EP1893791A2 - Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2 - Google Patents

Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2

Info

Publication number
EP1893791A2
EP1893791A2 EP06754399A EP06754399A EP1893791A2 EP 1893791 A2 EP1893791 A2 EP 1893791A2 EP 06754399 A EP06754399 A EP 06754399A EP 06754399 A EP06754399 A EP 06754399A EP 1893791 A2 EP1893791 A2 EP 1893791A2
Authority
EP
European Patent Office
Prior art keywords
acid
electrodeposition material
layer
accelerator
electrically conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06754399A
Other languages
German (de)
English (en)
Inventor
Naoki Suzuki
Subbian Karuppuchamy
Christine Schröder
Frank Wiechmann
Hans Dolhaine
Matthias Schweinsberg
Seishiro Ito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to EP06754399A priority Critical patent/EP1893791A2/fr
Publication of EP1893791A2 publication Critical patent/EP1893791A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/04Electrolytic coating other than with metals with inorganic materials
    • C25D9/08Electrolytic coating other than with metals with inorganic materials by cathodic processes

Definitions

  • Electrodeposition material process for providing a corrosion-protective layer Of TiO 2 on an electrically conductive substrate and metal substrate coated with a layer Of TiO 2
  • the present invention relates to an electrodeposition material for the electrochemical deposition of a corrosion-protective layer of TiO 2 on an electrically conductive substrate comprising a titanium compound, a complexing agent, an accelerator, water and optionally organic solvents, buffering agents and one or more additives.
  • a corrosion-protective layer of TiO 2 on an electrically conductive substrate comprising a titanium compound, a complexing agent, an accelerator, water and optionally organic solvents, buffering agents and one or more additives.
  • Such TiO 2 layer deposited electrochemically may serve as an appropriate primer layer for subsequent coating treatment (e.g. coating with organic materials, such as for instance lacquers, varnishes, paints, organic polymers, adhesives, etc.).
  • the present invention relates to a process for providing a corrosion-protective layer of TiO 2 on an electrically conductive substrate by electrodeposition of a electrodeposition material comprising a titanium compound, a complexing agent, an accelerator, water and optionally organic solvents, buffering agents and one or more additives.
  • the present invention relates to a metal substrate coated with a layer of TiO 2 produced by the process of the invention.
  • the very common industrial task involves providing metallic or non-metallic substrates with a first coating, which has a corrosion-inhibiting effect and/or which constitutes a primer for the application thereon of a subsequent coating containing e.g. organic polymers.
  • An example of such a task is the pre-treatment of metals prior to lacquer coating, for which various processes are available in the art. Examples of such processes are layer-forming or non-layer-forming phosphating, chromating or a chromium-free conversion treatment, for example using complex fluorides of titanium, zirconium, boron or silicon.
  • Technically simpler to perform, but less effective, is the simple application of a primer coat to a metal prior to lacquer-coating thereof. An example of this is the application of red lead.
  • a layer produced or applied in this way may serve as a corrosion-protective primer for subsequent lacquer coating.
  • the layer may also constitute a primer for subsequent bonding.
  • Metallic substrates in particular, but also substrates of plastics or glass, are frequently pre-treated chemically or mechanically prior to bonding in order to improve adhesion of the adhesive to the substrate.
  • metal or plastics components may be bonded metal to metal, plastics to plastics or metal to plastics.
  • front and rear windscreens of vehicles are as a rule bonded directly into the bodywork.
  • Other examples of the use of coupling layers are to be found in the production of rubber/metal composites, in which once again the metal substrate is as a rule pre- treated mechanically or chemically before a coupling layer is applied for the purpose of bonding with rubber.
  • the conventional wet or dry coating processes in each case exhibit particular disadvantages.
  • chromating processes are disadvantageous from both an environmental and an economic point of view owing to the toxic properties of the chromium and the occurrence of highly toxic sludge.
  • chromium- free wet processes such as phosphating, as a rule, also result in the production of sludge containing heavy metals, which has to be disposed of at some expense.
  • Another disadvantage of conventional wet coating processes is the actual coating stage frequently has to be preceded or followed by further stages, thereby increasing the amount of space required for the treatment line and the consumption of chemicals.
  • phosphating which is used virtually exclusively in automobile construction, entails serveral cleaning stages, an activation stage and generally a post-passivation stage. In all these stages, chemicals are consumed and waste is produced which has to be disposed of.
  • dry coating processes entail fewer waste problems, they have the disadvantage of being technically complex to perform (for example requiring a vacuum) or of having high energy requirements. The high operating costs of these processes are therefore a consequence principally of plant costs and energy consumption.
  • thin layers of metals compounds may be produced electrochemically on an electrically conductive substrate.
  • metals compounds for example oxide layers
  • an electrically conductive substrate for example, the articel by Y. Zhou and J. A. Switzer entitled ..Electrochemical Deposition and Microstructure of Copper (I) Oxide Films", Scripta Materialia, Vol. 38, No. 11 , pages 1731 to 1738 (1998), describes the electrochemical deposition and microstructure of copper (I) oxide films on stainless steel.
  • the article investigates above all the influence of deposition conditions on the morphology of the oxide layers; it does not disclose any practical application of the layers.
  • TiO 2 - layers are obtained on a Ti-sheet from H 2 SO 4 aqueous solution by anodic oxidation method. This is obtained at potentials below 50 V. However, this process can produce TiO 2 only on Ti-substrates by anodic oxidation.
  • TiO 2 is obtained on a Ti-sheet from an aqueous solution containing 0.5 mol/L H 2 SO 4 and 0.03 mol/L HNO 3 by anodic oxidation method (titanium anodization). Constant current is 1 mA/cm 2 . The oxidation is performed in a cooled bath of 278 K to 283 K. However, this process can produce TiO 2 only on a Ti-substrate by anodic oxidation.
  • EP 1 285 105 B1 discloses a process for producing a coating comprising at least two layers on an electrically conductive surface wherein in a first stage a chromium-free layer of at least one X-ray crystalline inorganic compound of at least one metal is electrochemically deposited of an electrically conductive surface from a solution containing the metal in dissolved form. Besides many other metals titanium is disclosed.
  • corrosion-protective layers of TiO 2 are electrochemically deposited on a metal substrate from an electrodeposition material comprising titanyl sulfate or titanyl oxalate as titanium component, citrate or citric acid, tatric acid and tartrates, lactid acid and lactates as chelating agents and hydroxylamines and their derivates or nitrates as accelerators.
  • this object can be achieved by the use of titanyl sulfate and/or titanyl oxalate as the titanium component combined with a special combination of complexing agents and accelerators.
  • Subject-matter of the present invention therefore is an electrodeposition material as specified above characterized in that the titanium compound is titanyl sulfate and/or titanyl oxalate, the complexing agent is selected from the group consisting of citric acid, citrates, tatric acid, tartrates, lactid acid, lactates, gluconic acid, gluconates, polyhydroxy-polycarbonic acids, ethylenediaminetetraacetate, methylglycinediacetate, iminodisuccinate, nitrilotriacetic acid and nitrilotriacetate, triethanolamine, phosphonic acid and phosphonates, poly-aspartic acid and polyaspartates, polyacrylic acid and polyacrylates and the accelerator is selected from the group consisting of H 2 O 2 and organic peroxides.
  • the complexing agent is selected from the group consisting of citric acid, citrates, tatric acid, tartrates, lactid acid, lactates,
  • the electrodeposition material preferably comprises 0,05 to 0,3 mol/l titanium compound, 0,01 to 0,2 mol/l complexing agent and 0,02 to 0,2 mol/l accelerator.
  • the pH of the electrodeposition material preferably is 5 to 10, more preferably 6 to 9, most preferably 7,5 to 8,0.
  • the electrodeposition material preferably comprises a polymeric cationic binder in addition to the components specified above.
  • cationic binder all electrodepositabel resins known in the art may be used.
  • cationic film-forming resins include amine salt group-containing resins such as the acid-solubilized reaction products of polyepoxides and primary or secondary amines. Usually, these amin salt group-containing resins are used in combination with a blocked isocyanate curing agent.
  • quaternary ammonium salt group-containing resins can also be employed. Examples of these resins are those which are formed from reacting an organic polyepoxide with a tertiary amin salt.
  • film-forming resins which cure via transesterification can be used.
  • cationic compositions prepared from Mannich bases can be used. From an electrodeposition material comprising the components of the present invention combined with a polymeric cationic binder a layer of Ti ⁇ 2 and a resinous layer can be deposited simultaneously.
  • the electrodeposition material of the present invention comprises the polymeric cationic binder in an amount of 5 to 60 % by weight based on the total weight of the electrodeposition material.
  • the present invention further relates to a process for providing a corrosion- protective layer of TiO 2 on an electrically conductive substrate by electrodeposition of a electrodeposition material comprising a titanium compound, a complexing agent, an accelerator, water and optionally organic solvents, buffering agents and one or more additives, characterized in that the titanium compound is titanyl sulfate and/or titanyl oxalate, the complexing agent is selected from the group consisting of citric acid, citrates, tatric acid, tartrates, lactid acid, lactates, gluconic acid, gluconates, polyhydroxy-polycarbonic acids, ethylenediaminetetraacetate, methylglycinediacetate, iminodisuccinate, nitrilotriacetic acid and nitrilotriacetate, triethanolamine, phosphonic acid and phosphonates, poly-aspartic acid and polyaspartates, polyacrylic acid and polyacrylates and the accelerator is selected from the group consist
  • the electrodeposition material of claims 2 to 5 may be used in that process.
  • the electrodeposition preferably is carried out under the following conditions current density: 0,01 to 100, preferably 0,1 to 20, more preferably 0,5 to 10 mA/cm 2 , coating time: 0,15 to 20, preferably 0,5 to 10, more preferably 1 to 4 minutes, temperature: 0 to 100, preferably 20 to 60 0 C, pH: 5 to 10, preferably 6 to 9, more preferably 7,5 to 8,0.
  • the electroconductive substrate preferably is selected from the group consisting of steel, especially cold rolled steel and galvanized steel, and aluminium.
  • the TiO 2 -layer is deposited on the electrically conductive substrate preferably within essentially uniform layer thickness, calculated as weight per unit area, in the range of from 0,01 to 3,5 g/m 2 , more preferably in the range of from 0,5 to 1 ,4 g/m 2 .
  • the titanium compound was dissolved in deionized water (accelerated by heating to 30 to 50 0 C)
  • the complexing agent was added.
  • the pH was adjusted by the addition of KOH (0,5 to 1 ,5 mol/l) at a temperature of 45 to 60 0 C

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Laminated Bodies (AREA)

Abstract

Matériau d'électrodéposition pour dépôt électrochimique de couche anticorrosion de TiO2 sur substrat conducteur comprenant : composé de titane, agent complexant, accélérateur, eau et éventuellement solvants organiques, agents de tamponnage et un ou plusieurs additifs. Le composé de titane est sulfate de titanyle et/ou oxalate de titanyle. L'agent complexant peut être acide citrique, citrates, acide tartrique, tartrates, acide lactique, lactates, acide gluconique, gluconates, acides polyhydroxy- polycarboniques, éthylènediaminetétraacétate, méthylglycinédiacétate, iminodisuccinate, acide nitrilotriacétique nitrilotriacétate, triéthanolamine,acide phosphonique et phosphonates, acide polyaspartique et polyaspartates, acide polyacrylique et polyacrylates. L'accélérateur peut être H2O2 et peroxydes organiques. Enfin, procédé permettant de fournir une couche anticorrosion de TiO2 sur un substrat conducteur, et substrat métallique revêtu de couche de TiO2.
EP06754399A 2005-06-22 2006-06-16 Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2 Withdrawn EP1893791A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP06754399A EP1893791A2 (fr) 2005-06-22 2006-06-16 Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP05013424 2005-06-22
EP06754399A EP1893791A2 (fr) 2005-06-22 2006-06-16 Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2
PCT/EP2006/005790 WO2006136333A2 (fr) 2005-06-22 2006-06-16 Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2

Publications (1)

Publication Number Publication Date
EP1893791A2 true EP1893791A2 (fr) 2008-03-05

Family

ID=37487387

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06754399A Withdrawn EP1893791A2 (fr) 2005-06-22 2006-06-16 Materiau d'electrodeposition, procede permettant de fournir une couche anticorrosion de tio2 a un substrat conducteur et substrat metallique revetu de couche de tio2

Country Status (3)

Country Link
US (1) US20080210567A1 (fr)
EP (1) EP1893791A2 (fr)
WO (1) WO2006136333A2 (fr)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009029558A1 (de) * 2009-09-17 2011-03-31 Schott Solar Ag Elektrolytzusammensetzung
KR20120010485A (ko) * 2010-07-26 2012-02-03 삼성전기주식회사 정전용량방식 터치패널
US8980743B2 (en) * 2012-06-12 2015-03-17 Flipchip International Llc Method for applying a final metal layer for wafer level packaging and associated device
US9859038B2 (en) 2012-08-10 2018-01-02 General Cable Technologies Corporation Surface modified overhead conductor
US10957468B2 (en) 2013-02-26 2021-03-23 General Cable Technologies Corporation Coated overhead conductors and methods
CN106714984A (zh) 2014-09-23 2017-05-24 通用线缆技术公司 用于形成电化学沉积到金属基底上的保护性涂层的电沉积介质
US10726975B2 (en) 2015-07-21 2020-07-28 General Cable Technologies Corporation Electrical accessories for power transmission systems and methods for preparing such electrical accessories
CN106757249B (zh) * 2016-12-15 2019-01-15 河海大学常州校区 一种阴极表面纳秒脉冲电场制备纳米薄膜的溶液及制备方法
CN117568878B (zh) * 2024-01-15 2024-05-03 甘肃海亮新能源材料有限公司 钛阳极和电解铜箔的生产设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1386234A (en) * 1971-04-28 1975-03-05 Imp Metal Ind Kynoch Ltd Preparation of titanium oxide and method of coating with an oxide
US4605478A (en) * 1984-07-03 1986-08-12 Ppg Industries, Inc. Cationic electrodepositable compositions containing formaldehyde scavenger
GB2298870B (en) * 1995-03-13 1998-09-30 British Steel Plc Passivation treatment of tinplate
JP3573574B2 (ja) * 1996-07-01 2004-10-06 日本パーカライジング株式会社 酸化チタン被覆金属材料の製造方法
JP3867374B2 (ja) * 1997-11-25 2007-01-10 株式会社村田製作所 チタン酸化物被膜作製用水溶液、およびチタン酸化物被膜の製造方法
DE10022074A1 (de) * 2000-05-06 2001-11-08 Henkel Kgaa Elektrochemisch erzeugte Schichten zum Korrosionsschutz oder als Haftgrund
EP1548157A1 (fr) * 2003-12-22 2005-06-29 Henkel KGaA Protection contre la corrosion par des couches d'oxide de métal électrochimiquement déposées sur des substrats métalliques

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006136333A3 *

Also Published As

Publication number Publication date
WO2006136333A2 (fr) 2006-12-28
US20080210567A1 (en) 2008-09-04
WO2006136333A3 (fr) 2007-08-16

Similar Documents

Publication Publication Date Title
US20080210567A1 (en) Electrodeposition Material, Process for Providing a Corrosion-Protective Layer of TiO2 on an Electrically Conductive Substrate and Metal Substrate Coated with a Layer of TiO2
JP3221882B2 (ja) 防蝕性のある接着性良好なラッカー被膜の簡易化製造法およびそれによりえられる工作物
US20090162563A1 (en) Electrochemically produced layers for corrosion protection or as a primer
WO2010001861A1 (fr) Liquide de conversion chimique pour structure métallique et procédé de traitement de surface
AU2013309270B2 (en) Zirconium pretreatment compositions containing molybdenum, associated methods for treating metal substrates, and related coated metal substrates
KR20130114275A (ko) 표면 처리 강판 및 그 제조 방법
EP2971234B1 (fr) Procédé de préparation et de traitement d'un substrat d'acier
AU2013309269B2 (en) Zirconium pretreatment compositions containing lithium, associated methods for treating metal substrates, and related coated metal substrates
US10113070B2 (en) Pretreatment compositions and methods of treating a substrate
WO2006136335A1 (fr) PROCÉDÉ SERVANT À PRODUIRE UNE COUCHE DE PROTECTION CONTRE LA CORROSION EN TiO2 SUR UN SUBSTRAT ÉLECTRIQUEMENT CONDUCTEUR ET SUBSTRAT EN MÉTAL RECOUVERT D'UNE COUCHE DE TiO2
JP3967519B2 (ja) Zn−Mg系電気めっき金属板およびその製造方法
JP3139795B2 (ja) 複合皮膜形成用金属表面処理剤
EP2064365A1 (fr) Revêtement hybride organique-inorganique mince sans chrome sur des métaux zincifères
KR100775109B1 (ko) 내식성이 우수하고 환경 부하가 작은 도장 금속판
WO2006136334A2 (fr) Materiau de depot electrolytique, procede permettant de former une couche anticorrosion de tio2 sur un substrat electroconducteur et substrat metallique recouvert d'une couche de tio2
WO2005056883A1 (fr) Revetement electrolytique d'alliage de zinc presentant une excellente resistance a la corrosion et materiau metallique plaque comprenant ce dernier
JP2886615B2 (ja) リン酸亜鉛処理性に優れる表面を有するアルミニウム合金材料
JPH0219474A (ja) 耐食性に優れた防錆鋼板

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071102

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: ITO, SEISHIRO

Inventor name: SCHWEINSBERG, MATTHIAS

Inventor name: DOLHAINE, HANS

Inventor name: WIECHMANN, FRANK

Inventor name: SCHROEDER, CHRISTINE

Inventor name: KARUPPUCHAMY, SUBBIAN

Inventor name: SUZUKI, NAOKI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101231