JP4671842B2 - Optical fiber sensor device - Google Patents

Optical fiber sensor device Download PDF

Info

Publication number
JP4671842B2
JP4671842B2 JP2005331119A JP2005331119A JP4671842B2 JP 4671842 B2 JP4671842 B2 JP 4671842B2 JP 2005331119 A JP2005331119 A JP 2005331119A JP 2005331119 A JP2005331119 A JP 2005331119A JP 4671842 B2 JP4671842 B2 JP 4671842B2
Authority
JP
Japan
Prior art keywords
light
optical fiber
wavelength
transmission
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005331119A
Other languages
Japanese (ja)
Other versions
JP2007139482A (en
Inventor
浩 内田
献児 西條
英樹 嶋村
千晶 大河原
康行 中島
陵沢 佐藤
誠 南
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP2005331119A priority Critical patent/JP4671842B2/en
Publication of JP2007139482A publication Critical patent/JP2007139482A/en
Application granted granted Critical
Publication of JP4671842B2 publication Critical patent/JP4671842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は光ファイバセンサ装置に関するものであり、歪み・温度・変位・圧力などの物理量を検出する光ファイバセンサ装置に関する。   The present invention relates to an optical fiber sensor device, and more particularly to an optical fiber sensor device that detects physical quantities such as strain, temperature, displacement, and pressure.

従来より光ファイバセンサは、電磁誘導に対する信頼性が高く、低損失な光伝送であるため長距離かつ大規模な多点計測が可能であり、ハイドロホン「水中音響センサ」(例えば、非特許文献1参照)や地震計「加速度センサ」(例えば、非特許文献2参照)などに利用されている。
現在、実用化されている光ファイバセンサとしては、マイケルソン干渉やサニャック干渉などを利用する位相検出型センサ、マイクロベンド・ロス(光ファイバの微少な曲げ損失)などを利用する強度検出型センサ、FBG(Fiber Bragg Grating)のブラッグ反射波長シフトなどを利用する波長検出型センサなどがある。
佐藤陵沢 他,“光ファイバハイドロホンの開発”,信学技報 OPE95-2,Vol.95,No.32,pp.2-12,1995 新藤雄吾 他,“光ファイバ加速度センサによる海底地震観測”, 第32回 光波センシング技術研究会 講演論文集,LST32-13,pp.93-98,2003
Conventionally, optical fiber sensors have high reliability with respect to electromagnetic induction and low-loss optical transmission, so long-distance and large-scale multipoint measurement is possible. Hydrophone “underwater acoustic sensor” (for example, non-patent document) 1) and seismometer “acceleration sensor” (see, for example, Non-Patent Document 2).
Optical fiber sensors that are currently in practical use include phase detection type sensors that use Michelson interference and Sagnac interference, intensity detection type sensors that use microbend loss (a slight bending loss of optical fiber), There is a wavelength detection type sensor using a Bragg reflection wavelength shift of FBG (Fiber Bragg Grating).
Ryo Sato et al., “Development of optical fiber hydrophone”, IEICE Technical Report OPE95-2, Vol.95, No.32, pp.2-12, 1995 Shingo Yuuji et al., “Observation of submarine earthquakes using optical fiber accelerometers”, Proceedings of the 32nd Lightwave Sensing Technology Study Group, LST32-13, pp.93-98, 2003

このような従来の位相検出型センサ、強度検出型センサ及び波長検出型センサ等の光ファイバセンサにおいて、長距離伝送するために送出光と信号光が異なる光ファイバ中を伝送する往復路別伝送方式を採用すると、レイリー後方散乱光の影響は少ないものの、伝送路の光ファイバ芯数が増えるためコストアップになるという問題があった。
また、コストアップを避けるために、送出光と信号光が同一の光ファイバ中を往復伝送する往復路共通伝送方式を採用した場合、送出パルスの繰返し時間と光の往復伝搬時間を考慮しないと、その伝送距離が長くなるほど、伝送路から生じるレイリー後方散乱光が蓄積され、これが支配的雑音となって精度が劣化するため、長距離伝送しにくいという問題があった。
そこで、本発明はかかる問題を解決するためになされたもので、往復路共通伝送方式であっても長距離伝送路が可能で、低コストの光ファイバセンサ装置を得ることを目的とする。
In such a conventional optical fiber sensor such as a phase detection sensor, an intensity detection sensor, and a wavelength detection sensor, a transmission method for each round-trip path in which the transmitted light and the signal light are transmitted through different optical fibers for long-distance transmission. However, although the influence of Rayleigh backscattered light is small, there is a problem that the number of optical fiber cores in the transmission path is increased and the cost is increased.
In addition , in order to avoid an increase in cost, when adopting a round trip common transmission method in which the outgoing light and the signal light are sent back and forth in the same optical fiber, if the repetition time of the outgoing pulse and the round trip propagation time of the light are not considered, As the transmission distance becomes longer, Rayleigh backscattered light generated from the transmission path accumulates, which becomes dominant noise and the accuracy deteriorates, so that there is a problem that transmission over a long distance becomes difficult .
Accordingly, the present invention has been made to solve such a problem, and an object of the present invention is to obtain a low-cost optical fiber sensor device capable of a long-distance transmission path even with a round-trip common transmission system.

本発明に係る光ファイバセンサ装置は、 往復共通の1本の伝送路ファイバと、光源と、該光源の光をパルス化して前記伝送路ファイバに出力する光ゲートスイッチと、検知する物理量に対する応答機構を備え、前記伝送路ファイバに設けられた光ファイバセンサと、前記光ファイバセンサからの信号光を前記伝送路ファイバを介して受光し、該信号光を電気信号に変換して物理量を検出する検出部とを備えた光ファイバセンサ装置において、前記光ファイバセンサは時分割多重するように前記伝送路ファイバに分岐する同一方式の離散型が複数設けられており、前記各光ファイバセンサからの戻り光がパルス・トレインとなり時分割多重できるように光ファイバセンサ間に挿入される遅延ファイバを備え、前記光源は発振波長帯域の異なる光を出力する複数の波長可変光源であり、前記光ゲートスイッチに代えた光スイッチは複数波長可変光源の複数の波長の光をWDM多重したパルス光を送出し、前記検出部は波長フィルタを有して波長を検出する波長検出部であり、前記光ファイバセンサは波長検出型光ファイバセンサであり、前記波長検出部の前段にWDM多重したパルスの信号光を複数の波長フィルタを有して分離する信号分離器を設け、前記波長検出部の後段に前記各波長検出型光ファイバセンサでそれぞれ受けるλ1〜λ3の信号を、λ1はλ1で一つにまとめ、λ2はλ2で一つにまとめ、λ3はλ3で一つにまとめるという後処理部を設け、前記光ゲートスイッチにおいて送出パルス光の繰返し時間を光の往復伝播時間よりも大きく設定して、前記伝送路ファイバ中をワンパルス伝送するようにしたものである。 An optical fiber sensor device according to the present invention includes a single transmission line fiber that is commonly used for reciprocation, a light source, an optical gate switch that pulses the light from the light source and outputs the light to the transmission line fiber, and a response mechanism for a physical quantity to be detected. An optical fiber sensor provided on the transmission line fiber, and detecting the physical quantity by receiving the signal light from the optical fiber sensor through the transmission line fiber and converting the signal light into an electrical signal. The optical fiber sensor is provided with a plurality of discrete types of the same method that branch to the transmission line fiber so as to be time-division multiplexed, and the return light from each of the optical fiber sensors. a delay fiber but which is inserted between the optical fiber sensor to allow time division multiplexing becomes a pulse train, the light source light of different oscillation wavelengths band The optical switch in place of the optical gate switch sends out pulsed light obtained by WDM-multiplexing light of multiple wavelengths of the multiple wavelength variable light source, and the detection unit has a wavelength filter. A wavelength detection unit that detects a wavelength, and the optical fiber sensor is a wavelength detection type optical fiber sensor, and WDM-multiplexed pulse signal light is separated at the front stage of the wavelength detection unit with a plurality of wavelength filters. A signal separator is provided, and the signals of λ1 to λ3 received by the respective wavelength detection type optical fiber sensors at the subsequent stage of the wavelength detection unit, λ1 is combined into one by λ1, λ2 is combined into one by λ2, and λ3 is provided with a post-processing unit that bring together at [lambda] 3, the light repetition time of the transmission pulse light in the gate switch is set larger than the round-trip propagation time of light, one-pulse heat transfer through the said transmission line fiber It is obtained by way.

本発明は以上説明したとおり、往復共通の1本の伝送路ファイバと、光源と、該光源の光をパルス化して前記伝送路ファイバに出力する光ゲートスイッチと、検知する物理量に対する応答機構を備え、前記伝送路ファイバに設けられた光ファイバセンサと、前記光ファイバセンサからの信号光を前記伝送路ファイバを介して受光し、該信号光を電気信号に変換して物理量を検出する検出部とを備えた光ファイバセンサ装置において、前記光ファイバセンサは時分割多重するように前記伝送路ファイバに分岐する同一方式の離散型が複数設けられており、前記各光ファイバセンサからの戻り光がパルス・トレインとなり時分割多重できるように光ファイバセンサ間に挿入された複数の遅延ファイバを備え、前記光ゲートスイッチにおいて送出パルス光の繰返し時間を光の往復伝播時間よりも大きく設定して、前記伝送路ファイバ中をワンパルス伝送するようにしたので、レイリー後方散乱光が伝送路ファイバ中で蓄積されることなく、往復路共通伝送のままレイリー後方散乱雑音を抑制できるため、長距離伝送が可能となり、低コストな大規模センシングシステムを構築することができるという効果がある。 As described above, the present invention includes a single transmission path fiber common to both reciprocations, a light source, an optical gate switch that pulsates light from the light source and outputs the light to the transmission path fiber, and a response mechanism for a physical quantity to be detected. An optical fiber sensor provided in the transmission line fiber; and a detection unit that receives the signal light from the optical fiber sensor through the transmission line fiber, converts the signal light into an electrical signal, and detects a physical quantity; The optical fiber sensor is provided with a plurality of discrete types of the same system that branch to the transmission line fiber so as to be time-division multiplexed , and the return light from each optical fiber sensor is pulsed. train and become comprises a plurality of delay fiber inserted between the optical fiber sensor so that it can be time-division multiplexed delivery path in the optical gate switch The repetition time of the light is set to be larger than the round-trip propagation time of the light, and the one-pulse transmission is performed in the transmission line fiber, so that the Rayleigh backscattered light is not accumulated in the transmission line fiber, and the round-trip path Since Rayleigh backscattering noise can be suppressed with common transmission, long-distance transmission is possible, and there is an effect that a low-cost large-scale sensing system can be constructed.

実施の形態1.
図1は本発明の実施の形態1の光ファイバセンサ装置の構成を示すブロック図、図2は同光ファイバセンサ装置のワンパルス伝送方式と従来のパルス伝送方式の送出波形と検出波形をそれぞれ示す波形図、図3は同光ファイバセンサ装置のワンパルス伝送方式と従来のパルス伝送方式とのレイリー雑音比較を示すグラフである。
本発明の実施の形態1の光ファイバセンサ装置は、図1に示すように、DFB-LD(Distributed Feed Back-Laser Diode)やファイバ・レーザ等のコヒーレント光源1と、時分割多重(TDM:Time Division Multiplexing)を行うための光ゲートスイッチ2と、光の伝送方向を切換える光サーキュレータ3と、往復共通の1本の伝送路ファイバ4、検知する物理量(歪み・温度・変位・圧力など)に対する応答機構を備えた複数の位相検出型光ファイバセンサ5a〜5nと、送出光を適切な分岐比で各光ファイバセンサへと分岐する複数の光カプラ6a〜6cと、各光ファイバセンサからの戻り光がパルス・トレインとなり時分割多重できるように光ファイバセンサ間に挿入される適切な長さの遅延ファイバ7a〜7nと、PD(Photo Diode)で電気信号に変換して位相復調処理を行い位相を検出する位相検出部8とから構成されている。
その位相検出型センサ5a〜5nとして主なものに、2ビームの干渉光を利用するマイケルソン干渉型やマッハツェンダ干渉型、マルチパスの干渉光を利用するファブリペロー型やサニャック型等がある。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of an optical fiber sensor device according to Embodiment 1 of the present invention, and FIG. 2 is a waveform showing a transmission waveform and a detection waveform of a one-pulse transmission method and a conventional pulse transmission method of the optical fiber sensor device, respectively. FIG. 3 and FIG. 3 are graphs showing Rayleigh noise comparison between the one-pulse transmission method and the conventional pulse transmission method of the optical fiber sensor device.
As shown in FIG. 1, an optical fiber sensor device according to Embodiment 1 of the present invention includes a coherent light source 1 such as a DFB-LD (Distributed Feed Back-Laser Diode) or a fiber laser, and time-division multiplexing (TDM). Response to an optical gate switch 2 for performing division multiplexing, an optical circulator 3 for switching the light transmission direction, a single transmission line fiber 4 that is common to both reciprocations, and physical quantities to be detected (strain, temperature, displacement, pressure, etc.) A plurality of phase detection type optical fiber sensors 5a to 5n having a mechanism, a plurality of optical couplers 6a to 6c for branching outgoing light to each optical fiber sensor at an appropriate branching ratio, and return light from each optical fiber sensor Is converted into an electrical signal by a delay fiber 7a to 7n of an appropriate length inserted between optical fiber sensors and a PD (Photo Diode) so that the signal becomes a pulse train and can be time-division multiplexed. It comprises a phase detector 8 that performs demodulation processing and detects the phase.
Major examples of the phase detection sensors 5a to 5n include a Michelson interference type, a Mach-Zehnder interference type that uses two beams of interference light, a Fabry-Perot type that uses multipath interference light, and a Sagnac type.

本発明の実施の形態1の光ファイバセンサ装置では、光ゲートスイッチ2からの送出パルス光は、1度パルスを送出した後は、各光ファイバセンサからの光信号が全て戻ってくるまでは、次のパルスを送出しない方式を採用したものであり、同一時刻に伝送路ファイバ中に往路の光パルスが1個しか存在しないので、以後、「ワンパルス伝送方式」と呼ぶ。
即ち、図2の(b)に示すように、
送出パルスの繰返し時間 > 光の往復伝搬時間
を満たすように設定する。
そして、伝送路ファイバ4の光ファイバ・コアを伝搬する光の速度は2.04×108m/sなので、伝送距離L[km]としたとき、パルスの繰返し時間Trep[sec]との関係は、以下の式
In the optical fiber sensor device according to the first embodiment of the present invention, the transmitted pulsed light from the optical gate switch 2 is the next until all the optical signals from the respective optical fiber sensors are returned after the pulse is transmitted once. This is a method that does not send out the above-mentioned pulse, and since there is only one forward optical pulse in the transmission line fiber at the same time, it is hereinafter referred to as a “one-pulse transmission system”.
That is, as shown in FIG.
Set so that the repetition time of the transmitted pulse> the round-trip propagation time of the light.
Since the speed of light propagating through the optical fiber core of the transmission line fiber 4 is 2.04 × 10 8 m / s, when the transmission distance is L [km], the relationship with the pulse repetition time T rep [sec] is , The following formula

Figure 0004671842
で与えられ、1kmで10μsecである。
Figure 0004671842
And is 10 μsec at 1 km.

次に、本発明の実施の形態1の光ファイバセンサ装置の動作について説明する。
コーヒレント光源1からの送出光は、光ゲートスイッチ2でパルス化され、光サーキュレータ3を通過した後、伝送路ファイバ4と光カプラ6a〜6nをそれぞれ経て、複数の位相検出型光ファイバセンサ5a〜5nへとそれぞれ送出される。
位相検出型光ファイバセンサ5a〜5nにおいて測定物理量の大きさに対応した干渉波形が、同じく伝送路ファイバ4を経て、光サーキュレータ3を通過した後、位相検出部8へと戻ってくる。
各位相検出型光ファイバセンサ間には、適切な遅延ファイバ7a〜7nが挿入され、送出1パルスに対して、各位相検出型光ファイバセンサからの信号は、遅延ファイバ7a〜7nの往復伝搬時間だけずれたパルス・トレインとなって位相検出部8へと戻ってくる。
そして、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式では、送出波形と検出波形は図2の(b)に示すような関係になる。
位相検出部8において、位相検出型光ファイバセンサ5a〜5nからの干渉信号の位相復調処理を行うことによって、測定物理量を算出する。
Next, the operation of the optical fiber sensor device according to the first embodiment of the present invention will be described.
The transmitted light from the coherent light source 1 is pulsed by the optical gate switch 2, passes through the optical circulator 3, and then passes through the transmission line fiber 4 and the optical couplers 6 a to 6 n, respectively, and a plurality of phase detection type optical fiber sensors 5 a to 5. Each is sent to 5n.
In the phase detection type optical fiber sensors 5a to 5n, the interference waveform corresponding to the magnitude of the measured physical quantity passes through the optical circulator 3 through the transmission line fiber 4 and then returns to the phase detection unit 8.
Appropriate delay fibers 7a to 7n are inserted between the respective phase detection type optical fiber sensors, and the signal from each phase detection type optical fiber sensor is transmitted to and from the round trip propagation time of the delay fibers 7a to 7n with respect to one transmission pulse. The pulse train deviates by a certain amount and returns to the phase detector 8.
In the one-pulse transmission method satisfying “repetition time of transmission pulse> round-trip propagation time of light”, the transmission waveform and the detection waveform have a relationship as shown in FIG.
The phase detection unit 8 calculates the measured physical quantity by performing phase demodulation processing of the interference signals from the phase detection type optical fiber sensors 5a to 5n.

ここで、まず、送出光と信号光が同一の光ファイバ中を往復伝送する往復路共通伝送方式において従来の「送出パルスの繰返し時間 < 光の往復伝搬時間」とした構成(以下、「従来方式」という)、で、長距離伝送化した場合の不具合について述べる。
入射パワーIinのパルス光をL[km]の伝送路に入射した場合、位相検出部8へと戻ってくる信号光パワーIoutは、伝送損失α[dB/km]、伝送距離L[km]、カプラの分岐比R[dB]を用いて次式で表せる。(ファイバ伝送損失、カプラ分岐損失共に往復で2倍の損失を受けるので指数の中は2αL×2Rになる)
Here, first, in the round-trip common transmission system in which the transmitted light and the signal light are reciprocally transmitted through the same optical fiber, the conventional configuration of “repetition time of transmitted pulse <reciprocal propagation time of light” (hereinafter referred to as “conventional system”). )), And will describe the troubles in the case of long distance transmission.
When pulse light having an incident power I in is incident on a transmission path of L [km], the signal light power I out returning to the phase detector 8 is a transmission loss α [dB / km] and a transmission distance L [km]. ], And can be expressed by the following equation using the branching ratio R [dB] of the coupler. (Because both fiber transmission loss and coupler branch loss are subject to double loss in round trips, the exponent is 2αL × 2R)

Figure 0004671842
Figure 0004671842

一方、全伝送路から光源部へと戻ってくるレイリー散乱の総パワーIRSは、送出パルス光のデューティ比D、伝送路ファイバのレイリー後方散乱係数Sを用いて次式で表せる。 On the other hand, the total power I RS of Rayleigh scattering returning from the entire transmission path to the light source unit can be expressed by the following equation using the duty ratio D of the transmitted pulse light and the Rayleigh backscattering coefficient S of the transmission path fiber.

Figure 0004671842
Figure 0004671842

ここで、レイリー散乱雑音に対する光信号対雑音比(OSNR:Optical Signal-to-Noise Ratio)をOSNRRS=Iout/IRSで定義すると、式(1)、式(2)より Here, when the optical signal-to-noise ratio (OSNR) with respect to Rayleigh scattering noise is defined as OSNR RS = Iout / I RS , from the equations (1) and (2),

Figure 0004671842
となる。
Figure 0004671842
It becomes.

次に、本発明の実施の形態1で述べた式(1)で与えられる「送出パルスの繰返し時間>光の往復伝搬時間」を満たすワンパルス伝送方式を採用した場合の動作について説明する。
位相検出部8へと戻ってくる信号光パワーIoutは式(2)と同じである。ワンパルス伝送方式におけるレイリー後方散乱光は、伝送路ファイバ中で蓄積されずに、パルス光近傍のレイリー散乱光だけが信号光と重なる。
従って、レイリー散乱の総パワーIRSは、パルス幅T、光速c、ファイバの屈折率nのとき、次式で表せる。

Figure 0004671842
Next, the operation in the case of adopting the one-pulse transmission method satisfying “sending pulse repetition time> light round-trip propagation time” given by the equation (1) described in the first embodiment of the present invention will be described.
The signal light power I out returning to the phase detector 8 is the same as that in the equation (2). Rayleigh backscattered light in the one-pulse transmission system is not accumulated in the transmission line fiber, but only Rayleigh scattered light in the vicinity of the pulsed light overlaps with the signal light.
Therefore, the total power I RS of Rayleigh scattering can be expressed by the following equation when the pulse width is T, the speed of light is c, and the refractive index is n of the fiber.
Figure 0004671842

このとき、レイリー散乱雑音に対するOSNRRSは、式(2)と式(5)から

Figure 0004671842
となる。 At this time, OSNR RS with respect to Rayleigh scattering noise is obtained from the equations (2) and (5).
Figure 0004671842
It becomes.

式(4)と異なり、OSNRRSは伝送距離Lに依存しないので、どれだけ伝送距離を長くしてもレイリー雑音によって測定精度が劣化することはない。
一般的な分散シフトファイバ(ITU-T G.653準拠:α=0.25dB/km、S=2.2×10-3)を用いた場合での、従来方式およびワンパルス方式での受光信号パワーおよびレイリー光の計算結果を図3に示す。
カプラの分岐比R=0dB、デューティ比D=0.1、パルス幅T=1μsにおける、受光信号パワーおよび各伝送方式でのレイリー後方散乱雑音パワーを相対的に計算したものである。
従来方式では、レイリー散乱光は10km以上でほぼ一定のパワーに収束し、信号光は伝送損失分だけ劣化するので、結果、OSNRRSが距離によって急激に劣化する。一方、本発明のワンパルス伝送方式では、信号光とレイリー散乱光との傾きが同じになり、OSNRRSの距離依存性がなくなくなる。
Unlike Equation (4), OSNR RS does not depend on the transmission distance L. Therefore, no matter how long the transmission distance is increased, the measurement accuracy is not degraded by Rayleigh noise.
Received signal power and Rayleigh light in conventional and one-pulse systems when using a general dispersion-shifted fiber (compliant with ITU-T G.653: α = 0.25 dB / km, S = 2.2 × 10 −3 ) The calculation results are shown in FIG.
This is a relative calculation of the received light signal power and the Rayleigh backscatter noise power in each transmission method when the coupler branch ratio R = 0 dB, the duty ratio D = 0.1, and the pulse width T = 1 μs.
In the conventional method, Rayleigh scattered light converges to a substantially constant power at 10 km or more, and signal light deteriorates by the amount of transmission loss. As a result, OSNR RS deteriorates rapidly with distance. On the other hand, in the one-pulse transmission system of the present invention, the slopes of the signal light and the Rayleigh scattered light are the same, and the distance dependency of OSNR RS is lost.

本発明の実施の形態1の光ファイバセンサ装置は、光源にコヒーレント光源1を用い、光ファイバセンサに位相型光ファイバセンサ5a〜5nを用い、検出部に位相検出部8を用いて送出光と信号光が同一の伝送路ファイバ中を往復伝送する往復路共通伝送方式とし、上記式(1)で与えられる「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式を採用するようにしたので、レイリー後方散乱光が伝送路ファイバ中で蓄積されることがなく、往復路共通伝送のままレイリー後方散乱雑音を抑制することができるため、低コストな大規模センシングシステムを構築することができるという効果がある。   The optical fiber sensor device according to the first embodiment of the present invention uses the coherent light source 1 as a light source, uses phase type optical fiber sensors 5a to 5n as optical fiber sensors, uses a phase detection unit 8 as a detection unit, and transmits light. A one-pulse transmission system that satisfies the “repetition time of transmission pulse> round-trip propagation time of light” given by the above formula (1) is adopted as a common transmission system for round trip transmission of signal light through the same transmission line fiber. As a result, Rayleigh backscattering light is not accumulated in the transmission line fiber, and Rayleigh backscattering noise can be suppressed while using round-trip common transmission. There is an effect that can be.

実施の形態2.
図4は本発明の実施の形態2の光ファイバセンサ装置の構成を示すブロック図である。
本発明の実施の形態2の光ファイバセンサ装置は、図4に示すように、LED(Light-Emitting Diode)などの広帯域光源11と、光ゲートスイッチ2と、光サーキュレータ3と、往復共通の1本の伝送路ファイバ4と、検知する物理量に対する応答機構を備えた3つの強度検出型光ファイバセンサ15a〜15nと、光カプラ6a〜6nと、遅延ファイバ7a〜7nと、PDを有して強度を検出する強度検出部18とから構成されている。
その強度検出型センサとして主なものに、マイクロベンド・ロス(光ファイバの微少な曲げ損失)を利用するものがあり、その他に、エアギャップ間の光の伝搬損失を利用するもの等がある。
本発明の実施の形態2の光ファイバセンサ装置も、実施の形態1と同様に、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式で送出光を送る。
Embodiment 2. FIG.
FIG. 4 is a block diagram showing the configuration of the optical fiber sensor device according to Embodiment 2 of the present invention.
As shown in FIG. 4, the optical fiber sensor device according to the second embodiment of the present invention includes a broadband light source 11 such as an LED (Light-Emitting Diode), an optical gate switch 2, an optical circulator 3, and a reciprocating common 1 A transmission line fiber 4, three intensity detection type optical fiber sensors 15a to 15n having a response mechanism for a physical quantity to be detected, optical couplers 6a to 6n, delay fibers 7a to 7n, and a PD It is comprised from the intensity | strength detection part 18 which detects this.
As the main sensors for detecting the intensity, there are sensors that use microbend loss (small bending loss of optical fiber), and others that use propagation loss of light between air gaps.
Similarly to the first embodiment, the optical fiber sensor device according to the second embodiment of the present invention also transmits the transmitted light by a one-pulse transmission method that satisfies “repetition time of transmitted pulse> round-trip propagation time of light”.

次に、本発明の実施の形態2の光ファイバセンサ装置の動作について説明する。
広帯域光源11からの送出光は、光ゲートスイッチ2でパルス化され、光サーキュレータ3を通過した後、伝送路ファイバ4と光カプラ6a〜6nをそれぞれ経て、複数の強度検出型光ファイバセンサ15a〜15nへとそれぞれ送出される。
強度検出型光ファイバセンサ15a〜15nにおいて測定物理量分だけ減衰した光信号成分は、同じく伝送路ファイバを4経て、光サーキュレータ3を通過した後、強度検出部18へと戻ってくる。
各強度検出型光ファイバセンサ間には、適切な遅延ファイバ7a〜7nが挿入され、送出1パルスに対して、各強度検出型光ファイバセンサからの信号は、遅延ファイバ7a〜7nの往復伝搬時間だけずれたパルス・トレインとなって強度検出部18へと戻ってきる。
Next, the operation of the optical fiber sensor device according to the second embodiment of the present invention will be described.
The transmitted light from the broadband light source 11 is pulsed by the optical gate switch 2, passes through the optical circulator 3, and then passes through the transmission line fiber 4 and the optical couplers 6 a to 6 n, respectively. To 15n.
The optical signal component attenuated by the measured physical quantity in the intensity detection type optical fiber sensors 15a to 15n returns to the intensity detection unit 18 after passing through the optical circulator 3 through the transmission line fiber 4 as well.
Appropriate delay fibers 7a to 7n are inserted between the respective intensity detection type optical fiber sensors, and the signal from each intensity detection type optical fiber sensor is the round-trip propagation time of the delay fibers 7a to 7n with respect to one pulse to be transmitted. The pulse train deviates by a certain amount and returns to the intensity detector 18.

そして、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式では、送出波形と検出波形は図2の(b)に示すような関係になる。
強度検出部18において、各強度検出型光ファイバセンサ15a〜15nに対応する受光パワーから測定物理量を算出する。
実施の形態1と同様に、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式を採用することにより、往復路共通伝送におけるレイリー散乱雑音を抑制することができる。
また、レイリー後方散乱光に対するOSNRRSの改善効果なども実施の形態1と同等である。
In the one-pulse transmission method satisfying “repetition time of transmission pulse> round-trip propagation time of light”, the transmission waveform and the detection waveform have a relationship as shown in FIG.
The intensity detector 18 calculates a measured physical quantity from the received light power corresponding to each of the intensity detection type optical fiber sensors 15a to 15n.
As in the first embodiment, by adopting a one-pulse transmission method that satisfies “repetition time of transmission pulse> round-trip propagation time of light”, Rayleigh scattering noise in round-trip common transmission can be suppressed.
The effect of improving the OSNR RS with respect to Rayleigh backscattered light is also the same as that of the first embodiment.

本発明の実施の形態2の光ファイバセンサ装置は、光源に広帯域光源11を用い、光ファイバセンサに強度検出型光ファイバセンサ15a〜15nを用い、検出部に強度検出部18を用いて送出光と信号光が同一の伝送路ファイバ中を往復伝送する往復路共通伝送方式とし、上記式(1)で与えられる「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式を採用するようにしたので、レイリー後方散乱光が伝送路ファイバ中で蓄積されることがなく、往復路共通伝送のままレイリー後方散乱雑音を抑制することができるため、低コストな大規模センシングシステムを構築することができるという効果がある。   The optical fiber sensor device according to the second embodiment of the present invention uses the broadband light source 11 as the light source, the intensity detection type optical fiber sensors 15a to 15n as the optical fiber sensor, and the intensity detection unit 18 as the detection unit. And a single-pulse transmission method that satisfies the “repetition time of the transmitted pulse> the round-trip propagation time of the light” given by the above equation (1). As a result, Rayleigh backscattering light is not accumulated in the transmission line fiber, and Rayleigh backscattering noise can be suppressed while using round-trip common transmission, thus constructing a low-cost large-scale sensing system. There is an effect that can be.

実施の形態3.
図5は本発明の実施の形態3の光ファイバセンサ装置の構成を示すブロック図である。
本発明の実施の形態3の光ファイバセンサ装置は、図5に示すように、波長が周期的に変化する光を出力する波長可変光源21、光ゲートスイッチ2、光サーキュレータ3、往復共通の1本の伝送路ファイバ4、検知する物理量に対する応答機構を備えた3つの波長検出型光ファイバセンサ25a〜25nと、光カプラ6a〜6nと、遅延ファイバ7a〜7nと、波長フィルタとPDとを有して波長を検出する波長検出部28とから構成されている。
その波長検出型センサとして主なものに、FBGのブラッグ反射波長を利用するものや、ファブリペロー共振器の共振周波数を利用するものがある。
本発明の実施の形態3の光ファイバセンサ装置も、実施の形態1と同様に、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式で送出光を送る。
Embodiment 3 FIG.
FIG. 5 is a block diagram showing the configuration of the optical fiber sensor device according to Embodiment 3 of the present invention.
As shown in FIG. 5, the optical fiber sensor device according to the third embodiment of the present invention includes a wavelength variable light source 21 that outputs light whose wavelength changes periodically, an optical gate switch 2, an optical circulator 3, and a reciprocating common 1 The transmission line fiber 4 includes three wavelength detection type optical fiber sensors 25a to 25n equipped with a response mechanism for a physical quantity to be detected, optical couplers 6a to 6n, delay fibers 7a to 7n, a wavelength filter, and a PD. And a wavelength detector 28 for detecting the wavelength.
As the wavelength detection type sensors, there are those that use the Bragg reflection wavelength of the FBG and those that use the resonance frequency of the Fabry-Perot resonator.
Similarly to the first embodiment, the optical fiber sensor device according to the third embodiment of the present invention also transmits the transmitted light by a one-pulse transmission method that satisfies “repetition time of transmitted pulse> round-trip propagation time of light”.

次に、本発明の実施の形態3の光ファイバセンサ装置の動作について説明する。
波長可変光源21からの送出光は、光ゲートスイッチ2でパルス化され、光サーキュレータ3を通過した後、伝送路ファイバ4と光カプラ6a〜6nをそれぞれ経て、複数の波長検出型光ファイバセンサ25a〜25nへとそれぞれ送出される。
波長検出型光ファイバセンサ25a〜25nにおいて測定物理量の大きさに対応した信号波長成分だけが、同じく伝送路ファイバを4経て、光サーキュレータ3を通過した後、波長検出部28へと戻ってくる。
各波長検出型光ファイバセンサ間には、適切な遅延ファイバ7a〜7nが挿入され、送出1パルスに対して、各光波長検出型ファイバセンサからの信号は、遅延ファイバ7a〜7nの往復伝搬時間だけずれたパルス・トレインとなって波長検出部28へと戻ってきる。
そして、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式では、送出波形と検出波形は図2の(b)に示すような関係になる。
波長検出部28は、波長フィルタとPDから構成され、波長フィルタの透過スペクトルは各波長検出型光ファイバセンサ25a〜25nの帯域内で波長特性をもつので、各波長検出型光ファイバセンサ25a〜25nの反射波長に対応した光パワーが透過する。従って、波長検出部28はPDが検出する光パワーから測定物理量を算出することができる。
Next, the operation of the optical fiber sensor device according to Embodiment 3 of the present invention will be described.
The transmitted light from the wavelength tunable light source 21 is pulsed by the optical gate switch 2, passes through the optical circulator 3, and then passes through the transmission line fiber 4 and the optical couplers 6a to 6n, respectively, and a plurality of wavelength detection type optical fiber sensors 25a. To 25n respectively.
In the wavelength detection type optical fiber sensors 25a to 25n, only the signal wavelength component corresponding to the magnitude of the measured physical quantity returns to the wavelength detection unit 28 after passing through the optical circulator 3 through the transmission line fiber 4 as well.
Appropriate delay fibers 7a to 7n are inserted between the respective wavelength detection type optical fiber sensors, and a signal from each optical wavelength detection type fiber sensor is transmitted to and from the round trip propagation time of the delay fibers 7a to 7n with respect to one transmission pulse. The pulse train deviates by a certain amount and returns to the wavelength detector 28.
In the one-pulse transmission method satisfying “repetition time of transmission pulse> round-trip propagation time of light”, the transmission waveform and the detection waveform have a relationship as shown in FIG.
The wavelength detection unit 28 includes a wavelength filter and a PD, and the transmission spectrum of the wavelength filter has a wavelength characteristic within the band of each wavelength detection type optical fiber sensor 25a to 25n. Therefore, each wavelength detection type optical fiber sensor 25a to 25n. The optical power corresponding to the reflected wavelength is transmitted. Therefore, the wavelength detector 28 can calculate the measured physical quantity from the optical power detected by the PD.

実施の形態1と同様に、「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式を採用することにより、往復路共通伝送におけるレイリー散乱雑音を抑制することができる。
また、レイリー後方散乱光に対するOSNRRSの改善効果なども実施の形態1と同等である。
As in the first embodiment, by adopting a one-pulse transmission method that satisfies “repetition time of transmission pulse> round-trip propagation time of light”, Rayleigh scattering noise in round-trip common transmission can be suppressed.
The effect of improving the OSNR RS with respect to Rayleigh backscattered light is also the same as that of the first embodiment.

本発明の実施の形態3の光ファイバセンサ装置は、光源に波長可変光源21を用い、光ファイバセンサに波長検出型光ファイバセンサ25a〜25nを用い、検出部に波長検出部28を用いて送出光と信号光が同一の伝送路ファイバ中を往復伝送する往復路共通伝送方式とし、上記式(1)で与えられる「送出パルスの繰返し時間 > 光の往復伝搬時間」を満たすワンパルス伝送方式を採用するようにしたので、レイリー後方散乱光が伝送路ファイバ中で蓄積されることがなく、往復路共通伝送のままレイリー後方散乱雑音を抑制することができるため、低コストな大規模センシングシステムを構築することができるという効果がある。   The optical fiber sensor device according to the third embodiment of the present invention uses the wavelength variable light source 21 as a light source, uses wavelength detection type optical fiber sensors 25a to 25n as optical fiber sensors, and uses a wavelength detection unit 28 as a detection unit. A one-pulse transmission method that satisfies the “repetition time of transmission pulse> round-trip propagation time of light” given by the above equation (1) is adopted as a round-trip common transmission method in which light and signal light are transmitted back and forth in the same transmission line fiber. Because Rayleigh backscattered light is not accumulated in the transmission line fiber and Rayleigh backscattering noise can be suppressed while using round-trip common transmission, a low-cost large-scale sensing system is constructed. There is an effect that can be done.

図6は本発明の実施の形態4の光ファイバセンサ装置の構成を示すブロック図、図7は実施の形態1〜3と実施の形態4との光ファイバセンサ装置のワンパルス伝送方式の送出波形と検出波形をそれぞれ示す波形図、図8はワンパルス伝送方式における伝送距離とサンプリング周波数との関係を示すグラフである。
本発明の実施の形態4の光ファイバセンサ装置は、図6に示すように、発振波長帯域の異なる3つの光を出力する波長可変光源21A〜21Cと、波長可変光源21A〜21Cからの発振波長帯域の異なる3つの光を波長分割多重(WDM:Wavelength Division Multiplexing)し、パルス化して送出する光スイッチ22、光サーキュレータ3、往復共通の1本の伝送路ファイバ4、検知する物理量に対する応答機構を備えた複数の波長検出型光ファイバセンサ25a〜25nと、光カプラ6a〜6nと、遅延ファイバ7a〜7nと、WDM多重したパルスの信号光を3つの波長フィルタを有して分離する信号分離器(DEMUX:Demultiplexer)29と、波長フィルタとPDとを有して分離した信号から波長を検出する波長検出部28と、同一センサの擬似WDM信号をつなぎ合わせる後処理30とからから構成されている。
その波長検出型センサとしては、周期的な波長特性をもつファブリペロー型のセンサが望ましい。
FIG. 6 is a block diagram showing the configuration of the optical fiber sensor device according to the fourth embodiment of the present invention, and FIG. 7 shows the transmission waveform of the one-pulse transmission method of the optical fiber sensor device according to the first to third embodiments and the fourth embodiment. FIG. 8 is a graph showing the relationship between the transmission distance and the sampling frequency in the one-pulse transmission method.
As shown in FIG. 6, the optical fiber sensor device according to the fourth embodiment of the present invention includes wavelength tunable light sources 21A to 21C that output three lights having different oscillation wavelength bands, and oscillation wavelengths from the wavelength tunable light sources 21A to 21C. Wavelength Division Multiplexing (WDM: Light Division Multiplexing) of three different bandwidths, pulsed and transmitted optical switch 22, optical circulator 3, single transmission line fiber 4 common to round trip, response mechanism for physical quantity to be detected A plurality of wavelength detection type optical fiber sensors 25a to 25n, optical couplers 6a to 6n, delay fibers 7a to 7n, and a signal separator that separates WDM multiplexed signal light with three wavelength filters (DEMUX: Demultiplexer) 29, a wavelength detection unit 28 that detects a wavelength from a separated signal having a wavelength filter and a PD, Is Karakara configured as a post-treatment 30 joining the WDM signal.
As the wavelength detection type sensor, a Fabry-Perot type sensor having a periodic wavelength characteristic is desirable.

次に、本発明の実施の形態4の光ファイバセンサ装置の動作について説明する。
3つの波長可変光源21A〜21Cからの光は、光スイッチ2により波長分割多重されて(異なる波長ごとに時間差を持たせて)送出される。その送出光は光サーキュレータ3を通過した後、伝送路ファイバ4と光カプラ6a〜6nをそれぞれ経て、複数の波長検出型光ファイバセンサ25a〜25nへとそれぞれ送出される。
波長検出型光ファイバセンサ25a〜25nにおいて測定物理量の大きさに対応した信号波長成分が、同じく伝送路ファイバ4経て、光サーキュレータ3を通過した後、信号分離器29で波長分離されて波長検出部28へと戻ってくる。
Next, the operation of the optical fiber sensor device according to the fourth embodiment of the present invention will be described.
Light from the three wavelength variable light sources 21A to 21C is wavelength-division multiplexed by the optical switch 2 (with a time difference for each different wavelength) and transmitted. The transmitted light passes through the optical circulator 3, and then is transmitted to the plurality of wavelength detection type optical fiber sensors 25a to 25n through the transmission line fiber 4 and the optical couplers 6a to 6n, respectively.
In the wavelength detection type optical fiber sensors 25a to 25n, the signal wavelength component corresponding to the magnitude of the measured physical quantity passes through the optical circulator 3 through the transmission line fiber 4 and is then wavelength-separated by the signal separator 29 to be a wavelength detector. Return to 28.

この実施の形態4では、光スイッチ22でWDM多重したパルス光を送出するが、各波長検出型光ファイバセンサ25a〜25nは光カプラ6a〜6nで分岐されているので、全ての送出光に対して応答する。
従って、3つの波長可変光源21A〜21Cからの光を光スイッチ22によって波長分割多重して例えば3つの波長のWDM光源を用いた場合、3個の波長検出型光ファイバセンサ25a〜25nに対して、3個の信号光が戻ってくる。
これらを信号分離器29で分離し、波長検出部28による波長検出後に後処理部30でつなぎ合わせることによって、ワンパルス伝送方式のサンプリング周波数を3倍に上げることができ、ワンパルス伝送方式の欠点であるサンプリング周波数の低下を改善することができる(図7の(b)参照)。
ここで、後処理部30によるつなぎ合わせとは、WDMの各チャンネル信号であるλ1〜λ3は、わずかにタイミングずれた状態で受信するので、チャンネル数と同数のA/Dボードで信号を受信した後、各チャンネルのデータをスイープするようにデータを並び替えること、即ち各波長検出型光ファイバセンサでそれぞれ受けるλ1〜λ3の信号を、λ1はλ1で一つにまとめ、λ2はλ2で一つにまとめ、λ3はλ3で一つにまとめることをいう。このつなぎ合わせの処理により、時間間隔が1/3に短縮(高サンプリング)化することができる。
In the fourth embodiment, pulse light multiplexed by WDM is transmitted by the optical switch 22, but the wavelength detection type optical fiber sensors 25a to 25n are branched by the optical couplers 6a to 6n. Respond.
Accordingly, when light from the three wavelength variable light sources 21A to 21C is wavelength division multiplexed by the optical switch 22 and, for example, three wavelength WDM light sources are used, the three wavelength detection type optical fiber sensors 25a to 25n are used. Three signal lights are returned.
These signals are separated by the signal separator 29 and connected by the post-processing unit 30 after wavelength detection by the wavelength detection unit 28, whereby the sampling frequency of the one-pulse transmission method can be tripled, which is a disadvantage of the one-pulse transmission method. A decrease in sampling frequency can be improved (see FIG. 7B).
Here, the linking by the post-processing unit 30 means that λ1 to λ3, which are WDM channel signals, are received with a slight timing shift, so signals are received by the same number of A / D boards as the number of channels. After that, rearrange the data so as to sweep the data of each channel, that is, λ1 to λ3 signals received by each wavelength detection type optical fiber sensor, λ1 is combined into λ1, and λ2 is combined into λ2. In summary, λ3 means that λ3 is combined into one. By this joining process, the time interval can be shortened to 1/3 (high sampling).

実施の形態1〜3のワンパルス伝送方式においては、伝送距離が長くなるほど測定サンプリング時間が遅くなる。これは、「サンプリング時間 > 光の往復伝搬時間」に制約されるからである。伝送距離10kmでサンプリング時間約100μsec(サンプリング周波数10kHz)である。ワンパルス伝送方式における伝送距離と最大サンプリング周波数との関係を図8に示す。
サンプリング周波数を上げるために、同時刻に伝送路上に複数個のパルスが存在するようにパルス間隔を狭めれば良いが、そうすると他のパルスからのレイリー後方散乱光が雑音となってしまう。
そこで、実施の形態4では、複数の送出光を波長毎に時間をずらして送出することによって、擬似的なワンパルス伝送方式を採用した。
In the one-pulse transmission systems of the first to third embodiments, the measurement sampling time becomes longer as the transmission distance becomes longer. This is because “sampling time> light round-trip propagation time” is limited. Sampling time is about 100μsec at 10km transmission distance (sampling frequency 10kHz). FIG. 8 shows the relationship between the transmission distance and the maximum sampling frequency in the one-pulse transmission system.
In order to increase the sampling frequency, it is only necessary to narrow the pulse interval so that a plurality of pulses exist on the transmission line at the same time. However, Rayleigh backscattered light from other pulses becomes noise.
Therefore, in the fourth embodiment, a pseudo one-pulse transmission system is adopted by transmitting a plurality of transmission lights with different wavelengths for each wavelength.

個々の波長については、伝送路上に1個しかパルスが存在しないワンパルス伝送であることから、擬似的なワンパルス伝送方式と呼ぶことができる。
この場合、異なる複数波長のレイリー散乱光は信号分離器29の波長フィルタで分離することができる。波長復調後に復調されたWDM信号をつなぎ合わせることによって、レイリー後方散乱光を抑制した状態のままで、サンプリング周波数を上げることができ、n波長の擬似WDMを行うことにより、サンプリング周波数はn倍になる(図7(b)参照)。
Since each wavelength is one-pulse transmission in which only one pulse exists on the transmission line, it can be called a pseudo one-pulse transmission system.
In this case, Rayleigh scattered light having different wavelengths can be separated by the wavelength filter of the signal separator 29. By connecting the WDM signals demodulated after wavelength demodulation, the sampling frequency can be increased while suppressing Rayleigh backscattered light, and by performing n-wavelength pseudo WDM, the sampling frequency is increased by n times. (See FIG. 7B).

上記実施の形態1〜3のワンパルス伝送方式においては、送出パルス光が戻ってくるまでの間は送出パルスを送出できないので、長距離伝送になるに従いセンサ信号のサンプリング時間が遅くなるが、本発明の実施の形態4の光ファイバセンサ装置は、そのような場合に、n波の擬似WDM光源を使用することによって、レイリー後方散乱光を抑制した状態のままサンプリング周波数をn倍にすることができる。   In the one-pulse transmission method of the first to third embodiments, since the transmission pulse cannot be transmitted until the transmission pulse light returns, the sampling time of the sensor signal is delayed as the long-distance transmission is performed. In such a case, the optical fiber sensor device of the fourth embodiment can increase the sampling frequency by n times while suppressing Rayleigh backscattered light by using an n-wave pseudo WDM light source. .

(利用形態)の説明
実施の形態1〜3において、伝送損失が同軸ケーブルよりも光ファイバの方が一桁少ないという理由で、送出光を複数の光ファイバセンサで受光する多重センサの構成について述べたが、多重化なしの1つの光ファイバセンサにおいても、ワンパルス伝送方式を採用することでレイリー雑音を抑制する効果がある。
全ての実施の形態において、長距離伝送を前提にした構成について述べたが、たとえ伝送距離が短くても(<1km程度)、システム雑音レベルが非常に低く、レイリー後方散乱光が支配的雑音となるようなシステムにおいては、有効に機能する。
全ての実施の形態において、空間分割多重(SDM:Spatial Division Multiplexing)、周波数分割多重(FDM:Frequency Division Multiplexing)など他の多重化方式と併用する構成においても、有効に機能する。
Description of (Usage Mode) In Embodiments 1 to 3, the configuration of a multiple sensor that receives outgoing light by a plurality of optical fiber sensors is described because the transmission loss is one digit less than that of a coaxial cable. However, even one optical fiber sensor without multiplexing has the effect of suppressing Rayleigh noise by adopting the one-pulse transmission method.
In all the embodiments, the configuration based on long-distance transmission has been described. Even if the transmission distance is short (<1 km), the system noise level is very low, and Rayleigh backscattered light is dominant noise. It works effectively in such a system.
In all the embodiments, even in a configuration used in combination with other multiplexing schemes such as spatial division multiplexing (SDM) and frequency division multiplexing (FDM), it functions effectively.

全ての実施の形態において、光源直後の光サーキュレータを光カプラに変更しても、同様の効果が得られる。ただし、光カプラの挿入損失や多重反射の影響があるので、光カプラに入れ替える場合は、適切な位置に光アイソレータを挿入するのが望ましい。
全ての実施の形態において、光アンプを省略して説明したが、長距離伝送で高多重化する場合には、エルビウム添加光ファイバ増幅器(EDFA:Erbium-Doped Fiber Amplifier)やラマンアンプなどによる光増幅は必須である。また、増幅位置としても送出直前に増幅するブースタアンプ、受光部直前に増幅するプリアンプ共に、各実施の形態の伝送方式は有効に機能する。
全ての実施の形態において、光カプラあるいは光合分波器(光サーキュレータ)を用いた分岐型の光ファイバセンサの多重形態について述べたが、FBGや誘電多層膜を利用したインライン型の光ファイバセンサを使って、無分岐の多重形態を構成する場合においても、同様の効果が得られる。
In all the embodiments, the same effect can be obtained even if the optical circulator immediately after the light source is changed to an optical coupler. However, since there are effects of insertion loss and multiple reflection of the optical coupler, it is desirable to insert an optical isolator at an appropriate position when replacing the optical coupler.
In all the embodiments, the optical amplifier is omitted. However, in the case of high multiplexing by long-distance transmission, optical amplification by an erbium-doped fiber amplifier (EDFA) or a Raman amplifier is used. Is essential. In addition, the transmission system of each embodiment functions effectively for both the booster amplifier that amplifies immediately before transmission and the preamplifier that amplifies immediately before the light receiving unit.
In all the embodiments, the multiplexing type of the branch type optical fiber sensor using the optical coupler or the optical multiplexer / demultiplexer (optical circulator) has been described. However, the in-line type optical fiber sensor using the FBG or the dielectric multilayer film is used. The same effect can be obtained even when a non-branching multiplex configuration is used.

実施の形態4は、3つの波長可変光源21Aから21Cを実施の形態3の波長検出型システムに適用した構成について述べたが、3つの波長可変光源21Aから21Cを実施の形態1及び2に適用しても同様の効果が得られる。
実施の形態1においてコヒーレント光源、実施の形態2において広帯域光源、実施の形態3において波長可変光源を用いた構成について述べたが、これらは一般的な構成で使われる光源であって、例えば実施の形態1の位相検出型に低コヒーレント光源を使う方式や、実施の形態3の波長検出に広帯域光源を使う方式等のように、他の光源と入れ替えても同様の効果が得られる。
全ての実施の形態において、光源から一番手前の光ファイバセンサまでの間に長距離の伝送路ファイバが挿入された構成について述べたが、各センサ間に長距離の伝送路ファイバが挿入される構成についても同様の効果が得られる。
実施の形態1〜3において、位相・強度・波長検出型光ファイバセンサそれぞれ個別の構成について述べたが、伝送路ファイバの芯数が制限されているときに、波長検出と強度検出を併用したシステムを構築し、同じ伝送路ファイバに波長検出型光ファイバセンサと強度検出型光ファイバとをつなげていくというようなこれらを複合したマルチセンサシステムにおいても、全ての実施の形態の効果は有効に機能する。
Although the fourth embodiment has described the configuration in which the three wavelength variable light sources 21A to 21C are applied to the wavelength detection type system of the third embodiment, the three wavelength variable light sources 21A to 21C are applied to the first and second embodiments. However, the same effect can be obtained.
Although the configuration using the coherent light source in the first embodiment, the broadband light source in the second embodiment, and the wavelength tunable light source in the third embodiment has been described, these are light sources used in a general configuration. Similar effects can be obtained by replacing with other light sources, such as a system using a low-coherent light source for the phase detection type of Embodiment 1 and a system using a broadband light source for wavelength detection of Embodiment 3.
In all the embodiments, the configuration in which the long-distance transmission line fiber is inserted between the light source and the frontmost optical fiber sensor has been described. However, the long-distance transmission line fiber is inserted between the sensors. The same effect can be obtained with respect to the configuration.
In the first to third embodiments, the individual configurations of the phase / intensity / wavelength detection type optical fiber sensors are described. However, when the number of cores of the transmission line fiber is limited, the system uses both wavelength detection and intensity detection. Even in a multi-sensor system that combines a wavelength detection type optical fiber sensor and an intensity detection type optical fiber to the same transmission line fiber, the effects of all the embodiments function effectively. To do.

実施の形態4において、信号分離器29及び並列の波長検出部28を使った構成について述べたが、戻ってくる3波長には時間差がついているので、信号分離器の代わりに、この時間差を利用して、これに同期した光スイッチで分配するようにした送出パルスに同期した可変波長フィルタを用いた1系統の波長検出部に置き換えても同様の効果が得られる。
実施の形態4において、3つの波長の擬似WDMについて述べたが、3つの波長に限定するものではなく、複数の波長の擬似WDMにおいても同様の効果が得られる。
In the fourth embodiment, the configuration using the signal separator 29 and the parallel wavelength detector 28 has been described. However, since there are time differences in the three returning wavelengths, this time difference is used instead of the signal separator. The same effect can be obtained even if the system is replaced with a single wavelength detection unit using a variable wavelength filter synchronized with a transmission pulse distributed by an optical switch synchronized with this.
In the fourth embodiment, the pseudo-WDM of three wavelengths has been described. However, the present invention is not limited to the three wavelengths, and the same effect can be obtained in the pseudo-WDM of a plurality of wavelengths.

本発明の実施の形態1の光ファイバセンサ装置の構成を示すブロック図。The block diagram which shows the structure of the optical fiber sensor apparatus of Embodiment 1 of this invention. 同光ファイバセンサ装置のワンパルス伝送方式と従来のパルス伝送方式の送出波形と検出波形をそれぞれ示す波形図。The wave form diagram which respectively shows the transmission waveform and detection waveform of the one pulse transmission system of the same optical fiber sensor apparatus, and the conventional pulse transmission system. 同光ファイバセンサ装置のワンパルス伝送方式と従来のパルス伝送方式とのレイリー雑音比較を示すグラフ。The graph which shows the Rayleigh noise comparison of the one pulse transmission system of the same optical fiber sensor apparatus, and the conventional pulse transmission system. 本発明の実施の形態2の光ファイバセンサ装置の構成を示すブロック図。The block diagram which shows the structure of the optical fiber sensor apparatus of Embodiment 2 of this invention. 本発明の実施の形態3の光ファイバセンサ装置の構成を示すブロック図。The block diagram which shows the structure of the optical fiber sensor apparatus of Embodiment 3 of this invention. 本発明の実施の形態4の光ファイバセンサ装置の構成を示すブロック図。The block diagram which shows the structure of the optical fiber sensor apparatus of Embodiment 4 of this invention. 実施の形態1〜3と実施の形態4との光ファイバセンサ装置のワンパルス伝送方式の送出波形と検出波形をそれぞれ示す波形図。The wave form diagram which shows the transmission waveform and detection waveform of the one pulse transmission system of the optical fiber sensor apparatus of Embodiment 1-3 and Embodiment 4, respectively. ワンパルス伝送方式におけう伝送距離とサンプリング周波数との関係を示すグラフ。The graph which shows the relationship between the transmission distance and sampling frequency in a one pulse transmission system.

符号の説明Explanation of symbols

1 コヒーレント光源、2 光ゲートスイッチ、3 光サーキュレータ、4 伝送路ファイバ、5a〜5n 位相型光センサ、6a〜6n 光カプラ、7a〜7n 遅延ファイバ、8 位相検出部。
DESCRIPTION OF SYMBOLS 1 Coherent light source, 2 optical gate switch, 3 optical circulator, 4 transmission line fiber, 5a-5n phase type optical sensor, 6a-6n optical coupler, 7a-7n delay fiber, 8 phase detection part.

Claims (1)

往復共通の1本の伝送路ファイバと、
光源と、
該光源の光をパルス化して前記伝送路ファイバに出力する光ゲートスイッチと、
検知する物理量に対する応答機構を備え、前記伝送路ファイバに設けられた光ファイバセンサと、
前記光ファイバセンサからの信号光を前記伝送路ファイバを介して受光し、該信号光を電気信号に変換して物理量を検出する検出部と
を備えた光ファイバセンサ装置において、
前記光ファイバセンサは時分割多重するように前記伝送路ファイバに分岐する同一方式の離散型が複数設けられており、
前記各光ファイバセンサからの戻り光がパルス・トレインとなり時分割多重できるように光ファイバセンサ間に挿入される遅延ファイバを備え、
前記光源は発振波長帯域の異なる光を出力する複数の波長可変光源であり、前記光ゲートスイッチに代えた光スイッチは複数波長可変光源の複数の波長の光をWDM多重したパルス光を送出し、前記検出部は波長フィルタを有して波長を検出する波長検出部であり、前記光ファイバセンサは波長検出型光ファイバセンサであり、前記波長検出部の前段にWDM多重したパルスの信号光を複数の波長フィルタを有して分離する信号分離器を設け、前記波長検出部の後段に前記各波長検出型光ファイバセンサでそれぞれ受けるλ1〜λ3の信号を、λ1はλ1で一つにまとめ、λ2はλ2で一つにまとめ、λ3はλ3で一つにまとめるという後処理部を設け、
前記光ゲートスイッチにおいて送出パルス光の繰返し時間を光の往復伝播時間よりも大きく設定して、前記伝送路ファイバ中をワンパルス伝送することを特徴とする光ファイバセンサ装置。
One transmission line fiber common to both round trips;
A light source;
An optical gate switch for pulsing the light from the light source and outputting it to the transmission line fiber;
A response mechanism for a physical quantity to be detected; an optical fiber sensor provided in the transmission line fiber;
An optical fiber sensor device comprising: a detection unit that receives signal light from the optical fiber sensor through the transmission line fiber, converts the signal light into an electrical signal, and detects a physical quantity;
The optical fiber sensor is provided with a plurality of discrete types of the same method branching to the transmission line fiber so as to be time-division multiplexed,
A delay fiber inserted between the optical fiber sensors so that the return light from each optical fiber sensor becomes a pulse train and can be time-division multiplexed;
The light source is a plurality of wavelength tunable light sources that output light having different oscillation wavelength bands, and the optical switch in place of the optical gate switch sends out a pulsed light in which light of a plurality of wavelengths of a plurality of wavelength tunable light sources is WDM multiplexed, The detection unit is a wavelength detection unit that has a wavelength filter to detect a wavelength, the optical fiber sensor is a wavelength detection type optical fiber sensor, and a plurality of pulse signal lights multiplexed in the WDM before the wavelength detection unit. A signal separator is provided to separate the signals of λ1 to λ3 received by each of the wavelength detection type optical fiber sensors at the subsequent stage of the wavelength detection unit, λ1 is combined into λ1, and λ2 Is provided with a post-processing unit that combines λ2 into one and λ3 into one with λ3,
In the optical gate switch, the repetition time of the transmitted pulse light is set to be longer than the round-trip propagation time of light, and one-pulse transmission is performed in the transmission line fiber.
JP2005331119A 2005-11-16 2005-11-16 Optical fiber sensor device Active JP4671842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005331119A JP4671842B2 (en) 2005-11-16 2005-11-16 Optical fiber sensor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005331119A JP4671842B2 (en) 2005-11-16 2005-11-16 Optical fiber sensor device

Publications (2)

Publication Number Publication Date
JP2007139482A JP2007139482A (en) 2007-06-07
JP4671842B2 true JP4671842B2 (en) 2011-04-20

Family

ID=38202549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331119A Active JP4671842B2 (en) 2005-11-16 2005-11-16 Optical fiber sensor device

Country Status (1)

Country Link
JP (1) JP4671842B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4787789B2 (en) * 2006-06-09 2011-10-05 アンリツ株式会社 FBG sensor system
GB0713413D0 (en) * 2007-07-11 2007-08-22 Qinetiq Ltd Phased based sensing
JP5171241B2 (en) * 2007-12-21 2013-03-27 アンリツ株式会社 Physical quantity measurement system
JP5380644B2 (en) * 2008-02-20 2014-01-08 アンリツ株式会社 Physical quantity measurement system
GB0810977D0 (en) 2008-06-16 2008-07-23 Qinetiq Ltd Phase based sensing
US9482927B2 (en) * 2009-10-26 2016-11-01 The Boeing Company Optical sensor interrogation system
CN101893802A (en) * 2010-06-25 2010-11-24 上海华魏光纤传感技术有限公司 Photo-sensing relay amplifier and method thereof
JP5008011B2 (en) * 2010-09-22 2012-08-22 防衛省技術研究本部長 Optical fiber sensor array and optical fiber sensor array system
JP5652229B2 (en) * 2011-01-26 2015-01-14 沖電気工業株式会社 Interferometric optical fiber sensor system
JP2013072701A (en) * 2011-09-27 2013-04-22 Japan Aerospace Exploration Agency Temperature and strain distribution measurement system
JP5972403B2 (en) * 2012-03-02 2016-08-17 オーエフエス ファイテル,エルエルシー TDM and WDM based FBG sensor array systems
EP3023747A4 (en) * 2013-07-16 2016-06-29 Watanabe Co Ltd Optical fiber sensing optical system and optical fiber sensing system
WO2016032420A1 (en) * 2014-08-25 2016-03-03 Halliburton Energy Services, Inc. Hybrid fiber optic cable for distributed sensing
CA3070965C (en) * 2017-07-26 2022-12-06 Terra15 Pty Ltd Distributed optical sensing systems and methods
CN110360997B (en) * 2019-06-28 2021-06-01 浙江大学 Detection system and method of time division multiplexing resonant optical gyroscope
CN110360998B (en) * 2019-06-28 2021-05-18 浙江大学 Detection system and method of resonant optical gyroscope based on pulse light detection
WO2022006702A1 (en) * 2020-07-06 2022-01-13 山东省科学院 Continuous spatial synchronization monitoring device for ocean temperature and pressure
JP7371830B1 (en) 2023-01-31 2023-10-31 白山工業株式会社 Optical fiber sensor and measurement system using it
CN116826495B (en) * 2023-08-25 2023-11-03 山东弘信光学科技有限公司 Pulse Raman fiber laser with tunable and selectable multiple wavelengths

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105122A (en) * 1986-06-23 1989-04-21 Univ Leland Stanford Jr Apparatus for remotely sensing environmental change
JPH0634671A (en) * 1992-05-15 1994-02-10 Asea Brown Boveri Ag Textile-optical sensor
JPH09200132A (en) * 1996-01-12 1997-07-31 Kokusai Denshin Denwa Co Ltd <Kdd> Monitor method for optical communication line
JPH09318462A (en) * 1996-05-31 1997-12-12 Oki Electric Ind Co Ltd Multi-point type optical fiber sensor
JP2001156368A (en) * 1999-11-25 2001-06-08 Japan Science & Technology Corp Time-division wavelength multiple pulse-light generator and multiple wavelength measuring system
JP2002122413A (en) * 2000-10-13 2002-04-26 Sumitomo Electric Ind Ltd Optical fiber strain measuring system
JP2002310729A (en) * 2001-04-09 2002-10-23 Hitachi Cable Ltd Method and instrument for distribution type physical quantity measurement
JP2002541575A (en) * 1999-04-09 2002-12-03 キネティック リミテッド Optical fiber detector assembly
JP2003156315A (en) * 2001-11-21 2003-05-30 Mitsubishi Heavy Ind Ltd Method and apparatus for measurement of distribution of strain and temperature
JP2003249898A (en) * 2002-02-22 2003-09-05 Furukawa Electric Co Ltd:The Optical transmission line monitoring system
JP2005315635A (en) * 2004-04-27 2005-11-10 Toshiba Corp Fiber bragg grating physical quantity measuring instrument

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01105122A (en) * 1986-06-23 1989-04-21 Univ Leland Stanford Jr Apparatus for remotely sensing environmental change
JPH0634671A (en) * 1992-05-15 1994-02-10 Asea Brown Boveri Ag Textile-optical sensor
JPH09200132A (en) * 1996-01-12 1997-07-31 Kokusai Denshin Denwa Co Ltd <Kdd> Monitor method for optical communication line
JPH09318462A (en) * 1996-05-31 1997-12-12 Oki Electric Ind Co Ltd Multi-point type optical fiber sensor
JP2002541575A (en) * 1999-04-09 2002-12-03 キネティック リミテッド Optical fiber detector assembly
JP2001156368A (en) * 1999-11-25 2001-06-08 Japan Science & Technology Corp Time-division wavelength multiple pulse-light generator and multiple wavelength measuring system
JP2002122413A (en) * 2000-10-13 2002-04-26 Sumitomo Electric Ind Ltd Optical fiber strain measuring system
JP2002310729A (en) * 2001-04-09 2002-10-23 Hitachi Cable Ltd Method and instrument for distribution type physical quantity measurement
JP2003156315A (en) * 2001-11-21 2003-05-30 Mitsubishi Heavy Ind Ltd Method and apparatus for measurement of distribution of strain and temperature
JP2003249898A (en) * 2002-02-22 2003-09-05 Furukawa Electric Co Ltd:The Optical transmission line monitoring system
JP2005315635A (en) * 2004-04-27 2005-11-10 Toshiba Corp Fiber bragg grating physical quantity measuring instrument

Also Published As

Publication number Publication date
JP2007139482A (en) 2007-06-07

Similar Documents

Publication Publication Date Title
JP4671842B2 (en) Optical fiber sensor device
JP4847467B2 (en) Optical system
US7502120B2 (en) Fiber optic interferometric sensor array
JP5980150B2 (en) Optical sensor array, optical device, and method for configuring an optical bus
US6842586B2 (en) OTDR arrangement for detecting faults in an optical transmission system employing two pairs of unidirectional optical fibers
US9948058B2 (en) Method and apparatus for determining optical fibre characteristics
EP0964536A2 (en) Fault detection system for an amplified optical transmission system
JP2002310729A (en) Method and instrument for distribution type physical quantity measurement
US7099581B2 (en) OTDR arrangement for detecting faults in an optical transmission system on a span by span basis
EP2897310A1 (en) Method and system for monitoring infrastructure using BOTDA
JP2021103877A (en) Relay submarine fiber optic cable vibration monitoring system based on time division and spatial division multiplexing
EP1059518B1 (en) Branch line monitoring system and branch line monitoring method
JP2020056905A (en) Back-scattered light amplification device, optical pulse test apparatus, back-scattered light amplification method, and optical pulse test method
JP7088611B2 (en) Techniques for high-resolution line monitoring with standardized output and optical communication systems using them
JP4308868B2 (en) Fiber sensing system
WO2020071127A1 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
CA2552711A1 (en) Method and apparatus for obtaining status information concerning optical amplifiers located along an undersea optical transmission line using cotdr
JP5008011B2 (en) Optical fiber sensor array and optical fiber sensor array system
US20040047295A1 (en) Method and apparatus for providing a common optical line monitoring and service channel over an WDM optical transmission system
JP2000244416A (en) Monitor for optical amplifier and optical transmission line
KR20230059888A (en) Distributed Acoustic and Temperature Sensor System
JP2023527128A (en) Repeater Design for Distributed Acoustic Detection on Multispan Fiber Links
JP5576815B2 (en) Sensing system
JP2004334712A (en) Long-distance transmission fbg sensor system
JP2012189502A (en) Evaluation device of optical fiber and evaluation method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100907

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110111

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110118

R150 Certificate of patent or registration of utility model

Ref document number: 4671842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250