled Infusion) bekannt und kommerziell erhältlich. Hauptanwendungsgebiet von TCI ist die Steuerung des intravenös verabreichten Narkosemittels Propofol. In der Patentanmeldung US 5,609,575, wird ein TCI-System beschrieben, wobei die Dosis- Konzentrationsroutine das Body Weight Index als einzigen Patientenparameter in das System einführt und nur eine grobe Simulation der Konzentration erreicht wird. Für das Narkosemittel Propo- fol existiert ein kommerzielles Systeme zur Steuerung von Infus ionspumperi, vermarktet als Dipri- fusor™ von AstraZeneca - Produktinformation "Diprifusor™: Target Controlled Infusion (TCI) in anaesthetic practice", AstraZeneca Anaesthesia, New Edition (1998). Ein weiteres Infusionssystem speziell für die Anwendung in Kindern ist in der Entwicklung (Paedfusor, Munoz HR, Cortinez LI, Ibacache ME, Altmann C. Estimation of the plasma effect site equilibration rate constant (keo) of propofol in children using the time to peak effect. Anesthesiology 2004; 101:1269-74.) Nach dem Stand der Technik wird das pharmakokinetische Profil von Propofol, d. h. das zeitliche Ausbrei- tungs- und Verteilungsverhalten nach Verabreichung, durch ein offenes Drei-Kompartiment- Modell beschrieben (Gepts E, Camu F, Cockshott ID, Douglas EJ. Disposition of propofol admi- nistered as constant rate intravenous infusions in humans. Anesth Anaig 1987; 66(12): 1256-63; Munoz HR, Cortinez LI, Ibacache ME, Altmann C. Estimation of the plasma effect site equilibra- tion rate constant (keO) of propofol in children using the time to peak effect. Anesthesiology 2004; 101 :1269-74.). Das zentrale Kompartiment in diesem Drei-Kompartiment-Modell repräsentiert den Blutpool, das eine periphere Kompartiment ist das sogenannte „Effekt-Kompartiment", welches den Zeitverlauf der Konzentration des Narkosemittels an seinem Wirkort beschreibt, und das dritte Kompartiment repräsentiert Organe mit geringer Blutperfusion, die eine langsame Rückverteilung des Narkosemittels bewirken, welche die Elimination beeinflusst. Patienten-individuelle Eingangsgrößen dieser Systeme sind das Alter, Körpergewicht und eine Zielkonzentration im Blut des Patienten. Die zu applizierende Infusionsrate wird daraus anhand eines an experimentellen Daten gefit- teten offenen Drei-Kompartiment-Modells berechnet. Die Parameter dieses Dreikompartiment- Modells (Volumina der Kompartimente, Massentransferraten und Eliminationsraten) sind dabei alters- und/oder körpergewichtsabhängig. Von zentraler Bedeutung für das Gesamtsystem ist die Transportrate zwischen dem zentralen (Blut-) Kompartiment und dem Effekt-Kompartiment (Ic60), welche letztendlich den zeitlichen Verlauf des Propofols an dessen Wirkort und damit den Narkoseverlauf regelt. Mehrere solche Parametersätze für Propofol sind in der Literatur publiziert (Ka- zama T, Ikeda K, Morita K, Kikura M, Ikeda T, Kurita T et al. Investigation of effective anesthesia induction doses using a wide ränge of infusion rates with undiluted and diluted propofol. Anesthesiology 2000; 92(4): 1017-28.; Munoz HR, Cortinez LI, Ibacache ME, Altmann C. Estimation of the plasma effect site equilibration rate constant (ke0) of propofol in children using the time to peak effect. Anesthesiology 2004; 101 :1269-74.). Das zu Grunde liegende Drei-Kompartiment-Modell ist im Internet verfügbar und öffentlich zugänglich (TIVA-Trainer, verfügbar unter www.eurosiva.org). Nachteilig bei dieser bekannten Vorrichtung ist, dass diese gefitteten Modellparameter lediglich mittlere Werte darstellen, die die Patienten aus der zu Grunde liegenden experimentellen Studie repräsentieren. Zwar können in diesen Modellen Abhängigkeiten der Parameter vom Körpergewicht und teilweise auch vom Alter berücksichtigt werden, eine darüber hinaus gehende Möglich- keit zur Individualisierung und Anpassung der pharmakokinetischen Modellparameter an den speziellen Patienten besteht aber nicht. So sind die beschriebenen offenen Drei-Kompartimentmodelle nicht in der Lage, physiologische Besonderheiten von speziellen Patientengruppen, z.B. Kindern, alten oder kranken Menschen, zu berücksichtigen. Ein Beispiel dafür ist die nicht-lineare Altersabhängigkeit des Blutflusses im Gehirn (dem Zielorgan des Propofols) von Kindern. Die körperge- wichtsnormierte Blutflussrate in einem zweijährigen Kind ist doppelt so groß wie die eines fünf Jahre alten Kindes (Wintermark M, Lepori D, Cotting J, Roulet E, van MG, Meuli R et al. Brain perfusion in children: evolution with age assessed by quantitative perfusion computed tomography. Pediatrics 2004; 113(6): 1642-52), eine Tatsache die nicht durch eine altersunabhängige Massen- transferrate in dem Effektkompartiment (keo) beschrieben werden kann. Ebenso beeinflussen die altersabhängigen Unterschiede in der Zusammensetzung des Körpers (bezüglich seiner relativen Anteile an Wasser, Fett und Protein) das Verteilungsvolumen und damit die Kinetik des Propofols ganz erheblich. Auf ähnliche Weise ist die Pharmakokinetik von Propofol in fettleibigen Patienten nicht alleine vom Körpergewicht sondern vielmehr vom Fettanteil abhängig. Bei alten und kranken Menschen - aber auch bei Kindern - sind Unterschiede in der Metabolisierungsrate entscheidend für die Propofolspiegel im Blut und im Gehirn. Das Volumen des zentralen Kompartiments ist in fettleibigen und normalgewichtigen Menschen ähnlich, was durch eine vergleichsweise geringe Variabilität im Volumen der gut perfundierten Gewebe zwischen solchen Individuen erklärt werden kann. Die peripheren Kompartimente, insbesondere dasjenige, welches die schlecht perfundierten Gewebe repräsentiert, sind dagegen deutlich verschieden, was zu einem größeren Vertei- lungsvolumen in Fettleibigen führt. Als Ergebnis sind die Zeiten bis zum Einleiten der Vollnarkose ähnlich, die Ausleitung geht aber in fettleibigen Patienten schneller vonstatten (Servin F, Farinotti R, Haberer J, Desmonts J. Propofol infusion for maintenance of anesthesia in morbidly obese pati- ents receiving nitrous oxide. Anesthesiology 2005; 78:657-65). Ein ähnliches Verhalten wie in Fettleibigen wurde in Neugeborenen beobachtet, in denen das Volumen des peripheren Komparti- ments ebenfalls relativ größer war als im Falle von Erwachsenen, was durch den relativ erhöhten Körperfettgehalt in Neugeborenen erklärt werden kann. Neugeborene erwachen also schneller aus der Vollnarkose nach Beendigung der Propofol-Infusion, aber sie erholen sich nur relativ langsam von den Folgesymptomen, was auf eine reduzierte systemische Clearance zurückzuführen ist (Rig- by-Jones AE, Nolan JA, Priston MJ, Wright P, Sneyd R, Wolf AR. Pharmacokinetics of propofol infusions in critically ill neonates, infants, and children in an intensive care unit. Anesthesiology 2002; 97: 1393-400.). Der Einfluss solcher physiologischer, anatomischer und biochemischer oder genetischer Besonderheiten auf den Narkoseverlauf lässt sich mit der nach dem Stand der Technik bekannten Vorrichtung nur unzureichend beschreiben. Die Anwendung eines offenen Drei-Kompartimentmodells limitiert die Flexibilität, unterschiedliche Bedingungen des Patienten wie z.B. altersabhängige Unterschiede in der Körperzusammensetzung, Blutflussraten und der Metabolisierungs- geschwindigkeit, Fettleibigkeit oder eine Schwangerschaft etc. zu berücksichtigen.
Lewitt et al. beschreibt ein physiologie-basiertes pharmakokinetisches Modell zur Simulation der Propofol-Plasmapharmakokinetik nach intravenöser Verabreichung (Levitt DG, Schnider TW., Human physiologically based pharmacokinetic model for propofol. BMC Anesthesiol. 2005 Apr 22;5(1):4). Das Modell liefert eine gute Beschreibung des Konzentrations-Zeitverlaufs von Propofol im Plasma von erwachsenen Patienten, beschreibt aber nicht, inwieweit die mit dem Modell berechenbaren Konzentrationen im Gehirn den tatsächlichen zeitlichen Verlauf des Effektes von Propofol. Die Anwendbarkeit dieses Modells ist weiterhin dadurch limitiert, dass lediglich der Fettgehalt des Patienten auf Basis einer empirischen Korrelationsgleichung sowie die Propofol Clearance als individuelle Parameter berücksichtigt werden. Eine darüber hinaus gehende patientenindividuelle Parametrisierung findet nicht statt. Insbesondere bleiben individuelle Unterschiede in den Blutflussraten der peripheren Organe unberücksichtigt, die bei sich schnell verteilenden Substanzen wie Propofol wesentlich die gesamte Verteilungskinetik beeinflussen. Die Simulation der Propofol-Pharmakokinetik in Kindern ist mit dem von Levitt et al. publizierten Modell eben- falls nicht möglich, da darin nur mittlere physiologische Parameter im Erwachsenen beschrieben sind. Darüberhinaus beschreibt Lewitt et al. lediglich ein Modell zur Simulation der Propofol- Plasmapharmakokinetik und keine Vorrichtung zur zeitlich gesteuerten Dosierung von Propofol.
Der Erfindung liegt, ausgehend vom genannten Stand der Technik, die Aufgabe zu Grunde, eine verbesserte Vorrichtung zu entwickeln, welches eine exakte zeitliche Dosierung von Propofol un- ter Berücksichtigung individueller physiologischer, anatomischer, biochemischer und genetischer Faktoren des Patienten ermöglicht.
Die Erfindung betrifft daher eine Vorrichtung in welchem ein PBPK/PD Modell verwendet wird, um einen für den individuellen Patienten optimalen zeitlichen Verlauf der Dosierung durch iterative Anpassung entweder des Konzentration-Zeit-Verlaufs im Gehirn oder des pharmakodynami- sehen Effekt-Zeit-Verlaufs an ein vorgegebenes zeitliches Zielprofil zu ermitteln. Dieser optimierte zeitliche Verlauf der Verabreichung dient dann als Eingangsfunktion für eine Dosierungsvorrichtung. In Kombination mit Echtzeit-Messungen physiologischer Parameter lässt sich ein geschlossener Regelkreis verwirklichen, der den im Stand der Technik genannten Blackbox- Vorrichtung, die auf die Nutzung physiologischen Wissens verzichten, deutlich überlegen ist. Das wesentliche Merkmal der Erfindung besteht in der Kombination eines Physiologie-basierten Pharmakokinetik- und/oder Pharmakodynamik-Modells (PBPK/PD) mit einer automatisierten Dosiervorrichtung wie z.B. einer elektronisch gesteuerten Infusionspumpe. PBPK/PD-Modelle sind gegenüber nicht-physiologischen Kompartimentmodellen vorteilhaft, da sie in der Lage sind, den Einfluss individueller physiologischer, anatomischer, biochemischer und genetischer Faktoren auf die Pharmakokinetik und -dynamik detailliert zu beschreiben.
Eine schematische Darstellung der erfindungsgemäßen Vorrichtung ist in Abbildung 1 gezeigt. Hauptbestandteil ist ein PBPK/PD-Modell (101), welches einen Säugetier-Organismus (insbesondere Mensch) beschreibt und als Eingangsgrößen eine Reihe unterschiedlicher Parameter benötigt:
1.) Substanzspezifische Parameter des zu verabreichenden Narkosemittels (102). Typische substanzspezifische Parameter sind z.B. physikochemische Parameter wie Lipophilie, Bindungskonstante an humanes Serumalbumin und/oder weitere Plasmaproteine, ungebundene Plasmafraktion, Löslichkeit in wässriger Pufferlösung oder in intestinaler Flüssigkeit, Größe des Moleküls (ausgedrückt durch das Molekülgewicht oder Molvolumen), hepatische und/oder renale Clearance, Permeabilitätskoeffizienten, bspw. über künstliche oder biologische Membranen, und Gleichgewichtsverteilungskoeffizienten zwischen Plasma (oder Blut) und den diversen Organen.
2.) Spezies-spezifische physiologische, anatomische, biochemische und/oder genetische Eingangsparameter, die charakteristisch für den betrachteten Patienten sind (103). Zu dieser Sorte von Parametern zählen insbesondere Körpergewicht, Volumenanteile einzelner Organe am gesamten Körpervolumen, Blutflussraten einzelner Organe, Wasser-, Fett- und Lipidanteil der einzelnen Organe, sowie Parameter, die die Expression und Funktion von metabolisch aktiven Enzymen (insbesondere in Leber und Darm) oder die Expression und Funktion von Proteinen für den aktiven Transport von Molekülen durch Zellmembranen charakterisieren. Diese Parameter können entweder direkt gemessen werden oder sind für bestimmte Populationen mit einfach bestimmbaren Patientenparametern wie Alter, Geschlecht, Körpergewicht und Lean Body Mass korreliert (P. S. Price, R. B. Conolly, C. F. Chaisson, E. A. Gross, J. S. Young, E. T. Mathis, D. R. Tedder: "Modeling interindividual Variation in physiological factors used in PBPK modeis of humans", CHt. Rev. Toxicol. 33, 469-503 (2003)). Es können einzelne oder mehrere dieser Parameter im erfindungsgemäßen Verfahren eingesetzt werden. Möglich ist auch, dass einzelne oder mehrere dieser Parameter wie z.B. Blutflussraten sich zeitlich verändern, so dass eine Berücksichtigung dieser Veränderung während der Simulation sinnvoll ist.
3.) Ein Dosierungsprofil, das die verabreichte Dosis als Funktion der Zeit beschreibt (104). Weiter wird vorgegeben:
4.) Ein Zielprofil, das den gewünschten Konzentrations-Zeit-Verlauf des zu verabreichenden Narkosemittels im Plasma, Blut oder direkt am biochemischen Target im Zielorgan, oder den gewünschten Effekt-Zeit-Verlauf angibt ("SOLL-Profil", 105). Im Fall der Verabrei- chung von Narkosemitteln wird ein rechteckiges Effekt-Profil mit möglichst steilen Flanken angestrebt, d. h. die gewünschte Narkosewirkung soll spontan einsetzen, dann über einen definierten Zeitraum möglichst konstant bleiben, und am Ende der Behandlung wieder rasch abklingen. Das Zielprofil kann entweder eine einfache zeitliche Funktion Z(t) sein oder auch alternativ oder zusätzlich als Toleranzbereich (definiert als Intervall über einen Maximalwert und einen Minimalwert [ZnUn(O.. Z013x(I)]) vorgegeben sein.
Ausgehend von einer sinnvoll zu wählenden Startfunktion für das Dosierungsprofil, errechnet das PBPK/PD-Modell anhand der Informationen aus 1.) - 2.) das individuelle Konzentrations-Zeit- Profil bzw. Effekt-Zeit-Profil für die betrachtete Substanz ("IST-Profil", 106).
Dabei sind grundsätzlich verschiedene Routen der Administration des Narkosemittels im PBPK/PD-Modell denkbar. Besonders wichtig und bevorzugt ist die intravenöse Applikation.
Mit Hilfe eines iterativen Optimierungsprozesses wird das Dosierungsprofil solange variiert, bis das simulierte Konzentrations-Zeit-Profil bzw. Effekt-Zeit-Profil mit dem SOLL-Profil übereinstimmt (107, 108). Als Resultat dieser numerischen Optimierung wird dasjenige zeitliche Dosierungsprofil erhalten, welches den gewünschten Konzentrations-Zeit- bzw. Effekt-Zeit-Verlauf für die betrachtete Substanz bei dem individuellen Patienten bewirkt oder von diesem die geringste Abweichung zeigt. Als numerische Optimierungsverfahren kommen zum Beispiel Gradientenverfahren, gradientenfreie Verfahren, stochastische Verfahren oder evolutionäre Verfahren in Betracht. Besonders bevorzugt sind bei den Gradientenverfahren das Quasi-Newton- oder Newton- Verfahren und insbesondere das Intervallschachtelungsverfahren bei den gradientenfreien Verfah- ren. Bei den stochastischen Methoden ist insbesondere das Monte-Carlo-V erfahren bevorzugt, die Methode der genetischen Optimierung stellt eine besonders bevorzugte Form eines evolutionären Verfahrens dar.
Dieses Dosierungsprofil wird im letzten Schritt zur Steuerung einer automatischen Dosierungsvorrichtung herangezogen.
Dementsprechend betrifft die vorliegende Erfindung also eine Vorrichtung zur zeitlich gesteuerten Dosierung des Narkosemittels Propofol, dadurch gekennzeichnet dass: a) ein substanzabhängiges Zielprofil, welches einen gewünschten Konzentrations-Zeit- Verlauf im Gehirn oder einen gewünschten Effekt-Zeitverlauf angibt,
b) eine physiologie-basierte pharmakokinetische und/oder pharmakodynamische Simulation mit zeitlich variablem Dosierungsprofil unter Berücksichtigung individueller Parameter des Patienten und substanzspezifischer Inputparameter des zu verabreichenden Narkosemittels,
c) eine iterative numerische Anpassung des Dosierungsprofils, bis das simulierte zeitliche Profil mit dem vorgegebenen Zielprofil übereinstimmt oder mit diesem die maximal erreichbare Übereinstimmung zeigt, wobei
d) eine Dosierungsvorrichtung auf Basis des Ergebnisses unter c) gesteuert wird.
In bestimmten Fällen kann es sinnvoll sein, die Regelung der Dosierungsvorrichtung nicht alleine auf das gewünschte pharmakokinetische oder pharmakodynamische Zielprofil hin vorzunehmen, sondern eine externe Messgröße z.B. aus einem Elektroenzephalogramm (EEG) abgeleitete Parameter als weiteren Eingangsparameter heranzuziehen. In einer besonderen Ausführungsform wird die Narkosetiefe zusätzlich durch eine oder mehrere geeignete Messsonden online überwacht und die Messsignale als zusätzliche Eingangsgrößen in das Verfahren integriert. Die Steuerung der Dosierungsvorrichtung wird dann nicht rein durch das pharmakodynamische oder pharmakokinetische Zeitprofil geregelt, sondern bezieht externe Messsignale mit ein. So kann beispielsweise die Zufuhr eines Narkosemittels erhöht werden, wenn die gemessene Narkosetiefe einen kritischen Wert unterschreitet. Auf diese Weise lässt sich ein geschlossener Regelkreis verwirklichen, der unter Einbeziehung von online-Messwerten und physiologischen Simulationen in Echtzeit die zeitliche Dosierung des Narkosemittels optimiert. Als online-Messwerte kommen beispielsweise Parameter, die mit Hilfe eines Elektro-Enzephalogramms (EEG) gemessen werden, wie beispielsweise der Bispektrale Index (BIS), in Betracht. In dieser Ausführungsform wird die aus der physiolo- gischen Simulation bekannte Response des pharmakodynamischen bzw. pharmakokinetischen Profils auf Änderungen in der Applikationsrate benutzt, um die Rate der Narkosemittelzufuhr den durch die Messsonde angezeigten Bedürfnissen des Patienten neu anzupassen. In einer weiteren besonderen Ausführungsform wird kurzzeitig alleine das Signal der Messsonde zur Regelung herangezogen, sofern ein kritischer Zustand vorliegt (z.B. wenn der Patient vorzeitig aus der Narkose zu erwachen droht).
Als Simulationsverfahren sind grundsätzlich alle auf den genannten Parametern basierenden Verfahren geeignet, besonders geeignet und erfindungsgemäß bevorzugt sind die in DE-A-10160270 und DE-A-10345836 beanspruchten Verfahren und entsprechenden physiologie-basierte PK/PD Modelle (als PK-Sim® vermarktet - www.PK-Sim.com; S. Willmann, J. Lippert, M. Sevestre, J. Solodenko, F. Fois, W. Schmitt: "PK-Sim®: a physiologically based pharmacokinetic 'whole-body' model", Biosilico 1, 121-124 (2003)). In diesen S imulations verfahren wird der Einfluss von individuellen physiologischen und anatomischen Parametern wie z.B. Organgröße und -zusammen- Setzung, Blutflussraten, etc. auf das zeitliche pharmakokinetische Verhalten von Arzneistoffen berücksichtigt. Diese physiologischen und anatomischen Parameter lassen sich auf einige wenige, leicht messbare Größen, wie z.B. Körpergewicht und Body Mass Index, zurückführen. Zudem sind diese Parameter alters-, geschlechts- und in einigen Fällen auch rassenabhängig. In DE-A- 10 345 837 wurde darüber hinaus beschrieben, wie auch biochemische und genetische Informatio- nen, wie z.B. Expressionsdaten metabolisch aktiver Enzyme oder aktiver Transporter, zur Bestimmung einer individuell an den Patienten angepassten Dosierung herangezogen werden können.
Es wurde in einer Studie gezeigt, dass der von PK-Sim® berechnete Konzentrations-Zeitverlauf im Wirkort des Narkosemittels Propofols tatsächlich prädiktiv für den Narkoseverlauf ist (S. Willmann et al.: "A pharmacodynamic extension for the physiology-based pharmacokinetic whole- body model PK-Sim®" Posterbeitrag EUFEPS 2004, Brüssel, 17.-20.10.2004). Diese Studie basierte auf experimentellen Daten von LUDBROOK et al. (Ludbrook GL, Visco E, Lm AM.: „Relation between brain concentrations, electrocephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen.extraction during induction of anesthesia" Anesthesiology 2002; 97:1363-70), die das Konzentrations-Zeit-Profil von Propofol im Plasma nach intravenöser Verabreichung zu- sammen mit dem Bispektralen Index (BIS), einem aus dem EEG abgeleiteten Parameter, der ein Maß für die Narkosetiefe ist, bestimmten. Der gemessene Plasma-Konzentrations-Zeitverlauf korreliert dabei nicht mit dem zeitlichen Verlauf der Narkose. Trägt man den BIS als Funktion der Plasmakonzentration auf, so ergibt sich eine Hysteresekurve (S. Willmann et al.: "A pharmacodynamic extension for the physiology-based pharmacokinetic whole-body model PK-Sim®" Poster- beitrag EUFEPS 2004, Brüssel, 17.-20.10.2004). Die Simulation der Propofol-Pharmakokinetik mit PK-Sim® ergab eine sehr gute Übereinstimmung der Plasmakonzentration. Interessanterweise zeigte die simulierte Wirkstoffkonzentration im Gehirn gegenüber dem Plasma ein langsameres Anfluten des Propofols, welches vom zeitlichen Verlauf her gut mit dem Profil des BIS übereinstimmt. Trägt man den experimentell von LUDBROOK et al. (Ludbrook GL, Visco E, Lm AM.: „Relation between brain concentrations, electrocephalogram, middle cerebral artery blood flow velocity, and cerebral oxygen extraction during induction of anesthesia" Anesthesiology 2002; 97:1363-70) gemessenen BIS-Wert als Funktion der von PK-Sim® vorhergesagten Wirkstoffkonzentration im Gehirn auf, so kollabiert die Hysterese, was ein starker Beweis für die Prädiktivität des simulierten Gehirnprofils im Bezug auf den pharmakodynamischen Effekt der Narkose ist (S. Willmann et al.: "A pharmacodynamic extension for the physiology-based pharmacokinetic whole- body model PK-Sim®" Posterbeitrag EUFEPS 2004, Brüssel, 17.-20.10.2004).
Dieses Simulationsverfahren in Kombination mit einer Dosierungsvorrichtung ermöglicht die gewünschte zeitliche Dosierung von Propofol unter Berücksichtigung individueller physiologischer, anatomischer, biochemischer und genetischer Faktoren des Patienten.
Als Zielgruppe für die Anwendung der erfindungsgemäßen Vorrichtung kommen Menschen und Säugetiere, darunter insbesondere Nutz-, Zucht-, Labor-, Versuchs- und Hobbytiere in Frage. Ganz besonders bevorzugt wird das Verfahren als Hilfsmittel für die therapeutische Behandlung von Menschen oder für klinische Versuche an Menschen eingesetzt.
Zu den Nutz- und Zuchttieren gehören Säugetiere wie z.B. Rinder, Pferde, Schafe, Schweine, Ziegen, Kamele, Wasserbüffel, Esel, Kaninchen, Damwild, Rentiere und Pelztiere wie z.B. Nerze, Chinchilla oder Waschbär.
Zu Labor- und Versuchstieren gehören Mäuse, Ratten, Meerschweinchen, Hamster, Kaninchen, Hunde, Katzen, Schweine und Affen jeweils in allen Arten, Unterarten und Rassen.
Zu den Hobbytieren gehören insbesondere Hunde und Katzen.
Als elektronisch gesteuerte Dosierungsvorrichtung kommen insbesondere elektronisch gesteuerte Infusionspumpen in Frage.
Beispiel
Dem Anwendungsbeispiel liegen Simulationen mit dem bei Bayer Technology Services GmbH entwickelten und kommerziell erhältlichen physiologie-basierten Pharmakokinetik-Modell PK- Sim® und der publizierten und im Internet erhältlichen Diprifusor™-Software TIVA-Trainer zu Grunde. Als substanzabhängige Inputparameter im PK-Sim® wurden die folgenden Werte für Propofol verwendet (Tabelle 1):
Tabelle 1
PARAMETER WERT
Lipophilie 2.6
Molgewicht 178
Freie Plasmafraktion '(altersabhängig) 0.020 - 0.025
Clearance (altersabhängig) 29 - 50 ml/min/kg
Erste Simulationen mit PK-Sim® haben gezeigt, dass die Diffusion über die Zellmembranen in die Organe hinein schneller ist, als für ein Molekül mit diesen physikochemischen Eigenschaften zu erwarten wäre. Um diesem Effekt Rechnung zu tragen, wurden alle organspezifischen Permeabili- tätskoeffizienten in PK-Sim® mit einem Faktor 20 multipliziert, so .dass die Verteilung in die peripheren Kompartimente rein durch die Blutflussraten limitiert ist.
Zunächst wird gezeigt, dass es grundsätzlich auf der Basis der vorgenannten Werte und Annahmen möglich ist, mit PK-Sim® den Plasma-Konzentrations-Zeitverlauf von Propofol in einer Reihe unterschiedlicher Individuen korrekt zu beschreiben. Dazu wurden Literaturdaten zum Plasma- Konzentrations-Zeitverlauf von Propofol gesammelt und mit Simulationsergebnissen von PK- Sim® und dem Diprifusor™-Modell (TIVA-Trainer) verglichen. Es wurden pharmakokinetische und/oder pharmakodynamische Daten in Kindern (Valtonen M, Iisalo E, Kanto J, Rosenberg P. Propofol as an induction agent in children: pain on injection and pharmacokinetics. Acta A- naesthesiol Scand 1989; 33(2):152-5.; Raoof AA, Van Obbergh LJ, Verbeeck RK. Propofol pharmacokinetics in children with biliary atresia. Br J Anaesth 1995; 74:46-9.; Saint-Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL. Pharmacokinetics of propofol in young children after a Single dose. Br J Anaesth 1989; 63(6):667-70.), jungen Erwachsenen (Mertens MJ, Olofsen E, Burm AG, Bovill JG, Vuyk J. Mixed-effects modeling of the influence of alfentanil on propofol pharmacokinetics. Anesthesiology 2004; 100(4):795-805), normalgewichtigen und übergewichtigen Erwachsenen (Ickx B, Cockshott ID, Barvais L, Byttebier G, De PL, Vandesteene A et al. Propofol infusion for induction and maintenance of anaesthesia in patients with end-stage renal disease. Br J Anaesth 1998; 81(6):854-60.; Servin F, Farinotti R, Haberer J, Desmonts J. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxi- de. Anesthesiology 2005; 78:657-65.; Lysakowski C, Dumont L, Pellegrini M, Clergue F, Tassonyi E. Effects of fentanyl, alfentanil, remfentanil and sufentanil on loss of consciousness and bispectral index during propofol induction of anaesthesia. Br J Anaesth 2001 ; 86(4):523-7.; Kaza- ma T, Ikeda K, Morita K, Kikura M, Ikeda T, Kurita T et al. Investigation of effective anesthesia induction doses using a wide ränge of infusion rates with undiluted and diluted propofol. Anesthesiology 2000; 92(4):1017-28.; Kazama T, Morita K, Ikeda T, Kurita T, Sato S. Comparison of predicted induction dose with predetermined physiologic characteristics of patients and with pharmacokinetic modeis incorporating those characteristics as covariates. Anesthesiology 2003; 98(2):299-305.) und Schwangeren (Kanto J, Rosenberg P. Propofol iri cesarean section. A pharmacokinetic and pharmacodynamic study. Methods and Findings in Experimental Clinical Pharmaco- logy 1990; 12(10):707-l 1.) verglichen. Eine Übersicht zeigt die folgende Tabelle:
Tabelle 2: Pharmakokinetische Studien zu Propofol in verschiedenen Populationen
Die "Create Individual" Funktion von PK-Sim® ermöglicht die Simulation eines virtuellen Indivi- duums, gekennzeichnet durch Angabe des Alters, Geschlecht, Rasse (verschiedene Rassen sind vorgegeben) und zwei Parametern aus Körpergewicht (BW), Body Maß Index (BMI) oder Körpergröße (H) (diese drei Größen sind über die Beziehung BMI = BW/H2 miteinander verknüpft). Eine weitere wichtige Eingangsgröße ist die Clearance, also die Eliminationsrate der Substanz. Propofol wird in der Leber metabolisiert. Die Aktivität der metabolisierenden Enzyme ist bekanntermaßen altersabhängig. Abbildung 2 zeigt einen Fit (Linie) durch experimentelle Daten (Symbole), die die Propofol-Clearance als Funktion des Alters beschreiben. Unter Ausnutzung der Create Individual Funktion wurden die in der Tabelle 2 zitierten Studien simuliert. Ebenso wurden diese Fälle mit der Diprifusor™-Software TTVA-Trainer und im Falle der pädiatrischen Studie mit dem Paedfu- sor-Modell simuliert.
Abbildung 3 zeigt die prädiktierten (Linien) und experimentellen (Symbole, Daten von Raoof AA, Van Obbergh LJ, Verbeeck RK. Propofol pharmacokinetics in children with biliary atresia. Br J Anaesth 1995; 74:46-9) Propofol-Konzentrationen im Blut nach intravenöser Administration in Kindern (mittleres Alter 1.9 Jahre).
Abbildung 4 zeigt die prädiktierten (Linien) und experimentellen (Symbole, Daten von Saint- Maurice C, Cockshott ID, Douglas EJ, Richard MO, Harmey JL. Pharmacokinetics of propofol in youn'g children after a Single dose. Br J Anaesth 1989; 63(6):667-70.) Propofol-Konzentrationen im Blut nach intravenöser Administration in Kindern (mittleres Alter 5.5 Jahre).
Fig. 5 zeigt die prädiktierten (Linien) und experimentellen (Symbole, Daten von Valtonen M, Iisa- Io E, Kanto J, Rosenberg P. Propofol as an induction agent in children: pain on injection and pharmacokinetics. Acta Anaesthesiol Scand 1989; 33(2): 152-5) Propofol-Konzentrationen im Blut nach intravenöser Administration in Kindern (mittleres Alter 6.5 Jahre).
Abbildung 6 zeigt die prädiktierten (Linien) und experimentellen (Symbole, Daten von Kanto J, Rosenberg P. Propofol in cesarean section. A pharmacokinetic and pharmacodynamic study. Me- thods and Findings in Experimental Clinical Pharmacology 1990; 12(10):707-l l.) Propofol- Konzentrationen im Blut nach intravenöser Administration in schwangeren Frauen (mittleres Alter 27.1 Jahre).
Abbildung 7 zeigt die prädiktierten (Linien) und experimentellen (Symbole, Daten von Mertens MJ, Olofsen E, Burm AG, Bovill JG, Vuyk J. Mixed-effects modeling of the influence of alfenta- nil on propofol pharmacokinetics. Anesthesiology 2004; 100(4):795-805.) Propofol-Konzentrationen im Blut nach intravenöser Administration in jungen Männern (mittleres Alter 24 Jahre).
Abbildung 8 zeigt die prädiktierten (Linien) und experimentellen (Symbole, Daten von Ickx B, Cockshott ID, Barvais L, Byttebier G, De PL, Vandesteene A et al. Propofol infusion for induction and maintenance of anaesthesia in patients with end-stage renal disease. Br J Anaesth 1998; 81(6):854-60.) Propofol-Konzentrationen im Blut nach intravenöser Administration in Erwachsenen (mittleres Alter 45.2 Jahre).
Als Maß für die Güte der Vorhersage der Plasma Konzentrationen wurde die mittlere relative Abweichung (mean relative deviation, MRD) jeweils für die von PK-Sim® sowie von TFVA-Trainer vorhergesagten Kurven berechnet nach der Formel:
Darin bedeuten y die gemessenen Plasma Konzentrationen, y die vorhergesagten Plasma Kon- zentrationen, und n die Anzahl der gemessenen Werte. Für die in den Abbildung 3 bis 8 gezeigten Kurven ergaben sich die folgenden Werte für MRD:
Tabelle 3: MRD Werte als Maß für die Qualität der Vorhersage der Plasma Konzentrationen
Insgesamt zeigen die Abbildung 3 bis 8 und die berechneten MRD- Werte aus Tabelle 3, dass die individuellen Konzentrations-Zeitverläufe von Propofol mit dem Physiologie-basierten Modell in allen Fällen besser vorhergesagt werden können als mit den konventionellen offenen Drei- Kompartiment-Modellen.
Im nächsten Schritt wird gezeigt, dass auch der pharmakodynamische Effekt von Propofol in unterschiedlichen Subpopulationen besser mit dem Physiologie-basierten Modell PK-Sim® vorher- gesagt werden kann als mit dem herkömmlichen Drei-Kompartiment-Modell. Ein sensibles Maß für den Propofol-Effekt stellt der Zeitpunkt des Einschlafens nach Einleitung einer Propofol- Infusion dar (engl.: time at loss of consciousness, tLOc)- In der Literatur sind zahlreiche Werte für tLOc in normalgewichtigen, übergewichtigen Menschen und Schwangeren beschrieben. Bei diesem Vergleich ist zu beachten, daß die vom TFVA-Trainer berechneten theoretischen "Konzentratio- nen" des Effektkompartiments nicht die Bedeutung einer realen Konzentration haben, da das Ef- fekt-Kompartiment in dem zu Grunde liegenden Drei-Kompartiment-Modell keine physiologische Basis hat (im Gegensatz zu den von PK-Sim® berechneten Wirkstoffkonzentrationen im Gehirn). Aus diesem Grunde sind als Maß für die Qualität der Vorhersage nicht die absoluten Zahlen von Bedeutung sondern die Koeffizienten der Varianz der Gehirn-, bzw. Effektkompartimentkon- zentration in den verschiedenen Subpopulationen.
Servin et al. (Servin F, Farinotti R, Haberer J, Desmonts J. Propofol infusion for maintenance of anesthesia in morbidly obese patients receiving nitrous oxide. Anesthesiology 2005; 78:657-65.) untersuchten die Propofol Pharmakokinetik und -dynamik in 8 übergewichtigen und 10 normalgewichtigen Erwachsenen. Berichtet werden in der Studie die individuellen tLOc- Werte, also die Zeitpunkte nach Beginn der Propofol-Infusion, bei denen die Patienten das Bewusstsein verlieren. Für jedes dieser Individuen wurde die Propofol-Administration mit PK-Sim® und TFVA-Trainer simuliert und die Wirkstoffkonzentrationen im Gehirn (PK-Sim®) bzw. Konzentration im Effekt- kompartiment (TIVA-Trainer) zum jeweiligen Zeitpunkt tLOc ermittelt. Als Maß für die Qualität der Vorhersage wurde die relative Standardabweichung dieser Konzentrationswerte bestimmt. Im Falle der PK-Sim® Simulationen betrug die relative Standardabweichung der Wirkstoffkonzentra- tionen im Gehirn zum Zeitpunkt des Bewusstseinsverlusts 27 % in der normalgewichtigen Population. Unter Verwendung des TrVA-Trainer-Modells betrug die relative Standardabweichung der Effektkompartiment-Konzentration in dieser Population 32 %. In der übergewichtigen Population war die mit PK-Sim® ermittelte Standardabweichung unwesentlich größer als in der normalgewichtigen Population (41 %). Beim TIVA-Trainer dagegen lag die Standardabweichung in der übergewichtigen Population mit 93 % wesentlich darüber.
In einer weiteren pharmakodynamischen Studie von Kazama et al. (Kazama T, Ikeda K, Morita K, Kikura M, Ikeda T, Kurita T et al. Investigation of effective anesthesia induction doses using a wide ränge of infusion rates with undiluted and diluted propofol. Anesthesiology 2000; 92(4):1017-28.) wurde der Einfluss unterschiedlicher Infusionsraten von Propofol in normalgewichtigen Erwachsenen untersucht. Hier betrugen die relativen Standardabweichungen der mit PK- Sim® berechneten Wirkstoffkonzentratiönen im Gehirn 18 %, die der Effekt- Kompartimentkonzentrationen beim TIVA-Trainer 21 %.
Neben dem Zeitpunkt des Bewusstseinsverlustes ist beim Ausleiten der Narkose der Zeitpunkt des Wiedererwachens ebenfalls wieder mit der Konzentration des Propofols korreliert. Es ist zu erwarten, dass Ein- und Ausleitung einer Narkose mit sehr ähnlichen Wirkstoffkonzentrationen im Gehirn einhergehen. Wie in Tabelle 4 gezeigt, liegt die von PK-Sim® vorhergesagte Wirkstoffkonzentrationen im Gehirn zum Zeitpunkt der Wiedererlangung des Bewusstseins (3.4 mg/L) sehr gut mit den Wirkstoffkonzentrationen im Gehirn zum Zeitpunkt des Bewusstseinsverlustes überein. Diese Schwellenwerte der Konzentration im Gehirn liegen in einem absoluten Bereich von 2.2 bis 4.0 mg/L. Die vom TIVA-Trainer errechneten Konzentrationswerte für das Effektkompartiment betrugen 2.2 für den Zeitpunkt der Wiedererlangung des Bewusstseins und 1.0 bis 1.6 für den des simulierten Bewusstseinsverlust, was eine deutliche Nichtübereinstimmung zwischen den zwei Werten darstellt. Darüber hinaus war PK-Sim® in der Lage, den Zeitpunkt des minimalen BIS- Wertes sehr genau vorherzusagen (relative Abweichung + 8.3 s), während die Vorhersage des Di- prifusor-Modells um beinahe einen Faktor 2 daneben lag. Tabelle 4: Pharmakodynamische Endpunkte vorhergesagt von PK-Sim® und Diprifusor
Nachdem in einer Reihe von Anwendungsfallen gezeigt wurde, dass die Physiologie-basierte Vorhersage der Propofol-Konzentrationen im Plasma sowie am Wirkort des Narkosemittels auf Basis eines Physiologie-basierten Pharmakokinetikmodells vorteilhaft ist, soll nun beschrieben werden, wie dieses Verfahren zur Verbesserung eines System zur automatisierten Steuerung einer Infusionspumpe herangezogen werden kann.
Unter Verwendung der oben abgeleiteten mittleren Wirkstoffkonzentration im Gehirn von 3,5 "mg/L, die einem BIS-Wert von etwa 60 entspricht, lässt sich ein Soll-Profil Z(t) für Propofol in Gehirn beschreiben. Aus Sicherheitsgründen können zusätzlich Schwellenwerte (Zm1n(O und Zmax(t)) vorgegeben werden, die während der Narkosedauer keinesfalls über- oder unterschritten werden dürfen. Im Falle des Unterschreitens droht ein zwischenzeitliches Erwachen des Patienten während des Eingriffs, während im Falle des Überschreitens unerwünschte Nebenwirkungen nicht ausgeschlossen werden können.
Als Soll-Profil Z(t) ist beispielsweise ein Rechteckprofil für die Wirkstoffkonzentration im Gehirn mit einem Plateau- Wert von 3,5 mg/L Propofol während der Narkosedauer (tNωkose) sinnvoll. Als Ober- und Untergrenze werden 3,0 mg/L bzw. 4,0 mg/L im Gehirn angesetzt. Der Zeitpunkt tLoc definiert den gewünschten Beginn der Narkose {time point at loss of consciousness). Damit ergibt sich die folgende Funktion für das Zielprofil Z(t): 0 t < t LOC
Z(O = «( 3,5 mg IL i tnc ≤ t ≤ t^ sowie 0 , t > t 1 Nκarkose
0 t < t LOC 0
Z-(O = 3,0 mg IL , t^ ≤ t ≤ t^^ A Zmax (0 = - 4,0 mg /I ^LOC — ' — * Narkose 0 , t > t N>arkose 0 t > t Narkose
Alternativ kann auch direkt ein Soll-Profil für den BIS- Wert vorgegeben werden.
Im nächsten Schritt wird nun iterativ die Infusionsrate, d. h. die intravenös applizierte Dosis pro Zeitintervall, variiert. Die Schrittweise ist dabei sinnvollerweise so zu wählen, dass sie an die Ver- teilungs- und Eliminationskinetik der Substanz angepasst wird.
Das erhaltene Simulationsergebnis (= IST-Profϊl) wird dann mit dem SOLL-Profil verglichen. Im Falle einer Abweichung des IST-Profils vom SOLL-Profil, die außerhalb des gültigen Toleranzbereichs liegt, wird die im entsprechenden Zeitschritt applizierte Menge variiert, bis insgesamt das IST-Profil im Rahmen des Toleranzbereichs mit dem SOLL-Profil übereinstimmt. Als geeignete numerische Optimierungsverfahren kommen hier beispielsweise Gradientenverfahren, insbesondere Quasi-Newton- oder Newton-Verfahren, sowie gradientenfreie Verfahren wie Intervallschachte- lung und stochastische Verfahren wie Monte-Carlo-Verfahren in Betracht. Diese so ermittelten Dosierungsprofile dienen im letzten Schritt des erfindungsgemäßen Verfahrens als Eingabefunktion zur Steuerung eines herkömmlichen Dosierungsautomaten, bevorzugt einer elektronisch gesteuerten Infusionspumpe.
Beschreibung der Abbildungen
Abbildung 1: Schematische Darstellung der Vorrichtung zur zeitlichen Dosierung von Narkosemitteln.
Abbildung 2: Altersabhängigkeit der Propofol-Clearance (Symbole: Experimentelle Daten aus der Literatur, Linie: Least Square Fit)
Abbildung 3: Prädiktierte (Linien) und experimentelle (Symbole, Daten von Raoof et al.) Propo- fol-Konzentrationen im Blut nach intravenöser Administration in Kindern (mittleres Alter 1.9 Jahre). Die durchgezogene Linie zeigt die von PK-Sim® und die gestrichelte Linie die vom TTVA-Trainer berechneten Konzentrationen.
Abbildung 4: Prädiktierte (Linien) und experimentelle (Symbole, Daten von Saint-Maurice et al.) Propofol-Konzentrationen im Blut nach intravenöser Administration in Kindern (mittleres Alter 5.5 Jahre). Die durchgezogene Linie zeigt die von PK-Sim® und die gestrichelte Linie die vom TIVA-Trainer berechneten Konzentrationen.
Abbildung 5: Prädiktierte (Linien) und experimentelle (Symbole, Daten von Valtonen et al.) Propofol-Konzentrationen im Blut nach intravenöser Administration in Kindern
(mittleres Alter 6.5 Jahre). Die durchgezogene Linie zeigt die von PK-Sim® und "die gestrichelte Linie die vom TIVA-Trainer berechneten Konzentrationen.
Abbildung 6: Prädiktierte (Linien) und experimentelle (Symbole, Daten von Kanto et al.) Propofol-Konzentrationen im Blut nach intravenöser Administration in schwangeren Frauen (mittleres Alter 27.1 Jahre). Die durchgezogene Linie zeigt die von PK-
Sim® und die gestrichelte Linie die vom TF/A-Trainer berechneten Konzentrationen.
Abbildung 7: Prädiktierte (Linien) und experimentelle (Symbole, Daten von Mertens et al.) Propofol-Konzentrationen im Blut nach intravenöser Administration in jungen Män- nern (mittleres Alter 24 Jahre). Die durchgezogene Linie zeigt die von PK-Sim® und die gestrichelte Linie die vom TIVA-Trainer berechneten Konzentrationen.
Abbildung 8: Prädiktierte (Linien) und experimentelle (Symbole, Daten von Ickx et al.) Propofol-Konzentrationen im Blut nach intravenöser Administration in Erwachsenen (mittleres Alter 45.2 Jahre). Die durchgezogene Linie zeigt die von PK-Sim® und die gestrichelte Linie die vom TIVA-Trainer berechneten Konzentrationen.

Claims

Patentansprüche
1. Vorrichtung zur zeitlich gesteuerten Dosierung des Narkosemittels Propofol, dadurch gekennzeichnet dass:
a) ein substanzabhängiges Zielprofil, welches einen gewünschten Konzentrations- Zeit-Verlauf im Gehirn oder einen gewünschten Effekt-Zeitverlauf angibt,
b) eine physiologie-basierte pharmakokinetische und/oder pharmakodynamische Simulation mit zeitlich variablem Dosierungsprofil unter Berücksichtigung individueller Parameter des Patienten und substanzspezifischer Inputparameter des zu verabreichenden Narkosemittels,
c) eine iterative numerische Anpassung des Dosierungspro fils, bis das simulierte zeitliche Profil mit dem vorgegebenen Zielprofil übereinstimmt oder mit diesem die maximal erreichbare Übereinstimmung zeigt, wobei
d) eine Dosierungsvorrichtung auf Basis des Ergebnisses unter c) gesteuert wird.
2. Vorrichtung nach Anspruch 1, wobei die Dosierung des Narkosemittels an Menschen oder Tieren erfolgt.
3. Vorrichtung nach Anspruch 1, wobei es sich bei den zu berücksichtigenden individuellen Parametern des Patienten um eine Auswahl aus den folgenden handelt: Körpergewicht, Alter, Body-Maß-Index (BMI), Blutflussraten, Volumina und Zusammensetzung (Wasser-, Fett- und Proteinanteil) einzelner Organe, Genexpressionsdaten von metabolisch aktiven Enzymen oder aktiven Transportern.
4. Vorrichtung nach Anspruch 3, wobei einer oder mehrere der anatomischen, physiologischen und/oder genetischen Parameter zeitlich variabel sein können.
5. Vorrichtung nach Anspruch 1, wobei als Methode zur Anpassung des Dosierungsprofils eines der folgenden numerischen Optimierungsverfahren zum Einsatz kommt: Gradienten- verfahren, insbesondere Quasi-Newton- oder Newton-Verfahren; gradientenfreie Verfahren wie Intervallschachtelung; stochastische Verfahren wie Monte-Carlo-Verfahren.
6. Vorrichtung nach Anspruch 3, wobei einer oder mehrere der anatomischen, physiologischen und/oder genetischen Parameter in Echtzeit während der Applikation gemessen werden.
7. Vorrichtung nach Anspruch 1, wobei zusätzlich der Therapieerfolg online durch eine oder mehrere geeignete Messsonden überwacht wird und deren Messsignal bzw. Messsignale mit zur Steuerung der Dosierungsvorrichtung herangezogen werden.
EP06743110A 2005-06-17 2006-06-03 Vorrichtung zur zeitlich gesteuerten intravenösen verabreichung des narkosemittels propofol Withdrawn EP1904940A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005028080A DE102005028080A1 (de) 2005-06-17 2005-06-17 Verfahren zur zeitlich gesteuerten intravenösen Verabreichung des Narkosemittels Propofol
PCT/EP2006/005340 WO2006133825A1 (de) 2005-06-17 2006-06-03 Vorrichtung zur zeitlich gesteuerten intravenösen verabreichung des narkosemittels propofol

Publications (1)

Publication Number Publication Date
EP1904940A1 true EP1904940A1 (de) 2008-04-02

Family

ID=36940350

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06743110A Withdrawn EP1904940A1 (de) 2005-06-17 2006-06-03 Vorrichtung zur zeitlich gesteuerten intravenösen verabreichung des narkosemittels propofol

Country Status (7)

Country Link
US (1) US8038645B2 (de)
EP (1) EP1904940A1 (de)
JP (1) JP5033794B2 (de)
AU (1) AU2006257418B2 (de)
CA (1) CA2612215A1 (de)
DE (1) DE102005028080A1 (de)
WO (1) WO2006133825A1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010516A1 (de) * 2004-03-04 2005-09-22 Bayer Technology Services Gmbh Verbessertes Verfahren zur zeitlichen Dosierung von Arzneistoffen
CN101472631A (zh) * 2006-06-21 2009-07-01 伯尔尼大学 用于控制麻醉给药的系统
US20100100036A1 (en) * 2008-04-24 2010-04-22 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational System and Method for Memory Modification
US20090270694A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring and modifying a combination treatment
US20090312595A1 (en) * 2008-04-24 2009-12-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for memory modification
US20100081861A1 (en) * 2008-04-24 2010-04-01 Searete Llc Computational System and Method for Memory Modification
US20100041958A1 (en) * 2008-04-24 2010-02-18 Searete Llc Computational system and method for memory modification
US20100063368A1 (en) * 2008-04-24 2010-03-11 Searete Llc, A Limited Liability Corporation Computational system and method for memory modification
US20100015583A1 (en) * 2008-04-24 2010-01-21 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational System and method for memory modification
US9239906B2 (en) * 2008-04-24 2016-01-19 The Invention Science Fund I, Llc Combination treatment selection methods and systems
US8930208B2 (en) * 2008-04-24 2015-01-06 The Invention Science Fund I, Llc Methods and systems for detecting a bioactive agent effect
US20090271375A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination treatment selection methods and systems
US9662391B2 (en) 2008-04-24 2017-05-30 The Invention Science Fund I Llc Side effect ameliorating combination therapeutic products and systems
US20100041964A1 (en) * 2008-04-24 2010-02-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring and modifying a combination treatment
US20100004762A1 (en) * 2008-04-24 2010-01-07 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20090312668A1 (en) * 2008-04-24 2009-12-17 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US9449150B2 (en) * 2008-04-24 2016-09-20 The Invention Science Fund I, Llc Combination treatment selection methods and systems
US20100125561A1 (en) * 2008-04-24 2010-05-20 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US9282927B2 (en) * 2008-04-24 2016-03-15 Invention Science Fund I, Llc Methods and systems for modifying bioactive agent use
US20090271009A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination treatment modification methods and systems
US9560967B2 (en) * 2008-04-24 2017-02-07 The Invention Science Fund I Llc Systems and apparatus for measuring a bioactive agent effect
US9649469B2 (en) 2008-04-24 2017-05-16 The Invention Science Fund I Llc Methods and systems for presenting a combination treatment
US20090270688A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for presenting a combination treatment
US9064036B2 (en) * 2008-04-24 2015-06-23 The Invention Science Fund I, Llc Methods and systems for monitoring bioactive agent use
US20100022820A1 (en) * 2008-04-24 2010-01-28 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20100130811A1 (en) * 2008-04-24 2010-05-27 Searete Llc Computational system and method for memory modification
US8876688B2 (en) * 2008-04-24 2014-11-04 The Invention Science Fund I, Llc Combination treatment modification methods and systems
US20090271347A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring bioactive agent use
US20100280332A1 (en) * 2008-04-24 2010-11-04 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring bioactive agent use
US20100017001A1 (en) * 2008-04-24 2010-01-21 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Computational system and method for memory modification
US20100069724A1 (en) * 2008-04-24 2010-03-18 Searete Llc Computational system and method for memory modification
US20090269329A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Combination Therapeutic products and systems
US20090271122A1 (en) * 2008-04-24 2009-10-29 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Methods and systems for monitoring and modifying a combination treatment
US9026369B2 (en) * 2008-04-24 2015-05-05 The Invention Science Fund I, Llc Methods and systems for presenting a combination treatment
US8798701B2 (en) * 2008-09-30 2014-08-05 Drexel University Functional near-infrared spectroscopy as a monitor for depth of anesthesia
DE102009056726B4 (de) 2009-12-04 2012-02-02 Khs Gmbh Verfahren und Vorrichtung zur Aufbereitung von im Zuge einer Behälterreinigung anfallender Prozessflüssigkeit
US10388405B2 (en) 2013-03-22 2019-08-20 Massachusetts Institute Of Technology Systems and methods for predicting adverse events and assessing level of sedation during medical procedures
ES2877551T3 (es) * 2013-04-24 2021-11-17 Fresenius Kabi Deutschland Gmbh Procedimiento de funcionamiento de un dispositivo de control para controlar un dispositivo de infusión
JP6148946B2 (ja) * 2013-09-09 2017-06-14 日本光電工業株式会社 表示装置、表示装置の作動方法、および表示装置の制御プログラム
EP3120885A4 (de) * 2014-03-20 2017-11-15 Terumo Kabushiki Kaisha Flüssigkeitsausgabepumpe
DE102014105058A1 (de) * 2014-04-09 2015-10-15 Stephanie Ittstein Vorrichtung zu einer Herstellung und/oder zu einer Verabreichung
EP3236956A1 (de) 2014-12-23 2017-11-01 Bosteels, Arnaud Kombination von remifentanil und propofol
WO2017027855A1 (en) 2015-08-12 2017-02-16 Massachusetts Institute Of Technology Systems and methods for predicting adverse events and assessing level of sedation during medical procedures
CN109069736B (zh) * 2016-05-02 2022-03-01 费森尤斯维尔公司 用于控制丙泊酚向患者之施用的控制装置
CN107585890B (zh) * 2017-09-22 2020-07-24 天津大学 基于蒙特卡罗模拟的新兴污染物污水优化处理方法
GB2589298B (en) 2019-10-02 2023-08-09 Nottingham Univ Hospitals Nhs Trust Patient-Maintained Sedation
DE102021110371A1 (de) 2021-04-22 2022-10-27 Medicad Hectec Gmbh Verfahren zur Planung der Dosierung eines Anästhetikums zur Herbeiführung eines Zustands der Anästhesie

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5609575A (en) 1994-04-11 1997-03-11 Graseby Medical Limited Infusion pump and method with dose-rate calculation
US5687208A (en) * 1995-10-06 1997-11-11 Bhb General Partnership Method of and apparatus for predicting computed tomography contrast enhancement with feedback
US5870697A (en) * 1996-03-05 1999-02-09 The Regents Of The University Of California Calculation of radiation therapy dose using all particle Monte Carlo transport
US5775330A (en) * 1996-07-22 1998-07-07 Battelle Memorial Institute Neurometric assessment of intraoperative anesthetic
US6016444A (en) * 1997-12-10 2000-01-18 New York University Automatic control of anesthesia using quantitative EEG
DE10160270A1 (de) 2001-12-07 2003-06-26 Bayer Ag Computersystem und Verfahren zur Berechnung von ADME-Eigenschaften
DE10256315A1 (de) * 2002-12-03 2004-06-17 Bayer Ag Computersystem und Verfahren zur Berechnung eines pharmakokinetischen Verhaltens einer chemischen Substanz in Insekten
US20040172330A1 (en) 2003-02-06 2004-09-02 Gibson J. Edward Business method and apparatus for advertising and fundraising
US8249813B2 (en) 2003-05-22 2012-08-21 Brainlab Ag System and process for metabolic guidance of introduced cellular material
US8998808B2 (en) * 2003-06-19 2015-04-07 Wayne State University System for identifying patient response to anesthesia infusion
DE10345836A1 (de) 2003-10-02 2005-04-21 Bayer Technology Services Gmbh Verfahren zur Simulation der Wechselwirkung von chemischen Substanzen mit lebenden Organismen
DE10345837A1 (de) 2003-10-02 2005-04-21 Bayer Technology Services Gmbh Verfahren zur Bestimmung einer Wirkstoffdosierung
FR2862536B1 (fr) 2003-11-21 2007-11-23 Flamel Tech Sa Formulations pharmaceutiques pour la liberation prolongee de principe(s) actif(s), ainsi que leurs applications notamment therapeutiques
WO2005075274A1 (de) 2004-02-09 2005-08-18 Thyssenkrupp Presta Steertec Gmbh Hydraulische lenkung mit geregelter pumpe
DE102004010516A1 (de) 2004-03-04 2005-09-22 Bayer Technology Services Gmbh Verbessertes Verfahren zur zeitlichen Dosierung von Arzneistoffen
DE102004025534A1 (de) * 2004-05-25 2005-12-15 Bayer Technology Services Gmbh Verfahren zur (zweistufigen) Dosis- und Dosierungsfindung
DE102006028232A1 (de) * 2006-06-20 2007-12-27 Bayer Technology Services Gmbh Vorrichtung und Verfahren zur Berechnung und Bereitstellung einer Medikamentendosis

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006133825A1 *

Also Published As

Publication number Publication date
US20100094202A1 (en) 2010-04-15
JP5033794B2 (ja) 2012-09-26
DE102005028080A1 (de) 2006-12-21
CA2612215A1 (en) 2006-12-21
WO2006133825A1 (de) 2006-12-21
AU2006257418A1 (en) 2006-12-21
US8038645B2 (en) 2011-10-18
JP2008546435A (ja) 2008-12-25
AU2006257418B2 (en) 2011-07-14

Similar Documents

Publication Publication Date Title
WO2006133825A1 (de) Vorrichtung zur zeitlich gesteuerten intravenösen verabreichung des narkosemittels propofol
EP1722839B1 (de) Vorrichtung zur zeitlichen dosierung von arzneistoffen
EP2542142B1 (de) System zur verabreichung von medikamenten unter berücksichtigung von urinwerten
Wang et al. Disconnection of the hippocampal–prefrontal cortical circuits impairs spatial working memory performance in rats
DE60121749T2 (de) System zum adaptiven Verabreichen einer Arznei
Shepard et al. Pharmacodynamics of alfaxalone after single‐dose intramuscular administration in red‐eared sliders (Trachemys scripta elegans): a comparison of two different doses at two different ambient temperatures
DE10057215A1 (de) System zur Extrapolation einer Glucosekonzentration
DE102007010326A1 (de) Vorrichtung zur Infusion von mindestens einem Medikament
DE102012203897B4 (de) Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung und Verfahren zum Betreiben einer Vorrichtung zur Durchführung einer Anästhesie oder Analgosedierung
EP1671250A2 (de) Verfahren zur bestimmung einer wirkstoffdosierung
Bryce et al. Differential effects of corticotropin-releasing factor and acute stress on different forms of risk/reward decision-making
Burns et al. Effect of intravenous administration of cobalt chloride to horses on clinical and hemodynamic variables
DE60220512T2 (de) Verwendung von flumazenil zur herstellung eines medikaments für die behandlung von kokainabhängigkeit
Dahaba et al. Age progression from vicenarians (20–29 year) to nonagenarians (90–99 year) among a population pharmacokinetic/pharmacodynamic (PopPk-PD) covariate analysis of propofol-bispectral index (BIS) electroencephalography
Brás et al. A step towards effect‐site target‐controlled infusion with propofol in dogs: a ke0 for propofol
Kabadi et al. Introduction to classical pharmacokinetics
Ocal et al. Gender-Specific differences in pulsed magnetic field exposed to diabetic neuropathic rats
Gustafsson Towards individualised anaesthesia: A comparison between target-controlled infusion and closed-loop control
Faymonville et al. Cerebral functions in brain-damaged patients: What is meant by coma, vegetative state, minimally conscious state, locked-in syndrome and brain death?
Steurer et al. Infusionstherapie bei Neugeborenen, Säuglingen und Kindern.
Chkhikvishvili et al. Experimental analysis of development of compulsive behavioural disorders due to intravenous fentanyl self-administration
MAGNUSON et al. The Concentration of Arsenic in Tissues and the Excretion of Arsenic by Experimental Animals Following Intravenous Injection of Massive Doses of Mapharsen
Kakooei et al. Effect of Administration of Lidocaine at Body Temperature on Anesthesia Success in Rodent Model: A Behavioral and Electrophysiology Study
Lagos Alternative Techniques for Alfaxalone Anesthesia Induction in Dogs and Cats
Gessert Hippocampal corticosterone impairs memory consolidation during sleep but improves consolidation in the wake state: Running title: hippocampal memory consolidation and corticosterone

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20120328

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BAYER INTELLECTUAL PROPERTY GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140103