JP2002310729A - Method and instrument for distribution type physical quantity measurement - Google Patents

Method and instrument for distribution type physical quantity measurement

Info

Publication number
JP2002310729A
JP2002310729A JP2001110225A JP2001110225A JP2002310729A JP 2002310729 A JP2002310729 A JP 2002310729A JP 2001110225 A JP2001110225 A JP 2001110225A JP 2001110225 A JP2001110225 A JP 2001110225A JP 2002310729 A JP2002310729 A JP 2002310729A
Authority
JP
Japan
Prior art keywords
optical fiber
wavelength
sensing
add
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001110225A
Other languages
Japanese (ja)
Inventor
Yutaka Ohata
裕 大畠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2001110225A priority Critical patent/JP2002310729A/en
Publication of JP2002310729A publication Critical patent/JP2002310729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Indication And Recording Devices For Special Purposes And Tariff Metering Devices (AREA)
  • Optical Transform (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and an instrument for distribution type physical quantity measurement which is capable of two-dimensional and three-dimensional sensing and easy to recover from an accident, and has high reliability and simple constitution. SOLUTION: For the distribution type physical quantity measuring method which uses an exciting light source 401 emitting light of wide-band wavelength and an optical fiber having sensing zones allocated by wavelengths of light, a sensing optical fiber 421 having the sensing zones processed by FBG is used and has one end of this sensing optical fiber made open into a reflection type and the reflection end connected to an add-and-drop filter 411 having an add-and-drop function. Add-and-drop filters as many as the sensing zones are connected in stages by an optical fiber 400 for a trunk line and a wavelength-independent splitter 402 is connected to the trunk line optical fiber of the initial stage; and the wide-band wavelength exciting light from the exciting light source 401 is guided to the trunk line optical fibers of the initial stage and trailing stages and the signal light which is reflected by the respective sensing optical fibers and returns from the trunk line optical fiber of the initial stage is guided to a wavelength separating filter 404.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ファイバを用い
た分布型の物理量センシングに係り、特に、2次元、3
次元の分布センシングが可能で、事故時の復旧が容易
で、信頼性が高く、構成が簡素な分布型物理量計測方法
及び計測装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to distributed physical quantity sensing using an optical fiber, and more particularly, to two-dimensional, three-dimensional physical quantity sensing.
The present invention relates to a distributed physical quantity measurement method and a measurement apparatus which can perform dimensional distribution sensing, facilitate recovery from an accident, have high reliability, and have a simple configuration.

【0002】[0002]

【従来の技術】光ファイバを用いたセンシング方法の従
来技術には、以下のものがある。
2. Description of the Related Art The prior art of a sensing method using an optical fiber includes the following.

【0003】(1)ラマン散乱を用いた分布型温度計測 図3に示されるように、この方法では、トリガされたパ
ルス光をセンサ用光ファイバに入射させ、ラマン散乱に
よって発生するストークス光と反ストークス光との強度
比の温度依存性を利用して光ファイバ長手方向の温度分
布を計測する。この方法の文献として特公平11−44
584号がある。
(1) Distributed Temperature Measurement Using Raman Scattering As shown in FIG. 3, in this method, a triggered pulse light is made incident on a sensor optical fiber, and the Stokes light generated by Raman scattering is reflected by the reflected light. The temperature distribution in the longitudinal direction of the optical fiber is measured using the temperature dependence of the intensity ratio with the Stokes light. As a literature on this method, Japanese Patent Publication No. 11-44
No. 584.

【0004】(2)光ファイバブラッググレーティング
(以下、FBGと言う)を利用した分布型センサ 図4に示されるように、この方法では、FBGを長手方
向の複数箇所に形成した光ファイバに広波長帯域を有す
る光を入射し、その反射光をファブリペロットフィルタ
(Fabry-Perot Filter)に通して受光器(Detector)で受光
し、反射光の中心波長からの変位を検出する。これによ
り、光ファイバ長手方向の歪み分布、温度分布等の計測
が可能である。この方法の文献として「オプトニュー
ス」1996,No6,PP29−31がある。
(2) Distributed sensor using optical fiber Bragg grating (hereinafter referred to as FBG) As shown in FIG. 4, in this method, an optical fiber in which FBGs are formed at a plurality of locations in the longitudinal direction has a wide wavelength range. Injects light with a band and reflects the reflected light to Fabry-Perot filter
(Fabry-Perot Filter) and received by a photo detector (Detector) to detect the displacement from the center wavelength of the reflected light. This makes it possible to measure the strain distribution, temperature distribution, and the like in the longitudinal direction of the optical fiber. As a reference of this method, there is “Opto News” 1996, No. 6, PP29-31.

【0005】以上は、1次元の分布型センシング方法で
あるが、2次元、3次元の分布型センシング方法として
次の公知例がある。
The above is a one-dimensional distributed sensing method. There are the following known examples of two-dimensional and three-dimensional distributed sensing methods.

【0006】(3)光ファイババンドルを用いた3次元
分布型センシング方法 図5に示されるように、この方法では、複数本の光ファ
イバ33に光を入射し、これらの光を複数の測定点32
で1本の光ファイバ31に分岐(合成)し、1次元の分
布センサとして立体的な分布計測を行う。
(3) Three-dimensional distributed sensing method using optical fiber bundles As shown in FIG. 5, in this method, light is incident on a plurality of optical fibers 33 and these lights are transmitted to a plurality of measurement points. 32
Branch (combine) into one optical fiber 31, and perform three-dimensional distribution measurement as a one-dimensional distribution sensor.

【0007】[0007]

【発明が解決しようとする課題】上記従来技術には、次
のような問題点がある。
The above prior art has the following problems.

【0008】(1)ラマン散乱を用いた分布型温度計測 (a)散乱光を利用するために入射光パワーを上げる必
要がある。特に、光ファイバとの整合性を考慮し、1μ
m前後の波長を利用すると散乱光はさらに微弱となる。
精度の高い計測を行うために、入射光パワーを上げる
と、光源に負担がかかり、信頼性に欠けることになる。
また、入射光パワーを補正するための回路が複雑とな
り、コスト高となる。
(1) Distributed temperature measurement using Raman scattering (a) In order to use scattered light, it is necessary to increase the incident light power. In particular, considering the compatibility with the optical fiber, 1μ
When a wavelength of about m is used, the scattered light is further weakened.
Increasing the incident light power in order to perform highly accurate measurement imposes a burden on the light source, resulting in a lack of reliability.
Further, a circuit for correcting the incident light power becomes complicated, and the cost increases.

【0009】(b)センサ用光ファイバが1本の光ファ
イバで構成され、光を伝送する光ファイバ自体がセンサ
であることにより、光ファイバに事故(断線等)が発生
すると、光ファイバ全体を取り換えねばならず、保守が
困難であると共に事故からの復旧に時間がかかる。
(B) Since the optical fiber for the sensor is composed of one optical fiber and the optical fiber for transmitting light itself is a sensor, if an accident (breakage or the like) occurs in the optical fiber, the entire optical fiber is replaced. It must be replaced, maintenance is difficult and it takes time to recover from the accident.

【0010】(2)FBGを利用した分布型センサ この方法でも上記(1)の(b)に共通した問題があ
る。そして、さらに (a)FBGを施した光ファイバで2〜3次元分布を測
定しようとすると、FBG部分に外的歪みがかかり、こ
の外的歪みが時間的に変動し、測定しようとしている対
象とは異なる信号(雑音)が混入する可能性が大きい。
即ち、出力信号の信頼性が悪く、経年変化にも弱いこと
が予想される。
(2) Distributed sensor using FBG This method also has a problem common to the above (1) (b). Further, (a) When trying to measure a two- or three-dimensional distribution with an optical fiber that has been subjected to FBG, external distortion is applied to the FBG portion, and this external distortion fluctuates over time. Is likely to be mixed with different signals (noise).
That is, it is expected that the reliability of the output signal is poor and the output signal is weak against aging.

【0011】(b)問題箇所の特定が困難である。(B) It is difficult to specify a problem part.

【0012】(3)光ファイババンドルを用いた3次元
分布型センシング方法 (a)複数本の光ファイバに同時に光を入射するか、複
数の光源を必要とするため、前者では光源に負担がかか
り信頼性を欠き、後者ではコスト高になる。
(3) Three-dimensional distributed sensing method using an optical fiber bundle (a) Light is incident on a plurality of optical fibers at the same time or a plurality of light sources are required. It lacks reliability and the latter is costly.

【0013】そこで、本発明の目的は、上記課題を解決
し、2次元、3次元の分布センシングが可能で、事故時
の復旧が容易で、信頼性が高く、構成が簡素な分布型物
理量計測方法及び計測装置を提供することにある。
[0013] Accordingly, an object of the present invention is to solve the above-mentioned problems, to enable two-dimensional and three-dimensional distributed sensing, to easily recover from an accident, to have high reliability, and to have a simple configuration of distributed physical quantity measurement. It is to provide a method and a measuring device.

【0014】[0014]

【課題を解決するための手段】上記目的を達成するため
に本発明の方法は、広帯域波長の光を発する励起光源
と、光の波長毎にセンシングゾーンを割り当てる光ファ
イバとを用いた分布型物理量計測方法において、前記セ
ンシングゾーンにFBGを施したセンシング光ファイバ
を用い、このセンシング光ファイバの一端を開放して反
射型とし、反対端をアドアンドドロップ機能を有するア
ドアンドドロップフィルタに接続し、各センシングゾー
ンの数に相当する数のアドアンドドロップフィルタを幹
線用光ファイバで多段に接続し、初段の幹線用光ファイ
バに波長無依存スプリッタを接続し、前記励起光源から
の広帯域波長励起光を初段及びその後段の幹線用光ファ
イバに導き、各センシング光ファイバで反射されて初段
の幹線用光ファイバから戻ってくる信号光を波長分離フ
ィルタに導くようにしたものである。
In order to achieve the above object, a method according to the present invention is directed to a distributed physical quantity using an excitation light source for emitting light of a wide wavelength band and an optical fiber for allocating a sensing zone for each wavelength of light. In the measurement method, using a sensing optical fiber having an FBG applied to the sensing zone, one end of the sensing optical fiber is opened to be a reflection type, and the other end is connected to an add-and-drop filter having an add-and-drop function. A number of add-and-drop filters corresponding to the number of sensing zones are connected in multiple stages with a mainline optical fiber, a wavelength-independent splitter is connected to the first-stage mainline optical fiber, and a broadband wavelength pumping light from the pumping light source is connected to the first-stage. And the main optical fiber for the first stage, which is guided to the optical fiber for the main line of the subsequent stage and reflected by each sensing optical fiber, The signal light returned et is obtained so as to guide the wavelength separation filter.

【0015】前記アドアンドドロップフィルタは、幹線
用光ファイバを伝達してくる励起光から一つの波長の励
起光を当該段のセンシング光ファイバに分岐し、残りの
波長の励起光を次段の幹線用光ファイバに入射させても
よい。
The add-and-drop filter branches the pump light of one wavelength from the pump light transmitted through the main optical fiber to the sensing optical fiber of the corresponding stage, and converts the pump light of the remaining wavelength into the main line of the next stage. May be incident on the optical fiber for use.

【0016】前記幹線用光ファイバが、波長多重による
送信電力増大による非線形光学効果を十分抑制できるよ
う、一定の分散値を有する光ファイバであってもよい。
The optical fiber for the trunk line may be an optical fiber having a constant dispersion value so that a nonlinear optical effect due to an increase in transmission power due to wavelength multiplexing can be sufficiently suppressed.

【0017】前記FBGの中心波長が前記アドアンドド
ロップフィルタの選択波長であってもよい。
[0017] The center wavelength of the FBG may be a selected wavelength of the add-and-drop filter.

【0018】前記励起光がスーパコンデニアム光であっ
てもよい。
[0018] The excitation light may be super-condensium light.

【0019】また、本発明の装置は、広帯域波長の光を
発する励起光源に波長無依存スプリッタを介して初段の
幹線用光ファイバを接続し、その初段の幹線用光ファイ
バにアドアンドドロップフィルタを接続し、そのアドア
ンドドロップフィルタの選択波長出力側にその選択波長
を中心波長とするFBGを施した反射型のセンシング光
ファイバを接続し、前記アドアンドドロップフィルタの
非選択波長出力側には、後段の幹線用光ファイバを介し
て選択波長の異なるアドアンドドロップフィルタを順次
接続し、各アドアンドドロップフィルタの選択波長出力
側に、それぞれの選択波長を中心波長とするFBGを施
した反射型のセンシング光ファイバを接続し、前記波長
無依存スプリッタにより各センシング光ファイバで反射
されて初段の幹線用光ファイバから戻ってくる信号光を
波長分離フィルタに導くようにしたものである。
Further, in the apparatus of the present invention, a first-stage trunk optical fiber is connected to a pump light source that emits light of a broadband wavelength via a wavelength-independent splitter, and an add-and-drop filter is connected to the first-stage trunk fiber. Connected to the selected wavelength output side of the add-and-drop filter, and connected to a reflection-type sensing optical fiber provided with FBG having the selected wavelength as the center wavelength, and to the non-selected wavelength output side of the add-and-drop filter, Add-and-drop filters having different selected wavelengths are sequentially connected via the optical fiber for the trunk line at the subsequent stage, and a reflection-type FBG having the selected wavelength as the center wavelength is applied to the selected wavelength output side of each add-and-drop filter. Connect the sensing optical fiber, and the main line of the first stage is reflected by each sensing optical fiber by the wavelength-independent splitter. The signal light returning from the optical fiber is obtained by the guided to the wavelength separation filter.

【0020】[0020]

【発明の実施の形態】以下、本発明の一実施形態を添付
図面に基づいて詳述する。
An embodiment of the present invention will be described below in detail with reference to the accompanying drawings.

【0021】図1に示されるように、本発明に係る分布
型物理量計測装置は、広帯域波長の光を発する励起光源
と、その励起光を伝送する幹線用光ファイバを長手方向
に区画して光の波長毎にセンシングゾーンを割り当てる
光ファイバとを用いた分布型物理量計測装置であって、
広帯域波長の光を発する励起光源401に波長無依存ス
プリッタ(波長無依存2×1光スプリッタ)402を介
して初段の幹線用光ファイバ400を接続し、その初段
の幹線用光ファイバ400にアドアンドドロップ(Add a
nd Drop)機能を有する波長選択フィルタであるアドアン
ドドロップフィルタ411を接続し、そのアドアンドド
ロップフィルタ411の選択波長出力側にその選択波長
λ1 を中心波長とするFBG(FBG1 )を施し一端を
開放した反射型のセンシング光ファイバ420の反対端
を接続することにより、波長λ1を初段のセンシングゾ
ーンに割当て、前記アドアンドドロップフィルタ411
の非選択波長出力側には、後段の幹線用光ファイバ40
0を介して選択波長の異なるアドアンドドロップフィル
タ412,…,41N−1,41Nを順次接続し、各ア
ドアンドドロップフィルタの選択波長出力側に、それぞ
れの選択波長を中心波長とするFBG(FBG2 〜FB
N )を施した反射型のセンシング光ファイバ422,
…,42N−1,42Nを接続することにより、各波長
を各段のセンシングゾーンに割当て、前記波長無依存ス
プリッタ402により各センシング光ファイバ421〜
42Nで反射されて初段の幹線用光ファイバ400から
戻ってくる信号光をAWG(Arrayd Waveguide Grating)
からなる波長分離フィルタ404に導くようにしたもの
である。
As shown in FIG. 1, the distributed physical quantity measuring apparatus according to the present invention comprises an excitation light source that emits light of a broadband wavelength, and a main optical fiber that transmits the excitation light, divided in the longitudinal direction. A distributed physical quantity measurement device using an optical fiber that allocates a sensing zone for each wavelength of
A first-stage trunk optical fiber 400 is connected to a pump light source 401 that emits light of a broadband wavelength via a wavelength-independent splitter (wavelength-independent 2 × 1 optical splitter) 402, and is added to the first-stage trunk optical fiber 400. Drop (Add a
An add-and-drop filter 411, which is a wavelength selection filter having an nd drop function, is connected to the selected wavelength output side of the add-and-drop filter 411, and an FBG (FBG 1 ) having the selected wavelength λ 1 as a center wavelength is applied. The wavelength λ 1 is assigned to the first-stage sensing zone by connecting the opposite end of the reflection-type sensing optical fiber 420 having the open end, and the add-and-drop filter 411 is connected.
The non-selected wavelength output side has a main optical fiber 40
, 41N-1, 41N of different selection wavelengths are sequentially connected via the FBG0, and the selected wavelength output side of each add-and-drop filter is connected to an FBG (FBG) having the selected wavelength as a center wavelength. 2 to FB
G N ) reflection type sensing optical fiber 422,
, 42N-1, 42N are connected to assign each wavelength to the sensing zone of each stage, and the sensing optical fibers 421 to 421 are connected by the wavelength-independent splitter 402.
AWG (Arrayed Waveguide Grating) converts the signal light reflected by 42N and returned from the first-stage main optical fiber 400 to AWG (Arrayed Waveguide Grating).
This is led to a wavelength separation filter 404 consisting of:

【0022】本発明では、単一ファイバ方式の問題を解
決するために、一連の幹線用光ファイバ400の長手方
向に配置されたセンシングゾーンの数に相当する数のア
ドアンドドロップフィルタ(光アドアンドドロップ回路
とも言う)411〜41Nを幹線用光ファイバ400に
多段に挿入し、各段にてドロップ波長の光をセンシング
光ファイバ421〜42Nに入射させてFBGからの反
射光をアドアンドドロップフィルタ411〜41Nのア
ド機能を用いて幹線用光ファイバ400の前段方向に伝
搬する波として戻す。このようにして各アドアンドドロ
ップフィルタ411〜41Nで異なる波長の光をその波
長をブラッグ中心波長とするFBGにドロップし、各F
BGからの反射光を幹線用光ファイバ400にアドして
戻し、光源側(前段方向)に伝搬させる。各FBGから
の波長の異なる光は、初段の幹線用光ファイバ400と
励起光源401との間に設けた波長無依存スプリッタ4
02を介し波長分離フィルタ404により分波し、この
分波された光を図示しない分析装置で受光して信号を解
析する。分析装置では、各FBGで受けた波長変化をス
ペクトル分析法や振幅変化計測法などにより計測し、そ
の計測結果から各センシングゾーンにおける物理量を求
める。尚、波長分離フィルタ404に入射される光を光
増幅するために、エルビウム添加光ファイバ増幅器(E
DFA)403を設けてもよい。
In the present invention, in order to solve the problem of the single fiber system, a number of add-and-drop filters (optical add-and-drop filters) corresponding to the number of sensing zones arranged in the longitudinal direction of the series of main optical fibers 400 are used. 411-41N are inserted into the main optical fiber 400 in multiple stages, and light of the drop wavelength is made incident on the sensing optical fibers 421-42N at each stage, and reflected light from the FBG is added and dropped by the add-and-drop filter 411. Using the add function of .about.41N, the signal is returned as a wave propagating in the direction preceding the main optical fiber 400. In this way, light of different wavelengths is dropped by each of the add-and-drop filters 411 to 41N to the FBG having that wavelength as the Bragg center wavelength, and
The reflected light from the BG is added back to the main optical fiber 400 and propagated to the light source side (front direction). Light of different wavelengths from each FBG is supplied to a wavelength-independent splitter 4 provided between the first-stage trunk optical fiber 400 and the pump light source 401.
The signal is then separated by a wavelength separation filter 404 via an optical filter 02, and the separated light is received by an analyzer (not shown) to analyze a signal. In the analyzer, the wavelength change received by each FBG is measured by a spectrum analysis method, an amplitude change measurement method, or the like, and a physical quantity in each sensing zone is obtained from the measurement result. In order to optically amplify the light incident on the wavelength separation filter 404, an erbium-doped optical fiber amplifier (E
DFA) 403 may be provided.

【0023】この構成において、幹線用光ファイバ40
0は、高パワーの光が送信されても非線形効果による影
響を受けがたい、ある分散値を有する光ファイバである
ことが望ましく、低損失性を考慮するなら、波長は1.
55μm帯で選択し、分散スロープは小さくしても、ゼ
ロ分散点を避けて使用することが望ましい。また、アド
アンドドロップフィルタ411〜41Nは、次に述べる
ように、AWGを2個接続した3端子を有する1×2光
導波路形回路でもよい。また、励起光はスーパコンデニ
アム光であってもよい。
In this configuration, the trunk optical fiber 40
0 is desirably an optical fiber having a certain dispersion value that is hardly affected by nonlinear effects even when high-power light is transmitted, and the wavelength is 1.
It is desirable to select a wavelength in the 55 μm band and avoid the zero dispersion point, even if the dispersion slope is small. Further, as described below, the add-and-drop filters 411 to 41N may be 1 × 2 optical waveguide circuits having three terminals to which two AWGs are connected. Also, the excitation light may be super-condensed light.

【0024】次に、アドアンドドロップフィルタ(光ア
ドアンドドロップ回路)について説明する。図2に示さ
れるように、アドアンドドロップフィルタは、2つのA
WGフィルタ501,502をガラス導波路51上に形
成し、一方のAWGフィルタ501を分波器とし、他方
のAWGフィルタ502を合波器とし、AWGフィルタ
501で分波した1つの波長の光をドロップ信号として
出力できるよう構成したものである。即ち、複数の波長
λ1 〜λN を含む広帯域波長の励起光が入力される入力
側には分波器であるAWGフィルタ501の入力端を使
用し、AWGフィルタ501の複数の出力端のうち1つ
の所望の波長λi の出力端を選択波長出力側に使用し、
残りの出力端を合波器であるAWGフィルタ502の各
入力端に接続し、AWGフィルタ502の出力端を非選
択波長出力側に使用する。これにより、前述のアド機能
及びドロップ機能、即ち、アドアンドドロップ機能が実
現される。
Next, an add-and-drop filter (optical add-and-drop circuit) will be described. As shown in FIG. 2, the add-and-drop filter has two A
The WG filters 501 and 502 are formed on the glass waveguide 51, one AWG filter 501 is used as a demultiplexer, and the other AWG filter 502 is used as a multiplexer, and light of one wavelength demultiplexed by the AWG filter 501 is output. It is configured so that it can be output as a drop signal. That is, the input end of the AWG filter 501, which is a demultiplexer, is used on the input side to which the excitation light of a wide band wavelength including a plurality of wavelengths λ 1 to λ N is input, and among the plurality of output ends of the AWG filter 501, Using the output end of one desired wavelength λ i on the selected wavelength output side,
The remaining output terminals are connected to the respective input terminals of the AWG filter 502, which is a multiplexer, and the output terminal of the AWG filter 502 is used for the non-selected wavelength output side. As a result, the above-described add function and drop function, that is, the add-and-drop function is realized.

【0025】図1の分布型物理量計測装置の作用を説明
する。
The operation of the distributed physical quantity measuring device shown in FIG. 1 will be described.

【0026】励起光源401からの光は波長無依存スプ
リッタ402を介して幹線用光ファイバ400に入射す
る。この光は、各センシングゾーンのアドアンドドロッ
プフィルタ411〜41Nにおいて、それぞれに接続さ
れたセンシング光ファイバ421〜42Nの各FBGの
ブラッグ波長λ1 〜λN の光が選択されて分岐される。
各センシングゾーンにおいて、FBGに歪みや温度が印
加されていると、ブラッグシフトΔλB1〜ΔλBNを受け
た光λ´1 〜λ´N がアドアンドドロップフィルタ41
1〜41Nを介して幹線用光ファイバ400に戻され、
後方(前段方向)に伝搬する。この光は、波長無依存ス
プリッタ402で分岐され、光増幅器403で増幅され
た後、波長分離フィルタ404で分波され、図示しない
分析装置に出力される。
The light from the excitation light source 401 is incident on the main optical fiber 400 via the wavelength-independent splitter 402. This light is divided at the add-and-drop filters 411 to 41N of the respective sensing zones by selecting the light of the Bragg wavelengths λ 1 to λ N of the respective FBGs of the connected sensing optical fibers 421 to 42N.
In each sensing zone, when strain or temperature is applied to the FBG, the light λ ′ 1 to λ ′ N that have received the Bragg shifts Δλ B1 to Δλ BN are added to the add-and-drop filter 41.
It is returned to the main optical fiber 400 through 1-41N,
Propagation backward (front direction). This light is split by a wavelength-independent splitter 402, amplified by an optical amplifier 403, demultiplexed by a wavelength separation filter 404, and output to an analyzer (not shown).

【0027】以上の実施形態では、アドアンドドロップ
フィルタは、1つの波長の光をドロップするように構成
したが、複数波長の光をドロップするように構成しても
よく、このアドアンドドロップフィルタに複数のFBG
を形成したセンシング光ファイバを接続してもよい。こ
れにより、2次元、3次元の分布センシングが可能とな
る。
In the above embodiment, the add-and-drop filter is configured to drop light of one wavelength. However, the add-and-drop filter may be configured to drop light of multiple wavelengths. Multiple FBGs
May be connected. This enables two-dimensional and three-dimensional distribution sensing.

【0028】また、各センシングゾーンに設けるセンサ
は、FBGを用いたセンシング光ファイバに限らず、例
えば、光式のパッシブセンサを用いて電界センサ、電流
センサ、流速センサを構成してもよい。そして、光で計
測を行う複数の種類(物理量)のセンサを各センシング
ゾーンに設け、波長分波した光に各々の物理量の情報を
担持させ、図示しない分析装置において、センサ種類に
応じた信号処理を行うように構成するとよい。
The sensors provided in each sensing zone are not limited to sensing optical fibers using FBGs. For example, electric field sensors, current sensors, and flow rate sensors may be formed using optical passive sensors. A plurality of types (physical quantities) of sensors that measure with light are provided in each sensing zone, and information of each physical quantity is carried by the wavelength-division light. It is good to be constituted to perform.

【0029】本発明の分布型物理量計測装置は、火山周
辺や海溝に埋め込むことにより、その埋設地域における
歪みや温度などの物理量分布を計測し、地震予知、噴火
予知などに利用することが可能である。
The distributed physical quantity measuring device of the present invention can be used for earthquake prediction, eruption prediction, and the like by measuring the physical quantity distribution such as strain and temperature in the buried area by embedding it in the vicinity of a volcano or a trench. is there.

【0030】[0030]

【発明の効果】本発明は次の如き優れた効果を発揮す
る。
The present invention exhibits the following excellent effects.

【0031】(1)従来技術で用いていた散乱光ではな
く、センシング光ファイバからの反射光を受光している
ので、光源のパワーを大きくしなくても正確な計測が可
能になり、光源の信頼性を損ねることなくシステム全体
の信頼性を向上させることができる。
(1) Since the reflected light from the sensing optical fiber is received instead of the scattered light used in the prior art, accurate measurement can be performed without increasing the power of the light source. The reliability of the entire system can be improved without impairing the reliability.

【0032】(2)幹線用光ファイバから複数のセンシ
ング光ファイバを分岐した構成であるため、一部のセン
シング光ファイバに事故が発生しても、その事故箇所だ
けセンシング光ファイバを取り換えれば復旧することに
なり、保守が容易である。
(2) Since a plurality of sensing optical fibers are branched from the trunk optical fiber, even if an accident occurs in some of the sensing optical fibers, it can be restored by replacing the sensing optical fiber only at the point of the accident. Maintenance is easy.

【0033】(3)センシングゾーンを波長で区別でき
るので、区間標定が容易である。
(3) Since the sensing zones can be distinguished by wavelength, section location is easy.

【0034】(4)センシングゾーンには様々な光応用
センサを設置できるので、多様性、拡張性を有し、基本
ライン(幹線用光ファイバ及びアドアンドドロップフィ
ルタ)を布設しておけば、様々な光応用センサを設置
し、波長分離フィルタの先に適宜な分析装置を設置すれ
ば、様々な物理量の計測が可能である。
(4) Since various optical sensors can be installed in the sensing zone, it has versatility and expandability, and if a basic line (optical fiber for trunk line and add-and-drop filter) is laid, various sensors can be installed. If various optical applied sensors are installed and an appropriate analyzer is installed in front of the wavelength separation filter, various physical quantities can be measured.

【0035】(5)構成が簡素であり、しかも、上述の
ように信頼性が高く、保守が容易であることから、トー
タルコスト、保守コストの低減を図ることができる。
(5) Since the configuration is simple, and the reliability is high and the maintenance is easy as described above, the total cost and the maintenance cost can be reduced.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態を示す分布型物理量計測装
置の構成図である。
FIG. 1 is a configuration diagram of a distributed physical quantity measurement device according to an embodiment of the present invention.

【図2】本発明に用いるアドアンドドロップフィルタの
構成図である。
FIG. 2 is a configuration diagram of an add-and-drop filter used in the present invention.

【図3】従来の分布型物理量計測装置の構成図である。FIG. 3 is a configuration diagram of a conventional distributed physical quantity measurement device.

【図4】従来の分布型物理量計測装置の構成図である。FIG. 4 is a configuration diagram of a conventional distributed physical quantity measurement device.

【図5】従来の分布型物理量計測装置の構成図である。FIG. 5 is a configuration diagram of a conventional distributed physical quantity measurement device.

【符号の説明】[Explanation of symbols]

400 幹線用光ファイバ 401 励起光源 402 波長無依存スプリッタ 403 光増幅器 404 波長分離フィルタ 411〜41N アドアンドドロップフィルタ 421〜42N センシング光ファイバ Reference Signs List 400 Optical fiber for trunk line 401 Excitation light source 402 Wavelength-independent splitter 403 Optical amplifier 404 Wavelength separation filter 411-41N Add-and-drop filter 421-42N Sensing optical fiber

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) // G01V 1/00 G01D 3/04 Z Fターム(参考) 2F056 VF02 VF11 2F075 AA10 2F103 BA10 BA41 BA43 BA49 CA07 EB05 EB11 EC09 EC10 ED01 ED37 2G020 AA03 BA20 CA03 CB42 CC02 CD03 CD12 CD22 2H038 AA07 CA31 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI theme coat ゛ (reference) // G01V 1/00 G01D 3/04 Z F term (reference) 2F056 VF02 VF11 2F075 AA10 2F103 BA10 BA41 BA43 BA49 CA07 EB05 EB11 EC09 EC10 ED01 ED37 2G020 AA03 BA20 CA03 CB42 CC02 CD03 CD12 CD22 2H038 AA07 CA31

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 広帯域波長の光を発する励起光源と、光
の波長毎にセンシングゾーンを割り当てる光ファイバと
を用いた分布型物理量計測方法において、前記センシン
グゾーンに光ファイバブラッググレーティング(以下、
FBGと言う)を施した光ファイバ(以下、センシング
光ファイバという)を用い、このセンシング光ファイバ
の一端を開放して反射型とし、反対端をアドアンドドロ
ップ機能を有する波長選択フィルタ(以下、アドアンド
ドロップフィルタという)に接続し、各センシングゾー
ンの数に相当する数のアドアンドドロップフィルタを幹
線用光ファイバで多段に接続し、初段の幹線用光ファイ
バに波長無依存スプリッタを接続し、前記励起光源から
の広帯域波長励起光を初段及びその後段の幹線用光ファ
イバに導き、各センシング光ファイバで反射されて初段
の幹線用光ファイバから戻ってくる信号光を波長分離フ
ィルタに導くようにしたことを特徴とする分布型物理量
計測方法。
In a distributed physical quantity measurement method using an excitation light source that emits light of a broadband wavelength and an optical fiber that allocates a sensing zone for each wavelength of light, an optical fiber Bragg grating (hereinafter, referred to as “the optical fiber Bragg grating”) is provided in the sensing zone.
An optical fiber (hereinafter referred to as a sensing optical fiber) to which an FBG is applied is used. One end of the sensing optical fiber is opened to be a reflection type, and the other end is provided with a wavelength selection filter (hereinafter referred to as an add-and-drop function) having an add-and-drop function. And a number of add-and-drop filters corresponding to the number of each sensing zone are connected in multiple stages by a trunk optical fiber, and a wavelength-independent splitter is connected to the first-stage trunk optical fiber. The broadband wavelength pumping light from the pumping light source is guided to the first and subsequent trunk optical fibers, and the signal light reflected from each sensing optical fiber and returned from the first trunk optical fiber is guided to the wavelength separation filter. A distributed physical quantity measurement method, characterized in that:
【請求項2】 前記アドアンドドロップフィルタは、幹
線用光ファイバを伝達してくる励起光から一つの波長の
励起光を当該段のセンシング光ファイバに分岐し、残り
の波長の励起光を次段の幹線用光ファイバに入射させる
ことを特徴とする請求項1記載の分布型物理量計測方
法。
2. The add-and-drop filter according to claim 1, wherein the pump light of one wavelength is branched from the pump light transmitted through the main optical fiber to the sensing optical fiber of the corresponding stage, and the pump light of the remaining wavelength is transmitted to the next stage. 2. The distributed physical quantity measuring method according to claim 1, wherein the light is incident on the main optical fiber.
【請求項3】 前記幹線用光ファイバが、波長多重によ
る送信電力増大による非線形光学効果を十分抑制できる
よう、一定の分散値を有する光ファイバであることを特
徴とする請求項1又は2記載の分布型物理量計測方法。
3. The optical fiber according to claim 1, wherein the trunk optical fiber is an optical fiber having a constant dispersion value so as to sufficiently suppress a nonlinear optical effect due to an increase in transmission power due to wavelength multiplexing. Distributed physical quantity measurement method.
【請求項4】 前記FBGの中心波長が前記アドアンド
ドロップフィルタの選択波長であることを特徴とする請
求項1〜3いずれか記載の分布型物理量計測方法。
4. The distributed physical quantity measurement method according to claim 1, wherein a center wavelength of the FBG is a selected wavelength of the add-and-drop filter.
【請求項5】 前記励起光がスーパコンデニアム光であ
ることを特徴とする請求項1〜4いずれか記載の分布型
物理量計測方法。
5. The distributed physical quantity measurement method according to claim 1, wherein said excitation light is super-condensed light.
【請求項6】 広帯域波長の光を発する励起光源に波長
無依存スプリッタを介して初段の幹線用光ファイバを接
続し、その初段の幹線用光ファイバにアドアンドドロッ
プフィルタを接続し、そのアドアンドドロップフィルタ
の選択波長出力側にその選択波長を中心波長とするFB
Gを施した反射型のセンシング光ファイバを接続し、前
記アドアンドドロップフィルタの非選択波長出力側に
は、後段の幹線用光ファイバを介して選択波長の異なる
アドアンドドロップフィルタを順次接続し、各アドアン
ドドロップフィルタの選択波長出力側に、それぞれの選
択波長を中心波長とするFBGを施した反射型のセンシ
ング光ファイバを接続し、前記波長無依存スプリッタに
より各センシング光ファイバで反射されて初段の幹線用
光ファイバから戻ってくる信号光を波長分離フィルタに
導くようにしたことを特徴とする分布型物理量計測装
置。
6. A first-stage trunk optical fiber is connected to a pump light source that emits light of a broadband wavelength via a wavelength-independent splitter, and an add-and-drop filter is connected to the first-stage trunk optical fiber. FB with the selected wavelength as the center wavelength on the selected wavelength output side of the drop filter
A reflection type sensing optical fiber provided with G is connected, and add-and-drop filters having different selected wavelengths are sequentially connected to a non-selection wavelength output side of the add-and-drop filter via a post-stage main-line optical fiber, A reflection type sensing optical fiber provided with an FBG having the selected wavelength as a center wavelength is connected to the selected wavelength output side of each add-and-drop filter, and the first stage is reflected by each sensing optical fiber by the wavelength-independent splitter. Wherein the signal light returned from the main optical fiber is guided to a wavelength separation filter.
JP2001110225A 2001-04-09 2001-04-09 Method and instrument for distribution type physical quantity measurement Pending JP2002310729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001110225A JP2002310729A (en) 2001-04-09 2001-04-09 Method and instrument for distribution type physical quantity measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001110225A JP2002310729A (en) 2001-04-09 2001-04-09 Method and instrument for distribution type physical quantity measurement

Publications (1)

Publication Number Publication Date
JP2002310729A true JP2002310729A (en) 2002-10-23

Family

ID=18962038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001110225A Pending JP2002310729A (en) 2001-04-09 2001-04-09 Method and instrument for distribution type physical quantity measurement

Country Status (1)

Country Link
JP (1) JP2002310729A (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002352369A (en) * 2001-05-29 2002-12-06 Toshiba Corp Optical fiber multipoint physical quantity measuring system
JP2006292566A (en) * 2005-04-12 2006-10-26 Central Res Inst Of Electric Power Ind Technique and system for observing air temperature distribution
JP2007139482A (en) * 2005-11-16 2007-06-07 Technical Research & Development Institute Ministry Of Defence Optical fiber sensor device
JP2008046036A (en) * 2006-08-18 2008-02-28 National Institute Of Advanced Industrial & Technology Ae/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped with system
JP2008107141A (en) * 2006-10-24 2008-05-08 Institute Of National Colleges Of Technology Japan Optical wavelength detection type physical quantity measuring sensor using ring resonator and bragg grating
JP2008232929A (en) * 2007-03-22 2008-10-02 Institute Of National Colleges Of Technology Japan Method of expanding measurement range in distribution temperature sensor using light wavelength detection method
JP2008232878A (en) * 2007-03-22 2008-10-02 Institute Of National Colleges Of Technology Japan Distribution type sensor system by optical spectrum pattern matching method
JP2008232893A (en) * 2007-03-22 2008-10-02 Institute Of National Colleges Of Technology Japan Methods of achieving ultra narrowband of sensor and increasing number of sensors connectable to system in distribution type measurement system using light wavelength detection method
JP2009133760A (en) * 2007-11-30 2009-06-18 Furukawa Electric Co Ltd:The Surface sensor
KR100952054B1 (en) 2008-02-11 2010-04-07 전남대학교산학협력단 Bragg Grating Sensing System Using Spectral tag
JP2010104427A (en) * 2008-10-28 2010-05-13 Olympus Medical Systems Corp Medical equipment
KR100998977B1 (en) 2008-04-08 2010-12-09 자화전자(주) Curved light guide and curved lighting device using the same
JP2012063149A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Temperature measuring device, and temperature measuring method
CN102589590A (en) * 2012-01-31 2012-07-18 武汉理工大学 Method and system for constructing frequency domain reflecting fiber grating sensing network of bus topological structure
JP2012184947A (en) * 2011-03-03 2012-09-27 Occ Corp Water gage system
JP2012184953A (en) * 2011-03-03 2012-09-27 Occ Corp Sensing system
JP2013032967A (en) * 2011-08-02 2013-02-14 Toyota Industries Corp Optical fiber type current sensor
JP2013032968A (en) * 2011-08-02 2013-02-14 Toyota Industries Corp Optical fiber type voltage sensor
JP2019074439A (en) * 2017-10-17 2019-05-16 西進商事株式会社 Liquid surface distance measuring device, and multipoint liquid surface distance collective measuring system
WO2020111260A1 (en) * 2018-11-30 2020-06-04 日本電気株式会社 Optical fiber sensing expansion device and optical fiber sensing system
CN113566860A (en) * 2021-06-24 2021-10-29 太原理工大学 Chaotic Raman optical fiber sensing device based on Brillouin and Raman third-order combined amplification
JP2022069677A (en) * 2019-03-27 2022-05-11 ウシオ電機株式会社 Light source device for light measurement, spectroscopic measurement device and spectroscopic measurement method
WO2024103700A1 (en) * 2022-11-15 2024-05-23 深圳技术大学 Detection method and detection system for surface temperature abnormal area

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4625593B2 (en) * 2001-05-29 2011-02-02 株式会社東芝 Optical fiber multipoint physical quantity measurement system
JP2002352369A (en) * 2001-05-29 2002-12-06 Toshiba Corp Optical fiber multipoint physical quantity measuring system
JP2006292566A (en) * 2005-04-12 2006-10-26 Central Res Inst Of Electric Power Ind Technique and system for observing air temperature distribution
JP2007139482A (en) * 2005-11-16 2007-06-07 Technical Research & Development Institute Ministry Of Defence Optical fiber sensor device
JP4671842B2 (en) * 2005-11-16 2011-04-20 防衛省技術研究本部長 Optical fiber sensor device
JP2008046036A (en) * 2006-08-18 2008-02-28 National Institute Of Advanced Industrial & Technology Ae/ultrasound detection system, and material monitoring apparatus and nondestructive inspection apparatus equipped with system
JP2008107141A (en) * 2006-10-24 2008-05-08 Institute Of National Colleges Of Technology Japan Optical wavelength detection type physical quantity measuring sensor using ring resonator and bragg grating
JP2008232929A (en) * 2007-03-22 2008-10-02 Institute Of National Colleges Of Technology Japan Method of expanding measurement range in distribution temperature sensor using light wavelength detection method
JP2008232878A (en) * 2007-03-22 2008-10-02 Institute Of National Colleges Of Technology Japan Distribution type sensor system by optical spectrum pattern matching method
JP2008232893A (en) * 2007-03-22 2008-10-02 Institute Of National Colleges Of Technology Japan Methods of achieving ultra narrowband of sensor and increasing number of sensors connectable to system in distribution type measurement system using light wavelength detection method
JP4742275B2 (en) * 2007-03-22 2011-08-10 独立行政法人国立高等専門学校機構 Measuring system
JP4586167B2 (en) * 2007-03-22 2010-11-24 独立行政法人国立高等専門学校機構 Ultra-narrow band sensor in distributed measurement system using optical wavelength detection method and method for increasing the number of sensors that can be connected to the system
JP2009133760A (en) * 2007-11-30 2009-06-18 Furukawa Electric Co Ltd:The Surface sensor
KR100952054B1 (en) 2008-02-11 2010-04-07 전남대학교산학협력단 Bragg Grating Sensing System Using Spectral tag
KR100998977B1 (en) 2008-04-08 2010-12-09 자화전자(주) Curved light guide and curved lighting device using the same
JP2010104427A (en) * 2008-10-28 2010-05-13 Olympus Medical Systems Corp Medical equipment
JP2012063149A (en) * 2010-09-14 2012-03-29 Tokyo Electron Ltd Temperature measuring device, and temperature measuring method
US8777483B2 (en) 2010-09-14 2014-07-15 Tokyo Electron Limited Temperature measuring apparatus and temperature measuring method
JP2012184947A (en) * 2011-03-03 2012-09-27 Occ Corp Water gage system
JP2012184953A (en) * 2011-03-03 2012-09-27 Occ Corp Sensing system
JP2013032967A (en) * 2011-08-02 2013-02-14 Toyota Industries Corp Optical fiber type current sensor
JP2013032968A (en) * 2011-08-02 2013-02-14 Toyota Industries Corp Optical fiber type voltage sensor
CN102589590B (en) * 2012-01-31 2015-04-08 武汉理工大学 Method and system for constructing frequency domain reflecting fiber grating sensing network of bus topological structure
CN102589590A (en) * 2012-01-31 2012-07-18 武汉理工大学 Method and system for constructing frequency domain reflecting fiber grating sensing network of bus topological structure
JP2019074439A (en) * 2017-10-17 2019-05-16 西進商事株式会社 Liquid surface distance measuring device, and multipoint liquid surface distance collective measuring system
WO2020111260A1 (en) * 2018-11-30 2020-06-04 日本電気株式会社 Optical fiber sensing expansion device and optical fiber sensing system
JPWO2020111260A1 (en) * 2018-11-30 2021-10-14 日本電気株式会社 Optical fiber sensing extension device and optical fiber sensing system
JP2022069677A (en) * 2019-03-27 2022-05-11 ウシオ電機株式会社 Light source device for light measurement, spectroscopic measurement device and spectroscopic measurement method
JP7405175B2 (en) 2019-03-27 2023-12-26 ウシオ電機株式会社 Light source device for light measurement, spectrometer measurement device, and spectrometer measurement method
CN113566860A (en) * 2021-06-24 2021-10-29 太原理工大学 Chaotic Raman optical fiber sensing device based on Brillouin and Raman third-order combined amplification
CN113566860B (en) * 2021-06-24 2024-02-02 太原理工大学 Chaotic Raman fiber sensing device based on Brillouin and Raman third-order combined amplification
WO2024103700A1 (en) * 2022-11-15 2024-05-23 深圳技术大学 Detection method and detection system for surface temperature abnormal area

Similar Documents

Publication Publication Date Title
JP2002310729A (en) Method and instrument for distribution type physical quantity measurement
JP4671842B2 (en) Optical fiber sensor device
CN105136178B (en) The distribution type optical fiber sensing equipment and method of the relevant domain analysis of chaos Brillouin light
US6571027B2 (en) Method and devices for time domain demultiplexing of serial fiber bragg grating sensor arrays
CN101910810B (en) Methods and systems for extending the range of fiber optic distributed temperature sensing (DTS) systems
CN105762621B (en) Rare-earth Doped OFAs with complete optical function of measuring
KR100340203B1 (en) Optical Performance Monitoring Apparatus for WDM Optical Communication Systems
RU2413188C2 (en) Fibre-optic device for measuring temperature distribution (versions)
JPH11287739A (en) System and method for measuring wavelength dependency information related to optical element
US6396574B1 (en) Apparatus for measuring the wavelength, optical power and optical signal-to-noise ratio of each optical signal in wavelength-division multiplexing optical communication
EP1059518B1 (en) Branch line monitoring system and branch line monitoring method
JP3492346B2 (en) Method and apparatus for measuring strain and temperature distribution
JP7088611B2 (en) Techniques for high-resolution line monitoring with standardized output and optical communication systems using them
JP2015031594A (en) Multichannel fbg sensor monitor system and multichannel fbg sensor monitor method
CN1210403A (en) Gain measuring apparatus of multi-channel optical fiber anplifier
US20230050697A1 (en) System for measuring a plurality of physical parameters at a measurement point with a multimode optical fiber
JP4383162B2 (en) Optical branch line monitoring system
KR101855409B1 (en) One chip type wavelength power meter
KR102040537B1 (en) PLC type optical module for wavelength power meter
JP2004347554A (en) Fbg sensing system
JP4694959B2 (en) Optical line test method and test system
CA2379900C (en) Method and devices for time domain demultiplexing of serial fiber bragg grating sensor arrays
JPH07336324A (en) Optical signal processor
JP2001033350A (en) Measuring instrument for array waveguide diffraction grating
CN113252088B (en) Multi-wavelength distributed optical fiber sensing system and method