EP1890123A2 - AE/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped the system - Google Patents

AE/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped the system Download PDF

Info

Publication number
EP1890123A2
EP1890123A2 EP07016145A EP07016145A EP1890123A2 EP 1890123 A2 EP1890123 A2 EP 1890123A2 EP 07016145 A EP07016145 A EP 07016145A EP 07016145 A EP07016145 A EP 07016145A EP 1890123 A2 EP1890123 A2 EP 1890123A2
Authority
EP
European Patent Office
Prior art keywords
fbg
light
filter
wavelength
ultrasound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07016145A
Other languages
German (de)
French (fr)
Other versions
EP1890123A3 (en
Inventor
Jung-Ryul Lee
Hiroshi Tsuda
Takahiro Arakawa
Tomio Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Ishikawajima Inspection and Instrumentation Co Ltd
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Ishikawajima Inspection and Instrumentation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Ishikawajima Inspection and Instrumentation Co Ltd filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of EP1890123A2 publication Critical patent/EP1890123A2/en
Publication of EP1890123A3 publication Critical patent/EP1890123A3/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/08Testing mechanical properties
    • G01M11/083Testing mechanical properties by using an optical fiber in contact with the device under test [DUT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • G01L1/242Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre
    • G01L1/246Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet the material being an optical fibre using integrated gratings, e.g. Bragg gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/043Analysing solids in the interior, e.g. by shear waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2418Probes using optoacoustic interaction with the material, e.g. laser radiation, photoacoustics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02827Elastic parameters, strength or force

Definitions

  • the present invention relates to an AE/ultrasound detection system.
  • it relates to a technique for detecting AE/ultrasound with the use of an FBG sensor, and to a system in which such technique is applied for evaluating the soundness of a structure.
  • Piezoelectric elements have been widely used as AE detection sensors and ultrasound detection sensors in a nondestructive inspection using ultrasound.
  • AE/ultrasound measurement using piezoelectric elements involves the following problems. Namely, since piezoelectric elements are influenced by electromagnetic interference, the AE/ultrasound measurement cannot be conducted in the atmosphere of electromagnetic waves. Also, since piezoelectric elements have narrowband response frequency characteristics, it is necessary to change the kind of piezoelectric elements in accordance with the frequency band of the AE/ultrasound to be detected.
  • the other type is a system using a broadband light source, as disclosed in JP Patent Publication (Kokai) No. 2005-009937 A .
  • broadband light including a Bragg wavelength, the central reflection wavelength of the FBG, is caused to enter the FBG, and the reflected light is transmitted to an optical filter having the transmission wavelength band approximately equal to the reflection wavelength band of the FBG.
  • a portion of the transmission wavelength region of the optical filter needs to overlap the reflection wavelength region of the FBG.
  • the Bragg wavelength of the FBG fluctuates depending on the temperature and strain received by the FBG.
  • the Bragg wavelength varies by 10 pm for a temperature of 1°C with respect to the reflection wavelength band from 200 pm to 2000 pm
  • the bragg wavelength also varies by 1.2 pm per micro strain.
  • the FBG receives a large change in temperature and strain, based on the system using a laser light source, there are cases in which the laser oscillation wavelength does not fall within the reflection wavelength region of the FBG.
  • the transmission wavelength region of the optical filter does not cross the reflection wavelength region of the FBG.
  • the AE/ultrasound received by the FBG cannot be detected.
  • the Bragg wavelength of the FBG fluctuates at high speed, such control cannot follow the change of the Bragg wavelength, and it is therefore conceivable that the AE/ultrasound cannot be detected.
  • the AE generated upon destruction of a material is a phenomenon caused along with a large change of strain, a large fluctuation of the Bragg wavelength is caused upon occurrence of the AE.
  • the AE detection is very difficult with convention measurement systems.
  • JP Patent Publication (Kokai) No. 2003-169801 A discloses a technique in which two thermally-coupled Bragg gratings made of the same material are used, so that the ultrasound received by the Bragg gratings can always be detected.
  • the Bragg gratings of the sensor and the filter that are thermally-coupled are synchronized upon receiving a temperature change, and the Bragg wavelengths are thus fluctuated.
  • the present invention has been made in view of such circumstances, and therefore it provides a system always capable of detecting the AE/ultrasound received by the FBG, even when the Bragg wavelength of the FBG is fluctuated upon receiving a change in temperature or strain.
  • reflected light from the FBG is caused to enter a Fabry-Perot filter having an FSR equal to or greater than the reflection wavelength band of the FBG.
  • a change of the intensity of the transmitted light from the filter corresponds to the AE/ultrasound received by the FBG.
  • the reflected light from the FBG is caused to enter two Fabry-Perot filters, each FSR thereof being equal to or greater than the reflection wavelength band of the FBG and the transmittance peak wavelengths thereof differ by FSR/4.
  • the transmitted-light intensity of each of the two Fabry-Perot filters is converted into a voltage signal, and the individual signals are then subjected to addition and subtraction processes. In this way, a signal having a large amplitude corresponding to the AE/ultrasound received by the FBG can be obtained.
  • a signal having the larger amplitude of the two signals subjected to the addition and subtraction processes corresponds to the AE/ultrasound received by the FBG.
  • an apodized FBG whose reflection characteristics exhibit no side lobes be used as the FBG.
  • an FBG whose reflection characteristics are not saturated that is, an FBG that does not have a flat reflectance-wavelength relationship in the wavelength range in which the reflectance of the FBG reaches maximum.
  • An FBG having a triangular reflectance-wavelength relationship is ideal for the detection of the AE/ultrasound.
  • the AE/ultrasound detection system comprises: a broadband light source for emitting broadband-wavelength light; an FBG sensor that is attached to an object-to-be-inspected and that the broadband-wavelength light enters; a filter having periodic transmission characteristics so as to transmit part of the reflected light or transmitted light from the FBG sensor; and photoelectric conversion means for converting the intensity of the transmitted light from the filter into an electric signal.
  • the broadband light source emits broadband light including the Bragg wavelength of the FBG, and the filter has an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG.
  • the transmittance peak wavelength of the filter be equal to a wavelength at which the reflectance or transmittance of the FBG is decreased by half.
  • the AE/ultrasound detection system comprises: a broadband light source for emitting broadband-wavelength light; an FBG sensor that is attached to an object-to-be-inspected and that the broadband-wavelength light enters; light dividing means that divides reflected light or transmitted light from the FBG sensor so as to produce a first reflected light or transmitted light and a second reflected light or transmitted light; a first filter having periodic transmission characteristics so as to transmit part of the first reflected light or transmitted light; a second filter having periodic transmission characteristics and having its transmittance peak wavelength separated from that of the first filter by FSR/4 so as to transmit part of the second reflected light or transmitted light; and photoelectric conversion means for converting the intensity of the transmitted light from each of the first and second filters into an electric signal.
  • the system further comprises processing means for performing addition and subtraction processes on the electric signal that is obtained by the conversion means and that corresponds to the intensity of the transmitted light from each of the filters.
  • the broadband light source emit broadband light including the Bragg wavelength of the FBG and that the first and second filters have an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG.
  • the characteristics of the reflected light or transmitted light from the FBG sensor show those of an FBG on which an apodization process has been performed, thereby exhibiting no side lobes, and the characteristics are not saturated in a wavelength region in which the reflectance reaches maximum.
  • the filter be a Fabry-Perot filter or an AWG filter.
  • the material monitoring apparatus of the present invention comprises any one of the above AE/ultrasound detection systems, and it finds microscopic material destruction by detecting acoustic emission generated upon destruction of a material.
  • the nondestructive inspection apparatus of the present invention comprises any one of the above AE/ultrasound detection systems, and it conducts nondestructive inspection on a material or a structure with the use of ultrasound.
  • AE/ultrasound can be detected with the use of an FBG sensor even in a situation where temperature/strain fluctuates at high speed, and therefore, a highly-reliable structure soundness evaluation system utilizing the AE/ultrasound can be provided.
  • Fig. 1 shows a basic structure of an AE/ultrasound detection system according to a first embodiment of the present invention.
  • An AE/ultrasound detection system 1 shown in Fig. 1 adopts a structure in which a broadband light source and one Fabry-Perot filter are combined.
  • the AE/ultrasound detection system 1 is used for evaluating the soundness of an object-to-be-inspected 13, and it comprises: a broadband light source 10; an optical circulator 11; an FBG 12 (having been subjected to an apodization process); a Fabry-Perot filter 14; a photoelectric converter 15; and a data acquisition unit 16.
  • broadband light from the broadband light source 10 enters the FBG 12 via the optical circulator 11.
  • the FBG refers to a sensor having a diffraction grating structure in which the refraction index of the core portion of an optical fiber is periodically changed.
  • a wavelength component referred to as a Bragg wavelength is reflected by the FBG and the remaining components are allowed to pass therethrough.
  • a shift amount of this Bragg wavelength changes depending on strain or temperature.
  • the FBG 12 has been previously subjected to an apodization process, and therefore, the distribution curve of the light reflected thereby exhibits a Gaussian distribution.
  • the reflected light from the FBG 12 enters the Fabry-Perot filter 14 via the optical circulator 11.
  • the Fabry-Perot filter 14 does not transmit all the light incident thereon but it transmits only the light having a predetermined wavelength.
  • the transmitted light is inputted to the photoelectric converter 15, which converts the light into an electrical output corresponding to the light intensity.
  • the data acquisition unit 16 causes a display unit not shown in the figure to display or a recording device not shown in the figure to record the electrical output, as the AE/ultrasound detected by the FBG 12.
  • Fig. 2 shows a system for the experiment, and an ultrasound oscillator 17 and a uniaxial displacement stage 18 are provided in order to represent a pseudo strain placed on the object-to-be-inspected 13 when conducting the experiment.
  • the other features are the same as those of Fig. 1.
  • Fig. 3 shows optical characteristics of the FBG 12 and the Fabry-Perot filter 14.
  • the reflection characteristics thereof show no side lobes and the reflection wavelength band thereof is made 0.34 nm, as shown in the figure.
  • the filter has a FSR of 0.4 nm, which is slightly broader than the reflection wavelength band of the optical characteristics of the FBG 12, and the full width at half maximum transmission is 40 pm.
  • the transmission characteristics of the Fabry-Perot filter 14 are characterized in that the transmission region thereof periodically appears for each FSR (Free Spectral Range) frequency.
  • the combination of the FBG 12 and the Fabry-Perot filter 14 functions as a sensor. Namely, as shown in Fig. 17, when the reflection wavelength band > the FSR (Fig. 17(a)), two or more filter transmission regions exist in the reflection wavelength band of the FBG 12. Under such condition, an output from the filter will be a response signal that does not correspond to the waveform of the ultrasound or AE signal received by the FBG 12. Thus, in this case, the combination of the FBG 12 and the filter 14 does not function as a sensor.
  • the filter outputs a response signal equal to the waveform of the ultrasound or AE signal received by the FBG 12, and thus the combination of the FBG 12 and the filter 14 functions as a sensor.
  • the reflection wavelength band ⁇ the FSR Fig. 17(b)
  • the dead zone the region in which sensor sensitivity is low
  • the reflection wavelength band the FSR shown in Fig. 17(c)
  • Fig. 5 the influence of the relationship between the Bragg wavelength of the FBG 12 and the transmittance peak wavelength of the Fabry-Perot filter 14 on the sensitivity of ultrasound detection will be described.
  • the uniaxial displacement stage 18 is moved so that the FBG 12 is provided with strain, and the Bragg wavelength is changed, so as to detect the ultrasound propagated through the optical fiber from the ultrasound oscillator 17.
  • three states that is, a state in which filter-transmittance peak wavelength ⁇ i matches wavelength ⁇ -3dB at which the reflectance of the FBG is decreased by half (Fig. 5(a)), a state in which the Bragg wavelength of the FBG is located in the middle of adjacent filter-transmittance peak wavelengths (Fig.
  • Fig. 6 shows the individual response signals in the above three states and it also shows an excitation signal inputted to the ultrasound oscillator.
  • the photoelectric converter 15 converts the filter-transmitted-light intensity corresponding to the area surrounded by the Fabry-Perot filter transmitted-light intensity curve in Fig. 5(a) to (c) into a voltage signal, and the signal intensity corresponds to the ultrasound (elastic wave) detected by the FBG 12.
  • the filter-transmittance peak wavelength ⁇ i is located at the wavelength ⁇ -3dB at which the reflectance of the FBG 12 is decreased by half, the ultrasound is detected with high sensitivity.
  • the ultrasound can be detected with high sensitivity.
  • such ultrasound is hardly detected under the other two conditions; that is, the case in which the Bragg wavelength of the FBG 12 is located in the middle of the adjacent filter-transmittance peak wavelengths and the case in which the filter transmittance peak ⁇ i matches the Bragg wavelength ⁇ B of the FBG 12.
  • the Bragg wavelength of the FBG 12 when the Bragg wavelength of the FBG 12 is located in the middle of the adjacent filter-transmittance peak wavelengths, as can be seen from Fig. 3, there is caused almost no filter transmitted-light intensity associated with a change in the Bragg wavelength of the FBG 12.
  • the FBG 12 receives tension and the reflection characteristics are caused to shift toward the longer wavelength side, while the transmitted-light intensity in a transmission region existing on the longer wavelength side is increased, the transmitted-light intensity in a transmission region existing on the shorter wavelength side is decreased. Namely, changes of the transmitted-light intensities in the adjacent filter transmission regions cancel each other out.
  • the filter transmittance peak ⁇ i and the Bragg wavelength ⁇ B of the FBG 12 match with each other, the gradient of the change of the relationship between the reflectance and the wavelength near the Bragg wavelength is small. Thus, even when the Bragg wavelength fluctuates, a change in the filter transmitted-light intensity is small. For these reasons, under the above two conditions, the sensitivity of AE/ultrasound detection is decreased. However, it is assumed that the AE/ultrasound can be detected under conditions other than those two conditions, while the sensitivity varies depending on the positional relationship between the Bragg wavelength and the filter-transmittance peak wavelength.
  • Fig. 7 shows a basic structure of an AE/ultrasound detection system 2 according to a second embodiment.
  • a broadband light source 20 and two Fabry-Perot filters 25 and 26 are combined.
  • the AE/ultrasound detection system 2 is used for evaluating the soundness of an object-to-be-inspected 23, and it comprises: the broadband light source 20; an optical circulator 21; an FBG 22 (having been subjected to an apodization process); a Fabry-Perot filter (1) 25; a Fabry-Perot filter (2) 26; temperature controllers 27 and 28; a photoelectric converter (1) 29; a photoelectric converter (2) 30; and a data acquisition unit 31.
  • broadband light from the broadband light source 20 enters the FBG 22 via the optical circulator 21.
  • the reflected light from the FBG 22 enters the two Fabry-Perot filters 25 and 26 via the optical circulator 21 and a 1 ⁇ 2 coupler 24.
  • the FBG 22, and the Fabry-Perot filters 25 and 26 used herein are the same as those used in the first embodiment, and as shown in Fig. 9, the temperature controllers 27 and 28 attached to the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 make adjustments so that the transmittance peak wavelengths of the two Fabry-Perot filters are separated by FSR/4.
  • the transmitted light from the Fabry-Perot filters 25 and 26 is supplied to the photoelectric converters 29 and 30, respectively. In the photoelectric converters 29 and 30, the light is converted into an electrical output corresponding to the transmitted-light intensity.
  • the data acquisition unit 31 causes a display unit not shown in the figure to display or a recording device not shown in the figure to record the electrical output, as the AE/ultrasound detected by the FBG 22.
  • Fig. 8 shows a system for the experiment, and an ultrasound oscillator 32 and a uniaxial displacement stage 33 are provided in order to represent a pseudo strain placed on the object-to-be-inspected when conducting the experiment.
  • the other features are the same as those of Fig. 7. Namely, a portion of the optical fiber is attached to the ultrasound oscillator 32, a portion between the FBG 22 and the end of the optical fiber is attached to the uniaxial displacement stage 33, and the uniaxial displacement stage 33 is moved, so as to cause a strain to the object-to-be-inspected 23.
  • the system shown in Fig. 8 is used for the experiment, and in order to examine the influence of the relationship between the Bragg wavelength of the FBG 22 and the transmission peak wavelength of the Fabry-Perot filter on the sensitivity of ultrasound detection, the FBG 22 is provided with a strain, the Bragg wavelength is changed, and the ultrasound is then detected. As shown in Fig. 9, the Bragg wavelength of the FBG is fluctuated so that a relative wavelength between the Bragg wavelength of the FBG and the transmittance peak wavelength of the Fabry-Perot filter (1) falls within the range from -FSR/2 to 0. Fig.
  • Fig. 10 also shows theoretical sensitivity curves that can be expected based on Expression (1).
  • the response intensity obtained from the experiment using the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 corresponds to the tendency expected based on the theory very well. Further, a large response amplitude can be obtained through synthesis processing that adds and subtracts outputs from both of the filters. For example, when the relative wavelength is -3FSR/8 (-0.15 nm), the response outputs from the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 are as shown in Fig. 11.
  • 11 can be obtained by adding an output P1 from the photoelectric converter (1) 29 for measuring the intensity of the transmitted light from the Fabry-Perot filter (1) 25 and an output P2 from the photoelectric converter (2) 30 for measuring the intensity of the transmitted light from the Fabry-Perot filter (2) 26.
  • the data acquisition unit 31 of Fig. 8 performs such addition or subtraction on the outputs P1 and P2 from the photoelectric converter (1) 29 and the photoelectric converter (2) 30, and it allows the displaying/recording of the larger one of the response amplitudes as the AE/ultrasound received by the FBG 22.
  • Fig. 13 shows ideal FBG reflection characteristics for AE/ultrasound detection. It is assumed that, based on the systems according to the above first and second embodiments, if the FBG characteristics exhibited triangular reflection characteristics as shown in Fig. 13, it could be possible to realize constant AE/ultrasonic detection sensitivity, irrespective of the Bragg wavelength of the FBG. However, the creation of a FBG having such triangular reflection characteristics is practically impossible.
  • Fig. 14(a) for AE/ultrasound detection, it is desirable to use an FBG having reflection characteristics in which the reflectance is not saturated even in a wavelength region in which the reflectance reaches maximum.
  • an FBG having such reflectance as shown Fig. 14 (b); that is, the reflectance saturated in a wavelength region in which the reflectance reaches maximum is not desirable, since in such case, the detection sensitivity may reach zero upon AE/ultrasound detection.
  • the soundness of a structure can be monitored by attaching the FBG to a structure-to-be-inspected and then detecting the AE generated upon microscopic material destruction.
  • such technique can be applied for detecting defection using ultrasound, for example.
  • a broadband-wavelength light is caused to enter the FBG attached to an object-to-be-inspected, part of the reflected light (or the transmitted light) from the FBG is transmitted through a Fabry-Perot filter (or an AWG filter) having periodic transmission characteristics, and the intensity of the light transmitted through the filter is converted into an electric signal.
  • a Fabry-Perot filter or an AWG filter having periodic transmission characteristics, and the intensity of the light transmitted through the filter is converted into an electric signal.
  • the Fabry-Perot filter has an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG, AE/ultrasound detection can be made more reliably.
  • the filter-transmission peak wavelength is controlled (with the use of a temperature controller) so that it is equal to the wavelength at which the reflectance or transmittance of the FBG is decreased by half, the AE/ultrasound can be detected with high sensitivity.
  • broadband wavelength light is caused to enter the FGB attached to an object-to-be-inspected, the reflected light (or the transmitted light) from the FBG sensor is divided so as to produce two kinds of reflected light, part of the reflected light is transmitted through Fabry-Perot filters having periodic transmission characteristics (AWG filters may alternatively be used.
  • the transmittance peak wavelengths of the two filters are separated from each other by FSR/4), and the intensity of the transmitted light from each of the two filters is converted into an electrical signal.
  • the electrical signal corresponding to the intensity of the transmitted light from each of the filters is subjected to addition and subtraction processes, even when response changes depending on the AE/ultrasound are in phase or opposite phase with each other, a large response signal can be reliably obtained, and therefore, AE/ultrasound detection can be made reliably.

Abstract

There is provided a system always capable of detecting AE/ultrasound received by an FBG, even when the FBG receives a change in temperature or strain and the Bragg wavelength is fluctuated. In the AE/ultrasound detection system, the reflected light from the FBG is caused to enter a Fabry-Perot filter having an FSR equal to or greater than the reflection wavelength band of the FBG. A change in the intensity of the transmitted light corresponds to the AE/ultrasound received by the FBG. Alternatively, the reflected light from FBG is caused to enter two Fabry-Perot filters having an FSR equal to or greater than the reflection wavelength band of the FBG and having the filter-transmittance peak wavelengths different from each other by FSR/4. The intensity of the transmitted light from each of the two Fabry-Perot filters is converted into a voltage signal, and the individual signals are subjected to addition and subtraction processes. Thus, a signal having a large amplitude corresponding to the AE/ultrasound received by the FBG can be obtained.

Description

    BACKGROUND OF THE INVENTION 1. Field of the Invention
  • The present invention relates to an AE/ultrasound detection system. For example, it relates to a technique for detecting AE/ultrasound with the use of an FBG sensor, and to a system in which such technique is applied for evaluating the soundness of a structure.
  • 2. Background Art
  • In recent years, for the purpose of improving the reliability of a structure, it has been expected to establish a soundness evaluation apparatus. When the soundness of a structure is evaluated, it is very important to measure strain and to detect defection such as cracking. Strain has been often measured with the use of a resistive strain gauge utilizing change in electrical resistance associated with deformation of metal. Further, as a method for detecting defection such as cracking, the detection of elastic-wave emission (AE: acoustic emission) associated with occurrence of defection and a nondestructive inspection utilizing ultrasound are conducted.
  • Piezoelectric elements have been widely used as AE detection sensors and ultrasound detection sensors in a nondestructive inspection using ultrasound. However, such AE/ultrasound measurement using piezoelectric elements involves the following problems. Namely, since piezoelectric elements are influenced by electromagnetic interference, the AE/ultrasound measurement cannot be conducted in the atmosphere of electromagnetic waves. Also, since piezoelectric elements have narrowband response frequency characteristics, it is necessary to change the kind of piezoelectric elements in accordance with the frequency band of the AE/ultrasound to be detected.
  • In recent years, in order to solve the above problems of the AE/ultrasound detection using piezoelectric elements, AE/ultrasound detection using an FBG (Fiber Bragg Grating) sensor, a kind of optical fiber sensor, (which will be occasionally referred to simply as an "FBG" hereafter in the specification) has drawn attention. Conventionally-proposed AE/ultrasound detection systems using the FBG are divided roughly into two kinds, depending on the light source used. One kind is a system using a laser light source, as disclosed in JP Patent Publication (Kokai) No. 2005-326326 A . In this system, laser light whose oscillation wavelength is set at a wavelength at which the reflectance of the FBG is decreased by half is caused to enter the FBG. Upon entry of the light, since the intensity of the light reflected from the FBG varies depending on the AE/ultrasound received by the FBG, the AE/ultrasound can be detected. The other type is a system using a broadband light source, as disclosed in JP Patent Publication (Kokai) No. 2005-009937 A . In this system, broadband light including a Bragg wavelength, the central reflection wavelength of the FBG, is caused to enter the FBG, and the reflected light is transmitted to an optical filter having the transmission wavelength band approximately equal to the reflection wavelength band of the FBG. At this point, a portion of the transmission wavelength region of the optical filter needs to overlap the reflection wavelength region of the FBG. By utilizing such phenomenon; that is, the transmitted-light intensity or the reflected-light intensity of the optical filter changes depending on the AE/ultrasound received by the FBG, the AE/ultrasound can be detected.
  • However, the Bragg wavelength of the FBG fluctuates depending on the temperature and strain received by the FBG. For example, in the case of a FBG having a Bragg wavelength of 1550 nm generally used for evaluating the soundness of a structure, the Bragg wavelength varies by 10 pm for a temperature of 1°C with respect to the reflection wavelength band from 200 pm to 2000 pm, and the bragg wavelength also varies by 1.2 pm per micro strain. Thus, when the FBG receives a large change in temperature and strain, based on the system using a laser light source, there are cases in which the laser oscillation wavelength does not fall within the reflection wavelength region of the FBG. Similarly, based on the system using a broadband light source, there is a situation in which the transmission wavelength region of the optical filter does not cross the reflection wavelength region of the FBG. In such cases, the AE/ultrasound received by the FBG cannot be detected. Thus, it is necessary to control the laser oscillation wavelength or the optical-filter transmission wavelength in accordance with the fluctuation of the Bragg wavelength of the FBG. However, when the Bragg wavelength of the FBG fluctuates at high speed, such control cannot follow the change of the Bragg wavelength, and it is therefore conceivable that the AE/ultrasound cannot be detected. Particularly, since the AE generated upon destruction of a material is a phenomenon caused along with a large change of strain, a large fluctuation of the Bragg wavelength is caused upon occurrence of the AE. Thus, it is conceivable that the AE detection is very difficult with convention measurement systems.
  • In order to overcome the disadvantage, JP Patent Publication (Kokai) No. 2003-169801 A discloses a technique in which two thermally-coupled Bragg gratings made of the same material are used, so that the ultrasound received by the Bragg gratings can always be detected. In this technique, the Bragg gratings of the sensor and the filter that are thermally-coupled are synchronized upon receiving a temperature change, and the Bragg wavelengths are thus fluctuated.
  • SUMMARY OF THE INVENTION
  • However, based on the ultrasound detection disclosed in JP Patent Publication (Kokai) No. 2003-169801 A , when the sensor portion receives strain change, there may be a situation where ultrasound cannot be detected since the Bragg wavelengths of the sensor portion and the filter do not fluctuate in synchronization with each other.
  • The present invention has been made in view of such circumstances, and therefore it provides a system always capable of detecting the AE/ultrasound received by the FBG, even when the Bragg wavelength of the FBG is fluctuated upon receiving a change in temperature or strain.
  • In order to solve the above problems, in the AE/ultrasound detection system according to the present invention, reflected light from the FBG is caused to enter a Fabry-Perot filter having an FSR equal to or greater than the reflection wavelength band of the FBG. A change of the intensity of the transmitted light from the filter corresponds to the AE/ultrasound received by the FBG.
  • Further, in the AE/ultrasound detection system, the reflected light from the FBG is caused to enter two Fabry-Perot filters, each FSR thereof being equal to or greater than the reflection wavelength band of the FBG and the transmittance peak wavelengths thereof differ by FSR/4. The transmitted-light intensity of each of the two Fabry-Perot filters is converted into a voltage signal, and the individual signals are then subjected to addition and subtraction processes. In this way, a signal having a large amplitude corresponding to the AE/ultrasound received by the FBG can be obtained. A signal having the larger amplitude of the two signals subjected to the addition and subtraction processes corresponds to the AE/ultrasound received by the FBG.
  • It is preferable that an apodized FBG whose reflection characteristics exhibit no side lobes be used as the FBG. Further, for the detection of the AE/ultrasound, it is desirable to use an FBG whose reflection characteristics are not saturated; that is, an FBG that does not have a flat reflectance-wavelength relationship in the wavelength range in which the reflectance of the FBG reaches maximum. An FBG having a triangular reflectance-wavelength relationship is ideal for the detection of the AE/ultrasound.
  • Namely, the AE/ultrasound detection system according to the present invention comprises: a broadband light source for emitting broadband-wavelength light; an FBG sensor that is attached to an object-to-be-inspected and that the broadband-wavelength light enters; a filter having periodic transmission characteristics so as to transmit part of the reflected light or transmitted light from the FBG sensor; and photoelectric conversion means for converting the intensity of the transmitted light from the filter into an electric signal. Further, the broadband light source emits broadband light including the Bragg wavelength of the FBG, and the filter has an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG. Furthermore, it is preferable that the transmittance peak wavelength of the filter be equal to a wavelength at which the reflectance or transmittance of the FBG is decreased by half.
  • Further, the AE/ultrasound detection system according to the present invention comprises: a broadband light source for emitting broadband-wavelength light; an FBG sensor that is attached to an object-to-be-inspected and that the broadband-wavelength light enters; light dividing means that divides reflected light or transmitted light from the FBG sensor so as to produce a first reflected light or transmitted light and a second reflected light or transmitted light; a first filter having periodic transmission characteristics so as to transmit part of the first reflected light or transmitted light; a second filter having periodic transmission characteristics and having its transmittance peak wavelength separated from that of the first filter by FSR/4 so as to transmit part of the second reflected light or transmitted light; and photoelectric conversion means for converting the intensity of the transmitted light from each of the first and second filters into an electric signal. The system further comprises processing means for performing addition and subtraction processes on the electric signal that is obtained by the conversion means and that corresponds to the intensity of the transmitted light from each of the filters. In the system, it is preferable that the broadband light source emit broadband light including the Bragg wavelength of the FBG and that the first and second filters have an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG.
  • Preferably, in the AE/ultrasound detection system according to the present invention, the characteristics of the reflected light or transmitted light from the FBG sensor show those of an FBG on which an apodization process has been performed, thereby exhibiting no side lobes, and the characteristics are not saturated in a wavelength region in which the reflectance reaches maximum.
  • Further, in the above system, it is preferable that the filter be a Fabry-Perot filter or an AWG filter.
  • Still further, the material monitoring apparatus of the present invention comprises any one of the above AE/ultrasound detection systems, and it finds microscopic material destruction by detecting acoustic emission generated upon destruction of a material.
  • Furthermore, the nondestructive inspection apparatus of the present invention comprises any one of the above AE/ultrasound detection systems, and it conducts nondestructive inspection on a material or a structure with the use of ultrasound.
  • The present invention will be clarified hereafter in more detail by way of the description of preferred embodiments and the attached drawings.
  • Effects of the Invention
  • In accordance with the present invention, AE/ultrasound can be detected with the use of an FBG sensor even in a situation where temperature/strain fluctuates at high speed, and therefore, a highly-reliable structure soundness evaluation system utilizing the AE/ultrasound can be provided.
  • BRIEF DESCRIPTION OF THE DRAWINGS
    • Fig. 1 schematically shows the structure of an AE/ultrasound detection system according to an embodiment of the present invention.
    • Fig. 2 schematically shows the structure of a system used in AE/ultrasound measurement experiment (1).
    • Fig. 3 shows optical characteristics of an FBG 12 and a Fabry-Perot filter.
    • Fig. 4 shows transmission characteristics of the Fabry-Perot filter.
    • Fig. 5 shows the relationship between the reflected-light intensity of the FBG and the transmitted-light intensity of the Fabry-Perot filter: Fig. 5(a) shows the relationship where a filter-transmittance peak wavelength matches a wavelength at which the reflectance of the FBG is decreased by half; Fig. 5(b) shows the relationship where the Bragg wavelength of the FBG is located in the middle of adjacent filter-transmittance peak wavelengths; and Fig. 5(c) shows the relationship where the Bragg wavelength of the FBG matches the filter-transmittance peak wavelength.
    • Fig. 6 shows ultrasound response signals when the relationship between the Bragg wavelength of the FBG and the filter-transmittance peak wavelength is changed.
    • Fig. 7 schematically shows the structure of an AE/ultrasound detection system according to a second embodiment of the present invention.
    • Fig. 8 schematically shows a system used in AE/ultrasound measurement experiment (2).
    • Fig. 9 shows the relationship between the transmittance peak wavelengths of two Fabry-Perot filters and the relationship between such relationship and the reflectance of the FBG.
    • Fig. 10 shows the influence on the intensity of a response amplitude due to the difference between the transmittance peak wavelength of a Fabry-Perot filter (1) 25 and the Bragg wavelength.
    • Fig. 11 shows response waveforms and a synthesized signal detected when a relative wavelength is -0.15 mm (-3FSR/8).
    • Fig. 12 shows the relationship between the reflected-light intensity of the FBG and the transmittance peak wavelengths of two filters: Fig. 12(a) shows the positional relationship between the reflected-light intensity distribution of the FBG and the transmittance peak wavelengths of the two filters when the relative wavelength is -3FSR/8; and Fig. 12(b) shows the positional relationship between the reflected-light intensity distribution of the FBG and the transmittance peak wavelengths of the two filters when the relative wavelength is -FSR/8.
    • Fig. 13 shows ideal reflection characteristics of the FBG for AE/ultrasound detection.
    • Fig. 14 shows a desirable shape of reflection characteristics and an undesirable shape of reflection characteristics for AE/ultrasound detection.
    • Fig. 15 schematically shows the structure of an AE/ultrasound detection system with the use of the transmitted light from the FBG.
    • Fig. 16 schematically shows the structure of an AE/ultrasound detection system with the use of AWGs having a number N of output terminals, instead of the Fabry-Perot filter.
    • Fig. 17 shows diagrams for explaining the relationship between the reflection wavelength band of the FBG and the FSR of the Fabry-Perot filter.
    DESCRIPTION OF PREFERRED EMBODIMENTS OF THE INVENTION
  • Embodiments of the present invention will be described hereafter with reference to the attached drawings.
  • <First Embodiment>
  • Fig. 1 shows a basic structure of an AE/ultrasound detection system according to a first embodiment of the present invention. An AE/ultrasound detection system 1 shown in Fig. 1 adopts a structure in which a broadband light source and one Fabry-Perot filter are combined.
  • As shown in Fig. 1, the AE/ultrasound detection system 1 is used for evaluating the soundness of an object-to-be-inspected 13, and it comprises: a broadband light source 10; an optical circulator 11; an FBG 12 (having been subjected to an apodization process); a Fabry-Perot filter 14; a photoelectric converter 15; and a data acquisition unit 16.
  • Referring to Fig. 1, broadband light from the broadband light source 10 enters the FBG 12 via the optical circulator 11. The FBG refers to a sensor having a diffraction grating structure in which the refraction index of the core portion of an optical fiber is periodically changed. When light enters the FBG, a wavelength component referred to as a Bragg wavelength is reflected by the FBG and the remaining components are allowed to pass therethrough. A shift amount of this Bragg wavelength changes depending on strain or temperature. Further, the FBG 12 has been previously subjected to an apodization process, and therefore, the distribution curve of the light reflected thereby exhibits a Gaussian distribution.
  • The reflected light from the FBG 12 enters the Fabry-Perot filter 14 via the optical circulator 11. The Fabry-Perot filter 14 does not transmit all the light incident thereon but it transmits only the light having a predetermined wavelength. Next, the transmitted light is inputted to the photoelectric converter 15, which converts the light into an electrical output corresponding to the light intensity. The data acquisition unit 16 causes a display unit not shown in the figure to display or a recording device not shown in the figure to record the electrical output, as the AE/ultrasound detected by the FBG 12.
  • Next, an AE/ultrasound measurement experiment will be described so that the operation of the AE/ultrasound detection system 1 of the present embodiment will be understood more clearly. Fig. 2 shows a system for the experiment, and an ultrasound oscillator 17 and a uniaxial displacement stage 18 are provided in order to represent a pseudo strain placed on the object-to-be-inspected 13 when conducting the experiment. The other features are the same as those of Fig. 1.
  • Fig. 3 shows optical characteristics of the FBG 12 and the Fabry-Perot filter 14. Herein, since the FBG 12 has been subjected to an apodization process, the reflection characteristics thereof show no side lobes and the reflection wavelength band thereof is made 0.34 nm, as shown in the figure. Further, regarding the optical characteristics of the Fabry-Perot filter 14, the filter has a FSR of 0.4 nm, which is slightly broader than the reflection wavelength band of the optical characteristics of the FBG 12, and the full width at half maximum transmission is 40 pm. As shown in Fig. 4, the transmission characteristics of the Fabry-Perot filter 14 are characterized in that the transmission region thereof periodically appears for each FSR (Free Spectral Range) frequency. Note that it would be ideal if the reflection wavelength band of the FBG 12 and the FSR of the Fabry-Perot filter 14 were equal to each other. However, as long as the FSR is equal to or greater than the reflection wavelength band, the combination of the FBG 12 and the Fabry-Perot filter 14 functions as a sensor. Namely, as shown in Fig. 17, when the reflection wavelength band > the FSR (Fig. 17(a)), two or more filter transmission regions exist in the reflection wavelength band of the FBG 12. Under such condition, an output from the filter will be a response signal that does not correspond to the waveform of the ultrasound or AE signal received by the FBG 12. Thus, in this case, the combination of the FBG 12 and the filter 14 does not function as a sensor. In contrast, when the reflection wavelength ≦ the FSR (Fig. 17(b) and (c)), the filter outputs a response signal equal to the waveform of the ultrasound or AE signal received by the FBG 12, and thus the combination of the FBG 12 and the filter 14 functions as a sensor. Namely, when the reflection wavelength band < the FSR (Fig. 17(b)), the dead zone (the region in which sensor sensitivity is low) of the sensor output expands. In Fig. 17(b), when the reflection wavelength of the FBG 12 falls within the range indicated by the arrow, the sensor sensitivity is low, and when the reflection wavelength band = the FSR shown in Fig. 17(c), the dead zone of the sensor output is caused to be minimized.
  • Next, referring to Fig. 5, the influence of the relationship between the Bragg wavelength of the FBG 12 and the transmittance peak wavelength of the Fabry-Perot filter 14 on the sensitivity of ultrasound detection will be described. In Fig. 2, the uniaxial displacement stage 18 is moved so that the FBG 12 is provided with strain, and the Bragg wavelength is changed, so as to detect the ultrasound propagated through the optical fiber from the ultrasound oscillator 17. Herein, three states; that is, a state in which filter-transmittance peak wavelength λi matches wavelength λ-3dB at which the reflectance of the FBG is decreased by half (Fig. 5(a)), a state in which the Bragg wavelength of the FBG is located in the middle of adjacent filter-transmittance peak wavelengths (Fig. 5(b)), and a state in which the filter-transmittance peak wavelength λi matches the Bragg wavelength λB of the FBG (Fig. 5(c)), are created, and the ultrasound generated by the ultrasound oscillator is detected by the FBG 12.
  • Fig. 6 shows the individual response signals in the above three states and it also shows an excitation signal inputted to the ultrasound oscillator. Namely, in Fig. 6, the photoelectric converter 15 converts the filter-transmitted-light intensity corresponding to the area surrounded by the Fabry-Perot filter transmitted-light intensity curve in Fig. 5(a) to (c) into a voltage signal, and the signal intensity corresponds to the ultrasound (elastic wave) detected by the FBG 12. It is seen from Fig. 6 that, when the filter-transmittance peak wavelength λi is located at the wavelength λ-3dB at which the reflectance of the FBG 12 is decreased by half, the ultrasound is detected with high sensitivity. Since the gradient of the change of the relationship between the reflectance and the wavelength is large and the filter-transmitted-light intensity is sufficient at the wavelength at which the reflectance of the FBG 12 is decreased by half, the ultrasound can be detected with high sensitivity. However, such ultrasound is hardly detected under the other two conditions; that is, the case in which the Bragg wavelength of the FBG 12 is located in the middle of the adjacent filter-transmittance peak wavelengths and the case in which the filter transmittance peak λi matches the Bragg wavelength λB of the FBG 12. This is because, in the case of Fig. 5(b) and (c), there is almost no change in the integration value (area) of the Fabry-Perot filter transmitted-light intensity even when the intensity distribution of the light reflected from the FBG is somewhat displaced due to ultrasound.
  • Considering the present embodiment more specifically, when the Bragg wavelength of the FBG 12 is located in the middle of the adjacent filter-transmittance peak wavelengths, as can be seen from Fig. 3, there is caused almost no filter transmitted-light intensity associated with a change in the Bragg wavelength of the FBG 12. For example, when the FBG 12 receives tension and the reflection characteristics are caused to shift toward the longer wavelength side, while the transmitted-light intensity in a transmission region existing on the longer wavelength side is increased, the transmitted-light intensity in a transmission region existing on the shorter wavelength side is decreased. Namely, changes of the transmitted-light intensities in the adjacent filter transmission regions cancel each other out. Further, when the filter transmittance peak λi and the Bragg wavelength λB of the FBG 12 match with each other, the gradient of the change of the relationship between the reflectance and the wavelength near the Bragg wavelength is small. Thus, even when the Bragg wavelength fluctuates, a change in the filter transmitted-light intensity is small. For these reasons, under the above two conditions, the sensitivity of AE/ultrasound detection is decreased. However, it is assumed that the AE/ultrasound can be detected under conditions other than those two conditions, while the sensitivity varies depending on the positional relationship between the Bragg wavelength and the filter-transmittance peak wavelength.
  • <Second Embodiment>
  • Fig. 7 shows a basic structure of an AE/ultrasound detection system 2 according to a second embodiment. In the AE/ultrasound detection system 2 of the second embodiment, a broadband light source 20 and two Fabry-Perot filters 25 and 26 are combined.
  • As shown in Fig. 7, the AE/ultrasound detection system 2 is used for evaluating the soundness of an object-to-be-inspected 23, and it comprises: the broadband light source 20; an optical circulator 21; an FBG 22 (having been subjected to an apodization process); a Fabry-Perot filter (1) 25; a Fabry-Perot filter (2) 26; temperature controllers 27 and 28; a photoelectric converter (1) 29; a photoelectric converter (2) 30; and a data acquisition unit 31.
  • In Fig. 7, broadband light from the broadband light source 20 enters the FBG 22 via the optical circulator 21. The reflected light from the FBG 22 enters the two Fabry-Perot filters 25 and 26 via the optical circulator 21 and a 1×2 coupler 24. The FBG 22, and the Fabry-Perot filters 25 and 26 used herein are the same as those used in the first embodiment, and as shown in Fig. 9, the temperature controllers 27 and 28 attached to the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 make adjustments so that the transmittance peak wavelengths of the two Fabry-Perot filters are separated by FSR/4. While the transmission wavelengths of the Fabry-Perot filters 25 and 26 vary upon receiving the influence of temperature, commercially available Fabry-Perot filters are adapted so that the transmittance wavelengths thereof can be controlled by temperature controllers. Further, by maintaining the temperatures of the Fabry-Perot filters 25 and 26 to be constant with the use of the temperature controllers 27 and 28, it becomes possible to maintain the filter-transmittance peak wavelengths to be constant. The transmitted light from the Fabry-Perot filters 25 and 26 is supplied to the photoelectric converters 29 and 30, respectively. In the photoelectric converters 29 and 30, the light is converted into an electrical output corresponding to the transmitted-light intensity. The data acquisition unit 31 causes a display unit not shown in the figure to display or a recording device not shown in the figure to record the electrical output, as the AE/ultrasound detected by the FBG 22.
  • Next, an AE/ultrasound measurement experiment will be described so that the operation of the AE/ultrasound detection system 2 of the present embodiment will be understood more clearly. Fig. 8 shows a system for the experiment, and an ultrasound oscillator 32 and a uniaxial displacement stage 33 are provided in order to represent a pseudo strain placed on the object-to-be-inspected when conducting the experiment. The other features are the same as those of Fig. 7. Namely, a portion of the optical fiber is attached to the ultrasound oscillator 32, a portion between the FBG 22 and the end of the optical fiber is attached to the uniaxial displacement stage 33, and the uniaxial displacement stage 33 is moved, so as to cause a strain to the object-to-be-inspected 23.
  • In this experiment, the system shown in Fig. 8 is used for the experiment, and in order to examine the influence of the relationship between the Bragg wavelength of the FBG 22 and the transmission peak wavelength of the Fabry-Perot filter on the sensitivity of ultrasound detection, the FBG 22 is provided with a strain, the Bragg wavelength is changed, and the ultrasound is then detected. As shown in Fig. 9, the Bragg wavelength of the FBG is fluctuated so that a relative wavelength between the Bragg wavelength of the FBG and the transmittance peak wavelength of the Fabry-Perot filter (1) falls within the range from -FSR/2 to 0. Fig. 10 shows the intensity of the amplitude of the ultrasound response measured based on the intensity of the transmitted light from each of the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26, when the Bragg wavelength of the FBG 22 is fluctuated. Further, the sensitivity of the ultrasound response is represented as Expression (1) in view of the relationship between reflectance R and wavelength λ of the FBG. Sensitivity = d R d λ 2
    Figure imgb0001
  • Note that Fig. 10 also shows theoretical sensitivity curves that can be expected based on Expression (1).
  • The response intensity obtained from the experiment using the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 corresponds to the tendency expected based on the theory very well. Further, a large response amplitude can be obtained through synthesis processing that adds and subtracts outputs from both of the filters. For example, when the relative wavelength is -3FSR/8 (-0.15 nm), the response outputs from the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 are as shown in Fig. 11.
  • As shown in Fig. 12(a), when the relative wavelength between the Fabry-Perot filter (1) 25 and the Bragg wavelength of the FBG 22 falls in the range of-FSR/2 to -FSR/4, the peak wavelengths of the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 exist in the left half of the reflection wavelength region of the FBG, and the response changes depending on the AE/ultrasound from both of the filters are in phase with each other. Thus, a large response signal as shown in Fig. 11 can be obtained by adding an output P1 from the photoelectric converter (1) 29 for measuring the intensity of the transmitted light from the Fabry-Perot filter (1) 25 and an output P2 from the photoelectric converter (2) 30 for measuring the intensity of the transmitted light from the Fabry-Perot filter (2) 26.
  • Further, when the relative wavelength of the Fabry-Perot filter (1) 25 falls in the range of -FSR/4 to 0, as shown in Fig. 12(b), since the peak wavelengths of the Fabry-Perot filter (1) 25 and the Fabry-Perot filter (2) 26 are separated on the left side and the right side of the Bragg wavelength of the FBG 22, the response changes of both of the filters are in opposite phase with each other. Thus, a large response signal can be obtained by subtracting the output P1 and the output P2.
  • The data acquisition unit 31 of Fig. 8 performs such addition or subtraction on the outputs P1 and P2 from the photoelectric converter (1) 29 and the photoelectric converter (2) 30, and it allows the displaying/recording of the larger one of the response amplitudes as the AE/ultrasound received by the FBG 22.
  • <Regarding the FBG Reflection Characteristics>
  • Fig. 13 shows ideal FBG reflection characteristics for AE/ultrasound detection. It is assumed that, based on the systems according to the above first and second embodiments, if the FBG characteristics exhibited triangular reflection characteristics as shown in Fig. 13, it could be possible to realize constant AE/ultrasonic detection sensitivity, irrespective of the Bragg wavelength of the FBG. However, the creation of a FBG having such triangular reflection characteristics is practically impossible.
  • Consequently, as shown in Fig. 14(a), for AE/ultrasound detection, it is desirable to use an FBG having reflection characteristics in which the reflectance is not saturated even in a wavelength region in which the reflectance reaches maximum. On the other hand, an FBG having such reflectance as shown Fig. 14 (b); that is, the reflectance saturated in a wavelength region in which the reflectance reaches maximum, is not desirable, since in such case, the detection sensitivity may reach zero upon AE/ultrasound detection.
  • <Other Embodiments>
    • (1) While in the above first and second embodiments, the reflected light from the FBG is caused to enter the Fabry-Perot filter, it is conceivable that even if the transmitted light from the FBG is caused to enter the Fabry-Perot filter in such manner as shown in Fig. 15, the AE/ultrasound detection is possible under the same conditions.
    • (2) While in the above first and second embodiments, a Fabry-Perot filter is used as an optical filter having periodic transmission characteristics, similarly, it is conceivable that, if a system as shown in Fig. 16 is structured with the use of an AWG (Arrayed-Waveguide Grating) having periodic transmission characteristics, the AE/ultrasound detection can be similarly made. In such case, the transmission characteristics of the AWG are made the same as those in the system using the Fabry-Perot filter.
  • With the use of the AE/ultrasound measuring technique using the FBG as described above, it is conceivable that the soundness of a structure can be monitored by attaching the FBG to a structure-to-be-inspected and then detecting the AE generated upon microscopic material destruction. Alternatively, such technique can be applied for detecting defection using ultrasound, for example.
  • <Effects of the Embodiments>
  • In accordance with one embodiment of the present invention, a broadband-wavelength light is caused to enter the FBG attached to an object-to-be-inspected, part of the reflected light (or the transmitted light) from the FBG is transmitted through a Fabry-Perot filter (or an AWG filter) having periodic transmission characteristics, and the intensity of the light transmitted through the filter is converted into an electric signal. Thus, even when the Bragg wavelength of the FBG is fluctuated due to temperature or strain, the AE/ultrasound received by the FBG can be detected.
  • Since the Fabry-Perot filter has an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG, AE/ultrasound detection can be made more reliably.
  • Further, since the filter-transmission peak wavelength is controlled (with the use of a temperature controller) so that it is equal to the wavelength at which the reflectance or transmittance of the FBG is decreased by half, the AE/ultrasound can be detected with high sensitivity.
  • In accordance with another embodiment of the present invention, broadband wavelength light is caused to enter the FGB attached to an object-to-be-inspected, the reflected light (or the transmitted light) from the FBG sensor is divided so as to produce two kinds of reflected light, part of the reflected light is transmitted through Fabry-Perot filters having periodic transmission characteristics (AWG filters may alternatively be used. The transmittance peak wavelengths of the two filters are separated from each other by FSR/4), and the intensity of the transmitted light from each of the two filters is converted into an electrical signal. Thus, even when the Bragg wavelength of the FBG is fluctuated due to temperature and strain, the AE/ultrasound received by the FBG can be detected. Further, since the electrical signal corresponding to the intensity of the transmitted light from each of the filters is subjected to addition and subtraction processes, even when response changes depending on the AE/ultrasound are in phase or opposite phase with each other, a large response signal can be reliably obtained, and therefore, AE/ultrasound detection can be made reliably.
  • While embodiments of the present invention have been described above, the present invention is not limited thereto. Needless to say, any structural modification, addition, or substitution is possible, without departing from the essential scope of the present invention.

Claims (11)

  1. An AE/ultrasound detection system comprising:
    a broadband light source for emitting broadband-wavelength light;
    an FBG sensor that is attached to an object-to-be-inspected and that the broadband-wavelength light enters;
    a filter having periodic transmission characteristics for transmitting part of the reflected light or transmitted light from the FBG sensor; and
    photoelectric conversion means for converting the intensity of the transmitted light from the filter into an electric signal.
  2. The AE/ultrasound detection system according to claim 1, wherein the broadband light source emits broadband light including the Bragg wavelength of the FBG sensor, and the filter has an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG sensor.
  3. The AE/ultrasound detection system according to claim 1 or 2, wherein the transmittance peak wavelength of the filter is equal to a wavelength at which the reflectance or transmittance of the FBG sensor is decreased by half.
  4. An AE/ultrasound detection system comprising:
    a broadband light source for emitting broadband-wavelength light;
    an FBG sensor that is attached to an object-to-be-inspected and that the broadband-wavelength light enters;
    light dividing means that divides the reflected light or transmitted light from the FBG sensor so as to produce a first reflected light or transmitted light and a second reflected light or transmitted light;
    a first filter having periodic transmission characteristics for transmitting part of the first reflected light or transmitted light;
    a second filter having periodic transmission characteristics and having the transmittance peak wavelength separated from that of the first filter by FSR/4, for transmitting part of the second reflected light or transmitted light; and
    photoelectric conversion means for converting the intensity of the transmitted light from each of the first and second filters into an electric signal.
  5. The AE/ultrasound detection system according to claim 4, further comprising processing means for performing addition and subtraction processes on the electric signal that is obtained by the conversion means and that corresponds to the intensity of the transmitted light from each of the filters.
  6. The AE/ultrasound detection system according to claim 1, wherein the broadband light source emits broadband light including the Bragg wavelength of the FBG sensor, and the first and second filters have an FSR equal to or greater than the reflection wavelength band or transmission wavelength band of the FBG.
  7. The AE/ultrasound detection system according to any one of claims 1 to 6, wherein an apodization process is conducted on the FBG sensor, the reflected-light or transmitted-light characteristics of the FBG sensor has no side lobes, and the characteristics are not saturated in a wavelength region in which the reflectance reaches maximum.
  8. The AE/ultrasound detection system according to any one of claims 1 to 7, wherein the filter is a Fabry-Perot filter.
  9. The AE/ultrasound detection system according to any one of claims 1 to 7, wherein the filter is an AWG filter.
  10. A material monitoring apparatus comprising the AE/ultrasound detection system according to any one of claims 1 to 9, for finding microscopic material destruction by detecting acoustic emission generated upon material destruction.
  11. A nondestructive inspection apparatus comprising the AE/ultrasound detection system according to any one of claims 1 to 9, for conducting nondestructive inspection on a material or a structure with the use of ultrasound.
EP07016145A 2006-08-18 2007-08-17 AE/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped the system Withdrawn EP1890123A3 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006223176A JP5030081B2 (en) 2006-08-18 2006-08-18 AE / ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus provided with the same

Publications (2)

Publication Number Publication Date
EP1890123A2 true EP1890123A2 (en) 2008-02-20
EP1890123A3 EP1890123A3 (en) 2010-10-20

Family

ID=38779020

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07016145A Withdrawn EP1890123A3 (en) 2006-08-18 2007-08-17 AE/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped the system

Country Status (3)

Country Link
US (1) US7719689B2 (en)
EP (1) EP1890123A3 (en)
JP (1) JP5030081B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113965A1 (en) * 2015-12-28 2017-07-06 天津大学 High-resolution polarized low-coherence interferometric pressure measurement device and method
WO2018000809A1 (en) * 2016-06-27 2018-01-04 河海大学 Sensing optic-fibre acoustic emission integrated perception system and method for monitoring safety of structural body
CN108957575A (en) * 2018-07-25 2018-12-07 苏州浪潮智能软件有限公司 A kind of human body sensing device and its application method
WO2021028794A1 (en) * 2019-08-14 2021-02-18 Freni Brembo S.P.A. Method and system for interrogating an optical fiber sensor of the fiber bragg grating type, using a tunable optical bandpass filter

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5154688B2 (en) * 2008-04-11 2013-02-27 グーグル・インコーポレーテッド Method and apparatus for suppressing amplitude modulation of an optical signal in an external cavity laser
US8234924B2 (en) * 2008-07-17 2012-08-07 Optech Ventures, Llc Apparatus and method for damage location and identification in structures
WO2011088393A2 (en) * 2010-01-15 2011-07-21 University Of Utah Research Foundation Ultrasonic temperature measurement device
JP5586009B2 (en) * 2010-01-22 2014-09-10 独立行政法人産業技術総合研究所 Vibration detection system, apparatus using the system, and vibration detection method
JP5586011B2 (en) 2010-03-18 2014-09-10 独立行政法人産業技術総合研究所 FBG vibration detection system, apparatus using the system, and vibration detection method
JP5493175B2 (en) * 2010-08-11 2014-05-14 株式会社Ihi検査計測 AE measurement method and apparatus using optical fiber sensor using broadband light
WO2012103903A1 (en) 2011-02-04 2012-08-09 Helmholtz Zentrum München Deutsches Forschungszentrum Für Gesundheit Und Umwelt (Gmbh) Ultrasound detector and detecting device for optoacoustic or thermoacoustic imaging
CN103959043B (en) * 2011-05-31 2016-11-02 光学实验室成像公司 Multi-mode imaging system, equipment and method
CN102419348B (en) * 2011-08-19 2013-05-08 北京航空航天大学 Acoustic emission signal power type nondestructive detecting method based on fiber Bragg grating
US8939909B2 (en) 2011-10-28 2015-01-27 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound imaging
CN102680263B (en) * 2012-05-17 2015-05-20 天津大学 Combined parameter monitoring system
JP6159095B2 (en) 2013-02-05 2017-07-05 株式会社Subaru Displacement measuring device and displacement measuring method
JP6145344B2 (en) * 2013-07-18 2017-06-07 株式会社Ihi検査計測 Impact detection method and detection apparatus
US9844359B2 (en) 2013-09-13 2017-12-19 Decision Sciences Medical Company, LLC Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US10743838B2 (en) 2015-02-25 2020-08-18 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
CA3001315C (en) 2015-10-08 2023-12-19 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
WO2017199542A1 (en) 2016-05-17 2017-11-23 株式会社東芝 Structure assessment system, structure assessment device and structure assessment method
US10697825B2 (en) 2017-07-12 2020-06-30 Fbs, Inc. Omnidirectional optical fiber Bragg gratings for ultrasonic guided wave sensing and associate source location methods
JP7131967B2 (en) * 2018-05-30 2022-09-06 株式会社Subaru Optical inspection system, optical inspection method, and aircraft structure
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
EP4243696A1 (en) 2020-11-13 2023-09-20 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object
CN114136485A (en) * 2021-11-30 2022-03-04 哈尔滨理工大学 Current and temperature sensor based on FP cascade FBG structure
CN114136486A (en) * 2021-11-30 2022-03-04 哈尔滨理工大学 Magnetic field and temperature sensor based on FP cascade FBG structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319435A (en) * 1991-09-04 1994-06-07 Melle Serge M Method and apparatus for measuring the wavelength of spectrally narrow optical signals
US5397891A (en) * 1992-10-20 1995-03-14 Mcdonnell Douglas Corporation Sensor systems employing optical fiber gratings
US5493390A (en) * 1993-09-06 1996-02-20 Finmeccanica S.P.A.-Ramo Aziendale Alenia Integrated optical instrumentation for the diagnostics of parts by embedded or surface attached optical sensors
US5838437A (en) * 1997-04-09 1998-11-17 Micron Optics, Inc. Reference system for optical devices including optical scanners and spectrum analyzers
EP1422494A1 (en) * 2002-11-25 2004-05-26 National Institute of Advanced Industrial Science and Technology Rapid fiber Bragg grating ( FBG ) strain sensor with reflecting/transmitting filter for acoustic emission detection

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360272A (en) * 1980-03-20 1982-11-23 Optelecom, Inc. Fiber optic energy sensor and optical demodulation system and methods of making same
JP2002310729A (en) * 2001-04-09 2002-10-23 Hitachi Cable Ltd Method and instrument for distribution type physical quantity measurement
JP3957276B2 (en) 2001-05-14 2007-08-15 富士フイルム株式会社 Ultrasonic receiver
JP2004163155A (en) * 2002-11-11 2004-06-10 Fuji Electric Systems Co Ltd Wavelength-measuring apparatus
JP3944578B2 (en) 2003-06-17 2007-07-11 独立行政法人産業技術総合研究所 Strain and AE measuring device using optical fiber sensor
JP2005326326A (en) * 2004-05-17 2005-11-24 National Institute Of Advanced Industrial & Technology Strain measuring and ultrasound/ae detecting apparatus using optical fiber sensor
US20080106745A1 (en) * 2006-08-31 2008-05-08 Haber Todd C Method and apparatus for high frequency optical sensor interrogation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5319435A (en) * 1991-09-04 1994-06-07 Melle Serge M Method and apparatus for measuring the wavelength of spectrally narrow optical signals
US5397891A (en) * 1992-10-20 1995-03-14 Mcdonnell Douglas Corporation Sensor systems employing optical fiber gratings
US5493390A (en) * 1993-09-06 1996-02-20 Finmeccanica S.P.A.-Ramo Aziendale Alenia Integrated optical instrumentation for the diagnostics of parts by embedded or surface attached optical sensors
US5838437A (en) * 1997-04-09 1998-11-17 Micron Optics, Inc. Reference system for optical devices including optical scanners and spectrum analyzers
EP1422494A1 (en) * 2002-11-25 2004-05-26 National Institute of Advanced Industrial Science and Technology Rapid fiber Bragg grating ( FBG ) strain sensor with reflecting/transmitting filter for acoustic emission detection

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017113965A1 (en) * 2015-12-28 2017-07-06 天津大学 High-resolution polarized low-coherence interferometric pressure measurement device and method
WO2018000809A1 (en) * 2016-06-27 2018-01-04 河海大学 Sensing optic-fibre acoustic emission integrated perception system and method for monitoring safety of structural body
GB2565743A (en) * 2016-06-27 2019-02-20 Univ Hohai Sensing optic-fibre acoustic emission integrated perception system and method for monitoring safety of structural body
GB2565743B (en) * 2016-06-27 2021-10-27 Univ Hohai Sensing optical fiber acoustic emission integrated sensing system and method for monitoring safety of structure
CN108957575A (en) * 2018-07-25 2018-12-07 苏州浪潮智能软件有限公司 A kind of human body sensing device and its application method
WO2021028794A1 (en) * 2019-08-14 2021-02-18 Freni Brembo S.P.A. Method and system for interrogating an optical fiber sensor of the fiber bragg grating type, using a tunable optical bandpass filter

Also Published As

Publication number Publication date
US20080043243A1 (en) 2008-02-21
US7719689B2 (en) 2010-05-18
EP1890123A3 (en) 2010-10-20
JP5030081B2 (en) 2012-09-19
JP2008046036A (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US7719689B2 (en) AE/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped the system
US9146095B2 (en) FBG vibration detection system, apparatus and vibration detection method using the system
US5945666A (en) Hybrid fiber bragg grating/long period fiber grating sensor for strain/temperature discrimination
EP3483562B1 (en) Distributed optical fibre sensor
EP1756527B1 (en) Direct measurement of brillouin frequency in distributed optical sensing systems
US7282698B2 (en) System and method for monitoring a well
JP3944578B2 (en) Strain and AE measuring device using optical fiber sensor
EP1506373B1 (en) Fibre-optic interferometric remote sensor
US8922789B2 (en) Displacement measuring device and displacement measuring method
EP2696182A1 (en) Optical sensor and method for measuring the pressure of a fluid
CN110440838B (en) Multi-parameter optical fiber sensing instrument and sensing method based on multi-core optical fiber
EP2980537B1 (en) Multi-peak reference grating
CN210089716U (en) Multi-parameter synchronous sensing acquisition instrument based on multi-core optical fiber sensing
EP2795260B1 (en) Fiber sensing system based on a bragg grating and optical time domain reflectometry
US10571321B2 (en) Device for measuring fluid parameters, a method for measuring fluid parameters and a computer program product
EP1405043B1 (en) Differential measurement system based on the use of pairs of bragg gratings
WO2016126345A1 (en) Arrayed wave division multiplexing to improve spatial resolution of iofdr fiber bragg sensing system
Isago et al. A high reading rate fiber Bragg grating sensor system using a high-speed swept light source based on fiber vibrations
EP2948780B1 (en) Acousto-optic rf signal spectrum analyzer
CA2972641A1 (en) Birefringent multi-peak optical reference element and birefringent sensor system
CN110440837B (en) Multi-parameter optical fiber synchronous sensing acquisition instrument and sensing acquisition method
EP3710787B1 (en) A fibre optic sensing device
CN1304900C (en) Optical fibre grating wavelength demodulating method
Zhang et al. Experimental investigation on optical spectral deformation of embedded FBG sensors
EP3715807B1 (en) A method and an optical sensor for optically sensing a parameter of the group of temperature, humidity or mechanical stress

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIN1 Information on inventor provided before grant (corrected)

Inventor name: NAKAJIMA, TOMIO

Inventor name: ARAKAWA, TAKAHIRO

Inventor name: TSUDA, HIROSHI

Inventor name: LEE, JUNG-RYUL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

17P Request for examination filed

Effective date: 20110420

RIC1 Information provided on ipc code assigned before grant

Ipc: G01L 1/24 20060101AFI20110519BHEP

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: G01B 11/16 20060101ALI20120223BHEP

Ipc: G01M 11/08 20060101ALI20120223BHEP

Ipc: G01N 29/24 20060101ALI20120223BHEP

Ipc: G01N 29/14 20060101ALI20120223BHEP

Ipc: G01L 1/24 20060101ALI20120223BHEP

Ipc: G01N 29/04 20060101AFI20120223BHEP

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20120628