EP1893867B1 - Hochdruckspeicherraumkörper mit hochdruckdrosseln - Google Patents

Hochdruckspeicherraumkörper mit hochdruckdrosseln Download PDF

Info

Publication number
EP1893867B1
EP1893867B1 EP06754873A EP06754873A EP1893867B1 EP 1893867 B1 EP1893867 B1 EP 1893867B1 EP 06754873 A EP06754873 A EP 06754873A EP 06754873 A EP06754873 A EP 06754873A EP 1893867 B1 EP1893867 B1 EP 1893867B1
Authority
EP
European Patent Office
Prior art keywords
pressure
pressure accumulator
throttle
accumulator chamber
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06754873A
Other languages
English (en)
French (fr)
Other versions
EP1893867A1 (de
Inventor
Markus Degn
Horst Rosenkranz
Peter Thurner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1893867A1 publication Critical patent/EP1893867A1/de
Application granted granted Critical
Publication of EP1893867B1 publication Critical patent/EP1893867B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/166Selection of particular materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/02Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
    • F02M55/025Common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/28Details of throttles in fuel-injection apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the invention relates to a high-pressure storage space body with high-pressure throttles, in particular a high-pressure storage space body as used in high-pressure accumulator injection systems (common rail) in self-igniting internal combustion engines, according to the claims 1 and 5.
  • Out DE 10103 195 A1 is a fuel injector with a high-pressure accumulator known.
  • the high-pressure accumulator has a plurality of connecting holes, which serve the fuel discharge.
  • High-pressure supply lines leading to fuel injectors are connected to the connection bores.
  • the connection bores of these high pressure supply lines is assigned at least one throttle element, which has a single-stage throttle channel.
  • the throttle element is pressed as a Einpressdrosselelement in a wall of the high-pressure accumulator space, wherein the throttle element is held non-positively on at least one contact point.
  • a fuel injection device comprises a high-pressure fuel accumulator and a plurality of the fuel discharge from the high-pressure fuel storage branch pipes serving. These each have at one end a connection head for connecting the branch pipe with an associated connection piece of the high-pressure fuel storage, wherein in each of the branch pipes, a throttle is mounted.
  • the throttle is formed in a carrier element, which is fixed in the region of the connection head by fixing elements which are formed with the formation of the connection head and which constrict a clear width of the branch pipe on both sides of the carrier element.
  • the throttle is in the support member as a through hole with a first partial bore and a second partial bore, that is executed in two stages. The through hole is during the upsetting of the Terminal head secured by an inserted, stepped cylindrical êtorn, which is formed traceable.
  • the carrier element preferably has a cylindrical lateral surface.
  • a fuel injection device with a high-pressure fuel storage is known, to which branch pipes are screwed.
  • the branch pipes each include a throttle for reducing pressure pulsations in the fuel injector.
  • the throttles are each formed as a pipe piece, which is arranged at one end of the branch pipe, to which a connection head is attached, or inside the branch pipe near this end.
  • the high-pressure throttles serve to reduce pressure pulsations in the high-pressure reservoir chamber body and in the fuel injector.
  • a reduction in the pressure peaks of the pressure pulsations has a positive effect on the strength of the high-pressure reservoir chamber body as well as on the other hand has a positive effect on the high-pressure resistance of the fuel injector.
  • the solution proposed by the invention is based on the object of introducing a high-pressure throttle element into the wall of the high-pressure reservoir chamber body either through a radially extending connection bore or through the pressure chamber of the high-pressure reservoir.
  • the Einpressdrosselelement is proposed, which is produced either by way of deep drawing or extrusion molding.
  • the Einpressdrossel stresses which may have a one- or two-stage through-hole, are pressed by a pressing operation either in the provided in the wall of the high pressure accumulator space (common rail) connection holes for the high pressure line connections (high pressure fittings). It creates a positive connection, z. B. an interference fit that requires no further manufacturing technology aftertreatment and is particularly high pressure tight.
  • the press-fit throttle body is a thin-walled component having a throttle-opening at the bottom.
  • the deep-drawn component can also be pressed by means of a press-fit operation in the connection holes for the high pressure supply lines to the individual fuel injectors, whereby a non-positive connection, given by a press fit, is achieved.
  • EinpressdrosselSystem As an alternative to pressing the Einpressdrossel Congress in the radially extending connecting holes in the wall of the high-pressure reservoir (common rail) EinpressdrosselSystem made of plastic or spring steel by injection molding, stamping, bending or manufactured by means of Zerspantechnik from a round material and in the Cavity of the high pressure storage space body (common rail) are introduced.
  • the press-fit throttle body is made of resilient steel or plastic.
  • the press-fit throttle body can be introduced via the radially extending connection bore into the wall of the high-pressure reservoir chamber body (common rail).
  • the shape of the Einpressdrossel emotionss made of resilient steel or plastic corresponds approximately to a double cone, the narrowest Einschnürstelle forms the throttle cross-section.
  • the Einpressdrossel emotions of resilient steel or plastic material is supported both on the side of the connection hole, which opens into the high-pressure storage space, as well as from a z.
  • FIG. 1 The representation according to FIG. 1 is an example of a Einpresshrrosseliatas remove, which is not part of the invention.
  • FIG. 1 includes a high-pressure accumulator 10 made of metallic material, be it a laser-welded high-pressure reservoir 10 (LWR rail) or a forged high-pressure reservoir 10 (WFR, Warm Forged Rail), a wall 12 whose thickness is designed according to the system pressure.
  • a connecting piece 16 is attached to a contact surface 38, which preferably has a material fit with the lateral surface 14 in the area of the contact surface 38, such as, for example, FIG. B. is welded by means of the connecting piece 16, a high-pressure line 18 is fixed by means of a union nut 20 at the high pressure storage space 10.
  • the connecting piece 16 has an external thread 24 which cooperates with the internal thread of the union nut 20.
  • the high-pressure line 18 comprises a cross-section, which is identified by the reference numeral 22.
  • the high pressure line 18, with a in FIG. 1 not shown fuel injector is pressurized with fuel under system pressure or a high-pressure pump is connected to the high-pressure accumulator 10 is employed with its conical end 26 serving as a sealing cone 36 in the wall 12 of the high-pressure accumulator 10.
  • a Anstellbund 40 is provided above the conical end 26 of the high-pressure feed line 18. On the Anstellbund 40, an inner ring 42 of the union nut 20 is supported.
  • the conically shaped end 26 of the high-pressure feed line 18 is pressed into the formation 36 in the wall 12 of the high pressure accumulator 10 so that there is a pressure-tight connection between the conical end 26 of the high pressure line 18 and the wall 12 of the high-pressure accumulator 10.
  • connecting bores 30 are executed according to the number of under high pressure fuel to be supplied fuel injectors or connected high-pressure pump.
  • connection bores 30 are throttle body 28, which according to the in FIG. 1
  • high pressure supply line 18 of the throttle body 28 is pressed from round material into the connection bore 30.
  • the lateral surface 32 of the throttle body 28 thus forms a non-positive connection between the throttle body 28 and the wall 12 of the high pressure accumulator 10th
  • the throttle body 28 includes a through hole, which serves as a throttle passage 34.
  • FIG. 1.1 The representation according to Figure 1.1 is the manufacturable from round material, plastic or spring plate throttle body as shown in FIG FIG. 1 to be seen in an enlarged view.
  • the throttle body 28 made of round material has a through-bore which has a first diameter 44 and a second diameter 46.
  • the first diameter 44 lies on the side of the first end face 48 of the throttle body 28, whereas the second diameter 46 of the throttle channel 34 opens in a second end face 50 of the throttle body 28.
  • the respective diameters 44 and 46, in which the throttle channel 34 may be designed, may also be in other proportions than in Figure 1.1 shown extend within the throttle body 28.
  • the in Figure 1.1 illustrated throttle body 28 with two diameters 44 for the throttle passage 34 thus represents a stepped throttle, wherein the second diameter 46 of the throttle passage 34 opens into the flow cross section 22 of the high pressure line 18 connected above the throttle body 28.
  • the representation according to FIG. 2 is an embodiment of the present invention proposed Einpressdrossel refer.
  • the deep-drawn throttle body 52 as shown in FIG. 2 is pressed into the connection bore 30 and abuts with an upper support surface 56 in the region of the formation 36 in the wall 12 of the high pressure storage space 10.
  • the lateral surface extending below the support surface 56 bears against the inner wall of the connection bore 30.
  • the high pressure supply line (not shown) is connected according to this embodiment by means of a union nut 20 on the connector 16 (high pressure fitting).
  • Figure 2.1 shows the formed as a deep-drawn throttle body as shown in FIG FIG. 2 on an enlarged scale.
  • the deep-drawn throttle body 52 has a substantially cup-shaped appearance and is designed in a suitable for thermoforming, small wall thickness 54.
  • the throttle channel 34 In the bottom of the substantially cup-shaped, deep-drawn throttle body 52 is the throttle channel 34, which is designed according to this embodiment as a simple through hole.
  • the throttle channel 34 opposite side of the deep-drawn throttle body 52 is provided with a diameter extension.
  • the throttle channel 34 is in the mounted in the connection bore 30 state of the deep-drawn throttle body 52 still within the connection bore 30 and can, as shown in the embodiment of Figure 4, protrude into the cavity of the high-pressure accumulator 10, which is bounded by the wall 12.
  • FIG. 3 shows a further embodiment of the present invention proposed Einpressdrossel.
  • FIG. 3 In the illustration according to FIG. 3 is a cylinder-shaped throttle body 58 from an open end of the high-pressure accumulator chamber 10 in the cavity 68 axially inserted.
  • Reference numeral 76 denotes a dome-shaped elevation on the lateral surface of the cylinder-shaped throttle body 58, which snaps into the connecting bore 30 in the wall 12 of the high-pressure reservoir 10 in the mounted state of the cylindrical throttle body 58 and thus the axial position of the cylindrical throttle body 58 in the cavity 68 of the high pressure accumulator 10 defined.
  • In the assembled state is below each of the wall 12 of the high-pressure accumulator 10 traversing port bore 30 is a cylindrically shaped throttle body 58.
  • a throttle opening 72 is executed, via which the fuel for damping of pressure pulsations Cavity 68 into the connection bore 30 and from there into the on the lateral surface 14 of the high-pressure accumulator 10 connected high-pressure line 18 einschmannt.
  • the representation according to Figure 3.1 is an enlarged view of the cylinder-shaped throttle body according to FIG. 3 refer to.
  • the cylinder-shaped throttle body 58 has a lateral surface 64, which is provided in the axial direction with a longitudinal slot 60.
  • the longitudinal slots 60 in the lateral surface 64 of the cylindrical throttle body 58 delimiting ends are provided with fillets 62. Due to the longitudinal slot 60 in the circumferential surface 64 of the cylinder-shaped throttle body 58 of this is resilient and can be seen in the insertion direction 66 in the cavity 68 of the high-pressure accumulator chamber 10 as shown in FIG FIG. 3 mount in the axial direction.
  • the cylinder-shaped throttle body 58 is fixed in the axial direction in the cavity 68 of the high-pressure reservoir 10.
  • a corresponding number of cylinder-shaped throttle bodies 58 are introduced in the insertion direction 66 from an open end of a preferably laser-welded high-pressure reservoir 10.
  • the cylindrical throttle body 58 can be in the axial direction of insertion Insert 66 of an open end of the high-pressure accumulator 10 in this and then rotate in their corresponding radial position below the individual connection holes 30 so that the dome-shaped elevation 76 in the circumferential surface 64 of the cylinder-shaped throttle body 58 engages in the connection bore 30 and the cylinder-shaped throttle body 58th thus locked within the cavity 68 of the high-pressure storage space 10.
  • the representation according to FIG. 4 is to be taken as a Hyperboloid created Einpressdrossel Stress 80. From the illustration according to FIG. 4 It is apparent that the connecting piece 16 according to this embodiment is also joined cohesively to the lateral surface 14 of the wall 12 of the high-pressure storage space 10. The cohesive joining takes place z. B. by way of laser welding, whereby a high degree of automation in mass production can be achieved.
  • a funnel-shaped configuration 36 which serves as a sealing cone.
  • the serving as a sealing cone formation 36 in the wall 12 of the high-pressure accumulator 10 is in a made with a continuous diameter connection bore 30 on.
  • a trained as hyperboloid throttle body 80 is clamped. Trained as a hyperboloid throttle body 80 is supported on the one hand at a first contact point 84 within the formation 36 of the wall 12 of the high-pressure accumulator 10 and on the other hand frictionally held at a second contact point 86 at the discharge point of the connection bore 30 into the cavity 68 of the high-pressure accumulator. From the illustration according to FIG.
  • the throttle body 80 designed as a hyperboloid projects around a projection 90 into the cavity 68 of the high-pressure reservoir 10. Due to the projection 90 of the throttle body 80, the spring force, ie the holding force, generated at a second contact point 86 of the throttle body 80 in the connection bore 30.
  • the representation according to Figure 4.1 is formed as a hyperboloid throttle body as shown in FIG. 4 to be taken on an enlarged scale.
  • the throttle body 80 which is in the form of a hyperboloid, has a substantially double conical shape.
  • the throttle body 80 designed as a hyperboloid comprises a constriction site 82 which limits the flow cross section of the throttle passage 34 (see reference numeral 96 throttle cross section).
  • the throttle body 80 designed as a hyperboloid comprises a first opening 92, which is opposite the high-pressure line 18, and a second opening 94, which enters the cavity 68 of the high-pressure reservoir 10 as shown in FIG FIG. 4 empties.
  • the outer circumferential surface in the region of the first opening 92 forms the bearing surface 56, with which formed as a hyperboloid throttle body 80 is supported on the formation 36 in the wall 12 of the high-pressure accumulator space 10.
  • the portion of the hyperboloid-shaped throttle body 80 below the constriction site 82 has a plurality of axial slots 88, of which, according to FIG Figure 4.1 for illustrative reasons, only one is shown. Further axial slots 88 are in the plane of the drawing.
  • a high elasticity arises in the lower region of the throttle body 80 in the form of a hyperboloid so that the hyperboloidal throttle body 80 can simply be pushed into the connecting bore 30 in the radial direction and at the first contact point 84 and at the second contact point 86 (see illustration according to FIG. 4 ) enters into a frictional connection with the molding 36 and the inner wall of the connection bore 30.
  • the in Figure 4.1 illustrated, designed as hyperboloid throttle body 80 is preferably made of a thin-walled metallic material.
  • the throttle body 80 designed as a hyperboloid may also be made of plastic. In this case, however, it must be ensured that the plastic material is chosen such that it withstands the pressure prevailing in the cavity 68 of the high-pressure storage space 10.
  • the reduction of the pressure pulsations in the high-pressure reservoir 10 via the inventively proposed, designed as Einpressdrosseln throttle body 52, 58 and 80 is dependent on the selected flow cross-section of the throttle channel 34, be this as a hole in the bottom of the throttle element produced as a thermoforming element 52, this as a throttle opening 72 executed in the circumferential surface 64 of a cylinder-shaped throttle body 58 or as a constriction 82 in a hyperboloid designed as a throttle body 80, as in the FIGS. 4 or 4.1 shown in detail.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die Erfindung bezieht sich auf einen Hochdruckspeicherraumkörper mit Hochdruckdrosseln, insbesondere einen Hochdruckspeicherraumkörper wie er bei Hochdruckspeichereinspritzsystemen (Common Rail) in selbstzündenden Verbrennungskraftmaschinen eingesetzt wird, gemäß der Patentansprüche 1 und 5.
  • Stand der Technik
  • Aus DE 10103 195 A1 ist eine Kraftstoffeinspritzeinrichtung mit einem Hochdruckspeicherraum bekannt. Der Hochdruckspeicherraum weist mehrere Anschlußbohrungen auf, die der Kraftstoffabfuhr dienen. An den Anschlußbohrungen sind Hochdruckzuleitungen angeschlossen, die zu Kraftstoffinjektoren führen. Den Anschlußbohrungen dieser Hochdruckzuleitungen ist mindestens ein Drosselelement zugeordnet, das einen einstufig ausgeführten Drosselkanal aufweist. Das Drosselelement ist als ein Einpressdrosselelement in eine Wand des Hochdruckspeicherraums eingepresst, wobei das Drosselelement an mindestens einer Kontaktstelle kraftschlüssig gehalten ist.
  • DE 20 2004 019 820.7 bezieht sich auf eine Kraftstoffeinspritzeinrichtung für einen Dieselmotor. Eine Kraftstoffeinspritzeinrichtung umfasst einen Kraftstoffhochdruckspeicher und mehrere der Kraftstoffabfuhr aus dem Kraftstoffhochdruckspeicher dienende Abzweigrohre. Diese weisen jeweils an ihrem einen Ende einen Anschlusskopf zur Verbindung des Abzweigrohres mit einem zugeordneten Anschlussstutzen des Kraftstoffhochdruckspeichers auf, wobei in jedem der Abzweigrohre eine Drossel angebracht ist. Die Drossel ist in einem Trägerelement ausgebildet, welches durch Fixierelemente, die mit der Ausbildung des Anschlusskopfes herausgebildet werden und die eine lichte Weite des Abzweigrohres beiderseits des Trägerelementes einengen, im Bereich des Anschlusskopfes fixiert. Die Drossel ist in dem Trägerelement als eine Durchgangsbohrung mit einer ersten Teilbohrung und einer zweiten Teilbohrung, d. h. zweistufig ausgeführt. Die Durchgangsbohrung ist während des Anstauchens des Anschlusskopfes durch einen eingefügten, gestuft zylindrischen lnnendorn, der rückführbar ausgebildet ist, gesichert. Das Trägerelement weist bevorzugt eine zylindrische Mantelfläche auf.
  • Aus DE 100 60 785 A1 ist eine Kraftstoffeinspritzeinrichtung mit einem Kraftstoffhochdruckspeicher bekannt, an welchen Abzweigrohre anschraubbar sind. Die Abzweigrohre enthalten jeweils eine Drossel zum Abbau von Druckpulsationen in der Kraftstoffeinspritzeinrichtung. Die Drosseln sind jeweils als ein Rohrstück ausgebildet, welches an einem Ende des Abzweigrohres, an dem ein Anschlusskopf angebracht ist, oder im Inneren des Abzweigrohres nahe diesem Ende angeordnet.
  • Die Hochdruckdrosseln dienen zur Reduktion von Druckpulsationen im Hochdruckspeicherraumkörper sowie im Kraftstoffinjektor. Eine Reduktion der Druckspitzen der Druckpulsationen wirkt sich einerseits positiv auf die Festigkeit des Hochdruckspeicherraumkörpers als auch andererseits positiv auf die Hochdruckfestigkeit des Kraftstoffinjektors aus.
  • Bei der Lösung gemäß DE 20 2004 019 820.7 besteht die Gefahr, dass bei symmetrischen Hochdruckleitungen eine Gefahr der Verwechslung beim Anschluss an den Hochdruckspeicherraum während der Montage besteht. Darüber hinaus steht bei dieser Lösung aufgrund des Durchmessers der Hochdruckleitungen eventuell nur eine eingeschränkte Auswahl bei den Lieferanten der Hochdruckleitungen zur Verfügung. Ein weiterer Nachteil dieser Lösung ist darin zu erblicken, dass während der Montage eine unzulässige Querschnittsveränderung des Funktionsdurchmessers der Drossel auftreten kann. Würde man der Lösung gemäß DE 20 2004 019 820.7 folgen, so wäre die Dämpfungsfunktion, welche wichtig für Systemverhalten und Systemverschleiß ist, und damit eine funktionsrelevante Funktion des Hochdruckspeichereinspritzsystems in die Verantwortung des Leitungsherstellers gelegt. Das damit einhergehende Risiko ist für den Hersteller von Hochdruckspeichereinspritzsystemen jedoch nicht hinnehmbar.
  • Darstellung der Erfindung
  • Der erfindungsgemäß vorgeschlagenen Lösung liegt die Aufgabe zugrunde, ein Hochdruckdrosselelement in die Wand des Hochdruckspeicherraumkörpers entweder durch eine radial verlaufende Anschlussbohrung oder durch den Druckraum des Hochdruckspeicherraumes in diesen einzubringen.
  • Der erfindungsgemäß vorgeschlagenen Lösung folgend wird ein Einpressdrosselelement vorgeschlagen, welches entweder im Wege des Tiefziehverfahrens oder des Fließpressens hergestellt wird. Die Einpressdrosselkörper, welche eine ein- oder zweistufig ausgebildete Durchgangsöffnung aufweisen können, werden durch einen Pressvorgang entweder in die in der Wand des Hochdruckspeicherraums (Common Rail) vorgesehenen Anschlussbohrungen für die Hochdruckleitungsanschlüsse (Hochdruckfittings) eingepresst. Es entsteht eine kraftschlüssige Verbindung, z. B. eine Presspassung, die keiner weiteren fertigungstechnischen Nachbehandlung bedarf und insbesondere hochdruckdicht ist. In einem Ausführungsbeispiel ist der Einpressdrosselkörper ein dünnwandiges Bauteil mit einer die Drosselwirkung ermöglichenden Öffnung am Boden. Das tiefgezogene Bauteil lässt sich ebenfalls mittels eines Einpressvorgangs in die Anschlussbohrungen für die Hochdruckzuleitungen zu den einzelnen Kraftstoffinjektoren einpressen, wodurch eine kraftschlüssige Verbindung, gegeben durch eine Presspassung, erreicht wird.
  • Alternativ zum Einpressen der Einpressdrosselkörper in die radial verlaufenden Anschlussbohrungen in der Wand des Hochdruckspeicherraums (Common Rail) kann ein Einpressdrosselkörper aus Kunststoff oder Federblech durch Spritzgießen, Stanzen, Biegen hergestellt oder im Wege der Zerspantechnik aus einem Rundmaterial gefertigt werden und in den Hohlraum des Hochdruckspeicherraumkörpers (Common Rail) eingebracht werden. In diesem Falle wird entsprechend der Anzahl der Anschlussbohrungen in der Wand des Hochdruckspeicherraumkörpers (Common Rail) eine entsprechende Anzahl von Einpressdrosselkörpern in den Hohlraum des Hochdruckspeicherraumkörpers von einer offenen Seite her eingepresst, bis die einzelnen Einpressdrosselkörper, die eine Drosselöffnung enthalten, so positioniert sind, dass die Drosselöffnung in den Einpressdrosselkörpern den radial verlaufenden Anschlussbohrungen für die Hochdruckzuleitungen zu den Kraftstoffinjektoren gegenüberliegen. Nach Einbringen sämtlicher Einpressdrosselkörper, die ebenfalls mittels einer Presspassung, d. h. auf kraftschlüssigem Wege, im Hohlraum des Hochdruckspeicherraumkörpers fixiert sind, wird das offene Ende des Hochdruckspeicherraumkörpers (Common Rail) mit einem Deckelelement verschlossen.
  • Ein weiteres Ausführungsbeispiel der erfindungsgemäß vorgeschlagenen Lösung ist darin zu erblicken, dass der Einpressdrosselkörper aus federndem Stahl oder Kunststoff hergestellt wird. In diesem Falle kann der Einpressdrosselkörper über die radial verlaufende Anschlussbohrung in die Wand des Hochdruckspeicherraumkörpers (Common Rail) eingebracht werden. Die Gestalt des aus federndem Stahl oder aus Kunststoff gefertigten Einpressdrosselkörpers entspricht etwa einem Doppelkegel, dessen engste Einschnürstelle den Drosselquerschnitt bildet. Der Einpressdrosselkörper aus federndem Stahl oder aus Kunststoffmaterial stützt sich sowohl an der Seite der Anschlussbohrung ab, die in den Hochdruckspeicherraum mündet, als auch aus einer z. B. kegelförmig ausbildbaren Vertiefung in der Wand des Hochdruckspeicherraumkörpers (Common Rail).
  • Zeichnung
  • Anhand der Zeichnung wird die Erfindung nachstehend eingehender beschrieben.
  • Es zeigt:
  • Figur 1
    ein Beispiel eines Einpress- drosselkörpers, hergestellt aus einem Rundmaterial, das nicht Teil der Erfindung ist.
    Figur 1.1
    das Einpressdrosselelement gemäß der Darstellung in Figur 1 in einem vergrö- ßertem Maßstab,
    Figur 2
    ein Ausführungsbeispiel eines Einpressdrosselelementes als tiefgezoge- nes Bauteil,
    Figur 2.1
    das als tiefgezogenes Bauteil gefertigte Einpressdrosselelement in vergrößerter Darstellung,
    Figur 3
    ein in Axialrichtung in einen Hohlraum des Hochdruckspeicherraumes einge- schobenes, zylinderförmig konfiguriertes Einpressdrosselelement,
    Figur 3.1
    das axial in den Hohlraum einschiebbare Einpressdrosselelement gemäß der Darstellung in Figur 3 in vergrößertem Maßstab,
    Figur 4
    ein weiteres Ausführungsbeispiel eines radial in eine Anschlussbohrung eines Hochdruckspeicherraumes eingeklemmtes, dünnwandiges, als Hyperboloid ge- fertigtes Einpressdrosselelement und
    Figur 4.1
    das als Hyperboloid gefertigte Einpressdrosselelement gemäß der Darstellung in Figur 4 in vergrößerter Darstellung.
    Ausführungsbeispiele
  • Der Darstellung gemäß Figur 1 ist ein Beispiel eines Einpressdrosselelementes zu entnehmen, das nicht Teil der Erfindung ist.
  • Gemäß der Darstellung in Figur 1 umfasst ein aus metallischem Material gefertigter Hochdruckspeicher 10, sei es ein lasergeschweißter Hochdruckspeicherraum 10 (LWR-Rail) oder ein geschmiedeter Hochdruckspeicherraum 10 (WFR, Warm Forged Rail), eine Wand 12, deren Dicke entsprechend des Systemdruckes ausgelegt ist. An einer Mantelfläche 14 des Hochdruckspeicherraums 10 ist an einer Kontaktfläche 38 ein Anschlussstück 16 befestigt, welches vorzugsweise mit der Mantelfläche 14 im Bereich der Kontaktfläche 38 stoffschlüssig gefügt, so z. B. geschweißt wird Mittels des Anschlussstückes 16 wird eine Hochdruckleitung 18 mittels einer Überwurfmutter 20 am Hochdruckspeicherraum 10 befestigt. Dazu weist das Anschlussstück 16 ein Außengewinde 24 auf, welches mit dem Innengewinde der Überwurfmutter 20 zusammenwirkt. Die Hochdruckleitung 18 umfasst einen Querschnitt, der durch das Bezugszeichen 22 kenntlich gemacht ist. Die Hochdruckleitung 18, mit dem ein in Figur 1 nicht dargestellter Kraftstoffinjektor mit unter Systemdruck stehendem Kraftstoff beaufschlagt wird oder eine Hochdruckpumpe mit dem Hochdruckspeicherraum 10 verbunden ist, ist mit ihrem kegelförmigen Ende 26 an einer als Dichtkegel dienenden Ausformung 36 in der Wand 12 des Hochdruckspeicherraums 10 angestellt. Dazu ist oberhalb des kegelförmigen Endes 26 der Hochdruckzuleitung 18 ein Anstellbund 40 vorgesehen. Auf dem Anstellbund 40 stützt sich ein Innenring 42 der Überwurfmutter 20 ab. Entsprechend des Anzugsdrehmomentes der Überwurfmutter 20 wird das kegelig ausgebildete Ende 26 der Hochdruckzuleitung 18 in die Ausformung 36 in der Wand 12 des Hochdruckspeicherraums 10 eingepresst, so dass sich zwischen dem kegelförmigen Ende 26 der Hochdruckleitung 18 und der Wand 12 des Hochdruckspeicherraums 10 eine druckdichte Verbindung ergibt.
  • In der Wand 12 des Hochdruckspeicherraums 10 sind entsprechend der Anzahl der mit unter hohem Druck stehenden Kraftstoff zu versorgenden Kraftstoffinjektoren oder der angeschlossenen Hochdruckpumpen Anschlussbohrungen 30 ausgeführt. In den Anschlussbohrungen 30 befinden sich Drosselkörper 28, die gemäß des in Figur 1 dargestellten Ausführungsbeispiels zerspanend aus einem Rundmaterial hergestellt sind Durch die mittels der Überwurfmutter 20 dichtend in die Ausformung 36 in der Wand 12 angestellte Hochdruckzuleitung 18 wird der Drosselkörper 28 aus Rundmaterial in die Anschlussbohrung 30 eingepresst. Die Mantelfläche 32 des Drosselkörpers 28 bildet somit eine kraftschlüssige Verbindung zwischen dem Drosselkörper 28 und der Wand 12 des Hochdruckspeicherraums 10.
  • Der Drosselkörper 28 umfasst eine Durchgangsbohrung, welche als Drosselkanal 34 dient.
  • Der Darstellung gemäß Figur 1.1 ist der aus Rundmaterial, Kunststoff oder Federblech herstellbare Drosselkörper gemäß der Darstellung in Figur 1 in vergrößerter Ansicht zu entnehmen.
  • Aus der Darstellung gemäß Figur 1.1 geht hervor, dass der aus Rundmaterial zerspanend hergestellte Drosselkörper 28 eine Durchgangsbohrung aufweist, die einen ersten Durchmesser 44 und einen zweiten Durchmesser 46 aufweist. Der erste Durchmesser 44 liegt auf Seiten der ersten Stirnfläche 48 des Drosselkörpers 28, wohingegen der zweite Durchmesser 46 des Drosselkanales 34 in einer zweiten Stirnfläche 50 des Drosselkörpers 28 mündet. Die jeweiligen Durchmesser 44 bzw. 46, in denen der Drosselkanal 34 ausgelegt sein kann, können sich auch in anderen Proportionen als in Figur 1.1 dargestellt innerhalb des Drosselkörpers 28 erstrecken. Der in Figur 1.1 dargestellte Drosselkörper 28 mit zwei Durchmessern 44 für den Drosselkanal 34 stellt somit eine gestufte Drossel dar, wobei der zweite Durchmesser 46 des Drosselkanales 34 in den Strömungsquerschnitt 22 der oberhalb des Drosselkörpers 28 angeschlossenen Hochdruckleitung 18 mündet.
  • Der Darstellung gemäß Figur 2 ist ein Ausführungsbeispiel der erfindungsgemäß vorgeschlagenen Einpressdrossel zu entnehmen.
  • Aus der Darstellung gemäß Figur 2 geht hervor, dass der in die Anschlussbohrung 30 in der Wand 12 des Hochdruckspeicherraums 10 eingelassene Drosselkörper 28 als tiefgezogenes
  • Bauteil, d. h. als tiefgezogener Drosselkörper 52 ausgebildet ist. Der tiefgezogene Drosselkörper 52 gemäß der Darstellung in Figur 2 ist in die Anschlussbohrung 30 eingepresst und liegt mit einer oberen Auflagefläche 56 im Bereich der Ausformung 36 in der Wand 12 des Hochdruckspeicherraumes 10 an. Die sich unterhalb der Auflagefläche 56 erstreckende Mantelfläche liegt an der Innenwand der Anschlussbohrung 30 an.
  • Die Hochdruckzuleitung (nicht dargestellt) wird gemäß dieses Ausführungsbeispiels mittels einer Überwurfmutter 20 am Anschlussstück 16 (Hochdruckfitting) angeschlossen.
  • Das sich gemäß der Darstellung in Figur 2 sowohl mit seiner Auflagefläche 56 als auch mit seiner Mantelfläche in der Anschlussbohrung 30 kraftschlüssig abstützende Bauteil 52 weist am Boden einen hier lochförmig ausgebildeten Drosselkanal 34 auf.
  • Figur 2.1 zeigt den als Tiefziehbauteil ausgebildeten Drosselkörper gemäß der Darstellung in Figur 2 in vergrößertem Maßstab.
  • Aus der Darstellung gemäß Figur 2.1 geht hervor, dass der tiefgezogene Drosselkörper 52 ein im Wesentlichen topfförmiges Aussehen hat und in einer für das Tiefziehverfahren geeigneten, geringen Wanddicke 54 ausgeführt ist. Im Boden des im Wesentlichen topfförmig ausgebildeten, tiefgezogenen Drosselkörpers 52 befindet sich der Drosselkanal 34, der gemäß diesem Ausführungsbeispiel als einfache Durchgangsbohrung beschaffen ist. Im oberen Bereich, d. h. an der offenen, dem Drosselkanal 34 gegenüberliegenden Seite ist der tiefgezogene Drosselkörper 52 mit einer Durchmessererweiterung versehen. Dadurch wird an dem dem Anschlussstück 18 zuweisenden Ende des tiefgezogenen Drosselkörpers 52 eine Auflagefläche 56 geformt, mit welcher sich dieser in der Ausformung 36 in der Wand 12 des Hochdruckspeicherraums 10 abstützen kann. Beim Einpressen des in Figur 2.1 dargestellten tiefgezogenen Drosselkörpers 52 in die Anschlussbohrung 30 in der Wand 12 des Hochdruckspeicherraums 10 stellt sich zwischen der Auflagefläche 56 und der Ausformung 36 in der Wand 12 ebenso eine kraftschlüssige Verbindung ein wie zwischen der Mantelfläche am tiefgezogenen Drosselkörper 52 unterhalb der Auflagefläche 56 und der Innenwand der Anschlussbohrung 30 in der Wand 12 des Hochdruckspeicherraumes 10.
  • Gemäß des in Figur 2.1 dargestellten Ausführungsbeispieles befindet sich der Drosselkanal 34 im in die Anschlussbohrung 30 montierten Zustand des tiefgezogenen Drosselkörpers 52 noch innerhalb der Anschlussbohrung 30 und kann, wie im Ausführungsbeispiel gemäß Figur 4 dargestellt, in den Hohlraum des Hochdruckspeicherraums 10 hineinragen, der von der Wand 12 begrenzt wird.
  • Figur 3 zeigt ein weiteres Ausführungsbeispiel der erfindungsgemäß vorgeschlagenen Einpressdrossel.
  • In der Darstellung gemäß Figur 3 ist ein zylinderförmig ausgebildeter Drosselkörper 58 von einem offenen Ende des Hochdruckspeicherraums 10 aus in dessen Hohlraum 68 axial eingeschoben. Mit Bezugszeichen 76 ist eine kuppenförmige Erhebung an der Mantelfläche des zylinderförmig ausgebildeten Drosselkörpers 58 bezeichnet, welche im montierten Zustand des zylinderförmig ausgebildeten Drosselkörpers 58 in die Anschlussbohrung 30 in der Wand 12 des Hochdruckspeicherraums 10 einschnappt und somit die axiale Position des zylinderförmigen Drosselkörpers 58 im Hohlraum 68 des Hochdruckspeicherraums 10 definiert. Im montierten Zustand befindet sich unterhalb einer jeden die Wand 12 des Hochdruckspeicherraums 10 durchziehenden Anschlussbohrung 30 ein zylinderförmig ausgebildeter Drosselkörper 58. Im Bereich der Kuppe 76 ist in der Mantelfläche des zylinderförmigen Drosselkörpers 58 eine Drosselöffnung 72 ausgeführt, über welche der Kraftstoff zur Dämpfung von Druckpulsationen vom Hohlraum 68 in die Anschlussbohrung 30 und von dort in die an der Mantelfläche 14 des Hochdruckspeicherraums 10 angeschlossene Hochdruckleitung 18 einschießt.
  • Der Darstellung gemäß Figur 3.1 ist eine vergrößerte Darstellung des zylinderförmig ausgebildeten Drosselkörpers gemäß Figur 3 zu entnehmen. Aus der perspektivischen Darstellung gemäß Figur 3.1 geht hervor, dass der zylinderförmig ausgebildete Drosselkörper 58 eine Mantelfläche 64 aufweist, die in axialer Richtung mit einer Längsschlitzung 60 versehen ist. Die Längsschlitzung 60 in der Mantelfläche 64 des zylinderförmigen Drosselkörpers 58 begrenzenden Enden sind mit Verrundungen 62 versehen. Aufgrund der Längsschlitzung 60 in der Mantelfläche 64 des zylinderförmig ausgebildeten Drosselkörpers 58 ist dieser federelastisch und lässt sich in Einschubrichtung 66 gesehen in den Hohlraum 68 des Hochdruckspeicherraums 10 gemäß der Darstellung in Figur 3 in axialer Richtung montieren. Sobald die Kuppe 76 mit darin ausgebildeter Drosselöffnung 52 in eine Anschlussbohrung 30 in der Wand 12 des Hochdruckspeicherraums 10 einschnappt, ist der zylinderförmig ausgebildete Drosselkörper 58 in axialer Richtung im Hohlraum 68 des Hochdruckspeicherraums 10 fixiert. Entsprechend der Anzahl der in der Wand 12 des Hochdruckspeicherraums 10 ausgebildeten Anschlussbohrungen 30 wird eine dieser entsprechende Anzahl von zylinderförmig ausgebildeten Drosselkörpern 58 in Einschubrichtung 66 in von einem offenen Ende eines vorzugsweise als lasergeschweißten Hochdruckspeicherraums 10 ausgebildeten Körper eingeführt.
  • Aufgrund der radialen Elastizität, die durch die Längsschlitzung 60 des in einer geringen Wandstärke 74 ausgebildeten zylinderförmigen Drosselkörpers 58 erreicht wird, lassen sich die zylinderförmig ausgebildeten Drosselkörper 58 in axial verlaufender Einschubrichtung 66 von einem offenen Ende des Hochdruckspeicherraums 10 in diesen einschieben und anschließend in ihre entsprechende Radialposition unterhalb der einzelnen Anschlussbohrungen 30 verdrehen, so dass die kuppenförmige Erhebung 76 in der Mantelfläche 64 des zylinderförming ausgebildeten Drosselkörpers 58 in die Anschlussbohrung 30 eingreift und der zylinderförmig ausgebildete Drosselkörper 58 somit innerhalb des Hohlraums 68 des Hochdruckspeicherraums 10 arretiert ist.
  • Der Darstellung gemäß Figur 4 ist ein als Hyperboloid beschaffener Einpressdrosselkörper 80 zu entnehmen. Aus der Darstellung gemäß Figur 4 geht hervor, dass das Anschlussstück 16 gemäß dieses Ausführungsbeispieles ebenfalls an der Mantelfläche 14 der Wand 12 des Hochdruckspeicherraums 10 stoffschlüssig gefügt ist. Das stoffschlüssige Fügen erfolgt z. B. im Wege des Laserschweißens, womit ein hoher Automatisierungsgrad in der Serienfertigung erreicht werden kann.
  • In der Wand 12 des Hochdruckspeicherraums 10 (Common Rail) befindet sich eine trichterförmig konfigurierte Ausformung 36, welche als Dichtkegel dient. Die als Dichtkegel dienende Ausformung 36 in der Wand 12 des Hochdruckspeicherraums 10 geht in eine mit stetigem Durchmesser gefertigte Anschlussbohrung 30 über. In die Anschlussbohrung 30 gemäß der Darstellung in Figur 4 ist ein als Hyperboloid ausgebildeter Drosselkörper 80 eingeklemmt. Der als Hyperboloid ausgebildete Drosselkörper 80 stützt sich einerseits an einer ersten Kontaktstelle 84 innerhalb der Ausformung 36 der Wand 12 des Hochdruckspeicherraums 10 ab und ist andererseits an einer zweiten Kontaktstelle 86 an der Mündungsstelle der Anschlussbohrung 30 in den Hohlraum 68 des Hochdruckspeicherraums 10 kraftschlüssig gehalten. Aus der Darstellung gemäß Figur 4 geht hervor, dass der als Hyperboloid beschaffene Drosselkörper 80 um einen Überstand 90 in den Hohlraum 68 des Hochdruckspeicherraums 10 hineinragt. Durch den Überstand 90 des Drosselkörpers 80 wird die Federkraft, d. h. die Haltekraft, an einer 2. Kontaktstelle 86 des Drosselkörpers 80 in der Anschlussbohrung 30 erzeugt. Der Darstellung gemäß Figur 4.1 ist der als Hyperboloid ausgebildete Drosselkörper gemäß der Darstellung in Figur 4 in vergrößertem Maßstab zu entnehmen.
  • Der als Hyperboloid ausgebildete Drosselkörper 80 ist im Wesentlichen doppelkegelförmig ausgebildet. Der als Hyperboloid ausgebildete Drosselkörper 80 umfasst eine Einschnürstelle 82, welche den Strömungsquerschnitt des Drosselkanals 34 (vgl. Bezugszeichen 96 Drosselquerschnitt) begrenzt. Der als Hyperboloid ausgebildete Drosselkörper 80 umfasst eine erste Öffnung 92, welche der Hochdruckleitung 18 gegenüberliegt, sowie eine zweite Öffnung 94, die in den Hohlraum 68 des Hochdruckspeicherraums 10 gemäß der Darstellung in Figur 4 mündet. Die Außenmantelfläche im Bereich der ersten Öffnung 92 bildet die Auflagefläche 56, mit der sich der als Hyperboloid ausgebildete Drosselkörper 80 an der Ausformung 36 in der Wand 12 des Hochdruckspeicherraums 10 abstützt.
  • Der dem Hohlraum 68 des Hochdruckspeicherraums 10 zuweisende Teil des als Hyperboloid ausgebildeten Drosselkörpers 80 unterhalb der Einschnürstelle 82 weist mehrere Axialschlitze 88 auf, von denen gemäß Figur 4.1 aus zeichnerischen Gründen lediglich einer dargestellt ist. Weitere Axialschlitze 88 liegen in der Zeichenebene.
  • Aufgrund der Axialschlitzung 88 stellt sich im unteren Bereich des als Hyperboloid ausgebildeten Drosselkörpers 80 eine hohe Elastizität ein, so dass der als Hyperboloid ausgebildete Drosselkörper 80 in radialer Richtung einfach in die Anschlussbohrung 30 eingeschoben werden kann und an der ersten Kontaktstelle 84 und an der zweiten Kontaktstelle 86 (vgl. Darstellung gemäß Figur 4) eine kraftschlüssige Verbindung mit der Ausformung 36 bzw. der Innenwand der Anschlussbohrung 30 eingeht.
  • Der in Figur 4.1 dargestellte, als Hyperboloid beschaffene Drosselkörper 80 wird vorzugsweise aus einem dünnwandigen metallischen Material hergestellt. Alternativ dazu kann der als Hyperboloid beschaffene Drosselkörper 80 auch aus Kunststoff hergestellt werden. Dabei ist jedoch sicherzustellen, dass das Kunststoffmaterial derart gewählt wird, dass dieses den im Hohlraum 68 des Hochdruckspeicherraums 10 herrschenden Drücken standhält.
  • Sämtliche in den Figuren 2 bis 4.1 dargestellten Ausführungsbeispiele der erfindungsgemäß vorgeschlagenen Einpressdrossel dienen zur Reduktion von Druckpulsationen im Hochdruckspeicherraum 10 und im über die Hochdruckleitung 18 an diesen angeschlossenen Kraftstoffinjektoren. Die Reduktion von Druckpulsationen innerhalb des Hochdruckspeicherraumes 10 (Common Rail) bzw. der mit diesem verbundenen Kraftstoffinjektoren wirken sich positiv auf die Festigkeit des Hochdruckspeicherraums 10 und der mit diesem fluidisch verbundenen Kraftstoffinjektoren aus. Die Reduktion der Druckpulsationen im Hochdruckspeicherraum 10 über die erfindungsgemäß vorgeschlagenen, als Einpressdrosseln ausgebildeten Drosselkörper 52, 58 bzw. 80 ist dabei abhängig vom jeweils gewählten Strömungsquerschnitt des Drosselkanales 34, sei dieser als Loch im Boden des als Tiefziehbauteil hergestellten Drosselelementes 52, sei dieser als Drosselöffnung 72 in der Mantelfläche 64 eines zylinderförmig ausgebildeten Drosselkörpers 58 ausgeführt oder als Einschnürstelle 82 in einem als Hyperboloid ausgebildeten Drosselkörper 80, wie in den Figuren 4 bzw. 4.1 im Einzelnen dargestellt.
  • Bezugszeichenliste
  • 10
    Hochdruckspeicherraum (Common Rail)
    12
    Wand
    14
    Mantelfläche
    16
    Anschlussstück
    18
    Hochdruckleitung
    20
    Überwurfmutter
    22
    Querschnitt Hochdruckleitung
    24
    Außengewinde
    26
    kegelförmiges Ende Hoch- druckleitung
    28
    Drosselkörper
    30
    Anschlussbohrung
    32
    Mantelfläche Drosselkörper
    34
    Drosselkanal
    36
    Ausformung in Kegelform (Dichtkegel)
    38
    Kontaktfläche Anschlussstück - Rail
    40
    Anstellbund
    42
    Innenring
    44
    1. Durchmesser Drosselkanal 34
    46
    2. Durchmesser Drosselkanal 34
    48
    1. Stirnfläche Drosselkörper 28
    50
    2. Stirnfläche Drosselkörper 28
    52
    tiefgezogener Drosselkörper
    54
    Wanddicke
    56
    konische Auflagefläche
    58
    zylinderförmiger Drosselkör- per
    60
    Längsschlitzung
    62
    verrundete Enden
    64
    Mantelfläche
    66
    Einschubrichtung
    68
    Hohlraum Hochdruckspei- cherraum 10
    72
    Drosselöffnung in Mantelflä- che 64
    74
    Wanddicke
    76
    Kuppe
    80
    Drosselkörper Hyperboloid- form
    82
    Einschnürstelle
    84
    1. Kontaktstelle
    86
    2. Kontaktstelle
    88
    Axialschlitz
    90
    Überstand in Hohlraum 68
    92
    1. Öffnung zur Hochdrucklei- tung 18
    94
    2. Öffnung zum Hohlraum 68
    96
    Drosselquerschnitt

Claims (8)

  1. Kraftstoffeinspritzeinrichtung für eine Verbrennungskraftmaschine mit einem Hochdruckspeicherraum (10) mit mehreren der Kraftstoffabfuhr aus oder der Kraftstoffzufuhr zum Hochdruckspeicherraum (10) dienenden Anschlussbohrungen (30), an denen Hochdruckzuleitungen (18) zu Kraftstoffinjektoren oder Kraftstoffzufuhrleitungen von einer Hochdruckquelle angeschlossen sind, wobei zumindest den Anschlussbohrungen (30) der Hochdruckzuleitungen (18) zu den Kraftstoffinjektoren mindestens ein Drosselelement (28, 58) zugeordnet ist, das einen zumindest einstufig ausgeführten Drosselkanal (34) aufweist und das als Einpressdrosselelement in eine Wand (12) des Hochdruckspeicherraums (10) eingepresst und in den Anschlussbohrungen (30) des Hochdruckspeicherraums (10) an mindestens einer Kontaktstelle (64) kraftschlüssig gehalten ist, dadurch gekennzeichnet, dass das mindestens eine Drosselelement (28, 58) als vorgeformtes, elastische Eigenschaften aufweisendes Bauteil beschaffen und als dünnwandiger, mit einer Längsschlitzung (60) versehener Zylinder ausgeführt ist und eine Mantelfläche (64) aufweist, die mit einer kuppenförmigen Erhebung (76) mit einer Drosselöffnung (72) ausgeführt ist.
  2. Kraftstoffeinspritzeinrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Drosselelement (28, 58) aus einem pulvermetallurgisch hergestellten Material oder aus Kunststoff gefertigt ist.
  3. Kraftstoffeinspritzeinrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass das mindestens eine Drosselelement (28, 58) in Zylinderform in axialer Richtung (66) in einen Hohlraum (68) des Hochdruckspeicherraums (10) eingeschoben wird.
  4. Kraftstoffeinspritzeinrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die Montageposition des mindestens einen in Zylinderform ausgebildeten Drosselelementes (28, 58) im Hohlraum (68) des Hochdruckspeicherraums (10) durch die in die Anschlussbohrung (30) einrastende Kuppe (76) mit der Drosselöffnung (72) in der Mantelfläche (64) definiert ist.
  5. Kraftstoffeinspritzeinrichtung für eine Verbrennungskraftmaschine mit einem Hochdruckspeicherraum (10) mit mehreren der Kraftstoffabfuhr aus oder der Kraftstoffzufuhr zum Hochdruckspeicherraum (10) dienenden Anschlussbohrungen (30), an denen Hochdruckzuleitungen (18) zu Kraftstoffinjektoren oder Kraftstoffzufuhrleitungen von einer Hochdruckquelle angeschlossen sind, wobei zumindest den Anschlussbohrungen (30) der Hochdruckzuleitungen (18) zu den Kraftstoffinjektoren mindestens ein Drosselelement (28, 80) zugeordnet ist, das einen zumindest einstufig ausgeführten Drosselkanal (34) aufweist und das als Einpressdrosselelement in eine Wand (12) des Hochdruckspeicherraums (10) eingepresst und in den Anschlussbohrungen (30) des Hochdruckspeicherraums (10) an mindestens einer Kontaktstelle (84, 86) kraftschlüssig gehalten ist, dadurch gekennzeichnet, dass das mindestens eine Drosselelement (28, 80) als vorgeformtes, elastische Eigenschaften aufweisendes Bauteil beschaffen und als Hyperboloid gestaltet ist, und eine Mantelfläche (64) aufweist, die eine erste Kontaktstelle (84) an einer als Dichtkegel dienenden Ausformung (36) des Hochdruckspeicherraums (10) und eine zweite Kontaktstelle (86) an der Anschlussbohrung (30) des Hochdruckspeicherraums (10) aufweist.
  6. Kraftstoffeinspritzeinrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass das Drosselelement (28, 80) in Hyperboloidform aus metallischem Material oder aus Kunststoffmaterial mit federnden Eigenschaften gefertigt ist.
  7. Kraftstoffeinspritzeinrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass das Drosselelement (28, 80) in Hyperboloidform zwischen einer ersten Öffnung (92) zum Anschlussstück (16) und einer zweiten Öffnung (94) zum Hohlraum (68) des Hochdruckspeicherraumes (10) eine als Drosselkanal (34) dienende Einschnürstelle (82) aufweist.
  8. Kraftstoffeinspritzeinrichtung gemäß Anspruch 5, dadurch gekennzeichnet, dass das Drosselelement (28, 80) in Hyperboloidform auf seiner dem Anschlussstück (16) zuweisenden Seite eine konische Auflagefläche (56) und an seiner dem Hohlraum (68) des Hochdruckspeicherraums (10) zuweisenden Seite mindestens einen Axialschlitz (88) umfasst.
EP06754873A 2005-06-10 2006-04-27 Hochdruckspeicherraumkörper mit hochdruckdrosseln Expired - Fee Related EP1893867B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510026993 DE102005026993A1 (de) 2005-06-10 2005-06-10 Hochdruckspeicherraumkörper mit Hochdruckdrosseln
PCT/EP2006/061862 WO2006131420A1 (de) 2005-06-10 2006-04-27 Hochdruckspeicherraumkörper mit hochdruckdrosseln

Publications (2)

Publication Number Publication Date
EP1893867A1 EP1893867A1 (de) 2008-03-05
EP1893867B1 true EP1893867B1 (de) 2010-06-23

Family

ID=36645766

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754873A Expired - Fee Related EP1893867B1 (de) 2005-06-10 2006-04-27 Hochdruckspeicherraumkörper mit hochdruckdrosseln

Country Status (4)

Country Link
EP (1) EP1893867B1 (de)
JP (1) JP2008542624A (de)
DE (2) DE102005026993A1 (de)
WO (1) WO2006131420A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2071174B1 (de) * 2007-12-10 2011-03-23 Delphi Technologies Holding S.à.r.l. Strahldüse zur Dämpfung mittels Bohrung
DE102008017228A1 (de) * 2008-04-04 2009-10-08 Continental Automotive Gmbh Fluidsystem
JP2014088791A (ja) * 2012-10-29 2014-05-15 Denso Corp 燃料噴射装置用コモンレール
DE102016209423A1 (de) * 2016-05-31 2017-11-30 Robert Bosch Gmbh Hochdruckspeicher und Verfahren zur Herstellung eines Hochdruckspeichers
WO2019111031A1 (en) * 2017-12-08 2019-06-13 Volvo Truck Corporation A device for a common rail fuel injection system
CN112555077A (zh) * 2020-12-03 2021-03-26 一汽解放汽车有限公司 一种共轨管及柴油机高压供油系统

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3503784B2 (ja) * 1995-10-13 2004-03-08 株式会社デンソー 蓄圧式燃料噴射装置
JPH10213045A (ja) * 1996-11-30 1998-08-11 Usui Internatl Ind Co Ltd コモンレールにおける分岐接続体の接続構造
JP3763698B2 (ja) * 1998-10-22 2006-04-05 株式会社日本自動車部品総合研究所 圧力脈動を緩和し得る燃料供給システムの設計方法
GB2358898B (en) 1999-12-09 2002-04-24 Usui Kokusai Sangyo Kk Diesel engine fuel injection pipe
US6463909B2 (en) * 2000-01-25 2002-10-15 Usui Kokusai Sangyo Kaisha Limited Common rail
JP3806302B2 (ja) * 2000-01-25 2006-08-09 臼井国際産業株式会社 コモンレール
JP3558008B2 (ja) * 2000-06-08 2004-08-25 トヨタ自動車株式会社 燃料噴射装置
DE10212876A1 (de) * 2002-03-22 2003-10-23 Bosch Gmbh Robert Einrichtung zur Schwingungsdämpfung an Kraftstoffeinspritzsystemen mit Hochdrucksammelraum
EP1359318A1 (de) * 2002-04-16 2003-11-05 Robert Bosch Gmbh Kraftstoffhochdruckspeicher mit verbesserten Dämpfungseigenschaften
JP2004027964A (ja) * 2002-06-25 2004-01-29 Aisin Seiki Co Ltd 車両用の燃料供給装置
DE10344898A1 (de) * 2003-09-26 2005-04-21 Bosch Gmbh Robert Bauteil einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine und Kraftstoffeinspritzeinrichtung
DE202004019820U1 (de) 2004-12-23 2006-04-27 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für einen Dieselmotor

Also Published As

Publication number Publication date
DE502006007266D1 (de) 2010-08-05
DE102005026993A1 (de) 2006-12-14
WO2006131420A1 (de) 2006-12-14
EP1893867A1 (de) 2008-03-05
JP2008542624A (ja) 2008-11-27

Similar Documents

Publication Publication Date Title
EP2188516B1 (de) Brennstoffeinspritzvorrichtung
DE19607521C1 (de) Kraftstoff-Verteilerrohr
EP2812559B1 (de) Brennstoffeinspritzventil und vorrichtung zum einspritzen von brennstoff
EP2203639B1 (de) Brennstoffeinspritzvorrichtung
EP2948675B1 (de) Brennstoffeinspritzanlage mit einer brennstoff führenden komponente, einem brennstoffeinspritzventil und einer aufhängung
EP2961977B1 (de) Vorrichtung zum einspritzen von brennstoff in den brennraum einer vebrennungskraftmaschine
EP1893867B1 (de) Hochdruckspeicherraumkörper mit hochdruckdrosseln
DE102007001363A1 (de) Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennkraftmaschinen
DE102008035492B4 (de) Railbaugruppe einer Kraftstoffeinspritzanlage
DE19937444C1 (de) Vorrichtung zur Verteilung von Kraftstoff für Kraftstoffeinspritzanlagen von Verbrennungsmotoren
EP1896720B1 (de) Hochdruckspeicherraum mit integriertem drossel- und filterelement
WO2005052348A1 (de) Vorrichtung zum dämpfen von druckstössen
DE102015226528A1 (de) Brennstoffeinspritzventil
DE102020207472A1 (de) Komponente für eine Einspritzanlage und Einspritzanlage für gemischverdichtende, fremdgezündete Brennkraftmaschinen
WO2009156205A1 (de) Abstützkörper, rückschlagventil sowie kraftstoff-hochdruckpumpe
DE102020208768A1 (de) Brennstoffverteilerleiste für eine Einspritzanlage und Einspritzanlage für gemischverdichtende, fremdgezündete Brennkraftmaschinen
WO2011079987A1 (de) Einspritzventil für ein fluid
DE102015219769A1 (de) Niederdruckdämpfer sowie Kraftstoffhochdruckpumpe
WO2008058799A1 (de) Kraftstoffinjektor
EP1490591A1 (de) Einrichtung zur schwingungsdämpfung an kraftstoffeinspritzsystemen mit hochdrucksammelraum
DE102005063545B4 (de) Hochdruckverschraubung mit Durchflussbegrenzungsanordnung
EP2896815A2 (de) Brennstoffeinspritzanlage mit einer Brennstoff führenden Komponente, einem Brennstoffeinspritzventil und einem Verbindungselement
DE10115856C1 (de) Hochdruck-Kraftstoffpumpe für eine direkteinspritzende Brennkraftmaschine, Kraftstoffsystem für eine direkteinspritzende Brennkraftmaschine, sowie direkteinspritzende Brennkraftmaschine
DE102008035462B4 (de) Railbaugruppe einer Kraftstoffeinspritzanlage
DE102008035489B4 (de) Railbaugruppe einer Kraftstoffeinspritzanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080110

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20080403

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 502006007266

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110324

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007266

Country of ref document: DE

Effective date: 20110323

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110427

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150424

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160427

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210624

Year of fee payment: 16

Ref country code: FR

Payment date: 20210421

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007266

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221103