EP1899260A1 - Procede de fabrication d'un composant micromecanique et composant micromecanique ainsi obtenu - Google Patents

Procede de fabrication d'un composant micromecanique et composant micromecanique ainsi obtenu

Info

Publication number
EP1899260A1
EP1899260A1 EP06754905A EP06754905A EP1899260A1 EP 1899260 A1 EP1899260 A1 EP 1899260A1 EP 06754905 A EP06754905 A EP 06754905A EP 06754905 A EP06754905 A EP 06754905A EP 1899260 A1 EP1899260 A1 EP 1899260A1
Authority
EP
European Patent Office
Prior art keywords
layer
substrate
doping
angle
micromechanical component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06754905A
Other languages
German (de)
English (en)
Inventor
Hans Artmann
Arnim Hoechst
Andrea Urban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1899260A1 publication Critical patent/EP1899260A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00436Shaping materials, i.e. techniques for structuring the substrate or the layers on the substrate
    • B81C1/00555Achieving a desired geometry, i.e. controlling etch rates, anisotropy or selectivity
    • B81C1/00595Control etch selectivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2203/00Basic microelectromechanical structures
    • B81B2203/03Static structures
    • B81B2203/0315Cavities
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces

Definitions

  • the invention describes a method for producing a micromechanical component which has a cavity in a substrate and a micromechanical component produced by this method.
  • the present invention describes a micromechanical method for producing a cavity in a substrate or a micromechanical component produced by this method.
  • a first layer is applied or deposited on a substrate in a first step. This can be done by one Deposition process done with in-situ doping. Alternatively, the layer may be created by implantation or doping of the substrate directly in the substrate surface. The doping can take place or be limited over the entire membrane region, so that the regions in which the etching front is to be found after the etching process have a doping which deviates from the substrate. In general, the doping in the first layer can be homogeneous or gradual. Subsequently, at least one second layer is applied to the first layer. An access hole is created in this second layer.
  • material of the first layer and of the substrate can be dissolved out, so that a cavity is produced below at least part of the second layer in the substrate.
  • This second layer above the cavern can be used below as a membrane.
  • the essence of the invention consists in the fact that the material of the first layer is chosen such that the dissolution of the material of the first layer creates a transitional edge in the first layer which has a predeterminable angle between the substrate and the second layer.
  • the advantage of a predeterminable angle of the transition edge is that a non-perpendicular angle between the substrate material and the second layer or membrane can be produced. Due to the non-perpendicular angle, the Schichtschreibseinkopplung can be changed and minimized in the membrane.
  • the angle of the transition edge is predetermined by the doping of the material of the first layer.
  • the material of the first layer has a higher or lower doping level and / or a different doping type and / or a gradient compared to the material of the substrate.
  • the material is dissolved out by a gas phase etching.
  • a gas phase etching with ClF 3 or other halogen compounds such as XeF 2 , BrF 3 is provided.
  • a development of the invention generally uses an isotropic etching process for dissolving out the material.
  • a semiconductor material in particular silicon, is provided as material for the substrate and for the first layer.
  • a membrane layer can be understood.
  • one or more functional layers are applied to the first layer. Typical functional layers are, for example
  • Conductor tracks, layers with piezoresistive resistors, evaluation circuits and / or other electrical and / or mechanical layers which are customary in microsystem technology.
  • an insulating layer is applied to the first layer.
  • a plurality of said layers are deposited successively on the substrate or the first layer.
  • FIG. 1 to 3 show schematically the erfmdungswashe manufacturing method.
  • FIG. 4 shows an alternative generation of two layers which react differently to an etching process.
  • a silicon wafer 100 is used as the substrate for producing a micromechanical component.
  • a silicon layer 110 is epitaxially grown epi with a conventional micromechanical process, see FIG. 1.
  • the material in the first layer 110 is covered by a silicon layer 110 - A -
  • Substrate 100 to provide different doping can be provided, for example, that the material of the first layer 110 can be provided with a higher doping, but also with a lower doping depending on the etching process used.
  • a typical thickness of the first layer 110 is provided at 1 .mu.m to 10 .mu.m, although other layer thicknesses may well be used.
  • a second layer 120 is applied to the first layer 110.
  • This second layer 120 is then patterned so that at least access through the second layer 120 to the first layer 110 is possible through an access hole 130.
  • the membrane layer can be produced above the cavern 140 still to be produced.
  • the second layer 120 is generally intended to stand for various layers that are mounted above the cavern 140.
  • functional layers are conceivable, such as, for example, membrane layers, interconnects, evaluation circuits, piezoresistive resistors or other electrical and / or mechanical usable layers that can be produced using micromechanical production methods.
  • an insulating layer to be applied first to the first layer 110, on which all further layers and functions necessary for the micromechanical component are deposited in the further manufacturing process.
  • the access holes 130 are used both for dissolving out the material from the first layer 110 and the material of the substrate 100.
  • a plurality of access holes 130 are arranged side by side.
  • the distance between the access holes 130 to each other can be matched to the etching medium (gaseous or liquid), which is used to dissolve out the material.
  • the material is removed from the substrate 100 and the first layer 110 through the access openings 130 by means of a gas-phase etching process.
  • a gas phase etching process ClF 3 has proven itself. In general, however, any etching gases are suitable that used
  • etch edge 150 is formed.
  • this angle 160 of the etching flank or the transition flank 150 can be predetermined.
  • an area 112 in the substrate 100 is initially produced by means of an implantation or a doping process.
  • This region 112 can be present in the substrate 100 more or less extensively.
  • the area 112, however, is characterized in that it forms part of the upper border of the later cavern 140 and has the transition edge 150 after the etching process.
  • the region 112 encloses the entire edge of the cavern 140, wherein it may also be provided that the region 112 consists of individual, non-interconnected partial regions.
  • the region 112 includes the subsequently created access holes through which the material of the substrate 100 is released.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Pressure Sensors (AREA)
  • Micromachines (AREA)

Abstract

Procédé micromécanique de fabrication d'une cavité dans un substrat, et en particulier composant micromécanique fabriqué selon ledit procédé. Ledit procédé consiste à produire lors d'une première étape une première couche sur un substrat ou dans ce dernier. Ensuite, au moins une deuxième couche est appliquée sur la première couche. Un trou d'accès est produit dans cette deuxième couche. De la matière provenant de la première couche et du substrat peut être extraite par ce trou d'accès, si bien qu'il en résulte une cavité ménagée dans le substrat sous au moins une partie de la deuxième couche. Cette deuxième couche située au-dessus de la cavité peut ensuite être utilisée en tant que membrane. Mais il est en outre possible de déposer d'autres couches sur la deuxième couche, ces couches formant alors la membrane uniquement en tant qu'un tout. Selon l'aspect principal de la présente invention, la matière de la première couche est choisie de manière telle qu'une arête de transition est produite dans la première couche par l'extraction de matière de ladite première couche, cette arête de transition présentant un angle pouvant être prédéterminé entre le substrat et la deuxième couche.
EP06754905A 2005-06-27 2006-04-27 Procede de fabrication d'un composant micromecanique et composant micromecanique ainsi obtenu Withdrawn EP1899260A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029803A DE102005029803A1 (de) 2005-06-27 2005-06-27 Verfahren zur Herstellung eines mikromechanischen Bauelements sowie mikromechanisches Bauelement
PCT/EP2006/061898 WO2007000363A1 (fr) 2005-06-27 2006-04-27 Procede de fabrication d'un composant micromecanique et composant micromecanique ainsi obtenu

Publications (1)

Publication Number Publication Date
EP1899260A1 true EP1899260A1 (fr) 2008-03-19

Family

ID=36615654

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754905A Withdrawn EP1899260A1 (fr) 2005-06-27 2006-04-27 Procede de fabrication d'un composant micromecanique et composant micromecanique ainsi obtenu

Country Status (5)

Country Link
US (1) US8481427B2 (fr)
EP (1) EP1899260A1 (fr)
JP (1) JP2008543597A (fr)
DE (1) DE102005029803A1 (fr)
WO (1) WO2007000363A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7450295B2 (en) 2006-03-02 2008-11-11 Qualcomm Mems Technologies, Inc. Methods for producing MEMS with protective coatings using multi-component sacrificial layers
US8536059B2 (en) 2007-02-20 2013-09-17 Qualcomm Mems Technologies, Inc. Equipment and methods for etching of MEMS
JP2011501874A (ja) 2007-09-14 2011-01-13 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド Mems製造において使用されるエッチングプロセス
JP5259720B2 (ja) * 2007-09-28 2013-08-07 クォルコム・メムズ・テクノロジーズ・インコーポレーテッド 多構成要素犠牲構造体
NL1034489C2 (nl) 2007-10-09 2009-04-14 Micronit Microfluidics Bv Werkwijzen voor het vervaardigen van een microstructuur.
DE102012206531B4 (de) * 2012-04-17 2015-09-10 Infineon Technologies Ag Verfahren zur Erzeugung einer Kavität innerhalb eines Halbleitersubstrats

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4000496A1 (de) * 1989-08-17 1991-02-21 Bosch Gmbh Robert Verfahren zur strukturierung eines halbleiterkoerpers
US5237867A (en) 1990-06-29 1993-08-24 Siemens Automotive L.P. Thin-film air flow sensor using temperature-biasing resistive element
DE4206677C1 (fr) * 1992-02-28 1993-09-02 Siemens Ag, 80333 Muenchen, De
US5583296A (en) 1993-01-19 1996-12-10 Fraunhofer-Gesellschaft Zur Forderung Der Angewandten Forschung E. V. Layered diaphragm pressure sensor with connecting channel
JPH06302834A (ja) 1993-04-09 1994-10-28 Fujikura Ltd 薄膜構造の製造方法
JP3811964B2 (ja) 1995-02-16 2006-08-23 三菱電機株式会社 赤外線検出装置とその製造方法
US5573679A (en) * 1995-06-19 1996-11-12 Alberta Microelectronic Centre Fabrication of a surface micromachined capacitive microphone using a dry-etch process
US6420266B1 (en) * 1999-11-02 2002-07-16 Alien Technology Corporation Methods for creating elements of predetermined shape and apparatuses using these elements
US6787052B1 (en) * 2000-06-19 2004-09-07 Vladimir Vaganov Method for fabricating microstructures with deep anisotropic etching of thick silicon wafers
DE10152254A1 (de) * 2001-10-20 2003-04-30 Bosch Gmbh Robert Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
JP4206849B2 (ja) 2003-07-14 2009-01-14 日立電線株式会社 マイクロポンプ及びその製造方法
US20050133479A1 (en) * 2003-12-19 2005-06-23 Youngner Dan W. Equipment and process for creating a custom sloped etch in a substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YOUNG H. LEE ET AL: "Silicon Etching Mechanisms - Doping Effect", MRS PROCEEDINGS, vol. 38, 1 January 1984 (1984-01-01), XP055255387, DOI: 10.1557/PROC-38-163 *

Also Published As

Publication number Publication date
US20100260974A1 (en) 2010-10-14
JP2008543597A (ja) 2008-12-04
DE102005029803A1 (de) 2007-01-04
US8481427B2 (en) 2013-07-09
WO2007000363A1 (fr) 2007-01-04

Similar Documents

Publication Publication Date Title
EP1874678B1 (fr) Capteur mems comprenant une électrode arrière sans déformation
DE102010039293B4 (de) Mikromechanisches Bauteil und Herstellungsverfahren für ein mikromechanisches Bauteil
DE102005032635A1 (de) Mikromechanische Vorrichtung mit zwei Sensorstrukturen, Verfahren zur Herstellung einer mikromechanischen Vorrichtung
EP1899260A1 (fr) Procede de fabrication d'un composant micromecanique et composant micromecanique ainsi obtenu
EP1963227A1 (fr) Composant micromecanique et procede de fabrication dudit composant
DE10219398B4 (de) Herstellungsverfahren für eine Grabenanordnung mit Gräben unterschiedlicher Tiefe in einem Halbleitersubstrat
EP1373129A2 (fr) Procede de production de detecteurs micromecaniques, et detecteurs ainsi obtenus
DE102019210285B4 (de) Erzeugen eines vergrabenen Hohlraums in einem Halbleitersubstrat
CH681921A5 (fr)
DE4418163B4 (de) Verfahren zur Herstellung von mikromechanischen Strukturen
DE102013209266A1 (de) Bauelement mit einem Hohlraum
DE102010029709A1 (de) Mikromechanisches Bauelement
WO2018069028A1 (fr) Capteur micro-mécanique à structure de découplage de contraintes
DE102004010295A1 (de) Mikromechanisches Bauelement und entsprechendes Herstellungsverfahren
DE102013001674A1 (de) Vertikale druckempfindliche Struktur
DE102013222664A1 (de) Mikromechanische Struktur und Verfahren zur Herstellung einer mikromechanischen Struktur
EP1360143B1 (fr) Procede de realisation de structures superficielles micromecaniques, et capteur
EP1590644B1 (fr) Capteur micromecanique et son procede de production
EP2150488B1 (fr) Procédé de fabrication d'un composant micromécanique comportant une couche de charge et une couche de masque
WO2006063885A1 (fr) Procede pour former une tranchee dans une microstructure
DE102019202794B3 (de) Mikromechanische Sensorvorrichtung und entsprechendes Herstellungsverfahren
DE102016217123B4 (de) Verfahren zum Herstellen eines mikromechanischen Bauteils und mikromechanisches Bauteil
EP2714582B1 (fr) Procédé de fabrication d'un transistor mos
DE102009026639A1 (de) Elektromechanische Mikrostruktur
DE102010039180B4 (de) Verfahren zum Herstellen von Halbleiterchips und entsprechender Halbleiterchip

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HOECHST, ARNIM

Inventor name: ARTMANN, HANS

Inventor name: URBAN, ANDREA

RBV Designated contracting states (corrected)

Designated state(s): DE IT

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20160425

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160906