JP2002122413A - Optical fiber strain measuring system - Google Patents

Optical fiber strain measuring system

Info

Publication number
JP2002122413A
JP2002122413A JP2000313473A JP2000313473A JP2002122413A JP 2002122413 A JP2002122413 A JP 2002122413A JP 2000313473 A JP2000313473 A JP 2000313473A JP 2000313473 A JP2000313473 A JP 2000313473A JP 2002122413 A JP2002122413 A JP 2002122413A
Authority
JP
Japan
Prior art keywords
optical fiber
light
strain
wavelength
branch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000313473A
Other languages
Japanese (ja)
Inventor
Koji Sato
浩二 佐藤
Hideyuki Takashima
秀行 高島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2000313473A priority Critical patent/JP2002122413A/en
Publication of JP2002122413A publication Critical patent/JP2002122413A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an optical fiber strain measuring system capable of executing multipoint strain measurement utilizing backward scattered light of optical fibers accurately in a short measuring time. SOLUTION: A basic optical fiber 8 and branched optical fibers 8a are laid in a comb tooth shape, and light including plural wavelengths is sent from a light source 2 of a strain measuring device 1 to the basic optical fiber 8, and light is passed through spectroscopes 9, to send mono-wavelength light having different wavelengths to each branched optical fiber 8a. Then, backward scattered light returned from each branched optical fiber is measured, and strain values of the branched optical fibers 8a are determined, and simultaneously the wavelength of light received by a wavelength scanner 4 is classified, to thereby specify a strain generation point.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、監視点に設けた
光ファイバの歪を計測して堤体の挙動や斜面の地滑り等
の監視を行う光ファイバ歪計測システムに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical fiber strain measuring system for measuring the strain of an optical fiber provided at a monitoring point to monitor the behavior of a bank and a landslide on a slope.

【0002】[0002]

【従来の技術】光ファイバに光を送り込んだときに光フ
ァイバの各部から帰ってくる後方散乱光中のブリルアン
散乱光の周波数シフト量が光ファイバの歪量に比例する
特性を利用して光ファイバの歪を計測する技術は一般に
知られている。この歪計測技術を利用して堤体の挙動や
道路斜面の地滑り等を監視する光ファイバ歪計測システ
ムは、現地(監視点)に電源や信号伝送装置を必要とせ
ず、加えて1本の光ファイバで約20kmの距離を計測
できるメリットがあることから、遠隔監視が困難視され
ていたような場所の監視にも利用され出している。
2. Description of the Related Art An optical fiber utilizing the characteristic that the frequency shift of the Brillouin scattered light in the backscattered light returning from each part of the optical fiber when the light is sent into the optical fiber is proportional to the distortion of the optical fiber. Techniques for measuring the distortion of a sphere are generally known. An optical fiber strain measurement system that uses this strain measurement technology to monitor the behavior of embankments and landslides on road slopes does not require a power source or signal transmission device at the site (monitoring point), and additionally requires one optical fiber. Since it has the advantage of being able to measure a distance of about 20 km with fiber, it has been used for monitoring places where remote monitoring was considered difficult.

【0003】図2に、実用化されている状態監視用光フ
ァイバ歪計測システムの従来例を示す。このシステム
は、1本の光ファイバ16を、例えば堤防の斜面(法
面)にジグザグに折り返して布設し、その光ファイバ1
6の各折り返し部をファイバ固定具17に巻き付けて固
定し、その固定部も含めてセンサとして機能させる部分
を堤体中に埋設する。そして、監視センターや中継所に
引き込んだ光ファイバ16を、単波長の光源12、後方
散乱光の受光部13、信号処理部14を備える歪測定器
11に接続し、この測定器11で光ファイバ16の各部
の歪量を計測し、計測結果を監視処理装置15に取り込
んで堤体の挙動(状態変化)を監視する。
FIG. 2 shows a conventional example of a practically used optical fiber strain measurement system for condition monitoring. In this system, one optical fiber 16 is laid in a zigzag manner on, for example, a slope (slope) of a dike, and the optical fiber 1 is laid.
Each of the folded portions 6 is wound around and fixed to the fiber fixture 17, and a portion including the fixed portion to function as a sensor is embedded in the bank body. Then, the optical fiber 16 drawn into the monitoring center or the relay station is connected to a strain measuring instrument 11 having a single wavelength light source 12, a light receiving section 13 for backscattered light, and a signal processing section 14, and this measuring instrument 11 uses the optical fiber. The distortion amount of each part 16 is measured, and the measurement result is taken into the monitoring processing device 15 to monitor the behavior (state change) of the embankment.

【0004】堤体に変位、崩れ等が起こると、その部分
の光ファイバが引き伸ばされたり、適度のプレストレス
を加えた光ファイバが縮んだりして計測した歪値が変化
する。その歪変化を常時監視して歪の変化量と変化地点
(歪変化地点の特定は、ブリルアン散乱光の計測時間か
ら判断する)を調べ、異常発生時に警報を発したりす
る。
When the embankment body is displaced, collapsed, or the like, the optical fiber in that portion is stretched or the optical fiber to which an appropriate prestress has been applied contracts, so that the measured strain value changes. The change in the strain is constantly monitored to check the amount of change in the strain and the change point (specifying the strain change point is determined from the measurement time of the Brillouin scattered light), and an alarm is issued when an abnormality occurs.

【0005】このシステムによれば、破堤等の前兆現象
も検知でき、早期補修による被災の未然防止等も図れ
る。
According to this system, precursory phenomena such as a levee can be detected, and damage can be prevented from occurring due to early repair.

【0006】[0006]

【発明が解決しようとする課題】図2に示す従来の光フ
ァイバ歪計測システムは、1回の計測所要時間が5〜1
0分程度と長く、監視が粗くなる。
In the conventional optical fiber strain measuring system shown in FIG. 2, the time required for one measurement is 5-1.
Monitoring is coarse, as long as about 0 minutes.

【0007】また、光ファイバをジグザグに配置するの
で監視領域が広くなると1システムでは対応できず、高
価な歪測定器が複数台必要になる。
Further, since the optical fibers are arranged in a zigzag manner, if the monitoring area is widened, one system cannot cope with the situation, and a plurality of expensive strain measuring instruments are required.

【0008】さらに、計測距離が長くなると歪の測定精
度、歪発生地点の特定精度が低下する。
[0008] Further, as the measurement distance increases, the accuracy of strain measurement and the accuracy of specifying the location of the strain decrease.

【0009】なお、特開平6−241929号公報が提
案している光ファイバセンサの中に、光ファイバの布設
形態がこの発明のものと似ているものが含まれている
が、同公報のセンサは、温度、圧力等の擾乱による光フ
ァイバの光路長の変化量を計測してその変化量から歪量
などを求めるので、システムが本発明のものに比べて複
雑になる。
[0009] Among the optical fiber sensors proposed in Japanese Patent Application Laid-Open No. 6-241929, there is included an optical fiber sensor having an optical fiber laying configuration similar to that of the present invention. Measures the amount of change in the optical path length of the optical fiber due to disturbances such as temperature and pressure, and obtains the amount of distortion and the like from the amount of change, so that the system is more complicated than that of the present invention.

【0010】この発明は、ここで述べた不具合、欠点を
無くすることを課題としている。
An object of the present invention is to eliminate the disadvantages and disadvantages described herein.

【0011】[0011]

【課題を解決するための手段】上記の課題を解決するた
め、この発明においては光ファイバの歪を、その光ファ
イバの後方散乱光から求める歪計測システムにおいて、
計測対象の光ファイバを櫛歯状に設置し、それぞれの光
ファイバの歪値を波長の異なる光を用いて計測するよう
にした光ファイバ歪計測システムを提供する。
In order to solve the above-mentioned problems, the present invention provides a strain measuring system for determining the strain of an optical fiber from the backscattered light of the optical fiber.
Provided is an optical fiber strain measurement system in which optical fibers to be measured are arranged in a comb shape, and the strain value of each optical fiber is measured using light having different wavelengths.

【0012】また、投光用の光源と受光する光の波長を
区別する手段とを備える歪測定器と、その測定器につな
ぐ基幹光ファイバと、基幹光ファイバから櫛歯状に枝分
かれさせて監視点に設ける複数の分岐光ファイバと、各
分岐光ファイバの分岐部に設ける分光器とから成り、歪
測定器から基幹光ファイバに複数の波長を含む光を送り
込み、波長多重化されたその光を前記分光器で分光して
各分岐光ファイバにそれぞれの波長が異なる単波長の光
を送り、各分岐光ファイバからの後方散乱光を歪測定器
の波長区別手段で区別してそれぞれの分岐光ファイバの
歪を後方散乱光から求めるようにした光ファイバ歪計測
システムを提供する。
Also, a strain measuring device having a light source for light projection and a means for distinguishing a wavelength of light to be received, a main optical fiber connected to the measuring device, and a comb-shaped branch from the main optical fiber for monitoring. A plurality of branch optical fibers provided at a point, and a spectroscope provided at a branch portion of each branch optical fiber, light including a plurality of wavelengths is sent from a strain measuring device to a main optical fiber, and the wavelength-multiplexed light is transmitted. A single wavelength light having a different wavelength is sent to each branch optical fiber after being split by the spectroscope, and the backscattered light from each branch optical fiber is distinguished by the wavelength distinguishing means of the strain measuring device, and each branch optical fiber is separated. Provided is an optical fiber strain measurement system for obtaining strain from backscattered light.

【0013】[0013]

【作用】この発明のシステムでは、各分岐光ファイバか
ら波長の異なる後方散乱光が帰ってくるので、歪変化を
生じた分岐光ファイバを波長の違いで特定することがで
きる。
In the system according to the present invention, since backscattered light having different wavelengths returns from each branch optical fiber, a branch optical fiber having a strain change can be specified by the difference in wavelength.

【0014】また、波長多重化された光を基幹光ファイ
バに通して計測を行うので、単波長の光を用いて1本の
光ファイバでシリアルに計測する図2の従来システムと
比べると同一計測距離での計測時間が短縮される。
Further, since the wavelength multiplexed light is measured through a main optical fiber, the measurement is the same as that of the conventional system of FIG. 2 in which serial measurement is performed using a single optical fiber using light of a single wavelength. Measurement time at distance is reduced.

【0015】さらに、分岐光ファイバ毎に波長を異なら
せた光を用いて計測を行うので、歪の計測精度や位置の
特定分解能の低下を防ぐことが可能になり、システムの
複雑化も招かない。
Further, since the measurement is performed using light having different wavelengths for each of the branch optical fibers, it is possible to prevent a decrease in strain measurement accuracy and a specific resolution of a position, thereby preventing the system from becoming complicated. .

【0016】このほか、分解能の向上により、1システ
ムでの計測距離を長くすることが可能になる。それに加
え、光ファイバをジグザグに布設する必要もなく、同じ
長さの光ファイバを用いるときにも図2のシステムに比
べて監視領域を広げることが可能になる。
In addition, by improving the resolution, it is possible to extend the measurement distance in one system. In addition, it is not necessary to lay the optical fibers in a zigzag, and the monitoring area can be extended as compared with the system of FIG. 2 even when using optical fibers of the same length.

【0017】[0017]

【発明の実施の形態】図1に、この発明の光ファイバ歪
計測システムの実施形態を示す。このシステムは、セン
サとして機能させる分岐光ファイバ8aを、例えば、堤
防の斜面に埋設し、堤体の挙動監視などに利用する。
FIG. 1 shows an embodiment of an optical fiber strain measuring system according to the present invention. In this system, a branch optical fiber 8a functioning as a sensor is buried, for example, on a slope of an embankment, and is used for monitoring the behavior of an embankment.

【0018】図1の1は、光源2、ハーフミラー3、波
長スキャナ4、受光部5及び信号処理部6を有する歪測
定器、7は監視処理装置、8は基幹光ファイバ、8aは
基幹光ファイバの途中から枝分かれした分岐光ファイ
バ、9は各分岐光ファイバの分岐部に設ける分光器、1
0は分岐光ファイバの各々を引き留めるファイバ固定具
である。
FIG. 1 shows a distortion measuring device 1 having a light source 2, a half mirror 3, a wavelength scanner 4, a light receiving section 5, and a signal processing section 6, a monitoring and processing device 7, a basic optical fiber 8, and a basic optical fiber 8a. A branch optical fiber branched from the middle of the fiber, 9 is a spectroscope provided at a branch portion of each branch optical fiber, 1
Numeral 0 is a fiber fixture for retaining each of the branch optical fibers.

【0019】図1に示すように、分岐光ファイバ8aを
分光器9を介して監視点に櫛歯状に複数本布設する。分
光器9は、例えばフオトカプラを使用し、各分光器で異
なる波長の光を分光させる。
As shown in FIG. 1, a plurality of branch optical fibers 8a are laid in a comb shape at a monitoring point via a spectroscope 9. The spectroscope 9 uses, for example, a photocoupler and causes each of the spectroscopes to separate light having a different wavelength.

【0020】ファイバ固定具10による各分岐光ファイ
バ8aの固定は、ファイバ固定具10としてローラを使
用し、そのローラに分岐光ファイバ8aを巻き付けると
言った方法で行う。勿論、その方法に限定されるもので
はなく、分岐光ファイバを傷付けずに安定して固定でき
ればよい。
The fixing of each branch optical fiber 8a by the fiber fixing device 10 is performed by using a roller as the fiber fixing device 10 and winding the branch optical fiber 8a around the roller. Of course, the present invention is not limited to this method, as long as the branch optical fiber can be stably fixed without damaging it.

【0021】基幹光ファイバ8の片端は、歪計測器1に
接続する。歪計測器1内の光源2は、複数の波長の光を
発生するものが好ましい。白熱電球などは、波長領域の
広い光を発生し、このようなものを光源として用いるこ
とができる。その白熱電球などを光源として使用する場
合には、集光レンズで集めた光を基幹光ファイバ8に送
り込むと好ましい。
One end of the main optical fiber 8 is connected to the strain measuring instrument 1. The light source 2 in the strain measuring instrument 1 preferably generates light of a plurality of wavelengths. Incandescent light bulbs and the like generate light having a wide wavelength range, and such light can be used as a light source. When the incandescent light bulb or the like is used as a light source, it is preferable to send the light collected by the condenser lens to the main optical fiber 8.

【0022】光源2は、発光ダイオードなどでもよい。
この場合も発光波長域の広いものが好ましいが、単波長
の発光ダイオードでも発光波長の異なるものをいくつか
組み合わせ、各発光ダイオードからの光をカプラなどに
通して合成し、それを基幹光ファイバに送り込むと、こ
の発明の計測システムが成立する。
The light source 2 may be a light emitting diode or the like.
In this case, a light emitting diode having a wide emission wavelength range is preferable, but even a single-wavelength light emitting diode is used by combining several light emitting diodes having different emission wavelengths, combining light from each light emitting diode through a coupler or the like, and combining the light into a basic optical fiber. When sent, the measurement system of the present invention is established.

【0023】波長スキャナ4は、各分岐光ファイバ8a
からの後方散乱光の波長を区別する。これにより、受光
する後方散乱光がどの位置の分岐光ファイバから帰った
ものかを特定できる。
The wavelength scanner 4 is connected to each of the branch optical fibers 8a.
The wavelength of the backscattered light from With this, it is possible to specify at which position the received backscattered light is returned from the branch optical fiber.

【0024】この発明のシステムが図2の従来システム
と異なる部分は、図2の歪測定器11に含まれる単波長
の光源12を、この発明では複数の波長の光を送り込め
る光源2に代えた点と、受光する光の波長を区別する波
長スキャナ4を新たに追加した点の2つであり、それ以
外の主な構成要素には変わりがない。計測した光ファイ
バの歪値から堤体の状態変化などを判断する監視処理装
置7も、図2の監視処理装置15と同じである。
The system of the present invention differs from the conventional system of FIG. 2 in that the single-wavelength light source 12 included in the distortion measuring device 11 of FIG. 2 is replaced by the light source 2 capable of transmitting light of a plurality of wavelengths in the present invention. And a newly added wavelength scanner 4 for discriminating the wavelength of the light to be received. The other main components remain unchanged. The monitoring processor 7 that determines a change in the state of the embankment from the measured strain value of the optical fiber is the same as the monitoring processor 15 in FIG.

【0025】光源2から基幹光ファイバ8に送り込まれ
た複数の波長(λ1、λ2、λ3……)を含む光は、分
岐光ファイバ8aの分岐部に設けられた分光器9を通っ
て基幹光ファイバ8の他端へ流れる。そのときに、例え
ば、図1の左側から数えて1番目の分光器9によりλ1
の波長の光が取り出されて1番目の分岐光ファイバ8a
に送られ、次に、2番目の分光器によりλ2の波長の光
が取り出されて2番目の分岐光ファイバに送られ、以
下、同様にしてλ3以降の波長の光も順次分光処理さ
れ、各分岐光ファイバ8aにそれぞれの波長が異なる単
波長の光が送り込まれる。
The light including a plurality of wavelengths (λ1, λ2, λ3,...) Sent from the light source 2 to the main optical fiber 8 passes through the spectroscope 9 provided at the branch portion of the branch optical fiber 8a. It flows to the other end of the fiber 8. At that time, for example, the first spectroscope 9 counting from the left side of FIG.
Is extracted and the first branch optical fiber 8a is extracted.
Then, the light having the wavelength of λ2 is taken out by the second spectroscope and sent to the second branch optical fiber. Thereafter, similarly, the light having the wavelength of λ3 and thereafter is also sequentially spectrally processed. Single-wavelength light having different wavelengths is sent to the branch optical fiber 8a.

【0026】一方、各分岐光ファイバ8aから帰ってく
るブリルアン散乱光は、歪測定器1によって集光され、
波長スキャナ4で波長が区別されて、波長毎のブリルア
ン散乱光の周波数シフト量が計測され、そのシフト量か
ら波長毎の歪量が計算されて監視処理装置8に出力され
る。
On the other hand, the Brillouin scattered light returning from each branch optical fiber 8a is collected by the strain measuring device 1,
The wavelength is distinguished by the wavelength scanner 4, the amount of frequency shift of the Brillouin scattered light for each wavelength is measured, the amount of distortion for each wavelength is calculated from the amount of shift, and output to the monitoring processing device 8.

【0027】どの位置の分岐光ファイバにどの波長の光
を送り込むかは予め決められているので、計測した歪値
がどの位置の分岐光ファイバのものかを波長で特定し、
監視区域のどの位置に異常が生じたかを知ることができ
る。
Since it is determined in advance which wavelength of light is to be transmitted to which position of the branch optical fiber, the wavelength is used to specify the position of the measured strain value of the branch optical fiber, and
It is possible to know at which position in the monitoring area the abnormality has occurred.

【0028】[0028]

【発明の効果】以上述べたように、この発明の計測シス
テムによれば、櫛歯状に配置した光ファイバの歪値を、
光ファイバ毎に波長の異なる光を用いて計測するので、
システムの複雑化を招かずに計測時間の短縮、測定精度
の向上、歪発生位置の特定分解能の向上を図ることが可
能になる。また、1システムの計測距離を従来よりも長
くすること、及び1システムによる監視領域を広げるこ
とも可能になり、きめ細かな監視、信頼性のより高まっ
た多点監視が行える。
As described above, according to the measuring system of the present invention, the distortion value of the optical fiber arranged in a comb-teeth shape is
Since measurement is performed using light with different wavelengths for each optical fiber,
The measurement time can be shortened, the measurement accuracy can be improved, and the resolution at which the distortion occurs can be improved without increasing the complexity of the system. In addition, the measurement distance of one system can be made longer than before, and the monitoring area of one system can be expanded, so that fine monitoring and multipoint monitoring with higher reliability can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の光ファイバ歪計測システムの実施形
態を示す図
FIG. 1 is a diagram showing an embodiment of an optical fiber strain measurement system of the present invention.

【図2】従来の光ファイバ歪計測システムの一例を示す
FIG. 2 is a diagram showing an example of a conventional optical fiber strain measurement system.

【符号の説明】[Explanation of symbols]

1 歪計測器 2 光源 3 ハーフミラー 4 波長スキャナ 5 受光部 6 信号処理部 7 監視処理装置 8 基幹光ファイバ 8a 分岐光ファイバ 9 分光器 10 ファイバ固定具 DESCRIPTION OF SYMBOLS 1 Strain measuring device 2 Light source 3 Half mirror 4 Wavelength scanner 5 Light receiving part 6 Signal processing part 7 Monitoring processing device 8 Main optical fiber 8a Branch optical fiber 9 Spectroscope 10 Fiber fixture

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2F065 AA65 CC00 CC40 FF00 GG02 GG07 GG23 GG24 LL00 LL02 LL04 LL67 PP00 2F073 AA21 AB02 AB06 BB06 BC04 CC01 FH01 GG01  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2F065 AA65 CC00 CC40 FF00 GG02 GG07 GG23 GG24 LL00 LL02 LL04 LL67 PP00 2F073 AA21 AB02 AB06 BB06 BC04 CC01 FH01 GG01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 光ファイバの歪を、その光ファイバの後
方散乱光から求める歪計測システムにおいて、計測対象
の光ファイバを櫛歯状に設置し、それぞれの光ファイバ
の歪値を波長の異なる光を用いて計測することを特徴と
する光ファイバ歪計測システム。
In a strain measuring system for determining the strain of an optical fiber from the backscattered light of the optical fiber, the optical fibers to be measured are arranged in a comb-like shape, and the strain value of each optical fiber is measured by a light having a different wavelength. An optical fiber strain measurement system characterized in that measurement is performed by using an optical fiber.
【請求項2】 投光用の光源と受光する光の波長を区別
する手段とを備える歪測定器と、その測定器につなぐ基
幹光ファイバと、基幹光ファイバから櫛歯状に枝分かれ
させて監視点に設ける複数の分岐光ファイバと、各分岐
光ファイバの分岐部に設ける分光器とから成り、歪測定
器から基幹光ファイバに複数の波長を含む光を送り込
み、波長多重化されたその光を前記分光器で分光して各
分岐光ファイバにそれぞれの波長が異なる単波長の光を
送り、各分岐光ファイバからの後方散乱光を歪測定器の
波長区別手段で区別してそれぞれの分岐光ファイバの歪
を後方散乱光から求めるようにした光ファイバ歪計測シ
ステム。
2. A strain measuring device comprising a light source for light emission and a means for distinguishing a wavelength of light to be received, a main optical fiber connected to the measuring device, and a comb-shaped branch from the basic optical fiber for monitoring. A plurality of branch optical fibers provided at a point, and a spectroscope provided at a branch portion of each branch optical fiber, light including a plurality of wavelengths is sent from a strain measuring device to a main optical fiber, and the wavelength-multiplexed light is transmitted. A single wavelength light having a different wavelength is sent to each branch optical fiber after being split by the spectroscope, and the backscattered light from each branch optical fiber is distinguished by the wavelength distinguishing means of the strain measuring device, and each branch optical fiber is separated. An optical fiber strain measurement system that calculates strain from backscattered light.
JP2000313473A 2000-10-13 2000-10-13 Optical fiber strain measuring system Pending JP2002122413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000313473A JP2002122413A (en) 2000-10-13 2000-10-13 Optical fiber strain measuring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000313473A JP2002122413A (en) 2000-10-13 2000-10-13 Optical fiber strain measuring system

Publications (1)

Publication Number Publication Date
JP2002122413A true JP2002122413A (en) 2002-04-26

Family

ID=18792884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000313473A Pending JP2002122413A (en) 2000-10-13 2000-10-13 Optical fiber strain measuring system

Country Status (1)

Country Link
JP (1) JP2002122413A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257570A (en) * 2004-03-12 2005-09-22 Kajima Corp Method and system for diagnosing structure by means of optical fiber
JP2007139482A (en) * 2005-11-16 2007-06-07 Technical Research & Development Institute Ministry Of Defence Optical fiber sensor device
JP2011090590A (en) * 2009-10-24 2011-05-06 Tokyo Univ Of Agriculture & Technology Sensing system
KR20180134253A (en) * 2017-06-08 2018-12-18 광주과학기술원 Fiber-optic acoustic sensor module apparatus and system using coherent optical time-domain reflectormeter method
JP6702510B1 (en) * 2019-01-31 2020-06-03 中国電力株式会社 Temperature detector

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005257570A (en) * 2004-03-12 2005-09-22 Kajima Corp Method and system for diagnosing structure by means of optical fiber
JP2007139482A (en) * 2005-11-16 2007-06-07 Technical Research & Development Institute Ministry Of Defence Optical fiber sensor device
JP4671842B2 (en) * 2005-11-16 2011-04-20 防衛省技術研究本部長 Optical fiber sensor device
JP2011090590A (en) * 2009-10-24 2011-05-06 Tokyo Univ Of Agriculture & Technology Sensing system
KR20180134253A (en) * 2017-06-08 2018-12-18 광주과학기술원 Fiber-optic acoustic sensor module apparatus and system using coherent optical time-domain reflectormeter method
KR102292226B1 (en) * 2017-06-08 2021-08-23 광주과학기술원 Fiber-optic acoustic sensor module apparatus and system using coherent optical time-domain reflectormeter method
JP6702510B1 (en) * 2019-01-31 2020-06-03 中国電力株式会社 Temperature detector
WO2020157946A1 (en) * 2019-01-31 2020-08-06 中国電力株式会社 Temperature detection device

Similar Documents

Publication Publication Date Title
US9810556B2 (en) Apparatus for measuring optical signals from multiple optical fiber sensors
JP5628779B2 (en) Multipoint measuring method and multipoint measuring apparatus for FBG sensor
US7628531B2 (en) Methods and apparatus for dual source calibration for distributed temperature systems
JP3402083B2 (en) Optical fiber line fault location detector
JP4671842B2 (en) Optical fiber sensor device
US6490045B1 (en) Fibre optic sensor
KR101297268B1 (en) Apparatus for fiber optic perturbation sensing and method of the same
CN104848980B (en) Bridge cable Suo Li online test methods and system based on Fibre Optical Sensor
JP2001511895A (en) Optical wavelength measurement device
JP2010054366A (en) Optical fiber sensor with optical marking section for identification of optical fiber position, and optical fiber sensor measurement method and optical fiber sensor device
JP2002310729A (en) Method and instrument for distribution type physical quantity measurement
US6614512B1 (en) System for measuring wavelength dispersion of optical fiber
EP1059518B1 (en) Branch line monitoring system and branch line monitoring method
US6829397B2 (en) Dual fiber bragg grating strain sensor system
JP2004233070A (en) Fbg sensing system
JP2002122413A (en) Optical fiber strain measuring system
KR101480101B1 (en) optical fiber bragg grating sensor system
JP2005091165A (en) Fbg-sensing system
JP2004347554A (en) Fbg sensing system
JP4625593B2 (en) Optical fiber multipoint physical quantity measurement system
KR101297286B1 (en) Device for measuring temperature using optical fiber
JP4694959B2 (en) Optical line test method and test system
KR100387288B1 (en) Apparatus for measuring wavelength and optical power and optical signal-to-noise ratio of an optical signal in wavelength-division multiplexing optical communications
CA2379900C (en) Method and devices for time domain demultiplexing of serial fiber bragg grating sensor arrays
JP2004361284A (en) System for measuring reflected wavelength