JP2008232929A - Method of expanding measurement range in distribution temperature sensor using light wavelength detection method - Google Patents

Method of expanding measurement range in distribution temperature sensor using light wavelength detection method Download PDF

Info

Publication number
JP2008232929A
JP2008232929A JP2007075087A JP2007075087A JP2008232929A JP 2008232929 A JP2008232929 A JP 2008232929A JP 2007075087 A JP2007075087 A JP 2007075087A JP 2007075087 A JP2007075087 A JP 2007075087A JP 2008232929 A JP2008232929 A JP 2008232929A
Authority
JP
Japan
Prior art keywords
sensor
ring resonator
wavelength
double ring
temperature measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007075087A
Other languages
Japanese (ja)
Other versions
JP4742275B2 (en
Inventor
Yasukazu Sano
安一 佐野
Jun Kubota
純 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2007075087A priority Critical patent/JP4742275B2/en
Publication of JP2008232929A publication Critical patent/JP2008232929A/en
Application granted granted Critical
Publication of JP4742275B2 publication Critical patent/JP4742275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To achieve a distribution type temperature sensing system having performance in which dynamic range is 5,000 or more, light amount variation is 0.5 nW or more by a light reception element with variation of 0.1 pm of wavelength from the sensor, and the number of sensors connectable to the system is 100 or more at 50 nm of bandwidth of C band, the performance extremely surpassing those of conventional distribution type temperature sensing systems. <P>SOLUTION: The sensor is constituted by connecting a Bragg grating to a drop port of a double ring resonator. Incident/emitting ports of the sensor are used as resonator incident/emitting ports. Light from a wide band light source is incident on a sensor group in which the plurality of sensors are connected. The reflected light is detected by a wavelength detector using an interferometer such as a Fabry-Perot interferometer in which a resonant wavelength is variable by an electric signal. Accordingly, it extremely surpasses the performance of the conventional distribution type sensing systems in both aspects of the dynamic range and the number of multiplicity (number of sensors connectable to the system). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

光ファイバブラッググレーティング(以下FBG)を用いた分布型光ファイバセンサの技術分野に関する。 The present invention relates to a technical field of a distributed optical fiber sensor using an optical fiber Bragg grating (hereinafter referred to as FBG).

本発明の背景技術としては第一、第二、第三、及び第四の背景技術がある。まず、第一の背景技術につき説明する。図7を用いて従来技術を用いた分布型温度センサについて説明する。広帯域光源3からの光は光方向性結合器4を経てシングルモードファイバ(以下SMF)に入力され該SMFには1個または複数のFBGが描画されている。検出すべき温度はセンサのFBGの反射中心波長とリンクするため、これらの反射中心波長を測定することにより各センサの温度を測定することができる。各々のFBGの反射中心波長はそれらの帯域幅も含め互いにすべての測定範囲に亘ってオーバラップしないようにシステム設計されている。FBGからの反射光は前記SMFを逆にたどって光源側に戻っていき光源直前に設置されている前記光方向性結合器4によりファブリペロー干渉計型波長検波器などの波長検波器1に入力される。各々のFBGの反射中心波長は該ファブリペロー干渉計により測定される。ファブリペロー干渉計は狭帯域な櫛型帯域通過フィルタである。この通過帯域は例えば圧電素子などを使用し該干渉計の半透鏡の間隔を繰り返し該圧電素子に印加する電圧により変化させることができるため例えば該印加電圧を鋸波状に変化させれば前記ファブリペロー干渉計の狭帯域な櫛型帯域通過フィルタスペクトルも周期的に変化する。使用される複数のFBGの占有する全波長帯域より広いフリースペクトルレンジ(以下FSR)になるようにファブリペロー干渉計を設計しておく。更にファブリペロー干渉計の複数存在する通過中心波長の内の1つ通過中心波長が前記圧電素子に印加する電圧の変化でFSRだけ掃引される。これにより各々のFBGの反射光の反射中心波長は該ファブリペロー干渉計からの出射光量を前記圧電素子への印加電圧とリンクして観測することにより印加電圧がいくらのとき最大になるかを計測することができる。一方あらかじめ該印加電圧と前記複数のFBGの占有する全波長帯域内に存在する単一のファブリペロー干渉計の透過スペクトル中心波長との関係は測定されており、このためファブリペロー干渉計からの出射光量を極大にする前記印加電圧を測定することにより前記複数のFBGの反射中心波長を測定することができる(非特許文献1参照)。これらあらかじめ各センサの反射中心波長と温度との関係を測定しておきデータとして例えば図6のようにProgramable Read Only Memory(以下PROM)に記憶しておけばこれが図7の波長温度変換部2を構成するメモリとなる。波長温度変換部2は波長検波器1に接続され入力されてきた各センサの波長に対応した各センサの温度を出力する。   Background arts of the present invention include first, second, third, and fourth background arts. First, the first background art will be described. A distributed temperature sensor using the prior art will be described with reference to FIG. Light from the broadband light source 3 is input to a single mode fiber (hereinafter referred to as SMF) through an optical directional coupler 4 and one or more FBGs are drawn on the SMF. Since the temperature to be detected is linked to the reflection center wavelength of the FBG of the sensor, the temperature of each sensor can be measured by measuring these reflection center wavelengths. The system is designed so that the reflection center wavelengths of each FBG do not overlap each other over the entire measurement range, including their bandwidth. The reflected light from the FBG traces back the SMF and returns to the light source side, and is input to the wavelength detector 1 such as a Fabry-Perot interferometer type wavelength detector by the optical directional coupler 4 installed immediately before the light source. Is done. The reflection center wavelength of each FBG is measured by the Fabry-Perot interferometer. The Fabry-Perot interferometer is a narrow band comb-type bandpass filter. This pass band can be changed, for example, by using a piezoelectric element, and the interval between the half mirrors of the interferometer can be changed by the voltage applied to the piezoelectric element repeatedly. For example, if the applied voltage is changed in a sawtooth shape, the Fabry-Perot The narrow band comb bandpass filter spectrum of the interferometer also changes periodically. The Fabry-Perot interferometer is designed so that the free spectral range (hereinafter referred to as FSR) is wider than the entire wavelength band occupied by the multiple FBGs used. Further, one of the plurality of passing center wavelengths of the Fabry-Perot interferometer is swept by FSR by the change of the voltage applied to the piezoelectric element. As a result, the reflected center wavelength of the reflected light of each FBG is measured when the applied voltage is maximized by observing the amount of light emitted from the Fabry-Perot interferometer linked to the applied voltage to the piezoelectric element. can do. On the other hand, the relationship between the applied voltage and the center wavelength of the transmission spectrum of a single Fabry-Perot interferometer existing in the entire wavelength band occupied by the plurality of FBGs has been measured in advance. The reflection center wavelengths of the plurality of FBGs can be measured by measuring the applied voltage that maximizes the amount of light (see Non-Patent Document 1). If the relationship between the reflection center wavelength of each sensor and the temperature is measured in advance and stored as data in a programmable read only memory (hereinafter referred to as PROM) as shown in FIG. 6, for example, the wavelength temperature conversion unit 2 in FIG. This is the memory to be configured. The wavelength temperature converter 2 is connected to the wavelength detector 1 and outputs the temperature of each sensor corresponding to the wavelength of each sensor input.

次に第二の背景技術につき説明する。この技術は光通信の分野で波長多重通信のために研究されているリング共振器に関する技術である。リング共振器は波長多重通信のための狭帯域アド/ドロップ光フィルタであり、2入力2出力の光方向性結合器を2つ用いて光導波路ループができるように該2つの光方向性結合器を接続した構成になっている。接続されず残った光方向性結合器の4つの入出射端子のうち1つは光入射ポート、1つはスルーポート、1つはドロップポート、他の1つはアドポートとして使用される。光入射ポートからスルーポートへの透過率は繰り返しの櫛型バンドリジェクトフィルタ特性を示す。また光入射ポートからドロップポートへの透過率は繰り返しの櫛型バンドパスフィルタ特性を示す。更にアドポートからスルーポートへの透過特性も櫛型バンドパスフィルタ特性を示す(非特許文献3、非特許文献4、非特許文献5参照)。 Next, the second background art will be described. This technology is related to a ring resonator that has been studied for wavelength division multiplexing in the field of optical communications. The ring resonator is a narrow-band add / drop optical filter for wavelength division multiplexing communication, and the two optical directional couplers are formed so that an optical waveguide loop can be formed by using two 2-input 2-output optical directional couplers. Is connected. Of the four input / output terminals of the optical directional coupler remaining unconnected, one is used as a light incident port, one is a through port, one is a drop port, and the other is used as an add port. The transmittance from the light incident port to the through port shows a repeated comb-shaped band reject filter characteristic. Further, the transmittance from the light incident port to the drop port shows repeated comb-shaped bandpass filter characteristics. Further, the transmission characteristics from the add port to the through port also show comb-shaped bandpass filter characteristics (see Non-Patent Document 3, Non-Patent Document 4, and Non-Patent Document 5).

次に第三の背景技術につき説明する。第三の背景技術は光導波路にブラッググレーティングを描画する技術である。コアにゲルマニウムをドープしたSiO2を用いた場合が報告されている(非特許文献6参照)。またブラッググレーティングではないがTa2O5-SiOからなるコアの屈折率を紫外線でトリミングできることが報告されている(非特許文献3参照)。 Next, the third background art will be described. The third background art is a technique for drawing a Bragg grating on an optical waveguide. A case where SiO 2 doped with germanium in the core is used has been reported (see Non-Patent Document 6). Although it is not a Bragg grating, it has been reported that the refractive index of a core made of Ta 2 O 5 —SiO 2 can be trimmed with ultraviolet rays (see Non-Patent Document 3).

Figure 2008232929
Figure 2008232929

P. Eigenraam, B. S. Douma, A. P. Koopman, Applications of Fiber Optic Sensors & Instrumentation in the Oil and Gas Industry, in Proc. of OFS-13, pp602-607, 1999P. Eigenraam, B. S. Douma, A. P. Koopman, Applications of Fiber Optic Sensors & Instrumentation in the Oil and Gas Industry, in Proc. Of OFS-13, pp602-607, 1999 A. D. Kersey, T. A. Berkoff, and W. W. Morey, Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry- Perot wavelength filter, Optics Lett. Vol. 18, No.16, pp.1370- 1372, 1993A. D. Kersey, T. A. Berkoff, and W. W. Morey, Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry- Perot wavelength filter, Optics Lett.Vol. 18, No.16, pp.1370-1372, 1993 「マイクロリング共振器型光ルーティング素子」国分泰雄、応用物理、第72巻、第11号、pp1364−1373、2003年"Microring resonator type optical routing element" Yasuo Kokubun, Applied Physics, Vol.72, No.11, pp1364-1373, 2003 S. Suzuki, K. Oda, and Y. Hibino, Integrated-Optic Double-Ring Resonators with a Wide Spectral Range of 100GHz, J. Lightwave Technolo., vol.13, no.8, pp.1766-1771, 1995S. Suzuki, K. Oda, and Y. Hibino, Integrated-Optic Double-Ring Resonators with a Wide Spectral Range of 100GHz, J. Lightwave Technolo., Vol.13, no.8, pp.1766-1771, 1995 B. E. Little, S. T. Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun and E. Ippen, Vertically Coupled Glass Microring Resonator Channel Dropping Filter, IEEE Photon. Technol. Lett., vol. 11, no.2, pp215-217, 1999BE Little, ST Chu, W. Pan, D. Ripin, T. Kaneko, Y. Kokubun and E. Ippen, Vertically Coupled Glass Microring Resonator Channel Dropping Filter, IEEE Photon. Technol. Lett., Vol. 11, no.2 , pp215-217, 1999 Y. Sano, T. Hirayama, J. K. Kurihara, T. Goto, K. Taniguchi, J. Nishii, K. Kintaka, and T. Yoshino, Planar Waveguide Bragg Grating Pressure Sensor on a Micro-Machined Silicon Diaphragm in Proc. of OFS-16 pp694-697 2003Y. Sano, T. Hirayama, JK Kurihara, T. Goto, K. Taniguchi, J. Nishii, K. Kintaka, and T. Yoshino, Planar Waveguide Bragg Grating Pressure Sensor on a Micro-Machined Silicon Diaphragm in Proc. Of OFS -16 pp694-697 2003 特願2006−288631Japanese Patent Application 2006-288631

Figure 2008232929
Figure 2008232929

Figure 2008232929
Figure 2008232929

本発明に基づく分布型温度センサシステムの動作原理は特許文献1と次の点を除いて同一である。すなわちリング共振器を2つ直列に接続しFSRを拡げるという点である。ダブルリング共振器は非特許文献4に記載されているようにFSRを大きくできることは公知である。一方特許文献1によりリング共振器のドロップポートにWBGを接続し入力は該リング共振器の入射ポート、出力は該リング共振器の出射ポートとするセンサを複数直列に光ファイバで接続し、この直列接続されたセンサ群に広帯域光源から光を入射させ、センサ群からの反射光の波長を例えばファブリペロー干渉計など圧電素子と組み合わせ共振波長が可変の干渉計からなる波長検波器と組み合わせることにより微小な波長変化でも波長を検波できる方法が知られている。本発明はこの2つの技術を組み合わせることにより従来の分布型センシングシステムの性能をダイナミックレンジ、多重数(システムに接続可能センサ数)の両面から遥かに凌ぐことができる。 The operating principle of the distributed temperature sensor system according to the present invention is the same as that of Patent Document 1 except for the following points. That is, two ring resonators are connected in series to expand the FSR. It is known that the double ring resonator can increase the FSR as described in Non-Patent Document 4. On the other hand, according to Patent Document 1, a WBG is connected to a drop port of a ring resonator, an input is an incident port of the ring resonator, and an output is an output port of the ring resonator. By making light from a broadband light source enter the connected sensor group and combining the wavelength of the reflected light from the sensor group with a piezoelectric element such as a Fabry-Perot interferometer with a wavelength detector consisting of an interferometer with a variable resonance wavelength. There is a known method that can detect a wavelength even when the wavelength changes. By combining these two technologies, the present invention can far surpass the performance of a conventional distributed sensing system in terms of both dynamic range and multiplex number (number of sensors connectable to the system).

上記手段を用いることにより本発明は段落番号0009で述べた様に従来の光ファイバ式分布型センサシステムの性能をはるかに凌ぐダイナミックレンジ5000以上、センサからの波長が0.1pmの変化で受光素子での光量変化が0.5nW以上、システムに接続可能センサ数がCバンドの帯域幅50nmで100以上の性能のセンサシステムを実現できる。 By using the above-mentioned means, the present invention can achieve a dynamic range of 5000 or more, which far exceeds the performance of the conventional optical fiber type distributed sensor system, as described in paragraph 0009, and the light receiving element with a change in wavelength from the sensor of 0.1 pm. A sensor system with a change in the amount of light of 0.5 nW or more and a sensor system with a performance of 100 or more with a C-band bandwidth of 50 nm can be connected to the system.

発明の実施形態の分布型温度計測システムの全体構成を図1に示す。図2は図1に示すシステムのキーハードとなるダブルリング共振器を用いたセンサの構成を示す。図1において広帯域光源3から出射した光はSMF、光方向性結合器4を経てSMFに入射する。このSMFにはセンサが1個あるいは複数直列に接続されている。センサに入射した広帯域光は線スペクトルになって反射され光方向性結合器4経由ファブリペロー型干渉計からなる波長検波器1に入射する。入射した光の波長はこの検波器で波長が計測される。それぞれのセンサはそれぞれのセンサの温度変化によって後述の理由から反射波長が変化する。したがってそれぞれのセンサの反射波長を波長検波器1で検波することにより各センサでの温度を測定できる。ダブルリング共振器は図1に示すように2つのリング導波路RW1, RW2, 3つの光方向性結合器DC1,DC2,DC3から構成される。実際のダブルリング共振器の製作方法を図2を用いて次に述べる。 FIG. 1 shows an overall configuration of a distributed temperature measurement system according to an embodiment of the invention. FIG. 2 shows the configuration of a sensor using a double ring resonator which is the key hardware of the system shown in FIG. In FIG. 1, light emitted from the broadband light source 3 enters the SMF via the SMF and the optical directional coupler 4. One or more sensors are connected to this SMF in series. The broadband light incident on the sensor is reflected as a line spectrum and enters the wavelength detector 1 including a Fabry-Perot interferometer via the optical directional coupler 4. The wavelength of the incident light is measured by this detector. The reflection wavelength of each sensor changes due to the temperature change of each sensor for reasons described later. Accordingly, the temperature at each sensor can be measured by detecting the reflected wavelength of each sensor with the wavelength detector 1. As shown in FIG. 1, the double ring resonator includes two ring waveguides RW1, RW2, and three optical directional couplers DC1, DC2, and DC3. Next, a method for manufacturing an actual double ring resonator will be described with reference to FIG.

製作方法は非特許文献4により知られているゲルマニウムをドープしたSiOを導波路のコアとする方法でもよいし、非特許文献5により知られているTa2O5- SiOによりコアを製作する方法でも良い。ここでは非特許文献5により知られている方法について述べる。シリコンサブストレート6の上にアンダークラッド層としてCVD(Chemical Vapor Deposition)によりSiOを成膜しその上に直線導波路8のコアに相当する層としてTa2O5- SiOをRFスパッタにより成膜する。そしてCrマスクとCF4を用いたドライエッチングによりコアを形成する。コア屈折率はTa2O5とSiOの%モル比で種々の値に制御できる。例えばTa2O5が30%モル比SiOが70%モル比のときTa2O5- SiOの屈折率は1.7825と成る。コア形成後SiO膜を更に成膜し中間クラッド9を構成しこのプロセスで直線導波路8が完成する。更にこの上にリング導波路RWを形成するためにTa2O5- SiOをRFスパッタにより成膜する。そして直線導波路8の場合と同じようにCrマスクとCF4を用いたドライエッチングによりリング導波路RW1、RW2のコアを形成する。このリング導波路のコアの上に更にSiO膜をオーバクラッド層10として成膜してダブルリング共振器が完成する。なお図2には特に記号で表示はしていないが光方向性結合器DC2,DC3は直線導波路8とリング導波路RW1、RW2が空間的に近接している部分がそれに相当する。またDC1は2つのリング導波路RW1、RW2が空間的に近接している部分がそれに相当する。 Manufacturing method may be a method of a core of a SiO 2 waveguide doped with germanium is known by Non-patent document 4, Ta is known by Non-patent document 5 2 O 5 - manufactured core by SiO 2 The method to do is also good. Here, a method known from Non-Patent Document 5 will be described. A SiO 2 film is formed on the silicon substrate 6 by CVD (Chemical Vapor Deposition) as an under clad layer, and Ta 2 O 5 -SiO 2 is formed by RF sputtering as a layer corresponding to the core of the linear waveguide 8 thereon. Film. Then, a core is formed by dry etching using a Cr mask and CF 4 . The core refractive index can be controlled to various values by the% molar ratio of Ta 2 O 5 and SiO 2 . For example, when Ta 2 O 5 is 30% molar ratio SiO 2 is 70% molar ratio, the refractive index of Ta 2 O 5 -SiO 2 is 1.7825. After the core is formed, an SiO 2 film is further formed to form an intermediate cladding 9, and the linear waveguide 8 is completed by this process. It is formed by RF sputtering SiO 2 - Further Ta 2 O 5 to form a ring waveguide RW thereon. And form the core of the ring waveguide RW1, RW2 by dry etching using the same as a Cr mask and CF 4 as in the straight waveguide 8. A SiO 2 film is further formed as an overcladding layer 10 on the core of the ring waveguide to complete a double ring resonator. Although not indicated by symbols in FIG. 2, the optical directional couplers DC2 and DC3 correspond to portions where the linear waveguide 8 and the ring waveguides RW1 and RW2 are spatially close to each other. DC1 corresponds to a portion where two ring waveguides RW1 and RW2 are spatially close to each other.

次にWBGの製作方法を述べる。この方法はアルゴンレーザの波長244nmの2次高調波をコアに照射すると屈折率が変化する(非特許文献3参照)ことを利用する。この紫外線をフェーズマスクを通してコアに照射すればWBGを構成できる。もちろん直線導波路8のコアがゲルマニウムドープのSiOで構成されているものであっても同様な方法でWBG14を構成できる(非特許文献6参照)。 Next, we will describe how to make WBG. This method utilizes the fact that the refractive index changes when the core is irradiated with the second harmonic of an argon laser having a wavelength of 244 nm (see Non-Patent Document 3). WBG can be configured by irradiating the core with this ultraviolet light through a phase mask. Of course, even if the core of the straight waveguide 8 is made of germanium-doped SiO 2 , the WBG 14 can be formed by the same method (see Non-Patent Document 6).

Figure 2008232929
Figure 2008232929

Figure 2008232929
Figure 2008232929

図9は本発明の技術を用いた図1の分布型温度計測システムのスペクトラムの相関を示す図である。各々のセンサからの反射中心波長はセンサを構成するWBGの帯域幅も含め互いにすべての測定範囲に亘ってオーバラップしないようにシステム設計されている。使用される複数のWBGの占有する全波長帯域より広いFSRになるようにファブリペロー干渉計を設計しておく。更にファブリペロー干渉計の複数存在する通過中心波長の内の1つ通過中心波長が圧電素子に印加する電圧の変化でFSRだけ掃引される。このような共振波長可変のファブリペロー干渉計とその制御器はたとえばMicron Optics社のFFP-TF2とFFP-Cを用いることができる。これにより各々のセンサの反射光の反射中心波長は該ファブリペロー干渉計からの出射光量を前記圧電素子への印加電圧とリンクして観測することにより印加電圧がいくらのとき最大になるかを計測することができる。一方あらかじめ該印加電圧と前記複数のWBGの占有する全波長帯域内に存在する単一のファブリペロー干渉計の透過スペクトル中心波長との関係は測定されており、このためファブリペロー干渉計からの出射光量を極大にする前記印加電圧を測定することにより前記複数のWBGの反射中心波長を測定することができる。一方これらあらかじめ各センサの反射中心波長と温度との関係を上述の第四の背景技術で述べた方法と同様にして測定しておきデータとして例えばPROMに記憶しておく。波長温度変換部2は図6に示すような該PROMとそれを制御するマイクロコンピュータ(CPU)で構成する。以上の構成により波長温度変換部2は波長検波器1に接続され入力されてきた各センサの波長に対応した各センサの温度を出力する。なおもしファブリペロー干渉計の可変波長範囲が狭くセンサすべての反射波長領域をカバーできない場合はこれを複数用いればよいことは自明である。 FIG. 9 is a diagram showing the correlation of the spectrum of the distributed temperature measurement system of FIG. 1 using the technique of the present invention. The system is designed so that the reflection center wavelength from each sensor does not overlap with each other over the entire measurement range including the bandwidth of the WBG constituting the sensor. The Fabry-Perot interferometer is designed so that the FSR is wider than the entire wavelength band occupied by the multiple WBGs used. Further, one of the plurality of passing center wavelengths of the Fabry-Perot interferometer is swept by FSR by a change in the voltage applied to the piezoelectric element. As such a resonant wavelength variable Fabry-Perot interferometer and its controller, for example, FFP-TF2 and FFP-C manufactured by Micron Optics can be used. As a result, the reflected center wavelength of the reflected light of each sensor is measured when the applied voltage is maximized by observing the amount of light emitted from the Fabry-Perot interferometer linked to the applied voltage to the piezoelectric element. can do. On the other hand, the relationship between the applied voltage and the center wavelength of the transmission spectrum of a single Fabry-Perot interferometer existing in the entire wavelength band occupied by the plurality of WBGs has been measured in advance. By measuring the applied voltage that maximizes the amount of light, the reflection center wavelengths of the plurality of WBGs can be measured. On the other hand, the relationship between the reflection center wavelength of each sensor and the temperature is measured in advance in the same manner as the method described in the fourth background art, and stored as data in, for example, PROM. The wavelength temperature converter 2 is composed of the PROM as shown in FIG. 6 and a microcomputer (CPU) for controlling the PROM. With the above configuration, the wavelength temperature converter 2 is connected to the wavelength detector 1 and outputs the temperature of each sensor corresponding to the wavelength of each sensor input. Obviously, if the variable wavelength range of the Fabry-Perot interferometer is narrow and the reflected wavelength region of all the sensors cannot be covered, a plurality of these may be used.

上述の発明は建築構造物が致命的ダメージを負う前に建築構造物をメンテナンスし維持していこうとするいわゆる建築構造物(ビル、橋、鉄橋など)のヘルスモニタリングの分野のほかに、航空宇宙における例えば翼などの筐体の故障予知の分野などへの適用が可能である。 In addition to the field of health monitoring of so-called building structures (buildings, bridges, iron bridges, etc.) that attempt to maintain and maintain the building structures before they are fatally damaged, the invention described above is aerospace. For example, it can be applied to the field of failure prediction of a casing such as a wing.

本発明の第一の実施形態のシステム全体を示す図である。It is a figure showing the whole system of a first embodiment of the present invention. 本発明のセンサの構成の第一の例を示す図The figure which shows the 1st example of a structure of the sensor of this invention. 単一のリング共振器とWBG(導波路ブラッググレーティング)のからなる従来のセンサの反射率の波長に対する変化の一例を示す図(a)、及び同拡大図(b)The figure which shows an example of the change with the wavelength of the reflectance of the conventional sensor which consists of a single ring resonator and WBG (waveguide Bragg grating), and the enlarged figure (b) 単一のリング共振器のドロップポートへの透過スペクトルの一例を示す図(a),同図(b)は別の単一のリング共振器のドロップポートへの透過スペクトルの一例を示す図, 同図(c)はこれら2つのリングを組み合わせダブルリング共振器として使用した場合のダブルリング共振器のドロップポートへの透過スペクトルを示す図Figure (a) showing an example of the transmission spectrum to the drop port of a single ring resonator, (b) shows an example of the transmission spectrum to the drop port of another single ring resonator, Figure (c) shows the transmission spectrum to the drop port of the double ring resonator when these two rings are combined and used as a double ring resonator. 図4の特性のダブルリング共振器のドロップポートへの透過スペクトル特性(拡大図)Transmission spectrum characteristics to the drop port of a double ring resonator with the characteristics of Fig. 4 (enlarged view) 各センサからの波長データを各センサの温度データにするための波長温度変換部の一例を示す図The figure which shows an example of the wavelength temperature conversion part for making the wavelength data from each sensor into the temperature data of each sensor 従来のFBGを用いた分布型光ファイバ温度センサシステムの構成を示す図Diagram showing the configuration of a conventional distributed optical fiber temperature sensor system using FBG 従来の単一のリング共振器とWBGを用いた温度センサの構成を示す図Diagram showing the configuration of a conventional temperature sensor using a single ring resonator and WBG 本発明の分布型光ファイバ温度センサシステムの動作を説明するための各所のスペクトルを示す図The figure which shows the spectrum of each place for demonstrating operation | movement of the distributed optical fiber temperature sensor system of this invention

符号の説明Explanation of symbols

1・・・波長検波器
2・・・波長温度変部
3・・・広帯域光源
4・・・光方向性結合器
SMF・・シングルモード光ファイバ
WBG・・光導波路に描画されたブラッググレーティング
5・・・ダブルリング共振器
IP・・・入射ポート
DP・・・ドロップポート
OP・・・出射ポート
DC1, DC2, DC3・・光方向性結合器
RW,RW1,RW2・・・・リング導波路
6・・・シリコンサブストレート
7・・・アンダークラッド層
70・・・クラッド
8、11・・・直線導波路
9・・・中間クラッド層
10・・・オーバークラッド層
1 Wavelength detector
2. Wavelength temperature change part
3. Broadband light source
4 ... Optical directional coupler
SMF ・ ・ Single mode optical fiber
WBG ・ ・ Bragg grating drawn on optical waveguide
5 ・ ・ ・ Double ring resonator
IP: Incident port
DP ... Drop port
OP: Output port
DC1, DC2, DC3 ・ ・ Optical directional coupler
RW, RW1, RW2 ... Ring waveguide
6 ... Silicon substrate
7 ... Under clad layer
70 ・ ・ ・ Clad
8, 11 ... Linear waveguide
9 ... Intermediate cladding layer
10 ... Over clad layer

Claims (4)

広帯域光源からの光を光方向性結合器あるいはサーキュレータに入射させ該光方向性結合器あるいはサーキュレータからの出射光を光ファイバあるいは光導波路から成る光信号伝送ライン経由1個のセンサに導き、あるいは複数のセンサを光信号伝送ラインを用いて直列に接続した直列回路に導きこれら1個あるいは複数のセンサからの反射光は逆の経路をたどって光方向性結合器あるいはサーキュレータ経由波長検波器に導かれ該検波器において測定されたこれらセンサからの反射スペクトルを、あらかじめ測定したセンサの反射波長と温度との関係を記憶したメモリとそれを制御するための制御部からなる記憶装置に入力させることによりセンサが検出すべき温度の変化あるいは温度を測定する温度計測システムであって、前記各センサは光導波路にブラッググレーティングを描画した素子(以下WBG:Waveguide Bragg Grating)がダブルリング共振器のドロップポートに接続されており前記光信号伝送ラインとは該ダブルリング共振器の入射ポート及び出射ポートを介して接続されたことを特徴とした点型あるいは分布型温度計測システム Light from a broadband light source is incident on an optical directional coupler or circulator, and light emitted from the optical directional coupler or circulator is guided to one sensor via an optical signal transmission line composed of an optical fiber or an optical waveguide, or a plurality The sensor is guided to a series circuit connected in series using an optical signal transmission line, and the reflected light from one or more sensors follows the reverse path and is guided to a wavelength detector via an optical directional coupler or circulator. Sensors are input by inputting the reflection spectra from these sensors measured by the detector into a storage device comprising a memory storing the relationship between the reflection wavelength and temperature of the sensor measured in advance and a control unit for controlling the memory. Is a temperature measurement system for measuring a temperature change or temperature to be detected, wherein each sensor is An element in which a Bragg grating is drawn in a waveguide (hereinafter referred to as WBG: Waveguide Bragg Grating) is connected to a drop port of the double ring resonator, and the optical signal transmission line is connected to an incident port and an output port of the double ring resonator. Point-type or distributed-type temperature measurement system characterized by being connected 請求項1においてWBGの半値全幅をダブルリング共振器のフリースペクトルレンジよりも狭くしたことを特徴とする点型あるいは分布型温度計測システム The point type or distributed temperature measurement system according to claim 1, wherein the full width at half maximum of the WBG is narrower than the free spectrum range of the double ring resonator. 前記請求項2の点型温度計測システムであってダブルリング共振器の入射ポートとドロップポート間の櫛型透過スペクトルのうちの特定のスペクトルの変動の範囲はセンシング対象である温度の測定範囲に対応しておりかつそれぞれのセンサのダブルリング共振器に接続される前記WBGの反射波長帯域より狭いことを特徴とする点型温度計測システム 3. The point-type temperature measurement system according to claim 2, wherein a range of fluctuation of a specific spectrum in a comb-shaped transmission spectrum between an incident port and a drop port of a double ring resonator corresponds to a temperature measurement range to be sensed. And a temperature measuring system that is narrower than the reflected wavelength band of the WBG connected to the double ring resonator of each sensor. 前記請求項3の分布型温度計測システムであってそれぞれのセンサを構成するダブルリング共振器の入射ポートとドロップポート間の櫛型透過スペクトルのうち特定の一つのスペクトルの変動の範囲はそれぞれのセンサが対象とする温度測定範囲に対応しておりかつそれぞれのセンサのダブルリング共振器に接続されるWBGの反射波長帯域より狭く、同時にこれら複数のWBGの反射波長帯域が互いに重なり合わないように構成されたことを特徴とする分布型温度計測システム 4. The distributed temperature measurement system according to claim 3, wherein the range of fluctuation of one specific spectrum of the comb-shaped transmission spectrum between the incident port and the drop port of the double ring resonator constituting each sensor is the respective sensor. Is compatible with the temperature measurement range of the target and is narrower than the reflection wavelength band of the WBG connected to the double ring resonator of each sensor, and at the same time, the reflection wavelength bands of these multiple WBGs do not overlap each other Distributed temperature measurement system
JP2007075087A 2007-03-22 2007-03-22 Measuring system Active JP4742275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007075087A JP4742275B2 (en) 2007-03-22 2007-03-22 Measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007075087A JP4742275B2 (en) 2007-03-22 2007-03-22 Measuring system

Publications (2)

Publication Number Publication Date
JP2008232929A true JP2008232929A (en) 2008-10-02
JP4742275B2 JP4742275B2 (en) 2011-08-10

Family

ID=39905887

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007075087A Active JP4742275B2 (en) 2007-03-22 2007-03-22 Measuring system

Country Status (1)

Country Link
JP (1) JP4742275B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281104A (en) * 1987-05-14 1988-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical ring filter
JPH05181028A (en) * 1992-01-06 1993-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical ring resonator
JP2000208840A (en) * 1999-01-14 2000-07-28 Furukawa Electric Co Ltd:The Optical amplifier
JP2002310729A (en) * 2001-04-09 2002-10-23 Hitachi Cable Ltd Method and instrument for distribution type physical quantity measurement
JP2004233070A (en) * 2003-01-28 2004-08-19 Kyocera Corp Fbg sensing system
JP2004347554A (en) * 2003-05-26 2004-12-09 Kyocera Corp Fbg sensing system
JP2005128442A (en) * 2003-10-27 2005-05-19 Matsushita Electric Works Ltd Wavelength selective filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281104A (en) * 1987-05-14 1988-11-17 Nippon Telegr & Teleph Corp <Ntt> Optical ring filter
JPH05181028A (en) * 1992-01-06 1993-07-23 Nippon Telegr & Teleph Corp <Ntt> Optical ring resonator
JP2000208840A (en) * 1999-01-14 2000-07-28 Furukawa Electric Co Ltd:The Optical amplifier
JP2002310729A (en) * 2001-04-09 2002-10-23 Hitachi Cable Ltd Method and instrument for distribution type physical quantity measurement
JP2004233070A (en) * 2003-01-28 2004-08-19 Kyocera Corp Fbg sensing system
JP2004347554A (en) * 2003-05-26 2004-12-09 Kyocera Corp Fbg sensing system
JP2005128442A (en) * 2003-10-27 2005-05-19 Matsushita Electric Works Ltd Wavelength selective filter

Also Published As

Publication number Publication date
JP4742275B2 (en) 2011-08-10

Similar Documents

Publication Publication Date Title
JP4742271B2 (en) Measurement system with optical wavelength detection type physical quantity sensor using ring resonator and Bragg grating
Sano et al. Fast optical wavelength interrogator employing arrayed waveguide grating fordistributed fiber Bragg grating sensors
JP5322238B2 (en) Physical quantity measuring device
JP2015172579A (en) Optical device and method for using fiber bragg grating
JP2008185384A (en) High accuracy sensing system using fbg fabry-perot type super-narrow bandwidth optical filter
JP5894993B2 (en) Slow light fiber Bragg grating sensor
US9819435B2 (en) Optical apparatus, method, and applications
EP2980537B1 (en) Multi-peak reference grating
JP4742274B2 (en) Measuring system
CN101832792A (en) Optical waveguide sensor and preparation methods thereof
JP5168700B2 (en) Wavelength detection type optical fiber sensor system
Weng et al. SOI-based arrayed waveguide grating with extended dynamic range for fiber Bragg grating interrogator
JP4586167B2 (en) Ultra-narrow band sensor in distributed measurement system using optical wavelength detection method and method for increasing the number of sensors that can be connected to the system
JP5219166B2 (en) Wavelength detection type fiber sensor system
JP4742275B2 (en) Measuring system
Niewczas et al. Interrogation of extrinsic Fabry-Perot interferometric sensors using arrayed waveguide grating devices
JP3752442B2 (en) Silicon crystalline optical waveguide Michelson interferometric temperature sensor on insulating layer
KR101845269B1 (en) Wavelength tunable optical receiver with waveguide bragg gratings
Sugumar et al. Simulation of Spectral Division Multiplexing For Monitoring Identical FBGs
Ging et al. A generic lightwave integrated chip (GLIC) for fast high-resolution wavelength monitoring
CN116539155B (en) Spectral filter and spectrometer based on multistage resonant cavity structure
Tozzetti et al. On chip fast FBG interrogator based on a silicon on insulator ring resonator add/drop filter
Sahota et al. Investigation on a Fabry–Perot Interferometric-based Interrogation Method for a Fiber Bragg Grating Temperature Sensor
Zharashanovna THE PROSPECTS OF BUILDING INTELLIGENT OPTICAL SENSORS FOR TEMPERATURE MEASUREMENT BASED ON BRAGG GRATINGS WITH LINEAR PERIOD MEASUREMENT
US20080156779A1 (en) Apparatus for manufacturing optical fiber bragg grating, optical fiber, and mid-infrared optical fiber laser

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100810

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101020

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150