EP1886535B1 - Verfahren zum herstellen mehrerer zeitsignale - Google Patents

Verfahren zum herstellen mehrerer zeitsignale Download PDF

Info

Publication number
EP1886535B1
EP1886535B1 EP06764713.1A EP06764713A EP1886535B1 EP 1886535 B1 EP1886535 B1 EP 1886535B1 EP 06764713 A EP06764713 A EP 06764713A EP 1886535 B1 EP1886535 B1 EP 1886535B1
Authority
EP
European Patent Office
Prior art keywords
signals
frequency
sound signal
signal
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06764713.1A
Other languages
English (en)
French (fr)
Other versions
EP1886535A1 (de
Inventor
Jérôme MONCEAUX
Frédéric AMADU
Yann Lecoeur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkamys SA
Original Assignee
Arkamys SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkamys SA filed Critical Arkamys SA
Publication of EP1886535A1 publication Critical patent/EP1886535A1/de
Application granted granted Critical
Publication of EP1886535B1 publication Critical patent/EP1886535B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments

Definitions

  • the invention essentially relates to a method for producing more than two distinct temporal electrical signals from a first and a second time electrical signal.
  • the invention finds a particularly advantageous application in the field of sound processing, for transforming a stereophonic sound signal into a multichannel sound signal such as, for example, the so-called 5.1 system which is broadcast using at least five loudspeakers. .
  • a sound system broadcasting a 5.1 signal each speaker is intended to broadcast a sound signal which is distinct from other broadcast signals.
  • the 5.1 signals are generally broadcast by audio systems arranged inside a cinema, an apartment or a car. Such systems provide a listener in the center of the five-speaker space with the feeling of being enveloped by rich sound from five different sources. Indeed, the simultaneous broadcast of the five or six separate signals by as many independent speakers gives the sound signal a certain wrap.
  • the listener does not have that feeling of enveloping and depth of sound. Indeed, the listener only has the impression that the sound is propagated from a plane passing through the speakers, because the number of signals and sound sources is generally limited to two in a stereophonic system.
  • a 5.1 signal is broadcast by a system with at least five speakers: a center speaker, two left and right speakers, and two left and right rear speakers.
  • a sixth speaker can optionally be added to this device to manage the low frequencies.
  • the monophonic components are separated from the stereophonic components contained within the sound signals of a stereophonic system and the corresponding signals are broadcast by means of five loudspeakers.
  • the monophonic components of the original stereophonic sound signals are detected and the corresponding signal is broadcast using the central loudspeaker.
  • the monophonic component is subtracted from the original sound signals and the sound signals obtained are broadcast using the front speakers.
  • the anti-phase components of the original sound signals are detected and the sound signals obtained are broadcast using the rear loudspeakers. Indeed, the signals in opposition of phase give the feeling that the diffused sound comes from the back or that it is further away from the point of listening than the other sounds.
  • One of the challenges of the process is therefore to achieve a good sound discrimination between the different sound signals so that each speaker diffuse a particular sound of its own.
  • a method is known in which a filter is applied to the stereo and sound electrical sound signals.
  • this temporal processing involves the use of compressors which have relatively long response times. These long response times cause a pumping, ie a sudden change in intensity especially on the left and right channels when the central monophonic signal passes from a high noise level to a low noise level.
  • the left and right frontal sound signals include the monophonic component which is strongly attenuated as soon as it becomes strong in the center and is highlighted as soon as it fades to the center.
  • there is a certain inertia between the attenuation and the highlighting of the monophonic component. This inertia gives sensations of void sound at certain times.
  • this method does not provide a good stereo back.
  • a same electrical sound signal is broadcast on the two rear loudspeakers.
  • the rear signals thus comprise the components of the stereophonic signals in phase opposition, but are monophonic with each other.
  • a method is also known in which a sound signal is more clearly separated from another.
  • one of the steps of this method consists in eliminating certain components of the signals obtained which are below a threshold. This step reduces a measured crosstalk between two adjacent speakers. This crosstalk characterizes the separation between two adjacent speakers. However, the pumping effect is still present.
  • the invention proposes, in particular, to achieve a better discrimination between the different sound signals, while solving these pumping problems and respect for the original work.
  • the transformations of stereophonic sound signals are essentially in the frequency domain.
  • the temporal stereophonic electrical signals are converted into frequency stereophonic electrical signals.
  • the frequency components in phase and the out-of-phase frequency components are identified for broadcasting on the central loudspeaker and the rear loudspeakers, respectively.
  • a monophonic filter is created, the coefficients of which are developed in particular from the difference of the stereophonic frequency electrical signals, and this filter is applied to the sum of the frequency components of the signals.
  • a stereophonic filter is created whose coefficients are elaborated, in particular, from the sum of the frequency components of the two stereophonic electrical signals, and this filter is applied to each of the frequency components of the stereophonic electrical signals.
  • the stereophonic reconstruction from the five electrical sound signals generated by the invention is perfect, that is to say that we find exactly the original signal, which is not the case of other known methods.
  • the filter according to the invention for extracting the in-phase components can be used to transport N original signals via two transport signals. Indeed, by summing the N original signals with each transport signal, after modulating or delaying each one in a particular way, it is possible to find these N original signals by applying to the transport signals modulations or inverse delays of those applied. initially, and applying a monophonic filter on the transport signals thus put in phase.
  • the electrical signals produced are broadcast acoustically. However, after this production and before this broadcast, they may undergo additional modifications.
  • the invention makes it possible to contribute to a better intelligibility of messages in the field of hearing aids.
  • two starting left and right temporal signals are used, the above transformation is applied, and all or some of the signals produced are recombined so that only two time signals can be heard and heard with the prosthesis earphones.
  • the starting electrical signals are either signals measured by microphones at the location of each of the prostheses, or two signals measured by two microphones at a single prosthesis.
  • the name "left” and "right” essentially identifies the fact that the starting sounds are different (regardless of their place of origin).
  • we manage to create with the invention a depth of sound in the ears of users. This depth increases the intelligibility of the messages transmitted.
  • the figure 1 shows a stereophonic apparatus 1 which emits a temporal electrical signal GI (t) from its initial left and an electrical time signal DI (t) of its initial right.
  • This stereophonic system 1 may for example be a CD player or MP3 files of portable or fixed type, a television, a laptop, or a mobile phone.
  • a signal expressed in the time domain will be designated S (t) and a signal expressed in the frequency domain by S (v).
  • the initial electrical signals GI (t) and DI (t) would be applied respectively to inputs of the loudspeakers 2 and 3 to be broadcast.
  • these signals are applied across a system 4 to be transformed into at least five distinct electrical signals 5.1: an electric signal C (t) of its central, an electric signal GF (t) of its left frontal, an electric signal DF (t) of its front right, an electric signal GA (t) of its left rear and an electric signal DA (t) of its rear right respectively diffused by loudspeakers 5-9.
  • the signal GI (t) electrical of its initial left and the signal DI (t) electrical of its initial right are applied across a cell 10, respectively via a connection 16 and a connection 17 connecting outputs of the apparatus 1 to inputs of the cell 10.
  • This cell 10 produces, in the field frequency, the signal C (v) electrical frequency of its central, from phase frequency components of the signals GI (v) and DI (v) electrical of its right and left initial.
  • This cell then transforms the signal C (v) into a signal C (t) observable on its output.
  • This signal C (t) is applied to an input of the speaker 5 to be broadcast.
  • the signal GI (t) of its initial left and the signal DI (t) of its initial right are respectively applied to a terminal of a subtractor 11 and 12, via connections 18 and 19 connecting the outputs of the apparatus 1 and inputs of the subtractors 11 and 12.
  • the signal C (t) of its central sound is applied to a terminal of this subtractor 11 and this subtracter 12, via two connections 20 and 21 connecting the output of the cell 10 to the subtractive inputs of the subtractors 11 and 12.
  • the cell 11 thus produces a temporal electrical signal GF (t) of its frontal left by subtraction of the temporal electrical signal C (t) from the central sound of the electric signal GI (t) from its initial left.
  • the cell 12 produces a time electric signal DF (t) of its front right by subtraction of the electric signal C (t) from its central signal DI (t) electrical of its initial right.
  • the signals GI (t) and DI (t) electrical of its left and right initial are applied to the terminals of a cell 13, via connections 22 and 23 connecting outputs of the apparatus 1 to inputs of the cell 13.
  • This cell 13 transforms the signals GI (t) and DI (t) into GI (v) signals and DI (v) frequency and produces, in the frequency domain, the electric frequency signal GA (v) of its left rear and the electric signal DA (v) of its rear right, respectively from the GI (v) and DI signals.
  • the signals GA (v) and DA (v) essentially comprise frequency components with out-of-phase frequency values. These out of phase frequency values are values for which the frequency components of the electric GI (v) signal of its initial left have a significant phase shift compared to those of the electrical signal DI (v) of its initial right.
  • the cell 13 then transforms the GA (v) and DA (v) signals obtained into time signals GA (t) and DA (t). These time signals GA (t) and DA (t) are applied to inputs of the loudspeakers 8 and 9 via connections 27 and 28 respectively connecting an output of the cell 13 to an input of the loudspeakers 8 and 9.
  • a bass signal B (t) by applying the central temporal electric signal C (t) at the input of a low-pass filter 14 via a connecting connection 24.
  • This signal B (t) can be applied to an input of a bass speaker 16 to be broadcast.
  • the high frequency portion of the central electrical signal C (t) is filtered using a high pass filter.
  • the observable signal at the output of this filter 15 is then applied to the input of the loudspeaker 5, via a connection connecting the output of the filter 15 to the input of the loudspeaker 5.
  • the figure 2a shows a detailed schematic representation of cell 10 of the figure 1 to obtain the electric signal C (t) of its central from the signals GI (t) and DI (t) electrical left and right.
  • these initial signals GI (t) and DI (t) are applied at the input of a Fourier transform cell 35 via the connections 16 and 17.
  • This Fourier transform cell transforms the signals GI (t) and DI (t) time respectively in DI (v) and GI (v) frequency signals.
  • On the figure 2b are represented the first three frequency components v1, v2, v3 of the signals DI (v) and GI (v).
  • the first, second and third components of the signal DI (v) respectively have an amplitude of 0.1; 0.6 and -0.3.
  • the first, second and third components of the signal GI (v) respectively have an amplitude of 0.5; 0.6 and 0.6.
  • the signals DI (v) and GI (v) are applied at the input of a cell 36 via connections 41 and 42 connecting the outputs of the cell 35 to inputs of the cell 36.
  • This cell 36 subtracts, component component, the frequency components of the electrical signal DI (v) of its initial right from those of the signal GI (v) electric sound of its initial left to obtain frequency components of difference.
  • the cell 36 then calculates a frequency difference module for each difference component.
  • is obtained.
  • the figure 2b show this signal
  • is applied at the input of a cell 37 via a connection 43 connecting the output of the cell 36 to the input of the cell 37.
  • This cell 37 subtracts each difference frequency module from a threshold value K1 allowing to obtain frequency residuals of difference.
  • K1-KN it is possible to define several thresholds K1-KN that are assigned to different frequency ranges.
  • the creation of a threshold K1 allows, as we will see, to set a tolerance when extracting the signal C (v). The higher the threshold, the more we tolerate components that are not exclusively monophonic. The lower the threshold, the less we tolerate components that are not monophonic.
  • Cell 37 then normalizes the frequency residues by dividing them by the threshold value K1.
  • K1 the threshold value
  • the normalized residuals associated with the in-phase components of the signals DI (v) and GI (v) thus have the value 1 while the normalized residuals associated with the out-of-phase components of the signals DI (v) and GI (v) have a value less than 1 .
  • HM monophonic filter 38
  • the electrical signal corresponding to the standardized residues is applied to an input of the filter 38 via a connection 44 connecting the output of the cell 37 to the input of the cell 38.
  • this HM filter (v) if a frequency module is greater than the threshold value K1, then the value 0 is assigned to the frequency component concerned. In the opposite case, the frequency component concerned is retained. Thus, the coefficient of the HM filter (v) corresponding to the third frequency components v3 of the GI (v) and DI (v) signals has a zero value. Whereas the coefficients of the filter corresponding to the frequency components v1 and v2 of the GI (v) and DI (v) signals are unchanged.
  • the monophonic HM (v) filter is then applied to a sum, component to component, of the frequency components of the electrical signal of its initial right DI (v) and those of the electrical signal of its initial left GI (v).
  • the signals DI (v) and GI (v) are applied to inputs of an adder 39, via connections 45 and 46 connecting the outputs of the cell 35 to an input of the adder 39.
  • the signal observable in FIG. output of the summator 39 is applied to the input of the cell 38, via a connection 47 connecting an output of the summator 39 to an input of the filter 38.
  • HM (v) * (GI (v) + DI (v)) corresponding to the signal C (v) electrical frequency of its central.
  • the frequency signal C (v) thus has a third component v3 zero, a second component v2 equal to 1.2 and a first component v1 equal to 0.2.
  • This signal C (v) mainly comprises the in-phase components of the GI (v) and DI (v) signals.
  • the signal C (v) is then applied at the input of a cell 40 of inverse Fourier transform, via a connection 48 connecting the output of the filter 38 to the input of the cell 40.
  • This cell 40 produces thus the signal C (t) electrical time of its central.
  • This signal C (t) can then be applied to an input of a loudspeaker to be broadcast.
  • the MIN minimum is taken between the frequency component of the electrical DI (v) signal of its initial right and the frequency component of the electric GI (v) signal of its initial left. This MIN minimum is then compared with the generated frequency component of the electrical signal C (v) of its central. If the generated frequency component of the electric signal C (v) of its central unit is greater than this minimum MIN, then this minimum is retained. In the opposite case, we keep the component.
  • MIN 0.1.
  • the value of the second component of the signal C (v) is replaced by 0.6, in order to avoid a phase difference appearing between the electrical signals of its left and right front ends.
  • the frequency frequency residues are directly used as weighting coefficients in the HM filter (v).
  • the figure 3a shows a detailed schematic representation of cell 13 of the figure 1 which makes it possible to obtain the temporal electrical signals DA (t) and GA (t) from its rear from the initial electrical time signals GI (t) and DI (t).
  • the electrical signals DI (t) and GI (t) of its left and right temporal are applied to two distinct inputs of a Fourier transform cell 51, via the connections 22 and 23.
  • a GI signal (v) electrical frequency of its initial left and an electrical signal DI (v) frequency of its right are observable at the exit of this cell 51.
  • figure 3b shows the signals DI (v) and GI (v).
  • the signal DI (v) has three first components v1-v3 frequency respectively worth 0.5; 0.2 and 0.6.
  • the signal GI (v) comprises three first components v1-v3 frequency respectively worth 0; -0.2 and 0.6.
  • the signals DI (v) and GI (v) are respectively applied to inputs of a cell 52, via two connections 53 and 54 connecting the outputs of the cell 51 to inputs of the cell 52.
  • This cell 52 adds, component to component, the frequency components of the signal DI (v) its initial right to those of the electric signal GI (v) of its initial left to obtain frequency components sum.
  • This cell 52 then calculates a frequency modulus of sum for each frequency component sum. This cell 52 thus makes it possible to identify the out-of-phase components in the initial electrical frequency signals GI (v) and DI (v).
  • corresponding to the sum modulus of the signals GI (v) and DI (v) gives a zero value for the out-of-phase components, such as the second components v2 GI (v) and DI (v) signals, and a high value for the in-phase frequency components of the GI (v) and DI (v) signals.
  • electrical output obtained from the cell 52 is applied to the input of the cell 55, via a connection 56 connecting the output of the cell 52 to the input of the cell 55.
  • This cell 55 subtracts each frequency module from a threshold value K'1, so as to obtain frequency residuals sum.
  • K'1-K'N there may be several thresholds K'1-K'N, each threshold K'1-K'N corresponding to a particular frequency range. These thresholds K'1-K'N give to the extraction of the signals GA (v) and DA (v) a certain tolerance by allowing, as we will see, to preserve components which are not completely in opposition of phase with each other.
  • the cell 55 normalizes the residues by dividing them by the threshold value K'1. Normalized components are thus obtained which are equal to 1 for the components of the signals DI (v) and GI (v) exactly in phase opposition, such as the second components v2, and negative normalized components for the in-phase components of the GI signals ( v) and DI (v), such as the third components v3.
  • the signal obtained at the output of the cell 55 is then applied at the input of two identical filters 59, 60 called HSG (v) and HSD (v), respectively via a first and a second connection 57, 58 connecting an output of the cell 55 to an input of the filters 59 and 60.
  • HSG (v) and HSD (v) respectively via a first and a second connection 57, 58 connecting an output of the cell 55 to an input of the filters 59 and 60.
  • each of these filters 59-60 the components of the normalized signal that are less than zero are suppressed.
  • a frequency module of the signal GI (v) and DI (v) is greater than the threshold value K1
  • the value zero is assigned to the frequency component concerned.
  • the frequency component concerned is retained.
  • the first and second coefficients of HS (v) are thus equal to the standardized residuals corresponding to them.
  • the third coefficient of HS (v) corresponding to in-phase frequency components of the signals DI (v) and GI (v) is zero.
  • the component-component stereo filters 59 and 60 are respectively applied to frequency components of the electrical DI (v) signal of its initial right and frequency components of the electric GI (v) signal of its initial left.
  • the signals DI (v) and GI (v) are respectively applied at the input of the filters 59 and 60, via the connections 61 and 62 respectively connecting an output of the cell 51 to an input of the filters 59 and 60.
  • signals DA (v) and GA (v) electrical frequencies of its right and left back mainly comprising frequency components out of phase with each other.
  • signals DA (v) and GA (v) respectively correspond to the signals HS (v) * DI (v) and HS (v) * GI (v).
  • the signals DA (v) and GA (v) are applied at the input of an inverse Fourier transform cell 63 via a connection 64 and 65 connecting an output of the filters 59 and 60 to an input of the cell 63.
  • Electrical signals DA (t) and GA (t) of its right and left rear transposed in the time domain are thus observable at the output of the cell 63.
  • These signals DA (t) and GA (t) ) can be applied as speaker input for broadcast.
  • the value 0.1 of the first component v1 of the signal DA (v) is greater than the minimum MIN 'of the value of the first component of the signals DI (v) and GI (v) which is zero. Therefore the value 0.1 of the first component of the electrical signal of its right rear is replaced by the value 0.
  • the other values of the components v2 and v3 of the signals GA (v) and DA (v) are retained. By performing this step, it is thus possible to keep, in the electrical signals GA (v) and DA (v) of its rear only the components which are out of phase with each other.
  • the sum frequency residues are used as weighting coefficients of the frequency components in each stereophonic HS (v) filter.
  • the frequency components of the signal C (v) are subtracted from the frequency components of the signals GI (v) and DI (v) using subtracters 66 and 67. And the signals observable at the output of these subtracters 66 and 67 are applied to inputs of the cell 52 and to the inputs of the filters 59 and 60.
  • Such a variant makes it possible to ensure that no frequency component in phase of the signals DI (v) and GI (v) will be present in the Rear DA (v) and GA (v) signals produced.
  • a two-speaker broadcast system such as a computer, a television set or a mobile telephone
  • the electrical signals DF (t) and GF (t) From DF (t), we subtract a part of GF (t) and GF (t), we subtract a part of DF (t).
  • the signal C (t) is then added. This gives two sum time signals and is broadcast using speakers.
  • the figure 4a shows a system 71 which implements a method of transmitting N original electrical signals S1 (t) -SN (t) and independent via two electric transport signals L (t) and R (t).
  • the system 71 comprises an encoder 72 at the input terminals of which, the signals S1 (t) -SN (t) are applied.
  • This encoder 72 applies different filters on these signals S1 (t) -SN (t) and combines them so that they are transformed into two transport signals L (t) and R (t).
  • transport signals L (t) and R (t) are applied at the input of a decoder 75, via connections 73 and 74 interconnecting the outputs of the encoder 72 and the inputs of the decoder 75.
  • decoder 75 applies inverse filters to those applied by the encoder 72 on the L (t) and R (t) signals.
  • the decoder 75 then extracts the components frequency signals which are in phase, so that the N original signals S1 (t) -SN (t) are observable on its outputs.
  • the figure 4b shows a detailed schematic representation of the encoder 72 according to the invention. Only the first four signals are represented here. The processing performed on the N original signals is similar to that performed on the first two signals S1 (t) -S2 (t).
  • the encoder 72 modulates each of the signals S1 (t), S2 (t) by a first amplitude modulation G1, G2, and applies a first delay R1, R2 on each of these signals.
  • This first modulation and this first delay are defined by first parameters: G1 and G2 can thus be multiplying coefficients or attenuators of a few decibels. While the delays R1, R2 may be worth a few milliseconds.
  • a first modulated signal T [S1 (t)], T [S2 (t)] is then obtained which is applied to an input terminal of an adder 76.
  • the encoder 72 also modulates each of the signals S1 (t), S2 (t) by a second amplitude modulation G'1, G'2, and applies a second delay R'1, R'2 on each of these signals.
  • This second modulation and second delay are defined by second parameters: G'1, G'2 can thus be multiplying coefficients or attenuators of a few decibels. While the delays R'1, R'2 may be worth a few milliseconds.
  • a second modulated signal T '[S1 (t)], T' [S2 (t)] is then obtained which is applied to an input terminal of a second adder 77.
  • the first summator 76 is the sum of the first modulated signals T [S1 (t)], T [(S2 (t)] of each of the original independent electrical signals, and a first transport signal L (t) corresponding to this sum is thus observable at its exit.
  • the second summator 77 is the sum of the modulated second signals T '[S1 (t)], T' [(S2 (t)] of each of the original independent electrical signals A second transport signal R (t) corresponding to this sum is thus observable at its exit.
  • the original signals S1 (t), S2 (t) are also modulated by a first phase modulation ⁇ 1 and a second phase modulation ⁇ '1, respectively to obtain the first T [S1 (t)], T [ (S2 (t)] and second T '[S1 (t)], T' [(S2 (t)] signals.
  • the first and second signals are all delayed and modulated in phase and amplitude, the delay may be zero in some cases, as the phase shift.
  • a signal applied as it is to an input of an adder thus has a zero phase shift and an amplitude modulation ratio equal to 1.
  • the figure 4c shows a detailed representation of a decoder according to the invention.
  • the first and second transport signals L (t), R (t) are applied to inputs of the decoder 75, via the connections 73 and 74.
  • These first 2N demodulations and N first delays are defined by 2N first inverse parameters.
  • Each of the first 3N inverse parameters correspond to the inverse or opposite parameters of the first and second parameters.
  • Amplitude demodulation allows to recover the amplitude of the original signals while the introduced delays make it possible to recalibrate in time and put back in phase the original signals. For delays, either introduce the inverse delay of each original delay, or introduce the difference between the two original delays as is the case in the figure.
  • the decoder 75 demodulates the second transport signal R (t) by N second amplitude demodulations 1 / G'1, 1 / G'2, and applies N second delays. These N second demodulations and N second delays are again defined by 2N second inverse parameters. These second inverse parameters have inverse or opposite values to those of the first and second parameters, so as to recover the amplitude and the phase of the original signals. N second demodulated signals D 1 (t) -D 2 (t) are thus obtained.
  • Couples of these first 2N D1 (t) -D2 (t) and second D1 (t) -D'2 (t) demodulated signals are selected and combined in monophonic filters 78-79.
  • monophonic filters 78-79 an original electrical signal S1 (t) -S2 (t) is reconstructed from components frequency in phase of the electrical transport signals.
  • the first D1 (t) and the second D 1 (t) demodulated signal are applied to the input terminals of the monophonic filter 78.
  • the demodulated signals D1 (t) and D'1 (t) comprise frequency components which have the same amplitude, which are in phase and which correspond to the frequency components of the original signal S1 (t).
  • the filter 78 which extracts the frequency components in phase from the signals applied to it at input, the signal S1 (t) is found again.
  • the demodulated signals D2 (t) and D'2 (t) are applied at the input of the filter 79.
  • phase modulations ⁇ 1, - ⁇ '1 had been made on the original signals to carry them, we would introduce N first inverse phase demodulations on the first transport signal L (t) and N second reverse phase demodulations. on the second transport signal R (t).
  • N first inverse phase demodulations on the first transport signal L (t)
  • R second transport signal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Claims (15)

  1. Verfahren zur Erzeugung von mehr als zwei vernehmlichen zeitlichen elektrischen Tonsignalen (C(t)), GF(t), DF(t), GA(t), DA(t)) aus einem ursprünglichen linken zeitlichen elektrischen Tonsignal und einem ursprünglichen rechten zeitlichen elektrischen Tonsignal (DI(t)), dadurch gekennzeichnet, dass:
    - man im Frequenzbereich ein zentrales elektrisches Tonfrequenzsignal (C(v)) erzeugt, das Frequenzkomponenten (v1, v3) ausgehend von Frequenzkomponenten enthält, die sich mit den ursprünglichen linken und rechten elektrischen Tonsignalen (GI(v), DI(v)) in Gleichklang befinden, und diese in Gleichklang befindlichen Komponenten über Amplituden verfügen, deren Unterschied kleiner einem Grenzwert (K1-KN) sind,
    - man das zentrale elektrische Tonfrequenzsignal (C(v)) in ein zentrales zeitliches elektrisches Tonsignal (C(t)) umwandelt,
    - man durch das Abziehen des zentralen zeitlichen elektrischen Tonsignals (C(t)) vom ursprünglichen linken elektrischen Tonsignal (GI(t)) ein frontales linkes zeitliches elektrisches Tonsignal (GF(t)) erzeugt, und
    - man durch das Abziehen des zentralen zeitlichen elektrischen Tonsignals (C(t)) vom ursprünglichen rechten elektrischen Tonsignal (DI(t)) ein frontales rechtes zeitliches elektrisches Tonsignal (DF(t)) erzeugt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass:
    - man im Frequenzbereich jeweils aus den ursprünglichen linken und rechten elektrischen Tonsignalen (GI(v), DI(v)) ein rückwärtiges linkes elektrisches Tonfrequenzsignal (GA(v)) und ein rückwärtiges rechtes elektrisches Tonfrequenzsignal (DA(v)) erzeugt,
    - diese rückwärtigen linken und rechten Tonsignale (GA(v), DA(v)) im Wesentlichen Komponenten (v1-v3) enthalten, die nicht in Gleichklang stehen,
    - diese nicht in Gleichklang stehenden Komponenten Komponenten sind, für die die Frequenzkomponenten des ursprünglichen linken elektrischen Tonsignals (GI(v)) eine starke Phasenverschiebung im Vergleich zu jenen des ursprünglichen rechten elektrischen Tonsignals (DI(v)) aufweisen.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man zum Erzeugen des zentralen elektrischen Tonsignals (C(v)):
    - Komponente für Komponente einen monophonischen Filter (HM(v)) auf eine Summe der Frequenzkomponenten des ursprünglichen linken elektrischen Tonsignals (GI(v)) und jener des ursprünglichen rechten elektrischen Tonsignals (DI(v)) anwendet, und
    - man im monophonischen Filter (HM(v))
    - Komponente für Komponente die Frequenzkomponenten des ursprünglichen rechten elektrischen Tonsignals (DI(v)) von jenen des ursprünglichen linken elektrischen Tonsignals (GI(v)) abzieht, um Differenz-Frequenzkomponenten zu erhalten,
    - für jede Differenz-Frequenzkomponente ein Differenz-Frequenzmodul errechnet,
    - jedes Differenz-Frequenzmodul von einem Grenzwert (K1) abzieht, und man dadurch Differenz-Frequenzreste erhält, und
    - die Differenz-Frequenzreste als Gewichtungsbeiwerte für die Frequenzkomponenten monophonischen Filter (HM(v)) verwendet.
  4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass man zur Erzeugung des zentralen elektrischen Tonsignals (C(v))
    - die Reste normalisiert, indem man sie durch den Grenzwert (K1) teilt.
  5. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass man zur Erzeugung des zentralen elektrischen Tonsignals (C(v))
    - falls ein Frequenzmodul größer ist, als der Grenzwert (K1), der betroffenen Frequenzkomponente den Wert Null zuordnet.
  6. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass man für eine gegebene Frequenzkomponente des zentralen elektrischen Tonsignals (C(v))
    - den Mindestwert (MIN) zwischen der Frequenzkomponente des rechten elektrischen Tonsignals (DI(v)) und der Frequenzkomponente des linken elektrischen Tonsignals (GI(v)) nimmt, und
    - diesen Mindestwert mit der Frequenzkomponente vergleicht, die aus dem zentralen elektrischen Tonsignal (C(v)) erzeugt wird, und
    - wenn die Frequenzkomponente, die aus dem zentralen elektrischen Tonsignal (C(v)) erzeugt wird, größer ist, als dieser Mindestwert (MIN), dieser Mindestwert beibehalten wird, und
    - wenn die Frequenzkomponente, die aus dem zentralen elektrischen Tonsignal (C(v)) erzeugt wird, kleiner ist, als dieser Mindestwert (MIN), man diese Komponente behält.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man zur Erzeugung der rückwärtigen linken und rechten elektrischen Signale (GA(v), DA(v))
    - Komponente für Komponente monophonische Filter (HS(v)) jeweils auf Frequenzkomponenten des ursprünglichen linken elektrischen Tonsignals (GI(v)) und Frequenzkomponenten des ursprünglichen rechten elektrischen Tonsignals (DI(v)) anwendet, und
    - man in jedem monophonischen Filter (HS(v))
    - Komponente für Komponente die Frequenzkomponenten des ursprünglichen linken elektrischen Tonsignals (GI(v)) und Frequenzkomponenten des ursprünglichen rechten elektrischen Tonsignals (DI(v)) addiert, um Summen-Frequenzkomponenten zu erhalten,
    - für jede Summen-Frequenzkomponente ein Summen-Frequenzmodul errechnet,
    - jedes Summen-Frequenzmodul von einem Grenzwert (K1) abzieht, und man dadurch Summen-Frequenzreste erhält, und
    - die Summen-Frequenzreste als Gewichtungsbeiwerte für die Frequenzkomponenten in jedem monophonischen Filter (HS(v)) verwendet.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass man zur Erzeugung der linken und rechten rückwärtigen elektrischen Tonsignale (GA(v), DA(v))
    - die Reste normalisiert, indem man sie durch den Grenzwert (K1) teilt.
  9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, dass man zur Erzeugung der linken und rechten rückwärtigen elektrischen Tonsignale (GA(v), DA(v))
    - falls ein Frequenzmodul größer ist, als der Grenzwert, der betroffenen Frequenzkomponente den Wert Null zuordnet.
  10. Verfahren nach Anspruch 7 bis 9, dadurch gekennzeichnet, dass
    - man für jede Frequenzkomponente der rückwärtigen elektrischen Tonsignale
    - den Wert dieser Komponente mit dem Mindestwert der Werte der Frequenzkomponenten der linken und rechten frontalen elektrischen Tonsignale vergleicht, und
    - falls dieser Wert größer ist, als der Mindestwert, man die betroffene Komponente durch den Mindestwert ersetzt.
  11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, dass man vor Anwendung der monophonischen Filter (HS(v))
    - die Frequenzkomponenten des zentralen elektrischen Tonsignals (C(v)) von den Frequenzkomponenten der ursprünglichen linken und rechten elektrischen Tonsignale (GI(v), DI(v)) abzieht
  12. Verfahren nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass
    - durch die Anwendung eines Niederfrequenzfilters (14) auf die Frequenzkomponenten des zentralen elektrischen Tonsignals ein zentrales elektrisches Tonsignal (C(v)) mit niedriger Frequenz erzeugt wird.
  13. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass
    - man einige der mehr als zwei erzeugten zeitlichen Signale kombiniert, um lediglich zwei kombinierte zeitliche Signale zu erzeugen.
  14. Verfahren zur Übertragung von N unabhängigen ursprünglichen elektrischen Signalen (S1-SN) über zwei elektrische Transportsignale (L(t), R(t)), dadurch gekennzeichnet, dass man für jedes der ursprünglichen N Signale
    - jedes dieser Signale (S1(t)-SN(t)) durch eine erste Phasenmodulation (ϕ1), durch eine erste Amplitudenmodulation (G1, G2) moduliert, und man darauf eine erste Verzögerung (R1, R2) anwendet, und diese ersten Modulationen und die ersten Verzögerung durch erste Parameter definiert werden, und man ein erstes moduliertes Signal (T[S1(t)], T[S2(t)] erhält,
    - jedes dieser Signale (S1(t)-SN(t)) durch eine zweite Phasenmodulation (ϕ'1), durch eine zweite Amplitudenmodulation (G'1, G'2) moduliert, und man darauf eine zweite Verzögerung anwendet, und diese zweiten Modulationen und die zweiten Verzögerung durch zweite Parameter definiert werden, und man ein erstes moduliertes Signal (T'[S1(t)], T'[S2(t)] erhält,
    - die ersten modulierten Signale (T[S1 (t)], T[S2(t)] jedes der ursprünglichen unabhängigen N elektrischen Signale summiert, und die zweiten modulierten Signale (T'[S1(t)], T'[S2(t)] jedes der ursprünglichen unabhängigen N elektrischen Signale summiert, und man jeweils das erste und das zweite Transportsignal (L(t), R(t) erhält.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass
    - man das erste und zweite Transportsignal (L(t), R(t)) erhält,
    - man das erste Transportsignal (L(t)) durch N erste Phasendemodulationen (-ϕ1), durch N erste Amplitudendemodulationen (1/G1, 1/G2) demoduliert, und man darauf N erste Verzögerungen anwendet, wobei diese 2N ersten Demodulationen und N ersten Verzögerungen durch 3N erste umgekehrte Parameter definiert werden, und man N erste demodulierte Signale erhält, und jeder der 3N ersten umgekehrten Parameter der umgekehrte Parameter der ersten Parameter ist,
    - man das zweite Transportsignal durch N zweite Phasendemodulationen (-ϕ'1), durch N zweite Amplitudendemodulationen (1/G'1, 1/G'2) demoduliert, und man darauf N zweite Verzögerungen anwendet, wobei diese 2N zweiten Demodulationen und N zweiten Verzögerungen durch 3N zweite umgekehrte Parameter definiert werden, und man N zweite demodulierte Signale erhält,
    - man die Paare dieser 2N ersten und zweiten demodulierten Signale auswählt und in monophonischen Filtern kombiniert, und
    - man in jedem der monophonischen Filter
    - aus den mit den elektrischen Transportsignalen in Gleichklang befindlichen Frequenzkomponenten ein ursprüngliches elektrisches Signal rekonstruiert.
EP06764713.1A 2005-05-27 2006-05-26 Verfahren zum herstellen mehrerer zeitsignale Active EP1886535B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551399A FR2886503B1 (fr) 2005-05-27 2005-05-27 Procede pour produire plus de deux signaux electriques temporels distincts a partir d'un premier et d'un deuxieme signal electrique temporel
PCT/FR2006/001244 WO2006125931A1 (fr) 2005-05-27 2006-05-26 Procede pour produire une pluralite de signaux temporels

Publications (2)

Publication Number Publication Date
EP1886535A1 EP1886535A1 (de) 2008-02-13
EP1886535B1 true EP1886535B1 (de) 2013-10-16

Family

ID=35635587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764713.1A Active EP1886535B1 (de) 2005-05-27 2006-05-26 Verfahren zum herstellen mehrerer zeitsignale

Country Status (4)

Country Link
US (1) US8064607B2 (de)
EP (1) EP1886535B1 (de)
FR (1) FR2886503B1 (de)
WO (1) WO2006125931A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918532B1 (fr) 2007-07-05 2015-04-24 Arkamys Procede de traitement sonore d'un signal stereophonique a l'interieur d'un vehicule automobile et vehicule automobile mettant en oeuvre ce procede
FR2954654B1 (fr) 2009-12-23 2012-10-12 Arkamys Procede de generation de signaux de son surround gauche et droit a partir d'un signal de son stereo
EP2544465A1 (de) * 2011-07-05 2013-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verfahren und Vorrichtung zur Zerlegung einer Stereoaufzeichnung mittels Frequenzdomänenverarbeitung unter Verwendung eines Generators für spektrale Gewichtungen
US10609475B2 (en) 2014-12-05 2020-03-31 Stages Llc Active noise control and customized audio system
US9747367B2 (en) 2014-12-05 2017-08-29 Stages Llc Communication system for establishing and providing preferred audio
US9654868B2 (en) 2014-12-05 2017-05-16 Stages Llc Multi-channel multi-domain source identification and tracking
US9508335B2 (en) 2014-12-05 2016-11-29 Stages Pcs, Llc Active noise control and customized audio system
US9980075B1 (en) 2016-11-18 2018-05-22 Stages Llc Audio source spatialization relative to orientation sensor and output
US10945080B2 (en) 2016-11-18 2021-03-09 Stages Llc Audio analysis and processing system
US9980042B1 (en) 2016-11-18 2018-05-22 Stages Llc Beamformer direction of arrival and orientation analysis system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837825A (en) * 1987-02-28 1989-06-06 Shivers Clarence L Passive ambience recovery system for the reproduction of sound
KR910008762B1 (ko) * 1988-12-07 1991-10-19 삼성전자 주식회사 4채널 서라운드 사운드 발생회로
JPH05219598A (ja) * 1992-02-07 1993-08-27 Toshiba Corp 位相補償回路
JPH08256400A (ja) * 1995-03-17 1996-10-01 Matsushita Electric Ind Co Ltd 音場処理回路
US5737427A (en) * 1996-09-09 1998-04-07 Ambourn; Paul R. Surround sound processor unit
US7254239B2 (en) * 2001-02-09 2007-08-07 Thx Ltd. Sound system and method of sound reproduction
DE60311891T2 (de) * 2003-05-27 2008-02-07 Koninklijke Philips Electronics N.V. Audiocodierung
US7817812B2 (en) * 2005-05-31 2010-10-19 Polk Audio, Inc. Compact audio reproduction system with large perceived acoustic size and image
CN102113351B (zh) * 2008-07-28 2013-07-31 皇家飞利浦电子股份有限公司 音频系统及其操作的方法
JP5682103B2 (ja) * 2009-08-27 2015-03-11 ソニー株式会社 音声信号処理装置および音声信号処理方法
EP2326108B1 (de) * 2009-11-02 2015-06-03 Harman Becker Automotive Systems GmbH Phasenentzerrung für Audiosystem

Also Published As

Publication number Publication date
WO2006125931A1 (fr) 2006-11-30
EP1886535A1 (de) 2008-02-13
US20080152153A1 (en) 2008-06-26
FR2886503A1 (fr) 2006-12-01
US8064607B2 (en) 2011-11-22
FR2886503B1 (fr) 2007-08-24

Similar Documents

Publication Publication Date Title
EP1886535B1 (de) Verfahren zum herstellen mehrerer zeitsignale
KR100626233B1 (ko) 스테레오 확장 네트워크에서의 출력의 등화
EP1600042B1 (de) Verfahren zum bearbeiten komprimierter audiodaten zur räumlichen wiedergabe
EP2489206A1 (de) Verarbeitung von in einer subbanddomäne codierten schalldaten
EP2042001B1 (de) Binaurale spatialisierung kompressionsverschlüsselter tondaten
WO2004086818A1 (fr) Procede pour traiter un signal electrique de son
EP1999998A1 (de) Verfahren zur kunstkopf-synthese unter berücksichtigung eines theatereffekts
FR2762467A1 (fr) Procede d'annulation d'echo acoustique multi-voies et annuleur d'echo acoustique multi-voies
WO2007101958A2 (fr) Optimisation d'une spatialisation sonore binaurale a partir d'un encodage multicanal
CN111418219A (zh) 用于不匹配的听觉传输扩音器系统的增强的虚拟立体声再现
EP2517387B1 (de) Verfahren zur optimierung des stereoempfangs für analogen funk und zugehöriger analoger funkempfänger
EP3025514B1 (de) Klangverräumlichung mit raumwirkung
EP2247122A1 (de) Verfahren und Vorrichtung zur Steuerung der Wiedergabe von Audioinhalten mittels zweier Lautsprecher
FR3065137A1 (fr) Procede de spatialisation sonore
EP1994526B1 (de) Gemeinsame schallsynthese und -spatialisierung
EP2517485B1 (de) Verfahren zur erzeugung von linken und rechten raumklangsignalen auf der basis eines stereotonsignals
WO2013060761A1 (fr) Enceinte acoustique comprenant un haut-parleur coaxial a directivite controlee et variable
EP1251717A1 (de) Verfahren und Schaltung zum anhören einer Audio-Aufzeichnung mit Kopfhörer
KR100566115B1 (ko) 입체 음향을 생성하는 장치 및 방법
EP3108670B1 (de) Verfahren und vorrichtung zur wiedergabe eines mehrkanalaudiosignals in einer hörzone
FR3111040A1 (fr) Traitement centralisé d’un flux audio d’entrée
EP3701730A1 (de) Räumliche anordnung von schallübertragungsvorrichtungen
FR2943867A1 (fr) Traitement d'egalisation de composantes spatiales d'un signal audio 3d
WO2017032946A1 (fr) Procédé de mesure de filtres phrtf d'un auditeur, cabine pour la mise en oeuvre du procédé, et procédés permettant d'aboutir à la restitution d'une bande sonore multicanal personnalisée
FR2931614A1 (fr) Procede de restitution d'un canal de donnees audio, produit programme d'ordinateur, moyen de stockage et premier dispositif recepteur correspondants

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 636978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006038861

Country of ref document: DE

Effective date: 20131212

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131016

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 636978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006038861

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

26N No opposition filed

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006038861

Country of ref document: DE

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180526

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20190705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20190705

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230530

Year of fee payment: 18

Ref country code: DE

Payment date: 20230526

Year of fee payment: 18