EP1904741B1 - Accumulator injection system for an internal combustion engine - Google Patents
Accumulator injection system for an internal combustion engine Download PDFInfo
- Publication number
- EP1904741B1 EP1904741B1 EP06752914A EP06752914A EP1904741B1 EP 1904741 B1 EP1904741 B1 EP 1904741B1 EP 06752914 A EP06752914 A EP 06752914A EP 06752914 A EP06752914 A EP 06752914A EP 1904741 B1 EP1904741 B1 EP 1904741B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- injection
- fuel
- accumulator
- valve
- pressure
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002347 injection Methods 0.000 title claims abstract description 376
- 239000007924 injection Substances 0.000 title claims abstract description 376
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 19
- 239000000446 fuel Substances 0.000 claims abstract description 166
- 238000005086 pumping Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 55
- 230000002349 favourable effect Effects 0.000 abstract 1
- 238000003860 storage Methods 0.000 description 186
- 238000010586 diagram Methods 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 230000010355 oscillation Effects 0.000 description 6
- 238000011084 recovery Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 5
- 230000002238 attenuated effect Effects 0.000 description 4
- 230000015654 memory Effects 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 238000004088 simulation Methods 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 230000006399 behavior Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000002023 somite Anatomy 0.000 description 2
- 241000255925 Diptera Species 0.000 description 1
- 206010016352 Feeling of relaxation Diseases 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
- F02M55/025—Common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/04—Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/001—Fuel-injection apparatus having injection valves held closed mechanically, e.g. by springs, and opened by a cyclically-operated mechanism for a time
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0205—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine
- F02M63/0215—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively for cutting-out pumps or injectors in case of abnormal operation of the engine or the injection apparatus, e.g. over-speed, break-down of fuel pumps or injectors ; for cutting-out pumps for stopping the engine by draining or closing fuel conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/02—Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
- F02M63/0225—Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M2200/00—Details of fuel-injection apparatus, not otherwise provided for
- F02M2200/40—Fuel-injection apparatus with fuel accumulators, e.g. a fuel injector having an integrated fuel accumulator
Definitions
- the present invention relates to a storage injection system for the intermittent injection of high-pressure fuel into combustion chambers of an internal combustion engine according to the preamble of claim 1.
- a storage injection system of this kind is known from DE 102 10 282 A1 or from the EP 0 657 642 A2 known.
- Delivery units promote fuel from a fuel reservoir for supplying at least one high pressure line to the cylinders of the internal combustion engine.
- a number of fuel injectors are supplied via the at least one high-pressure line, each of which contains a combustion chamber of the internal combustion engine with fuel injector nozzles.
- the at least one high-pressure line comprises line sections with which the individual fuel injectors are connected to one another.
- the injector bodies of the fuel injectors comprise an integrated storage space.
- the storage spaces are used instead of a common rail component and each storage space has a volume which corresponds to 50 times to 80 times the maximum injection quantity of a fuel injector per injection process.
- Each storage space is acted upon by a supply throttle with high-pressure fuel.
- These inlet throttles are designed in such a way that injection processes connected in series one after the other are possible without pressure pulsations occurring in the line sections. The influence of other fuel injectors is avoided.
- fuel injection system injectors are used which are equipped with a storage room.
- the fuel under high pressure in the storage space is partially released while the pressure in the storage space drops.
- the injection law that is, the time course of the injection process, a falling from the beginning to the end characteristic, which has a negative effect on the combustion process of the internal combustion engine.
- Each storage space communicates with the high pressure fuel delivery line via a restricted orifice or restrictor passage. Due to the small flow cross-sectional area, the throttle passage prevents the formation of appreciable pressure waves in the fuel delivery lines during each injection event. Such pressure waves would unduly influence the uniform fuel distribution in a multi-cylinder engine and the stability of the injection processes of a single injection valve from cycle to cycle.
- a spring-loaded check valve is located between an annular bore around a guide element of the injection valve member and the storage space of the injection valve.
- the annular bore is connected to the fuel supply bore of the injection valve and a bore connects the storage space with the back of the check valve, ie in the flow direction tal rock the check valve seat.
- the storage spaces of the DE 32 27 742 as well as from the EP 0 228 578 A known injection valves are located below a guide piston and a hydraulic control chamber of the injection valve member.
- the guide piston and the control chamber belong to a hydraulic control device for controlling the movement of the injection valve member and it is necessary in most operating states of the injection valve that during the injection or even at the beginning of the injection, the pressure below the guide piston is lower than the pressure in the fuel supply hole, to ensure a sufficiently rapid closing of the injection valve member. In many cases, this has the consequence that the injection valve member is very long and expensive production. In addition, this arrangement severely limits the freedom to construct the storage chamber.
- each an injection valve with pressure line and pump is shown as a unit, is suitable for very large diesel engines.
- the injection systems according to the DE 102 10 282 A1 and the DE 32 27 742 have the major disadvantage of the falling injection characteristic. To mitigate this, a rather large storage chamber could be integrated in the injection valve, but this has the disadvantage that the injection valve is bulky.
- Injectors both in accordance with DE 32 27 742 as well as the EP 0 228 578 A have the significant disadvantages of a long injection valve member and the strong limitation in the spatial arrangement of the storage space.
- the practical implementation of the system according to EP 0 264 640 A has the line section with a larger cross section.
- this line section is also quite bulky and expensive.
- common rail and Pressure lines are executed in the case of a crack double-walled. This further increases the effort and costs for the common rail.
- the line section is divided into several shorter sections, which are executed up to the design of individual memory with a short line, each to an injection valve.
- the embodiment according to DE 31 19 050 allows only the unit of an injector with integrated storage chamber together with a pump and the associated connection line, as occur in the connection of several injectors with a sub-sized storage chamber via a relatively thin pressure line to a multi-cylinder pump too large and not to be brought in phase with the injections dynamic pressure fluctuations , which influence the accuracy of injection processes inadmissible.
- Object of the present invention is to further develop a storage injection system of the type mentioned so that even with smaller storage chambers an optimal injection process is possible.
- a known as a common rail line section with a larger cross section is not present. It is possible to use discrete storage chambers of such a small volume that they can be integrated into the installation space of the injection valve housing when required. Each injector of the storage injection system is associated with such a discrete storage chamber.
- the spatial arrangement of the discrete storage chambers can be optimally chosen with great freedom of design, since the storage chambers, not as in the DE 32 27 742 and the EP 0 228 578 A disclosed, must be located below the guide piston of the injection valve.
- these discrete storage chamber are connected exclusively with pressure lines of relatively small cross-section with each other and with a high-pressure conveying device common to all injection valves. The cross-section of these lines is such that they form a total of a volume of too low storage effect to make alone the required, reproducible same injection operations of the injectors.
- These power cross sections may be equal or unequal.
- the inventive storage injection system is particularly suitable for diesel engines - preferably medium to large power - suitable. However, it can also be used in smaller diesel engines, such as those used in the automotive industry.
- FIG. 1 shows a storage injection system 10, in which a high-pressure conveyor 12 is shown schematically.
- the high pressure conveyor 12 is a high pressure pump 12 ', which is driven by the internal combustion engine mechanically and at a fixed speed ratio.
- Within the high-pressure pump 12 ' may be a high pressure compensating volume and additionally a pressure sensor for detecting and regulating the system high pressure, which is in Fig. 1 not shown.
- On the outlet side of the high pressure pump 12 'or high pressure conveyor 12 closes, usually with a High pressure fitting attached, a high pressure piping system.
- the piping system constructed of hydraulic line means 13 consists of a longitudinally extending fuel feed line 14 (which normally consists of a plurality of longitudinally connected line pieces 14 ') and of one fuel line 16 per injection valve 18, of which a total of six are present.
- the illustrated storage injection system 10 is thus suitable for a six-cylinder engine. It can also be used other than six-cylinder engines, which are used in all possible, common cylinder numbers.
- the six fuel lines 16 are fluidly connected to the fuel feed line 14 at the branching points 26. Although the fuel feed line 14 and the fuel lines 16 of Fig. 1 drawn with the same cross section, these cross sections may be different in size (the diameter of the fuel lines 16 may, for example, by half the diameter of the fuel feed line 14 amount to). However, the total volume of the fuel lines 14 and 16 is in the sum of too low storage effect in order to realize the required, reproducible same injection processes of the injectors 18 alone.
- a fuel line 16 opens at each injection valve 18, in the direction of the longitudinal axis 20 of the respective injection valve, in a the injection valve 18 associated storage chamber 22 (see also Fig. 2 ).
- the fuel lines 16 could also open laterally into the storage chambers 22.
- a one-way check valve 24a arranged with parallel connection of a bypass throttle 24b.
- this arrangement is called a check valve with bypass throttle 24 and it forms a throttling device 25.
- the check valve with bypass throttle 24 could also be located somewhere in the fuel line 16 between the associated storage chamber 22 and the branch point 26, or in the branch point 26, as hydraulic T-piece with screw connections can be executed, integrated.
- each injector 18 with the associated storage chamber 22 and the associated check valve with bypass throttle 24 form an injection unit 27.
- the injection valve 18 of FIG. 2 connects a bore 28 in an injection valve housing 30, in which also the storage chamber 22 is formed, the storage chamber 22 with a further bore 32 in a nozzle 34 of the injection valve 18.
- the bore 28 and the further bore 32 forming a connecting channel 33.
- the injection valve 18 has an injection valve member 36 with a control piston 35, the underside of which is designated 35a, a guide sleeve 37 for the injection valve member 36, an injection valve member spring 38, a control chamber 39, a hydraulic control device 40, a nozzle vestibule 41, into which the connecting channel 33 opens, and a solenoid valve actuator assembly 42 (it could also be a piezo actuator).
- the mode of operation of the injection valve 18 is summarized as follows: when the actuator arrangement 42 is energized, the hydraulic control device 40 responds. This causes a movement of the injection valve member 36 away from a nozzle seat 44 of the nozzle 34, whereby fuel flows under high pressure from the storage chamber 22 via the bore 28 and further bore 32 to the nozzle spray openings 46 of the nozzle 34 and the injection process begins. If the actuator assembly 42 is de-energized, the injection valve member 36 is moved in the direction of the nozzle seat 44 via the hydraulic control device 40 until the injection process is interrupted.
- the actuator arrangement 42 which is shown in a salient manner with respect to the longitudinal axis 20, could also be arranged on the longitudinal axis 20.
- the underside 35a of the control piston 35 of the injection valve member 36, the guide sleeve 37 and the control chamber 39 are located below the storage chamber 22.
- the storage chamber 22 of the injection valve 18 is connected via the bore 28 and further bore 32 hydraulically practically without resistance to the nozzle vestibule 41.
- the passages not shown in detail for details, turn on the Swiss Patent Application 00676/05 and the WO application PCT / CH2006 / 000191 referenced
- for the fuel flow from the nozzle vestibule 41 to the region 43 immediately in front of the nozzle seat 44 are dimensioned such that the smallest possible pressure drop occurs between the nozzle front chamber 41 and the region 43 during the injection process.
- volume content of the storage chamber 22, which in accordance with the injection unit 27 Fig. 1 and 2 , designed for an engine full load injection quantity of 2500 mm 3 per injection can be between 50 and 100 cm 3 .
- a single memory of 400 cm 3 is used that is 3 to 6 times more memory. It will be appreciated that it is much easier to integrate a reservoir such as that to injector 18 into injector housing 30.
- the high pressure fuel flows from the fuel line 16 through the storage chamber 22 to pass through the bore 28 and further bore 32 to the nozzle antechamber 41 and consequently to the nozzle 34.
- the storage chamber 22 is traversed by the fuel flow, so it is a flow-storage chamber 22 '.
- the Diameter of the fuel lines 14 and 16 ( Fig. 1 ), again designed for a full-load injection quantity of 2500 mm 3 per injection, two 3 and 9 mm, for example 6 mm.
- the ball 50 is on the check valve seat 52 in abutment; there is no flow through the check valve 24a. 48, the flow direction of the high-pressure fuel is shown when the injection valve member 36 of the injection valve 18 is open and the injection process takes place.
- the bypass throttle 56 has an effective flow area, which is preferably slightly smaller than the total effective flow area of the nozzle spray openings 46 (the design range varies between 0.3 and 3 times, depending on the specific design and the number of injection valves 18 of the injection system 10).
- the check valve spring 54 is preferably not very strong and allows opening of the check valve 24a, that is the movement of the ball 50 in the flow direction 48 away from the check valve seat 52, at a pressure difference of, for example, 20 bar (the design range moves depending on the bias Spring 54 between about 2 to just over 50 bar).
- the fuel lines 16 to the injection units 27 are omitted and the fuel line pieces 14 'arranged to connect the injection units 18 in series.
- a T-piece with integrated check valve with bypass throttle 24 a first line section 14 ', which leads to the side of the high-pressure pump 12', with a second line section 14 ', which leads to the next injection valve 18 connects, and the third T connection via the check valve with bypass throttle 24 to the storage chamber 22 of the injection valve 18 leads.
- the free line connection is either blind or else it is led back to the high-pressure pump 12 'or to the first injection valve 18 of the series.
- the pipe sections 14 ' may be straight or curved, as well as the same or not equal, with an arrangement in which the length of the pipe sections 14' is the same length or only slightly unequal, mostly useful.
- the phase of the pressure reduction in the storage chamber 22 continues until approximately half of the total injection duration.
- This information is purely indicative and may vary up or down depending on the application.
- the dynamic pressure reduction in the fuel line 16 now also detects the fuel feed line 14, the fuel lines 16 of the other, in particular adjacent fuel injection valves 18 and the bypass throttles 56 and the respective storage chambers 22. All these elements with high-pressure fuel have a storage effect. However, the flow direction from the storage chambers 22 of the adjacent and possibly further fuel injection valves 18 is opposite to the flow direction 48 of the injection valve 18, where the injection takes place.
- the check valves 52 of the adjacent and possibly further injectors 18 remain closed and the fuel replenishment from the associated storage chambers 22 takes place solely by the bypass throttles 56, which in the adjacent and possibly further storage chambers 22 only a lower pressure drop than in the storage chamber 22 of the currently operating Injector 18 caused.
- FIG. 4 shows another constructive design of the check valve with bypass throttle 24, which is associated with each injector 18.
- a needle-shaped closure member 60 cooperates with the check valve seat 52.
- the closure member 60 At the front and in the direction of the longitudinal axis 20, the closure member 60, the bypass throttle 56, which opens into a bore 62 and then into a recess 64 in the closure member 60.
- the recess 64 receives the check valve spring 54.
- the needle-shaped closure member 60 has radially outward a guide 66, which reliably guides the closure member 60, and also at least one passage 68 on the periphery of the closure member 60 (it may also be two or three passages 68).
- the total cross section of the passage 68 is sufficiently large to represent only a very small flow resistance.
- the operation of this throttling device 25 is the same as that according to Fig. 3 , In all embodiments, the check valve with bypass throttle according Fig. 4 be educated.
- FIG. 5 is the injection valve 78 associated check valve with bypass throttle 24 between the storage chamber 22 and the nozzle 34, wherein the high-pressure inlet 70 is arranged to the injection valve 78 side in the injection valve housing 30 below the check valve with bypass throttle 24.
- the high-pressure inlet 70 connected to the fuel line 16 branches down into the bore 28 and up into the short bore 72, which leads to the check valve with bypass throttle 24.
- the check valve with Bypass throttle 24 is thus arranged in the connecting channel 33, which - connects through the holes 28, 32 and 72 - the storage space 22 with the injection valve 78.
- the high pressure inlet 70 could also be vertical and parallel to the longitudinal axis 20, or at an angle thereto.
- the check valve with bypass throttle 24 between the high-pressure inlet 70 and the storage chamber 22 is located.
- the storage chamber 22 of the injection valve 78 is not traversed by the fuel during an injection process and it partially empties into the bore 72.
- the dead-end storage chamber 22 "acting storage chamber 22 is located above the control piston 35 of the injection valve member 36 and is here these elements upstream.
- the check valve 24a of this injecting injection valve 78 will block the passage of the pressure recovery shaft to the storage chamber 22 of this injecting injection valve 78 upon arrival of the pressure recovery shaft on the closing side of the check valve 24a and almost the entire pressure wave amplitude thus becomes practical unattenuated as an increase in pressure to the nozzle-injection ports 46 (reduced by that proportion which can pass through the bypass throttle 24b in the storage chamber 22 of this injecting injection valve 78).
- the injection valve has a dead-end accumulator chamber 22 "and the check valve with bypass throttle 24 is located at the inlet of the high-pressure side inlet 70 of the injector FIG. 2 ,
- a first dividing line 74 shown by a dashed line refers to a first alternative embodiment in which the storage chamber 22 with its own storage chamber housing 80 is to be understood as a separate unit from the injection valve 78.
- the storage chamber housing 80 is then connected either with a short line or by screwing with the injection valve housing 30, but in any case remains associated with the injection valve 78.
- the check valve with bypass throttle 24 is further arranged in the section of the connecting channel 33 of the injection valve 30.
- a second separation line 76 shows a second alternative embodiment in which the check valve with bypass throttle 24 is integrated in the storage chamber housing 80. Also in this second alternative, the connection with the injection valve housing 30 can be realized either with a short line or by screwing and the assignment to the injection valve 78 remains.
- the storage chamber 22 is arranged laterally, either parallel to the longitudinal axis 20 desachsiert or at an angle (for example 90 °) to the longitudinal axis 20.
- the housing of the storage chamber 22 integrally with the injection valve housing 30 for example, this unit is manufactured as a forged), or be designed as two components screwed together.
- FIG. 6 is the check valve with bypass throttle 24 of the injection valve 88 in the connecting channel 33 between the storage chamber 22 and the nozzle 34 below the lateral high-pressure inlet 70.
- the injection unit 27 is according to Fig. 6 the same as those according to Fig. 5 ,
- the high-pressure fuel can freely circulate here via the fuel feed line 14 and fuel lines 16 in all storage chambers 22 of the storage injection system 10, wherein the supply and return to and from the nozzle 34 is controlled by the check valve with bypass throttle 24.
- the injection curve represents a hybrid form of what is the case in the storage injection system 10 when using the injectors 18 or 78.
- the advantage of this arrangement lies in the particularly short path with a small volume between nozzle spray openings 46 and check valve with bypass throttle 24. As a result, the rapid termination of the injection process overpressure vibration, which has a high oscillation frequency, attenuated very quickly.
- the high-pressure conveyor 12 and the injection valve units 27 are formed as in connection with the Fig. 1 and 2 disclosed.
- the hydraulic line means 13 have a manifold block 96 to which the fuel feed line 92 and all the fuel lines 94a to 94f are routed and connected to, for example, high pressure fittings (not shown in detail).
- Manifold block 96 is provided with bores 98 which hydraulically interconnect fuel feed line 92 and all fuel lines 94a-94f.
- the fuel lines 94a and 94f, 94b and 94e, and 94c and 94d shown in pairs the same length.
- all the fuel lines 94a to 94f can be made the same length so that the shaft transit times from each injection valve 18 to the distributor block 96 last the same length. Also different cable lengths that are not the same in pairs, are conceivable.
- the advantage of the manifold block assembly 96 is in the central position thereof, which unites all high pressure fittings in this manifold block 96.
- the conduit means 13 have too little storage action to allow the required, reproducible same injection operations of the injectors alone.
- the distribution block 96 is assigned a storage chamber 97, as shown in FIG FIG. 7 indicated by dashed lines.
- This storage chamber 97 preferably has approximately the same volume as each of the storage chambers 22. However, the volume can also be greater, for example two to six times as large.
- the disadvantage is the additional construction cost of the storage chamber 97th
- FIG. 8 shows a construction of the manifold block 99 equipped with double acting overload flow restricting valves 104.
- Flow control valves are disclosed, for example, in the publication SAE-Paper 910 184 (1991). Their purpose is to preserve the engine from overload in the event that the injector member of an injector unintentionally remains open for too long.
- the high-pressure fuel passes via the fuel feed line 100 in a symmetrical to an axis 101 manifold block 99 and fuel lines 102a, 102b, 102c and 102d to four Injection units 27. With 102 'are further dashed lines possible fuel lines indicated by dashed lines with extension 116 of the manifold block 99.
- the valve body 106 of each flow restricting valve 104 is double-acting. During each injection operation, the valve body 106 moves in the direction of the fuel line 102, which leads to the injection unit 27 with the injecting injection valve. During normal operation of the storage injection system 90, the valve body 106 does not move so far that the conical end 110 reaches the shut-off seat 112.
- valve body 106 In the rest periods between injection operations, the valve body 106 is brought by the force of a spring 108 in its central rest position. If too much fuel is inadvertently required in the case of too long an injection process, on the other hand, the conical end 110 reaches the shut-off seat 112 and closes off the further fuel flow.
- Denoted at 114 are slightly throttling annular passage areas between the valve body 106 and the body of the manifold block 99. They lie between the fuel inlet through the fuel feed line 100 and an antechamber 116 to a fuel line 102. Further, the valve bodies 106 have a tapered region 118 in the center to allow unrestricted fuel flow from the fuel line 100 and through a bore 120 to all of the flow restriction valves 104 guarantee.
- a double-acting flow control valve 104 serves at least two injectors 18 and thereby at least halves the number of restrictors 104 for a particular engine over the prior art.
- a throttle 121a is arranged in the fuel supply to the manifold block 99, as shown in dashed lines.
- a throttle 121b may be present in the fuel inflow section between two chambers 124 each receiving a double-acting flow-limiting valve 104.
- the manifold block 99 analogous to the manifold block 96, a storage chamber 97 be assigned. The purpose of these elements is the same as described in connection with the construction variant of the manifold block 96. Also in this case, the construction costs increase.
- FIG. 9 shows another alternative construction of manifold block 128, which in turn is symmetrical about axis 101, having two single-acting overload flow restricting valves 122. Only the lower part of manifold block 128 will be described which is symmetrically equal to the upper part. Similar to the example described above Fig. 8 The fuel in the chamber 124 flows through annular flow areas 114 to the antechamber 116 and from here into a respective passage 132 with three outlets for three fuel lines 130d, 130e and 130f, which each lead to an injection unit 27. The two valve bodies 126 are single acting here. If the injection duration is excessively long, the conical end 110 of the respective valve body 126 will once again enter the shut-off seat 112 and interrupt the fuel flow at three injection units 27. The engine can then still be operated at reduced load, but three cylinders fail instead of just one cylinder as in the construction of Fig. 8 , This is the number of flow control valves smaller.
- Fig. 10 shows a further embodiment of an inventive storage injection system 152, which according to that Fig. 1 is very similar.
- the high-pressure conveying device 12 per injection unit 27 has a high-pressure pump 12 ', which are each connected via a fuel pump line 14 "to the fuel feed line 14 or line sections 14' FIGS. 1 and 2 ,
- all other described embodiments may be used.
- the high-pressure pumps 12 ' are equipped with short-conveying cams, as is customary in injection systems with a high-pressure feed pump 12' per injection valve 18.
- the cams 154 it is also possible to form the cams 154 as a harmonic eccentric.
- the volume of the storage chambers 22 of each injection unit 27 can be made particularly small; a volume which is about 10 times as large as the injection quantity for a Volllasteinspritzvorgang may be sufficient, since the just injecting injector 18 associated and at the same time or shortly before the injection process starting and taking place fuel delivery shock a significant proportion of the injected quantity directly into the respective storage chamber 22 promotes.
- Such a storage injection system is particularly suitable for a retro-fit on an existing internal combustion engine, wherein the high pressure pumps 12 'of the original conventional injection system can be maintained and thus only new injection units 27 and new hydraulic line 13 must be retrofitted.
- the storage chambers 22 and the check valve with bypass throttle 24 - the throttling device 25 - and the mouth of the bore 32 above the bottom 35a of the control piston 35 of the injection valve member 36 are mounted, which allows a particularly compact design of the functional elements in the nozzle 34.
- the storage chamber 22 and / or the check valve with bypass throttle 24 can also be installed so that they find space below the bottom 35 a of the control piston 35, analogous to known Einspritzventilaus arrangementen and possibly accepting a long injection valve member.
- the embodiment could be such that only the bore 32 opens below the bottom 35a of the control piston 35 of the injection valve member 36.
- the storage injection system has no - common to all injectors - storage space in the manner of a common rail. This is expressed by the fact that the hydraulic connection means of a storage injection system according to the invention have too little storage effect in order to design solely the required, reproducibly identical injection processes of the injection valves.
- the connecting means can - in a preferred manner - all at least approximately the same cross-section. Any small chambers or rooms, as they are necessary for example for flow control valves, or any chokes should be included. It is important, however, that during each Volllasteinspritzvorgang fuel is also supplied from other storage chambers than the injection valve currently associated injection chamber and from the high-pressure conveyor.
- the throttling device 25 may for example also be designed as a "hydraulic circular diode".
- An inventive storage injection system preferably has at least three injection units 27.
- FIG. 1 An inventive storage injection system 10 as in Fig. 1 shown for an eight-cylinder diesel engine with a power of 250 kW per cylinder has been analyzed by means of a computer-aided simulation.
- the injection quantity per injection operation under full load was set at 2000 mm 3 and the diameter of the fuel feed line 14 and fuel lines 16 was 6 mm.
- the system high pressure was 1500 bar and each of the storage chambers 22 had a storage volume of 100 cm 3 .
- the diagrams of Figures 11 . 13 and 15 show results of this simulation.
- the abscissa is the time axis, with the time in seconds. On the ordinate are in the Fig. 11 to 14 the pressure in units of 1000 bar and in the FIGS. 15 and 16 the flow rate of the fuel is plotted in liters per minute.
- Fig. 11 shows the pressure curves in all eight injection units 27 at the mouth of the bore 28 in the storage chamber 22 (see Fig. 2 ).
- Te the good five milliseconds long duration of the injection process of one of the injectors 18 is designated.
- the broken down in this interval down to about 1400 bar and back up, dashed line shows the pressure at the active injection injector 18, whereas the superimposition of the pressure curves of the remaining seven injectors 18 in this time interval form the lying at about 1500 bar thick line .
- Te the pressure at the inlet of the injection valve 18, which has just finished the injection process, according to the above the thick line running dashed line.
- the eight consecutive injection operations of the eight injectors 18 are shown.
- Fig. 12 shows at the same scale the pressure gradients at the same location - at the entrance of the bore 28 - each of the eight injectors 18, but in the injection system with common rail and without the injectors 18 associated storage chambers 22 and throttling devices 25.
- the pressure fluctuations At the entrance of the injectors 18 much larger and much higher frequency than in the inventive storage injection system 10. It is readily apparent that the latter reliably ensure better injection conditions.
- Fig. 13 shows the pressure curve of during the in Fig. 11 time period injecting injector 18 highlighted with Te during one millisecond prior to the injection event, during the five millisecond injection process, and during nearly four milliseconds after completion of the injection event.
- the pressure gain until the end of the injection process is thus well 250 bar in the inventive storage injection system 10.
- the time profile Te subsequent pressure curve with a vibrating pressure increase is caused by the abrupt stopping of the moving fuel column when closing the injector 18.
- the pressure quickly returns to the system high pressure of 1500 bar.
- Fig. 14 shows the pressure curve at the same injection valve 18 as this Fig. 13 shows, however, in the injection system with common rail.
- the duration of the injection process is again highlighted with Te.
- the strong and rapid pressure drop at the beginning of the injection process is caused by the lack of a storage chamber 22 at the injection valve 18.
- the make-up from the common rail then causes a strong pressure increase up to about 1700 bar.
- Fig. 14 can be removed, this vibration is slightly attenuated again within the injection interval Te.
- the even greater pressure fluctuations after completion of the injection process are caused by the return end, virtually unattenuated pressure wave.
- Fig. 15 shows in the solid line the flow of fuel through the nozzle 34 of the injecting Injector 18 and the dashed line shows the flow of fuel into the respective storage chamber at the entrance of this storage chamber 22 (at 58 in Fig. 2 ) of the inventive storage injection system 10.
- This representation shows that in the first part of the injection process up to the time designated X thanks to the relevant storage chamber 22 and then, thanks to the refilling of this storage chamber 22 with fuel from other storage chambers 22, in particular adjacent injection units 27, and from the high-pressure conveyor 12 ago, a very regular injection of fuel over the entire injection interval Te is achieved.
- part of the injection quantity originates from the storage chamber 22 of the currently operating injection valve 18 until time X, and at the same time the pressure in the storage chamber 22 drops (FIG.
- FIG. 16 shows - in the injection system with common rail, the flow rate through the nozzle of the injection valve 18 - solid line - irregular and is also the flow of fuel at the entrance of the injector 18 with associated with great unrest. There are at the nozzle changing undersupply and oversupply, the entire injection process is much more dynamic and uncontrollable than the inventive storage injection system.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
- High-Pressure Fuel Injection Pump Control (AREA)
Abstract
Description
Die vorliegende Erfindung betrifft ein Speichereinspritzsystem zur intermittierenden Einspritzung von Hochdruckbrennstoff in Brennräume einer Brennkraftmaschine gemäss dem Oberbegriff des Anspruchs 1.The present invention relates to a storage injection system for the intermittent injection of high-pressure fuel into combustion chambers of an internal combustion engine according to the preamble of claim 1.
Ein Speichereinspritzsystem dieser Art ist aus der
In einer in der
In der
Die Speicherräume der aus der
In der
In der
Die Einspritzsysteme gemäss der
Einspritzventile sowohl gemäss der
Die praktische Ausführung des Systems gemäss der
Die Ausgestaltung gemäss
Aufgabe der vorliegenden Erfindung ist es, ein Speichereinspritzsystem der eingangs genannten Art derart weiter zu bilden, dass auch mit kleineren Speicherkammern ein optimaler Einspritzvorgang ermöglicht ist.Object of the present invention is to further develop a storage injection system of the type mentioned so that even with smaller storage chambers an optimal injection process is possible.
Diese Aufgabe wird mit einem Speichereinspritzsystem, das die Merkmale des Anspruchs 1 aufweist, gelöst.This object is achieved with a storage injection system having the features of claim 1.
Ein als Common Rail bekannter Leitungsabschnitt mit grösserem Querschnitt ist nicht vorhanden. Es ist ermöglicht, diskrete Speicherkammern von so kleinem Volumen einzusetzen, dass diese bei Bedarf in den Bauraum des Einspritzventilgehäuses integriert werden können. Jedem Einspritzventil des Speichereinspritzsystems ist eine solche diskrete Speicherkammer zugeordnet. Die räumliche Anordnung der diskreten Speicherkammern kann mit grosser Gestaltungsfreiheit optimal gewählt werden, da die Speicherkammern, nicht wie in der
Dank der Zuordnung einer Drosselungsvorrichtung gemäss Patentanspruch 1 zu jeder Einspritzeinheit, gelingt es, trotz der allenfalls kleinen, diskreten Speicherkammern, einerseits den Druckverlauf während des Einspritzvorgangs für alle Einspritzventile einer Verbrennungskraftmaschine exakt und ohne störenden Druckabfall zu steuern, wozu die Wirkung von dynamischen Druckwellen herangezogen wird. Andererseits gelingt es auch, die dynamischen Druckwellen von einem Einspritzvorgang eines Einspritzventils zum Einspritzvorgang des nächsten Einspritzventils soweit zu dämpfen, beziehungsweise für jedes Einspritzventil gleichzustellen, dass alle Einspritzvorgänge unter praktisch gleichen Bedingungen stattfinden. Deshalb spielt auch die exakte Anordnung der hydraulischen Leitungsmittel - Druckleitungen - im Einspritzsystem keine grosse Rolle mehr und diese Anordnung kann mit grosser Freiheit geometrisch und kostenoptimal gestaltet werden.Thanks to the assignment of a throttling device according to claim 1 to each injection unit, it is possible, despite the possibly small, discrete storage chambers, on the one hand, the pressure curve during the injection process for all injectors of an internal combustion engine to control exactly and without disturbing pressure drop, what the effect of dynamic pressure waves is used. On the other hand, it is also possible to dampen the dynamic pressure waves from one injection process of an injection valve to the injection process of the next injection valve as far as equal or equal for each injector that all injection events take place under virtually the same conditions. Therefore, the exact arrangement of the hydraulic line means - pressure lines - in the injection system does not play a major role and this arrangement can be designed with great freedom geometric and cost optimal.
Das erfindungsgemässe Speichereinspritzsystem ist insbesondere für Dieselmotoren - bevorzugt mittlerer bis grösserer Leistung - geeignet. Es kann jedoch auch bei kleineren Dieselmotoren, wie sie beispielsweise im Automobilbau eingesetzt werden, verwendet werden.The inventive storage injection system is particularly suitable for diesel engines - preferably medium to large power - suitable. However, it can also be used in smaller diesel engines, such as those used in the automotive industry.
Die vorliegende Erfindung wird anhand bevorzugter Ausführungsbeispiele näher erläutert, die in der Zeichnung dargestellt und nachfolgen beschrieben sind. Es zeigen rein schematisch:
- Fig. 1
- eine schematische Darstellung eines Speichereinspritzsystems gemäss der vorliegenden Erfindung mit sechs Einspritzeinheiten mit je einem Einspritzventil, einer Speicherkammer und einer Drosselungsvorrichtung, geeignet für einen Sechszylindermotor, wobei die hydraulischen Leitungsmittel, wie Brennstoffspeiseleitung und Brennstoffleitungen, sowie die Einspritz- einheiten im Längsschnitt gezeigt sind;
- Fig. 2
- ein Längsschnitt durch eines der sechs in
Fig. 1 gezeigten Einspritzventile mit zugeordneter diskreter Speicherkammer und einer als Einweg- Rückschlagventil mit parallelgeschalteter Bypassdrossel ausgestalteten Drosselungs- vorrichtung in vergrösserten Massstab gegenüberFig. 1 , wobei die dem Einspritzventil zugeordnete Speicherkammer vom Brennstoff durchflossen wird (= Durchfluss-Speicherkammer); - Fig. 3
- eine gegenüber
Fig. 2 nochmals vergrösserte, partielle Schnittdarstellung des Rückschlag- ventils mit Parallelschaltung der Bypassdrossel; - Fig. 4
- eine Schnittzeichnung einer unterschiedlichen Ausführungsform des Rückschlagventils mit Parallelschaltung der Bypassdrossel, wo die Bypassdrossel im Körper des Rückschlagventils hergestellt ist;
- Fig. 5
- in gleicher Darstellung wie in
Fig. 2 eine zweite Ausführungsform der Einspritzeinheit mit Anordnung des Rückschlagventils mit Bypassdrossel zwischen Speicherkammer und Einspritzventil oberhalb des Hochdruckzulaufs, wobei der Hochdruckzulauf seitlich angeordnet ist, und die Speicherkammer vom Brennstoff nicht durchflossen wird (= Sackgasse-Speicherkammer); - Fig. 6
- in gleicher Darstellung wie
Fig. 2 und5 eine dritte Ausführungsform der Einspritzeinheit mit Anordnung des Rückschlagventils mit Bypassdrossel zwischen Speicherkammer und Einspritzventil unterhalb des Hochdruckzulaufs, wobei die Speicherkammer des Einspritzventils eine Sackgasse-Speicherkammer ist (vom Brennstoff nicht durchflossen); - Fig. 7
- in gleicher Darstellung wie
Fig. 1 eine Variante des Speichereinspritzsystems, wobei die Leitungsmittel einen Verteilerblock aufweisen; - Fig. 8
- eine gegenüber
Fig. 7 vergrössert dargestellte alternative Konstruktion des Verteilerblocks mit doppelwirkenden Überlast-Durchflussbegrenzungs- ventilen; - Fig. 9
- in gleicher Darstellung wie
Fig. 8 eine zweite alternative Konstruktion des Verteilerblocks mit einfachwirkenden Überlast-Durchflussbegrenzungs- ventilen; - Fig. 10
- in gleicher Darstellung wie
Fig. 1 und7 eine Ausführungsform des erfindungsgemässen Speicher- einspritzsystems mit einer Hochdruckförderpumpe pro Einspritzeinheit; - Fig. 11
- ein Diagramm mit den zeitabhängigen Druckverläufen in den Speicherkammern und somit am Eingang des Einspritzventils eines Speichereinspritzsystems gemäss
Fig. 1 mit acht Einspritzeinheiten; - Fig. 12
- ein Diagramm in gleichem Massstab wie
Fig. 11 mit den zeitabhängigen Druckverläufen am Eingang der Einspritzventile eines Einspritzsystems wie es derFig. 11 zugrunde liegt, wobei den Einspritzventilen jedoch keine diskreten Speicherkammern mit Drosselungsvorrichtung zugeordnet sind, sondern die Brennstoff- speiseleitung als Common Rail mit entsprechenden Speichervolumen ausgebildet ist; - Fig. 13
- einen Ausschnitt aus dem Diagramm von
Fig. 12 mit dem Druckverlauf in der Speicherkammer und somit am Eingang des Einspritzventils während eines Einspritzvorgangs dieses Einspritzventils; - Fig. 14
- in gleicher Darstellung wie
Fig. 13 einen entsprechenden Zeitausschnitt aus dem Diagramm derFig. 12 ; - Fig. 15
- ein Diagramm mit dem zeitabhängigen Verlauf des Brennstoffflusses durch die Düse eines Einspritzventils und des Brennstoffflusses in die betreffende Speicherkammer bei einem Einspritzvorgang gemäss
Fig. 11 und 13 ; und - Fig. 16
- in gleicher Darstellung wie
Fig. 15 den zeitabhängigen Verlauf des Brennstoffflusses durch die Düse eines Einspritzventils und des Brennstoffflusses am Eingang des Einspritz- ventils bei einem Einspritzvorgang gemässFig. 12 und 14 .
- Fig. 1
- a schematic representation of a storage injection system according to the present invention with six injection units each having an injection valve, a storage chamber and a throttle device, suitable for a six-cylinder engine, wherein the hydraulic line means, such as fuel supply line and fuel lines, and the injection units are shown in longitudinal section;
- Fig. 2
- a longitudinal section through one of the six in
Fig. 1 shown injection valves with associated discrete storage chamber and designed as a one-way check valve with parallel-connected bypass throttle throttling device on an enlarged scale comparedFig. 1 , wherein the fuel chamber is passed through the fuel chamber associated with the injection valve (= flow storage chamber); - Fig. 3
- one opposite
Fig. 2 again enlarged, partial sectional view of the check valve with parallel connection of the bypass throttle; - Fig. 4
- a sectional view of a different embodiment of the check valve with parallel connection of the bypass throttle, where the bypass throttle is made in the body of the check valve;
- Fig. 5
- in the same representation as in
Fig. 2 a second embodiment of the injection unit with arrangement of the check valve with bypass throttle between the storage chamber and injector above the high-pressure inlet, the high-pressure inlet is arranged laterally, and the storage chamber is not traversed by the fuel (= dead end storage chamber); - Fig. 6
- in the same representation as
Fig. 2 and5 a third embodiment of the injection unit with arrangement of the check valve with bypass throttle between the storage chamber and injection valve below the high-pressure inlet, wherein the storage chamber of the injection valve is a dead end storage chamber (from Fuel did not flow through); - Fig. 7
- in the same representation as
Fig. 1 a variant of the storage injection system, wherein the conduit means comprise a manifold block; - Fig. 8
- one opposite
Fig. 7 enlarged illustrated alternative design of manifold block with double acting overload flow relief valves; - Fig. 9
- in the same representation as
Fig. 8 a second alternative construction of the manifold block with single acting overload flow relief valves; - Fig. 10
- in the same representation as
Fig. 1 and7 an embodiment of the inventive storage injection system with a high-pressure feed pump per injection unit; - Fig. 11
- a diagram with the time-dependent pressure curves in the storage chambers and thus at the entrance of the injector of a storage injection system according to
Fig. 1 with eight injection units; - Fig. 12
- a diagram on the same scale as
Fig. 11 with the time-dependent pressure curves at the entrance of the injection valves of an injection system like theFig. 11 However, the injection valves are not associated with discrete storage chambers with throttling device, but the fuel supply line as common rail with corresponding Storage volume is formed; - Fig. 13
- a section of the diagram of
Fig. 12 with the pressure gradient in the storage chamber and thus at the inlet of the injection valve during an injection process of this injection valve; - Fig. 14
- in the same representation as
Fig. 13 a corresponding time excerpt from the diagram ofFig. 12 ; - Fig. 15
- a diagram with the time-dependent course of the fuel flow through the nozzle of an injection valve and the fuel flow into the relevant storage chamber in an injection process according to
Fig. 11 and13 ; and - Fig. 16
- in the same representation as
Fig. 15 the time-dependent course of the fuel flow through the nozzle of an injection valve and the fuel flow at the entrance of the injection valve in an injection process according toFig. 12 and14 ,
Je eine Brennstoffleitung 16 mündet bei jedem Einspritzventil 18, in Richtung der Längsachse 20 des betreffenden Einspritzventils, in eine dem Einspritzventil 18 zugeordnete Speicherkammer 22 (siehe auch
Bei der Beschreibung der in den
Im Längsschnitt des Einspritzventils 18 von
Die Funktionsweise des Einspritzventils 18 ist zusammengefasst wie folgt: wird die Aktuatoranordnung 42 bestromt, spricht die hydraulische Steuereinrichtung 40 an. Dies bewirkt eine Bewegung des Einspritzventilgliedes 36 weg von einem Düsensitz 44 der Düse 34, womit Brennstoff unter hohem Druck von der Speicherkammer 22 über die Bohrung 28 und weitere Bohrung 32 zu den Düsen-Spritzöffnungen 46 der Düse 34 fliesst und der Einspritzvorgang beginnt. Wird die Aktuatoranordnung 42 entstromt, wird über die hydraulische Steuereinrichtung 40 das Einspritzventilglied 36 in Richtung des Düsensitzes 44 bewegt, bis der Einspritzvorgang unterbrochen wird. Zur genauen Beschreibung des Aufbaus und der funktionsweise wird auf den Stand der Technik verwiesen, beispielsweise auf das
Die Unterseite 35a des Steuerkolbens 35 des Einspritzventilgliedes 36, die Führungshülse 37 und der Steuerraum 39 befinden sich unterhalb der Speicherkammer 22. Die Speicherkammer 22 des Einspritzventils 18 ist über die Bohrung 28 und weitere Bohrung 32 hydraulisch praktisch widerstandslos mit dem Düsenvorraum 41 verbunden. Auch die nicht im Detail gezeigten Durchgänge (für Details wird wiederum auf das
Rein illustrativ wird auf den Volumeninhalt der Speicherkammer 22 hingewiesen, der bei der Einspritzeinheit 27 gemäss
Bei jeder Einspritzung eines Einspritzventils 18 fliesst der Hochdruckbrennstoff vom der Brennstoffleitung 16 durch die Speicherkammer 22 hindurch, um über die Bohrung 28 und weitere Bohrung 32 zum Düsenvorraum 41 und folglich zur Düse 34 zu gelangen. Die Speicherkammer 22 wird vom Brennstoffstrom durchflossen, es ist also eine Durchfluss-Speicherkammer 22'. Rein illustrativ können die Durchmesser der Brennstoffleitungen 14 und 16 (
Gemäss
Bekannt ist, dass die kinetische Energie der Strömung durch eine Drossel weitgehend verloren geht und in Wärme umgewandelt wird, was bei der Bypassdrossel 56 der Fall ist. Die Bypassdrossel 56 weist einen effektiven Strömungsquerschnitt auf, der vorzugsweise etwas kleiner ist als der gesamte effektive Strömungsquerschnitt der Düsen-Spritzöffnungen 46 (der Auslegungsbereich bewegt sich je nach der spezifischen Ausführung und der Anzahl Einspritzventile 18 des Einspritzsystems 10 zwischen 0,3 und 3 Mal). Die Rückschlagventilfeder 54 ist vorzugsweise nicht sehr stark und gestattet ein Öffnen des Rückschlagventils 24a, das heisst die Bewegung der Kugel 50 in Strömungsrichtung 48 weg vom Rückschlagventilsitz 52, bei einer Druckdifferenz von beispielsweise 20 bar (der Auslegungsbereich bewegt sich je nach Vorspannung der Feder 54 zwischen etwa 2 bis etwas über 50 bar).It is known that the kinetic energy of the flow through a throttle is largely lost and converted into heat, which is the case with the
In einer alternativen Konstruktionsvariante des Speichereinspritzsystems 10 von
Die Funktionsweise des Brennstoffspeichereinspritzsystems 10 von
- Zu Beginn des Einspritzvorgangs fliess bei zunächst geschlossenem Rückschlagventil 24a Brennstoff aus der Speicherkammer 22 durch die Bohrung 28 und weitere Bohrung 32 und wird durch die Düsen-
Spritzöffnungen 46 in den Brennraum der Brennkraftmaschine eingespritzt (Brennraum und Brennkraftmaschine sind nicht gezeigt). Dadurch entspannt sich der Brennstoff unter leichtem Druckabfall in derSpeicherkammer 22.Die Bypassdrossel 56 kann nicht genügend Brennstoff nachfördern, was zum Abheben derKugel 50ab dem Rückschlagventilsitz 52 inRichtung der Strömung 48 führt, womit der Nachschub von Kraftstoff aus der Brennstoffleitung 16 in die vomBrennstoff durchflossene Speicherkammer 22 beginnt. Dieser Vorgang bewirkt eine dynamische Druckabsenkung in derBrennstoffleitung 16, die sich mit Schallgeschwindigkeit in das Brennstoffleitungssystem fortpflanzt. In der Fortsetzung des Einspritzvorgangs sinkt der Druck inder Speicherkammer 22 weiter ab. Diese Druckabsenkung kann wegen der reduzierten Dimensionen der Speicherkammer 22 bei einem Anfangsdruck von beispielsweise 1600 bar bis zu einigen hundert bar (beispielsweise 100-400 bar) betragen, und sie propagiert sich wiederum dynamisch indie Brennstoffleitung 16 und in das Brennstoffleitungssystem. Dadurch, dass die Brennstoffleitung 16 überdas offene Rückschlagventil 24amit der Speicherkammer 22 kommuniziert, ist die Druckabsenkung inder Speicherkammer 22 jedoch kleiner, als wenn bei gleichem Speicherkammervolumen nur dieBypassdrossel 56 dazwischen geschaltet wäre, also kleiner als beispielsweise bei einem Einspritzsystem gemäss derDE 32 27 742Speicherkammer 22nahe dem Düsensitz 44, aber mittels der Bohrung 28 und weitere Bohrung 32 oberhalb des Steuerkolbens 35 des Einspritzventilgliedes 36 vorgelagert ist, ist ferner die Amplitude der dynamischen Druckabsenkung in derBrennstoffleitung 16 geringer als in einem derEP 0 264 640 A zugeordnete Speicherkammer 22 hat.
- At the beginning of the injection process, when the
check valve 24a is initially closed, fuel flows out of thestorage chamber 22 through thebore 28 and further bore 32 and through thenozzle spray openings 46 into the Combustion chamber of the internal combustion engine injected (combustion chamber and internal combustion engine are not shown). As a result, the fuel relaxes with slight pressure drop in thestorage chamber 22. Thebypass throttle 56 can not nachfördern enough fuel, resulting in the lifting of theball 50 from thecheck valve seat 52 in the direction of theflow 48, whereby the supply of fuel from thefuel line 16 in the from the fuel flowing through thestorage chamber 22 begins. This process causes a dynamic pressure reduction in thefuel line 16, which propagates at the speed of sound in the fuel line system. In the continuation of the injection process, the pressure in thestorage chamber 22 continues to drop. This pressure reduction can be due to the reduced dimensions of thestorage chamber 22 at an initial pressure of for example 1600 bar up to several hundred bar (for example, 100-400 bar), and it propagates itself dynamically in thefuel line 16 and in the fuel line system. Due to the fact that thefuel line 16 communicates with thestorage chamber 22 via theopen check valve 24a, the pressure reduction in thestorage chamber 22 is smaller than if only thebypass throttle 56 were interposed with the same storage chamber volume, ie smaller than, for example, an injection system according toFIG DE , The fact that the32 27 742 storage chamber 22 near thenozzle seat 44, but by means of thebore 28 and further bore 32 upstream of thecontrol piston 35 of theinjection valve member 36, the amplitude of the dynamic pressure reduction in thefuel line 16 is also lower than in one ofEP 0 264 640 A injector 18 associated storage chamber 22nd Has.
Bei einem Einspritzvorgang, welcher einer Volllasteinspritzung der dazugehörigen Brennkraftmaschine entspricht, dauert die Phase der Druckabsenkung in der Speicherkammer 22 bis etwa zur Hälfte der gesamten Einspritzdauer an. Diese Angabe ist rein indikativ und kann je nach Anwendung nach oben oder nach unten variieren. Die dynamische Druckabsenkung in der Brennstoffleitung 16 erfasst nun auch die Brennstoffspeiseleitung 14, die Brennstoffleitungen 16 der anderen, insbesondere benachbarten Brennstoffeinspritzventilen 18 und über die Bypassdrosseln 56 auch die betreffenden Speicherkammern 22. Alle diese Elemente mit Hochdruckbrennstoff haben eine Speicherwirkung. Die Strömungsrichtung aus den Speicherkammern 22 der benachbarten und allenfalls weiteren Brennstoffeinspritzventile 18 ist jedoch entgegen der Strömungsrichtung 48 des Einspritzventils 18, wo die Einspritzung stattfindet. Deswegen bleiben die Rückschlagventile 52 der benachbarten und allenfalls weiteren Einspritzventile 18 geschlossen und der Brennstoffnachschub aus den zugeordneten Speicherkammern 22 findet alleine durch die Bypassdrosseln 56 statt, was bei den benachbarten und allenfalls weiteren Speicherkammern 22 nur einen geringeren Druckabfall als in der Speicherkammer 22 des gerade arbeitenden Einspritzventils 18 verursacht.In an injection process which corresponds to a full-load injection of the associated internal combustion engine, the phase of the pressure reduction in the
Da aber mehrere Speicherkammern 22 über ihre Bypassdrosseln 56 Hochdruckbrennstoff nachschieben können, bewirkt der insgesamt im Speichereinspritzsystem 10 stattfindende Nachschub von Brennstoff in der Brennstoffleitung 16 und in der Speicherkammer 22 des einspritzenden Einspritzventils 18 eine vorteilhafte Erholung des Einspritzdruckes in der zweiten Hälfte des Einspritzvorganges, die sich bis zum Ende der Volllasteinspritzdauer fortsetzt. Der Einspritzdruck in dieser Phase steigt an den Düsen-Spritzöffnungen 46 an und erreicht gegen Ende des Einspritzvorgangs einen erwünscht hohen Wert; siehe dazu auch
Wird nun der Einspritzvorgang rasch beendet, findet in der Bohrung 28 und weiteren Bohrung 32 wegen dem abrupten Abbremsen der Flüssigkeitssäule am Düsensitz 44 eine dynamische Druckerhöhung statt. Diese propagiert sich bis zur zugeordneten Speicherkammer 22 und wird vom Speicherkammervolumen gedämpft. Ferner kann sich die verbleibende Druckerhöhung von der Speicherkammer 22 heraus, ebenfalls nur gedämpft, über die Bypassdrossel 56 und entgegen der Strömungsrichtung 48 im übrigen Teil des Speichereinspritzsystems 10 propagieren, da das Rückschlagventil 52 einen Durchfluss entgegen der Strömungsrichtung 48 nicht zulässt. Die Bypassdrossel 56 vernichtet einen wesentlichen Teil der von der Strömung durch die Bypassdrossel 56 hindurch mitgeführten Energie und lässt keine schwer kontrollierbaren Druckamplituden im Speichereinspritzsystem 10 entstehen.If now the injection process is completed quickly, takes place in the
Die Anordnung des Rückschlagventils mit Bypassdrossel 24 des Speichereinspritzsystems 10 von
- sie dämpft die Druckschwankung in
den Speicherkammern 22 von nicht einspritzenden Brennstoffeinspritzventilen 18 während der Einspritzung eines beliebigen Einspritzventils 18, - sie dämpft die Druckschwankung zwischen
dem einspritzenden Einspritzventil 18 und dem Rest des Speichereinspritzsystems 10 am Ende der Einspritzung, und - sie bewirkt eine vorteilhaft ansteigende Charakteristik des Einspritzdruckes in der zweiten Hälfte eines Volllasteinspritzvorgangs eines beliebigen Einspritzventils 18.
- it dampens the pressure fluctuation in the
storage chambers 22 ofnon-injecting fuel injectors 18 during the injection of any oneInjector 18, - it dampens the pressure fluctuation between the injecting
injector 18 and the remainder of theaccumulator injection system 10 at the end of the injection, and - it causes an advantageously increasing characteristic of the injection pressure in the second half of a Volllasteinspritzvorgangs any injection valve 18th
Nach dem Ende eines beliebigen Einspritzvorgangs bleiben im Speichereinspritzsystem 10 Druckunterschiede in den Speicherkammern 22 und Restschwingungen in der Brennstoffspeiseleitung 14 und Brennstoffleitungen 16 übrig. Durch geeignete Auslegung des Volumens der Speicherkammern 22, der Eigenschaften der Rückschlagventile mit Bypassdrosseln 24 (wie oben erwähnt) sowie der Brennstoffspeiseleitung 14 und der Brennstoffleitungen 16 eines bestimmten Einspritzsystems 10 wird darin ein sich für alle Einspritzventile 18 immer wiederholendes, praktisch gleiches Wellenmuster erzeugt, so dass alle Einspritzventile 18 des Einspritzsystems 10, vom Druckverlauf her betrachtet, praktisch gleiche Bedingungen für die Einspritzung erhalten (siehe dazu
In
Diese Anordnung führt zu einem gegenüber der Einspritzeinheit 27 gemäss
- Zu Beginn des Einspritzvorgangs wird der Brennstoff mehrheitlich aus der Brennstoffleitung 16 durch die
70, 28Bohrungen und 32 zu den Düsen-Spritzöffnungen 46 fliessen. Mit der Auslegung des Querschnitts der Bypassdrossel 56 und der Kraft der Feder 54 (sieheFig. 3 ) kann bestimmt werden, wie viel Brennstoff anteilmässig zu Beginn der Einspritzung von der Speicherkammer 22 zu den Düsen-Spritzöffnungen 46 fliesst und wanndas Rückschlagventil 52 öffnet. Bis etwa zur Hälfte eines Volllasteinspritzvorgangs sind die Verhältnisse ansonsten ähnlich zu jenen der Anordnung gemäss derFiguren 1 und 2 .
- At the beginning of the injection process, the majority of fuel from the
fuel line 16 through the 70, 28 and 32 to the nozzle-holes injection ports 46 flow. With the design of the cross section of thebypass throttle 56 and the force of the spring 54 (seeFig. 3 ), it can be determined how much fuel proportionally flows at the beginning of the injection from thestorage chamber 22 to the nozzle-injection ports 46 and when thecheck valve 52 opens. Up to about half of a Volllasteinspritzvorgangs the conditions are otherwise similar to those of the arrangement according to theFIGS. 1 and2 ,
Gelangt nun die dynamische Druckabsenkung in einem Einspritzventil 78 über die Brennstoffspeiseleitung 14 und Brennstoffleitung 16 zum Rückschlagventil mit Bypassdrossel 24 eines benachbarten Einspritzventils 78, kann auch dessen Rückschlagventil 24a öffnen und zusätzlich zur zugeordneten Bypassdrossel 56 Brennstoff aus der Speicherkammer 22 dynamisch zur einspritzenden Einspritzeinheit 27 nachschieben. Gelangt die dynamische Druckerholungswelle zum einspritzenden Einspritzventil 78, wird nun das Rückschlagventil 24a dieses einspritzenden Einspritzventils 78, bei Ankunft der Druckerholungswelle auf der Schliessseite des Rückschlagventils 24a, das Durchlassen der Druckerholungswelle zur Speicherkammer 22 dieses einspritzenden Einspritzventils 78 versperren und fast die gesamte Druckwellenamplitude gelangt somit praktisch ungedämpft als Druckerhöhung zu den Düsen-Spritzöffnungen 46 (vermindert um jenen Anteil, der über die Bypassdrossel 24b in die Speicherkammer 22 dieses einspritzenden Einspritzventils 78 gelangen kann).Now comes the dynamic pressure reduction in one
Das gegenüber der Anordnung von
Bereits bei nur zwei Einspritzventilen 78 mit zwei zugeordneten Speicherkammern 22, zwei zugeordneten Rückschlagventilen mit Bypassdrosseln 24 und den dazugehörigen Brennstoffspeise- und Brennstoffleitungen 14, 16 ist diese Anordnung sehr wirksam. Bei Brennstoffeinspritzsystemen 10 mit mehr als zwei Einspritzventilen 78 ist gegenüber der Anordnung der
Der zweite wesentliche Unterschied zur Anordnung von
In einer nicht gezeigten Ausführungsvariante eines Einspritzventils gemäss der vorliegenden Erfindung hat das Einspritzventil eine Sackgasse-Speicherkammer 22" und das Rückschlagventil mit Bypassdrossel 24 befindet sich am Eingang des seitlichen Hochdruckzulaufs 70 des Einspritzventils. Diese Ausführung verhält sich praktisch gleich, wie jene des Einspritzventils 18 von
Eine in
Bei einer weiteren, nicht gezeigten alternativen Ausführungsform der Einspritzventile 18, 78, 88 befindet sich die Speicherkammer 22 seitlich angeordnet, entweder parallel zur Längsachse 20 desachsiert oder in einem Winkel (von beispielsweise 90°) zur Längsachse 20. Auch hier kann das Gehäuse der Speicherkammer 22 einstückig mit dem Einspritzventilgehäuse 30 (beispielsweise ist diese Baueinheit als Schmiedestück hergestellt), oder als zwei miteinander verschraubte Komponenten ausgeführt sein.In a further, not shown alternative embodiment of the
In
Allerdings muss bei einem Speichereinspritzsystem 10 mit der Ausführung der Einspritzeinheiten 27 gemäss
Bei der in
Der Vollständigkeit halber sei erwähnt, dass auch Einspritzeinheiten wie in den
In einer Konstruktionsvariante ist dem Verteilerblock 96 eine Speicherkammer 97 zugeordnet, wie dies in
Der Hochdruckbrennstoff gelangt über die Brennstoffspeiseleitung 100 in einen zu einer Achse 101 symmetrischen Verteilerblock 99 und über Brennstoffleitungen 102a, 102b, 102c und 102d zu vier Einspritzeinheiten 27. Mit 102' sind gestrichelt weitere mögliche Brennstoffleitungen bei einer mit 116 gestrichelt gezeigten Erweiterung des Verteilerblock 99 angedeutet. Der Ventilkörper 106 jedes Durchflussbegrenzungsventils 104 ist doppelwirkend ausgeführt. Bei jedem Einspritzvorgang bewegt sich der Ventilkörper 106 in Richtung zur Brennstoffleitung 102, die zur Einspritzeinheit 27 mit dem einspritzenden Einspritzventil führt. Bei normaler Funktion des Speichereinspritzsystems 90 bewegt sich der Ventilkörper 106 nicht so weit, dass das konische Ende 110 bis zum Absperrsitz 112 gelangt. In den Ruhepausen zwischen Einspritzvorgängen wird der Ventilkörper 106 durch die Kraft einer Feder 108 in seine mittige Ruhelage gebracht. Wenn unbeabsichtigt bei einem zu lange dauernden Einspritzvorgang zu viel Brennstoff verlangt wird, gelangt dagegen das konische Ende 110 zum Absperrsitz 112 und schliesst den weiteren Brennstofffluss ab. Mit 114 sind leicht drosselnde, ringförmige Durchlassflächen zwischen dem Ventilkörper 106 und dem Körper des Verteilerblocks 99 bezeichnet. Sie liegen zwischen dem Brennstoffeinlass durch die Brennstoffspeiseleitung 100 und einem Vorraum 116 zu einer Brennstoffleitung 102. Ferner weisen die Ventilkörper 106 in der Mitte einen verjüngten Bereich 118 auf, um den ungehinderten Brennstoffdurchfluss von der Brennstoffleitung 100 und durch eine Bohrung 120 zu allen Durchflussbegrenzungsventilen 104 zu gewährleisten.The high-pressure fuel passes via the
Der Vorteil dieser Lösung ist, dass ein doppelwirkendes Durchflussbegrenzungsventil 104 mindestens zwei Einspritzventile 18 bedient und dadurch die Anzahl Durchflussbegrenzungsventile 104 für einen bestimmten Motor gegenüber dem Stand der Technik mindestens halbiert wird.The advantage of this solution is that a double-acting
In Konstruktionsvarianten ist im Brennstoffzufluss zum Verteilerblock 99, wie gestrichelt gezeichnet, eine Drossel 121a angeordnet. Anstelle dieser Drossel 121a kann eine Drossel 121b im Brennstoffzuflussabschnitt zwischen zwei je ein doppelwirkendes Durchflussbegrenzungsventil 104 aufnehmender Kammern 124 vorhanden sein. Es ist aber auch denkbar, beide Drosseln 121a und 121b einzubauen. Ferner kann dem Verteilerblock 99, analog wie beim Verteilerblock 96, eine Speicherkammer 97 zugeordnet sein. Der Zweck dieser Elemente ist derselbe, wie im Zusammenhang mit der Konstruktionsvariante des Verteilerblocks 96 beschrieben. Auch in diesem Fall steigt der Bauaufwand.In design variants, a
Bei der in der
Ein derartiges Speichereinspritzsystem eignet sich besonderes für einen Retro-Fit an einer bestehenden Brennkraftmaschine, wobei die Hochdruckpumpen 12' des ursprünglichen konventionellen Einspritzsystems beibehalten werden können und somit lediglich neue Einspritzeinheiten 27 und neue hydraulische Leitungsmittel 13 nachgerüstet werden müssen.Such a storage injection system is particularly suitable for a retro-fit on an existing internal combustion engine, wherein the high pressure pumps 12 'of the original conventional injection system can be maintained and thus only
Bei allen gezeigten Ausführungsbeispielen sind die Speicherkammern 22 und das Rückschlagventil mit Bypassdrossel 24 - die Drosselungsvorrichtung 25 - sowie die Einmündung der Bohrung 32 oberhalb der Unterseite 35a des Steuerkolbens 35 des Einspritzventilgliedes 36 angebracht, was eine besonders kompakte Gestaltung der Funktionselemente in der Düse 34 ermöglicht. Die Speicherkammer 22 und/oder das Rückschlagventil mit Bypassdrossel 24 können auch so eingebaut werden, dass sie unterhalb der Unterseite 35a des Steuerkolbens 35 Platz finden, analog zu bekannten Einspritzventilausführungen und unter eventueller Inkaufnahme eines langen Einspritzventilgliedes. Auch könnte die Ausführung so sein, dass nur die Bohrung 32 unterhalb des Unterseite 35a des Steuerkolbens 35 des Einspritzventilgliedes 36 einmündet.In all embodiments shown, the
Bei sämtlichen Ausführungsbeispielen weist das Speichereinspritzsystem keinen- allen Einspritzventilen gemeinsamen - Speicherraum in der Art eines Common Rails auf. Dies wird damit ausgedrückt, dass die hydraulischen Verbindungsmittel eines erfindungsgemässen Speichereinspritzsystems eine zu geringe Speicherwirkung haben, um alleine die geforderten, reproduzierbar gleichen Einspritzvorgänge der Einspritzventile zu gestalten. Die Verbindungsmittel können - in bevorzugter Weise - alle wenigstens annähernd den gleichen Querschnitt aufweisen. Allfällige kleine Kammern oder Räume, wie sie beispielsweise für Durchflussbegrenzungsventile notwendig sind, oder allfällige Drosseln sollen mit umfasst sein. Wichtig ist jedoch, dass während jedem Volllasteinspritzvorgang Brennstoff auch aus andern Speicherkammern als der dem gerade einspritzenden Einspritzventil zugeordneten Speicherkammer und aus der Hochdruckfördereinrichtung zugeführt wird.In all embodiments, the storage injection system has no - common to all injectors - storage space in the manner of a common rail. This is expressed by the fact that the hydraulic connection means of a storage injection system according to the invention have too little storage effect in order to design solely the required, reproducibly identical injection processes of the injection valves. The connecting means can - in a preferred manner - all at least approximately the same cross-section. Any small chambers or rooms, as they are necessary for example for flow control valves, or any chokes should be included. It is important, however, that during each Volllasteinspritzvorgang fuel is also supplied from other storage chambers than the injection valve currently associated injection chamber and from the high-pressure conveyor.
Die Drosselungsvorrichtung 25 kann beispielsweise auch wie eine "Hydraulik circular diode" ausgebildet sein.The throttling
Vorzugsweise weist ein erfindungsgemässes Speichereinspritzsystem mindestens drei Einspritzeinheiten 27 auf.An inventive storage injection system preferably has at least three
Für Dieselmotoren mit einer Leistung in der Grössenordnung von 250 KW pro Zylinder empfehlen sich Strömungsquerschnitte im Brennstoffleitungssystem entsprechend einem Durchmesser von etwa 6 mm. Für Leistungen von etwa 50 - 100 KW sind Durchmesser von 2 - 4 mm empfohlen.For diesel engines with a power of the order of 250 KW per cylinder, flow cross sections in the fuel line system corresponding to a diameter of about 6 mm are recommended. For outputs of about 50 - 100 KW diameters of 2 - 4 mm are recommended.
Ein erfindungsgemässes Speichereinspritzsystem 10 wie in
Zum Vergleich wurde auch ein Speichereinspritzsystem mit Common Rail simuliert. Dabei wurden die genau gleichen Vorgaben berücksichtigt. Der einzige Unterschied bestand darin, dass der Brennstoff mittels der Brennstoffleitungen 16 unmittelbar den Einspritzventilen 18 zugeführt wurde und dass ein den acht Speicherkammern 22 entsprechendes Volumen von 800 cm3 - in der Art eines Common Rail - in die Leitungsstücke 14' verlegt wurde, indem deren Querschnitt entsprechend vergrössert angenommen wurde. Den Einspritzventilen 18 war somit keine individuelle Speicherkammer 22 und keine Drosselungsvorrichtung 25 zugeordnet. Resultate dieser Simulation zeigen die Diagramme der
In allen Diagrammen ist die Abszisse die Zeitachse, wobei die Zeit in Sekunden angegeben ist. Auf der Ordinate sind in den
Der
Im Vergleich dazu ist - wie dies
Claims (16)
- Accumulator injection system for the intermittent injection of high-pressure fuel into combustion spaces of an internal combustion engine, with a high-pressure conveying device (12) which feeds high-pressure fuel to a number of injection units (27) having in each case an injection valve (18, 78, 88), a discrete accumulator chamber (22) assigned to this and a throttling device (25), the injection units (27) being connected to one another and to the high-pressure conveying device (12) by means of hydraulic line means (13), and each injection valve (18, 78, 88) having an injection valve member (35), actuated by means of an actuator arrangement (42) and a hydraulic control device (40), for controlling the operation of injecting high-pressure fuel through nozzle injection orifices (46) of a nozzle (34) of the injection valve (18, 78, 88), characterized in that the hydraulic line means (13) have too low an accumulator action to ensure the required, reproducibly identical injection operations of the injection valves (18, 78, 88), and the throttling device (25) permits, at least approximately unimpeded, the flow of the high-pressure fuel in the direction of the injection valve (18, 78, 88) and throttles said flow in the opposite direction, in such a way that high-pressure fuel flows to each injection valve (18, 78, 88) during its injection operation both from the assigned accumulator chamber (22) and from the accumulator chamber (22) of other injection units (27) and from the high-pressure conveying device (12).
- Accumulator injection system according to Claim 1, characterized in that each throttling device (25) has a nonreturn valve (24a) and, preferably in a parallel connection, a bypass throttle (24b).
- Accumulator injection system according to Claim 1, characterized in that the throttling device (25) is arranged between the line means (13) and the accumulator chamber (22), and the accumulator chamber (22) is connected to the injection valve (18) via a connecting duct (33).
- Accumulator injection system according to Claim 3, characterized in that the throttling device (25) has a nonreturn valve (24a) with bypass throttle (24b), the nonreturn valve opening in the direction of the accumulator chamber (22).
- Accumulator injection system according to Claim 1, characterized in that the accumulator chamber (22) and the injection valve (88) are connected to one another via a connecting duct (33), the throttling device (25) is connected into the connecting duct (33), and the line means (13) issue into the connecting duct (33) between the throttling device (25) and the accumulator chamber (22).
- Accumulator injection system according to Claim 1, characterized in that the accumulator chamber (22) and the injection valve (78) are connected to one another via a connecting duct (33), the throttling device (25) is connected into the connecting duct (33), and the line means (13) issue into the connecting duct (33) between the throttling device (25) and the injection valve (78).
- Accumulator injection system according to Claim 5 or 6, characterized in that the throttling device (25) has a nonreturn valve (24a) with bypass throttle (24b), the nonreturn valve (24a) opening in the direction of the injection valve (78).
- Accumulator injection system according to one of Claims 1, 4 or 7, characterized in that the nonreturn valve (24a) has a needle-shaped closing member (60), loaded in the closing direction by a spring (54), for closing and opening the nonreturn valve, and in that the bypass throttle (56) is manufactured in the closing member (60).
- Accumulator injection system according to one of Claims 1 to 8, characterized in that the line means (13) have a fuel feedline (14) leading away from the high-pressure conveying device (12) and, per injection valve (18, 78, 88), a fuel line (16), the fuel lines (16) issuing into the fuel feedline (14).
- Accumulator injection system according to one of Claims 1 to 8, characterized in that the line means (13) have a fuel feedline (14) leading away from the high-pressure conveying device (12), at least one distributor block (96, 99, 128) and, per injection valve (18, 78, 88), a fuel line (94a, 94b, 94c, 94d, 94e, 94f, 102a, 102b, 102c, 102d, 102', 130a, 130b, 130c, 130d, 130e, 130f), the fuel lines and the fuel feedline (92, 100) issuing into the distributor block (96, 99, 128) and being flow-connected to one another there.
- Accumulator injection system according to Claim 10, characterized in that, in the distributor block (99), at least one double-acting throughflow limiting valve (104) is installed, which interrupts the inflow to one of two fuel lines (102a, 102b, 102c, 102d, 102') when the injection valve member (36) of the respective injection valve (18, 78, 88) unintentionally remains in the open position for too long a time.
- Accumulator injection system according to Claim 10, characterized in that, in a distributor block (128), at least one single-acting throughflow limiting valve (122) is installed, which interrupts the inflow to at least two fuel lines (130a, 130b, 130c, 130d, 130e, 130f) when the injection valve member (36) of at least one of the respective at least two injection valves (18, 78, 88) unintentionally remains in the open position for too long a time.
- Accumulator injection system according to one of Claims 10 to 12, characterized in that the distributor block (96, 99, 128) is assigned an additional accumulator chamber (97), the accumulator volume of which corresponds preferably at least approximately to that of an accumulator chamber (22) of an injection unit (27).
- Accumulator injection system according to one of Claims 1 to 8, characterized in that the high-pressure conveying device (12) has a plurality of high-pressure conveying pumps (12'), preferably a high-pressure conveying pump (12') per injection unit, and the line means (13) have a fuel pump line (14") leading away from each high-pressure conveying pump (12'), a fuel feedline (14) and, per injection valve (18, 78, 88), a fuel line (16), the fuel pump lines (14") and the fuel lines (16) issuing into the fuel feedline (14).
- Accumulator injection system according to Claim 14, characterized in that the high-pressure conveying pumps (12') have short-conveying cams (154).
- Accumulator injection system according to Claim 14 or 15, characterized in that the pumping operation of each high-pressure conveying pump (12') overlaps at least partially with the injection operation of the assigned injection unit (27).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH11952005 | 2005-07-18 | ||
CH13652005 | 2005-08-19 | ||
PCT/CH2006/000364 WO2007009279A1 (en) | 2005-07-18 | 2006-07-10 | Accumulator injection system for an internal combustion engine |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1904741A1 EP1904741A1 (en) | 2008-04-02 |
EP1904741B1 true EP1904741B1 (en) | 2010-11-17 |
Family
ID=36941954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06752914A Active EP1904741B1 (en) | 2005-07-18 | 2006-07-10 | Accumulator injection system for an internal combustion engine |
Country Status (8)
Country | Link |
---|---|
US (1) | US7603984B2 (en) |
EP (1) | EP1904741B1 (en) |
JP (1) | JP5120655B2 (en) |
CN (1) | CN101223352B (en) |
AT (1) | ATE488690T1 (en) |
BR (1) | BRPI0613413B1 (en) |
DE (1) | DE502006008343D1 (en) |
WO (1) | WO2007009279A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210231087A1 (en) * | 2018-07-26 | 2021-07-29 | Liebherr-Components Deggendorf Gmbh | Connecting piece for a fuel injector of an internal combustion engine |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006034514B4 (en) * | 2006-07-26 | 2014-01-16 | Mtu Friedrichshafen Gmbh | Method for controlling an internal combustion engine |
DE102006042367A1 (en) * | 2006-09-08 | 2008-03-27 | Robert Bosch Gmbh | Arrangement for injecting fuel into cylinder combustion chambers of internal combustion engines |
EP2092186B1 (en) * | 2006-10-16 | 2010-01-20 | Ganser-Hydromag Ag | Fuel injection valve for internal combustion engines |
BRPI0816923A2 (en) | 2007-09-13 | 2015-03-17 | Ganser Hydromag | Fuel injection device. |
DE102007056913A1 (en) * | 2007-11-26 | 2009-05-28 | Robert Bosch Gmbh | Injector for fuel with ball valve |
DE102009002793B4 (en) * | 2009-05-04 | 2011-07-07 | MTU Friedrichshafen GmbH, 88045 | Common rail fuel injection system and internal combustion engine, electronic device and method for controlling and / or regulating an internal combustion engine |
GB2474658B (en) * | 2009-10-20 | 2014-01-29 | Gm Global Tech Operations Inc | Fuel delivery injection system |
AT509177B1 (en) * | 2009-11-23 | 2013-09-15 | Bosch Gmbh Robert | PRESSURE TUBE FITTINGS FOR COMMON RAIL INJECTION SYSTEM |
DE102009055129A1 (en) * | 2009-12-22 | 2011-06-30 | Robert Bosch GmbH, 70469 | Fuel injector |
CH702496B1 (en) * | 2010-05-07 | 2011-07-15 | Liebherr Machines Bulle Sa | Power injector. |
US20110297125A1 (en) * | 2010-06-03 | 2011-12-08 | Caterpillar Inc. | Reverse Flow Check Valve For Common Rail Fuel System |
US20120043393A1 (en) * | 2010-08-17 | 2012-02-23 | Caterpillar, Inc. | Fuel Injector with Damper Volume and Method for Controlling Pressure Overshoot |
DK2423498T3 (en) * | 2010-08-26 | 2013-12-09 | Waertsilae Nsd Schweiz Ag | Passive flow control valve |
AT509877B1 (en) | 2010-11-02 | 2011-12-15 | Bosch Gmbh Robert | DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE |
FI123513B (en) | 2010-12-02 | 2013-06-14 | Waertsilae Finland Oy | Fuel supply unit, method for operating it and combustion engine |
FI20115126L (en) | 2011-02-09 | 2012-08-10 | Waertsilae Finland Oy | Fuel injection system |
DE102011005096A1 (en) * | 2011-03-04 | 2012-09-06 | Man Diesel & Turbo Se | internal combustion engine |
EP2745051A1 (en) * | 2011-08-19 | 2014-06-25 | Woodward, Inc. | Staged cooling flow nozzle valve |
AT512437B1 (en) * | 2012-01-26 | 2014-03-15 | Bosch Gmbh Robert | DEVICE FOR INJECTING FUEL IN THE COMBUSTION ENGINE OF AN INTERNAL COMBUSTION ENGINE |
KR101603029B1 (en) * | 2012-02-07 | 2016-03-11 | 간제르-히드로막 아게 | Fuel injection valve and device for injecting fuel |
DE102012204659A1 (en) * | 2012-03-22 | 2013-09-26 | Man Diesel & Turbo Se | Injector for a fuel supply system of an internal combustion engine and fuel supply system |
AT512162B1 (en) * | 2012-05-08 | 2013-06-15 | Bosch Gmbh Robert | Locking pin with flow limiter |
JP6441824B2 (en) | 2013-03-01 | 2018-12-19 | ガンサー−ハイドロマグ アーゲーGanser−Hydromag Ag | Device for injecting fuel into a combustion chamber of an internal combustion engine |
GB201320374D0 (en) * | 2013-07-05 | 2014-01-01 | Delphi Tech Holding Sarl | Distributed fuel injection equipment |
GB201317451D0 (en) * | 2013-10-02 | 2013-11-13 | Delphi Tech Holding Sarl | Fuel Injection Equipment |
EP3180510B1 (en) * | 2014-08-15 | 2018-10-17 | Wärtsilä Finland Oy | A fuel injection valve arrangement for internal combustion engine |
AT515933B1 (en) * | 2015-01-02 | 2016-01-15 | Ge Jenbacher Gmbh & Co Og | fuel injector |
CH712276B1 (en) | 2016-03-18 | 2020-03-13 | Ganser Hydromag | Accumulator injection system for internal combustion engines. |
DE102017220328A1 (en) * | 2017-11-15 | 2019-05-16 | Robert Bosch Gmbh | Vibration damping arrangement for injection systems of motor vehicles, in particular for fuel injection systems, and injection system with such a vibration damping arrangement |
EP3990770A1 (en) | 2019-06-25 | 2022-05-04 | Ganser-Hydromag AG | Fuel injection valve for combustion engines |
JP2023513634A (en) | 2020-02-17 | 2023-03-31 | ガンサー-ハイドロマグ アーゲー | Fuel injection valve for internal combustion engine |
EP4423384A1 (en) | 2021-10-29 | 2024-09-04 | Ganser CRS AG | Fuel injection valve for internal combustion engines |
WO2023166139A1 (en) | 2022-03-03 | 2023-09-07 | Ganser-Hydromag Ag | Fuel injection valve for internal combustion engines |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4142497A (en) * | 1975-11-06 | 1979-03-06 | Allied Chemical Corporation | Fuel pressure booster and regulator |
DE3119050A1 (en) | 1981-05-05 | 1982-11-18 | Gebrüder Sulzer AG, 8401 Winterthur | "FUEL INJECTION DEVICE WITH ELECTROMAGNETICALLY ACTUATED SWITCHING VALVE" |
AT378242B (en) | 1981-07-31 | 1985-07-10 | Berchtold Max Prof | FUEL INJECTION SYSTEM FOR INTERNAL COMBUSTION ENGINES, ESPECIALLY DIESEL ENGINES |
ATE91752T1 (en) | 1985-12-02 | 1993-08-15 | Marco Alfredo Ganser | CONTROL DEVICE FOR ELECTRO-HYDRAULICALLY ACTUATED FUEL INJECTION VALVES. |
CH668621A5 (en) * | 1986-01-22 | 1989-01-13 | Dereco Dieselmotoren Forschung | FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE. |
EP0262539B1 (en) | 1986-09-25 | 1991-01-09 | Ganser-Hydromag | Fuel injector unit |
US5035221A (en) * | 1989-01-11 | 1991-07-30 | Martin Tiby M | High pressure electronic common-rail fuel injection system for diesel engines |
FR2673246B1 (en) * | 1991-02-25 | 1994-01-28 | Melchior Jean | DEVICE FOR INJECTING LIQUID, PARTICULARLY FUEL, IN AT LEAST ONE PRESSURIZED CHAMBER OF A PERIODICALLY OPERATING MACHINE SUCH AS AN INTERNAL COMBUSTION ENGINE AND ENGINE OF THIS TYPE EQUIPPED WITH SUCH A DEVICE. |
DE4341543A1 (en) * | 1993-12-07 | 1995-06-08 | Bosch Gmbh Robert | Fuel injection device for internal combustion engines |
US5509391A (en) * | 1994-10-03 | 1996-04-23 | Caterpillar Inc. | Helmoltz isolation spool valve assembly adapted for a hydraulically-actuated fuel injection system |
US5732679A (en) * | 1995-04-27 | 1998-03-31 | Isuzu Motors Limited | Accumulator-type fuel injection system |
DE19706694C2 (en) | 1997-02-20 | 2001-10-11 | Daimler Chrysler Ag | Control of an injection system for a multi-cylinder internal combustion engine |
DE19712135C1 (en) * | 1997-03-22 | 1998-08-13 | Mtu Friedrichshafen Gmbh | Fuel injection system for internal combustion engine |
GB9725802D0 (en) * | 1997-12-06 | 1998-02-04 | Lucas Ind Plc | Fuel injection |
DE19842067A1 (en) * | 1998-09-15 | 2000-03-16 | Daimler Chrysler Ag | Fuel injection system for diesel internal combustion engine has accumulator associated directly with each injector to eliminate fuel pressure fluctuations |
DE69905685T2 (en) * | 1998-11-19 | 2003-10-02 | Mitsubishi Jidosha Kogyo K.K., Tokio/Tokyo | Fuel injection device of the battery type |
DE60000255T2 (en) * | 1999-09-22 | 2003-03-27 | Mitsubishi Jidosha Kogyo K.K., Tokio/Tokyo | Reservoir fuel injection device |
US6467457B1 (en) * | 1999-10-25 | 2002-10-22 | International Engine Intellectual Property Company, L.L.C. | Injector actuating fluid check and methods |
DE10112154A1 (en) * | 2001-03-14 | 2002-09-26 | Bosch Gmbh Robert | Fuel injection system |
DE10132732A1 (en) * | 2001-07-05 | 2003-01-23 | Bosch Gmbh Robert | Fuel injection system |
JP4013529B2 (en) * | 2001-11-16 | 2007-11-28 | 三菱ふそうトラック・バス株式会社 | Fuel injection device |
DE10157135B4 (en) * | 2001-11-21 | 2004-03-11 | Man B & W Diesel Ag | Fuel supply system in the form of a common rail system of an internal combustion engine with several cylinders |
DE10210282A1 (en) | 2002-03-08 | 2003-09-25 | Bosch Gmbh Robert | Device for injecting fuel into stationary internal combustion engines |
DE10238951A1 (en) * | 2002-08-24 | 2004-03-11 | Robert Bosch Gmbh | Fuel injection system |
DE10307871A1 (en) | 2003-02-25 | 2004-09-02 | Robert Bosch Gmbh | High pressure line for a fuel injection system |
WO2006108309A1 (en) | 2005-04-14 | 2006-10-19 | Ganser-Hydromag Ag | Fuel injection valve |
-
2006
- 2006-07-10 US US11/995,193 patent/US7603984B2/en active Active
- 2006-07-10 CN CN2006800262008A patent/CN101223352B/en active Active
- 2006-07-10 EP EP06752914A patent/EP1904741B1/en active Active
- 2006-07-10 BR BRPI0613413A patent/BRPI0613413B1/en active IP Right Grant
- 2006-07-10 JP JP2008521767A patent/JP5120655B2/en active Active
- 2006-07-10 WO PCT/CH2006/000364 patent/WO2007009279A1/en active Search and Examination
- 2006-07-10 AT AT06752914T patent/ATE488690T1/en active
- 2006-07-10 DE DE502006008343T patent/DE502006008343D1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210231087A1 (en) * | 2018-07-26 | 2021-07-29 | Liebherr-Components Deggendorf Gmbh | Connecting piece for a fuel injector of an internal combustion engine |
US11542902B2 (en) * | 2018-07-26 | 2023-01-03 | Liebherr-Components Deggendorf Gmbh | Connecting piece for a fuel injector of an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
EP1904741A1 (en) | 2008-04-02 |
JP5120655B2 (en) | 2013-01-16 |
ATE488690T1 (en) | 2010-12-15 |
US7603984B2 (en) | 2009-10-20 |
DE502006008343D1 (en) | 2010-12-30 |
WO2007009279A1 (en) | 2007-01-25 |
BRPI0613413A2 (en) | 2011-01-11 |
BRPI0613413B1 (en) | 2019-08-27 |
US20080296413A1 (en) | 2008-12-04 |
CN101223352A (en) | 2008-07-16 |
CN101223352B (en) | 2010-12-08 |
JP2009501863A (en) | 2009-01-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1904741B1 (en) | Accumulator injection system for an internal combustion engine | |
DE69619949T2 (en) | Reservoir fuel injection device | |
DE69618549T2 (en) | FUEL INJECTION CONTROL SYSTEM | |
DE4311627B4 (en) | Fuel injection device for internal combustion engines | |
EP1485609B1 (en) | Device for injecting fuel to stationary internal combustion engines | |
DE4313852B4 (en) | Fuel injection device for internal combustion engines | |
EP2516839B1 (en) | Fuel injector apparatus | |
WO2007085313A1 (en) | High-pressure accumulator body with integrated distributor block | |
DE10135352A1 (en) | Accumulator fuel injection device for internal combustion engines | |
EP3464870A1 (en) | High-pressure accumulator and method for producing a high-pressure accumulator | |
EP1342005B1 (en) | Fuel injection system for internal combustion engines | |
DE102013008537A1 (en) | DUAL FUEL COMMON RAIL ENGINE WITH COAXIAL SUPPLY ASSEMBLY | |
EP1251266B1 (en) | Pressure limiting device and fuel system with such a pressure limiting device | |
AT518510B1 (en) | Accumulator injection system for internal combustion engines | |
WO2009098112A1 (en) | Compact injection device with reduced tendency to form vapor bubbles | |
DE102006015745A1 (en) | Fuel injector especially for diesel engine has a solenoid operated valve with a bypass for enhanced switching speed | |
EP0704619B1 (en) | Fuel injection device for a multicylinder internal combustion engine | |
WO2016055293A1 (en) | Accumulator injection system for internal combustion engines | |
DE10217592A1 (en) | Injector for the injection of fuel | |
DE102007029969A1 (en) | Fast-acting fuel injector for high injection pressures | |
EP2836696B1 (en) | Injector of a modular common-rail fuel injection system with throughflow limiter | |
EP2156047B1 (en) | Fuel injector having low wear | |
EP2807367B1 (en) | Device for injecting fuel into the combustion chamber of an internal combustion engine | |
DE10317609B4 (en) | Fuel injection system | |
EP2655850B1 (en) | Fuel injection valve for internal combustion engines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071222 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAC | Information related to communication of intention to grant a patent modified |
Free format text: ORIGINAL CODE: EPIDOSCIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 502006008343 Country of ref document: DE Date of ref document: 20101230 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2355842 Country of ref document: ES Kind code of ref document: T3 Effective date: 20110331 |
|
LTIE | Lt: invalidation of european patent or patent extension |
Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110217 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110317 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110317 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110818 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502006008343 Country of ref document: DE Effective date: 20110818 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110731 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20120330 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110801 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110710 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006008343 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB PATENT-, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006008343 Country of ref document: DE Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006008343 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006008343 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502006008343 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502006008343 Country of ref document: DE Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 19 Ref country code: FI Payment date: 20240722 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20240722 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20240719 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240801 Year of fee payment: 19 Ref country code: ES Payment date: 20240828 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240722 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20240725 Year of fee payment: 19 |