EP1886535B1 - Method of producing a plurality of time signals - Google Patents

Method of producing a plurality of time signals Download PDF

Info

Publication number
EP1886535B1
EP1886535B1 EP06764713.1A EP06764713A EP1886535B1 EP 1886535 B1 EP1886535 B1 EP 1886535B1 EP 06764713 A EP06764713 A EP 06764713A EP 1886535 B1 EP1886535 B1 EP 1886535B1
Authority
EP
European Patent Office
Prior art keywords
signals
frequency
sound signal
signal
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06764713.1A
Other languages
German (de)
French (fr)
Other versions
EP1886535A1 (en
Inventor
Jérôme MONCEAUX
Frédéric AMADU
Yann Lecoeur
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkamys SA
Original Assignee
Arkamys SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkamys SA filed Critical Arkamys SA
Publication of EP1886535A1 publication Critical patent/EP1886535A1/en
Application granted granted Critical
Publication of EP1886535B1 publication Critical patent/EP1886535B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R5/00Stereophonic arrangements
    • H04R5/04Circuit arrangements, e.g. for selective connection of amplifier inputs/outputs to loudspeakers, for loudspeaker detection, or for adaptation of settings to personal preferences or hearing impairments

Definitions

  • the invention essentially relates to a method for producing more than two distinct temporal electrical signals from a first and a second time electrical signal.
  • the invention finds a particularly advantageous application in the field of sound processing, for transforming a stereophonic sound signal into a multichannel sound signal such as, for example, the so-called 5.1 system which is broadcast using at least five loudspeakers. .
  • a sound system broadcasting a 5.1 signal each speaker is intended to broadcast a sound signal which is distinct from other broadcast signals.
  • the 5.1 signals are generally broadcast by audio systems arranged inside a cinema, an apartment or a car. Such systems provide a listener in the center of the five-speaker space with the feeling of being enveloped by rich sound from five different sources. Indeed, the simultaneous broadcast of the five or six separate signals by as many independent speakers gives the sound signal a certain wrap.
  • the listener does not have that feeling of enveloping and depth of sound. Indeed, the listener only has the impression that the sound is propagated from a plane passing through the speakers, because the number of signals and sound sources is generally limited to two in a stereophonic system.
  • a 5.1 signal is broadcast by a system with at least five speakers: a center speaker, two left and right speakers, and two left and right rear speakers.
  • a sixth speaker can optionally be added to this device to manage the low frequencies.
  • the monophonic components are separated from the stereophonic components contained within the sound signals of a stereophonic system and the corresponding signals are broadcast by means of five loudspeakers.
  • the monophonic components of the original stereophonic sound signals are detected and the corresponding signal is broadcast using the central loudspeaker.
  • the monophonic component is subtracted from the original sound signals and the sound signals obtained are broadcast using the front speakers.
  • the anti-phase components of the original sound signals are detected and the sound signals obtained are broadcast using the rear loudspeakers. Indeed, the signals in opposition of phase give the feeling that the diffused sound comes from the back or that it is further away from the point of listening than the other sounds.
  • One of the challenges of the process is therefore to achieve a good sound discrimination between the different sound signals so that each speaker diffuse a particular sound of its own.
  • a method is known in which a filter is applied to the stereo and sound electrical sound signals.
  • this temporal processing involves the use of compressors which have relatively long response times. These long response times cause a pumping, ie a sudden change in intensity especially on the left and right channels when the central monophonic signal passes from a high noise level to a low noise level.
  • the left and right frontal sound signals include the monophonic component which is strongly attenuated as soon as it becomes strong in the center and is highlighted as soon as it fades to the center.
  • there is a certain inertia between the attenuation and the highlighting of the monophonic component. This inertia gives sensations of void sound at certain times.
  • this method does not provide a good stereo back.
  • a same electrical sound signal is broadcast on the two rear loudspeakers.
  • the rear signals thus comprise the components of the stereophonic signals in phase opposition, but are monophonic with each other.
  • a method is also known in which a sound signal is more clearly separated from another.
  • one of the steps of this method consists in eliminating certain components of the signals obtained which are below a threshold. This step reduces a measured crosstalk between two adjacent speakers. This crosstalk characterizes the separation between two adjacent speakers. However, the pumping effect is still present.
  • the invention proposes, in particular, to achieve a better discrimination between the different sound signals, while solving these pumping problems and respect for the original work.
  • the transformations of stereophonic sound signals are essentially in the frequency domain.
  • the temporal stereophonic electrical signals are converted into frequency stereophonic electrical signals.
  • the frequency components in phase and the out-of-phase frequency components are identified for broadcasting on the central loudspeaker and the rear loudspeakers, respectively.
  • a monophonic filter is created, the coefficients of which are developed in particular from the difference of the stereophonic frequency electrical signals, and this filter is applied to the sum of the frequency components of the signals.
  • a stereophonic filter is created whose coefficients are elaborated, in particular, from the sum of the frequency components of the two stereophonic electrical signals, and this filter is applied to each of the frequency components of the stereophonic electrical signals.
  • the stereophonic reconstruction from the five electrical sound signals generated by the invention is perfect, that is to say that we find exactly the original signal, which is not the case of other known methods.
  • the filter according to the invention for extracting the in-phase components can be used to transport N original signals via two transport signals. Indeed, by summing the N original signals with each transport signal, after modulating or delaying each one in a particular way, it is possible to find these N original signals by applying to the transport signals modulations or inverse delays of those applied. initially, and applying a monophonic filter on the transport signals thus put in phase.
  • the electrical signals produced are broadcast acoustically. However, after this production and before this broadcast, they may undergo additional modifications.
  • the invention makes it possible to contribute to a better intelligibility of messages in the field of hearing aids.
  • two starting left and right temporal signals are used, the above transformation is applied, and all or some of the signals produced are recombined so that only two time signals can be heard and heard with the prosthesis earphones.
  • the starting electrical signals are either signals measured by microphones at the location of each of the prostheses, or two signals measured by two microphones at a single prosthesis.
  • the name "left” and "right” essentially identifies the fact that the starting sounds are different (regardless of their place of origin).
  • we manage to create with the invention a depth of sound in the ears of users. This depth increases the intelligibility of the messages transmitted.
  • the figure 1 shows a stereophonic apparatus 1 which emits a temporal electrical signal GI (t) from its initial left and an electrical time signal DI (t) of its initial right.
  • This stereophonic system 1 may for example be a CD player or MP3 files of portable or fixed type, a television, a laptop, or a mobile phone.
  • a signal expressed in the time domain will be designated S (t) and a signal expressed in the frequency domain by S (v).
  • the initial electrical signals GI (t) and DI (t) would be applied respectively to inputs of the loudspeakers 2 and 3 to be broadcast.
  • these signals are applied across a system 4 to be transformed into at least five distinct electrical signals 5.1: an electric signal C (t) of its central, an electric signal GF (t) of its left frontal, an electric signal DF (t) of its front right, an electric signal GA (t) of its left rear and an electric signal DA (t) of its rear right respectively diffused by loudspeakers 5-9.
  • the signal GI (t) electrical of its initial left and the signal DI (t) electrical of its initial right are applied across a cell 10, respectively via a connection 16 and a connection 17 connecting outputs of the apparatus 1 to inputs of the cell 10.
  • This cell 10 produces, in the field frequency, the signal C (v) electrical frequency of its central, from phase frequency components of the signals GI (v) and DI (v) electrical of its right and left initial.
  • This cell then transforms the signal C (v) into a signal C (t) observable on its output.
  • This signal C (t) is applied to an input of the speaker 5 to be broadcast.
  • the signal GI (t) of its initial left and the signal DI (t) of its initial right are respectively applied to a terminal of a subtractor 11 and 12, via connections 18 and 19 connecting the outputs of the apparatus 1 and inputs of the subtractors 11 and 12.
  • the signal C (t) of its central sound is applied to a terminal of this subtractor 11 and this subtracter 12, via two connections 20 and 21 connecting the output of the cell 10 to the subtractive inputs of the subtractors 11 and 12.
  • the cell 11 thus produces a temporal electrical signal GF (t) of its frontal left by subtraction of the temporal electrical signal C (t) from the central sound of the electric signal GI (t) from its initial left.
  • the cell 12 produces a time electric signal DF (t) of its front right by subtraction of the electric signal C (t) from its central signal DI (t) electrical of its initial right.
  • the signals GI (t) and DI (t) electrical of its left and right initial are applied to the terminals of a cell 13, via connections 22 and 23 connecting outputs of the apparatus 1 to inputs of the cell 13.
  • This cell 13 transforms the signals GI (t) and DI (t) into GI (v) signals and DI (v) frequency and produces, in the frequency domain, the electric frequency signal GA (v) of its left rear and the electric signal DA (v) of its rear right, respectively from the GI (v) and DI signals.
  • the signals GA (v) and DA (v) essentially comprise frequency components with out-of-phase frequency values. These out of phase frequency values are values for which the frequency components of the electric GI (v) signal of its initial left have a significant phase shift compared to those of the electrical signal DI (v) of its initial right.
  • the cell 13 then transforms the GA (v) and DA (v) signals obtained into time signals GA (t) and DA (t). These time signals GA (t) and DA (t) are applied to inputs of the loudspeakers 8 and 9 via connections 27 and 28 respectively connecting an output of the cell 13 to an input of the loudspeakers 8 and 9.
  • a bass signal B (t) by applying the central temporal electric signal C (t) at the input of a low-pass filter 14 via a connecting connection 24.
  • This signal B (t) can be applied to an input of a bass speaker 16 to be broadcast.
  • the high frequency portion of the central electrical signal C (t) is filtered using a high pass filter.
  • the observable signal at the output of this filter 15 is then applied to the input of the loudspeaker 5, via a connection connecting the output of the filter 15 to the input of the loudspeaker 5.
  • the figure 2a shows a detailed schematic representation of cell 10 of the figure 1 to obtain the electric signal C (t) of its central from the signals GI (t) and DI (t) electrical left and right.
  • these initial signals GI (t) and DI (t) are applied at the input of a Fourier transform cell 35 via the connections 16 and 17.
  • This Fourier transform cell transforms the signals GI (t) and DI (t) time respectively in DI (v) and GI (v) frequency signals.
  • On the figure 2b are represented the first three frequency components v1, v2, v3 of the signals DI (v) and GI (v).
  • the first, second and third components of the signal DI (v) respectively have an amplitude of 0.1; 0.6 and -0.3.
  • the first, second and third components of the signal GI (v) respectively have an amplitude of 0.5; 0.6 and 0.6.
  • the signals DI (v) and GI (v) are applied at the input of a cell 36 via connections 41 and 42 connecting the outputs of the cell 35 to inputs of the cell 36.
  • This cell 36 subtracts, component component, the frequency components of the electrical signal DI (v) of its initial right from those of the signal GI (v) electric sound of its initial left to obtain frequency components of difference.
  • the cell 36 then calculates a frequency difference module for each difference component.
  • is obtained.
  • the figure 2b show this signal
  • is applied at the input of a cell 37 via a connection 43 connecting the output of the cell 36 to the input of the cell 37.
  • This cell 37 subtracts each difference frequency module from a threshold value K1 allowing to obtain frequency residuals of difference.
  • K1-KN it is possible to define several thresholds K1-KN that are assigned to different frequency ranges.
  • the creation of a threshold K1 allows, as we will see, to set a tolerance when extracting the signal C (v). The higher the threshold, the more we tolerate components that are not exclusively monophonic. The lower the threshold, the less we tolerate components that are not monophonic.
  • Cell 37 then normalizes the frequency residues by dividing them by the threshold value K1.
  • K1 the threshold value
  • the normalized residuals associated with the in-phase components of the signals DI (v) and GI (v) thus have the value 1 while the normalized residuals associated with the out-of-phase components of the signals DI (v) and GI (v) have a value less than 1 .
  • HM monophonic filter 38
  • the electrical signal corresponding to the standardized residues is applied to an input of the filter 38 via a connection 44 connecting the output of the cell 37 to the input of the cell 38.
  • this HM filter (v) if a frequency module is greater than the threshold value K1, then the value 0 is assigned to the frequency component concerned. In the opposite case, the frequency component concerned is retained. Thus, the coefficient of the HM filter (v) corresponding to the third frequency components v3 of the GI (v) and DI (v) signals has a zero value. Whereas the coefficients of the filter corresponding to the frequency components v1 and v2 of the GI (v) and DI (v) signals are unchanged.
  • the monophonic HM (v) filter is then applied to a sum, component to component, of the frequency components of the electrical signal of its initial right DI (v) and those of the electrical signal of its initial left GI (v).
  • the signals DI (v) and GI (v) are applied to inputs of an adder 39, via connections 45 and 46 connecting the outputs of the cell 35 to an input of the adder 39.
  • the signal observable in FIG. output of the summator 39 is applied to the input of the cell 38, via a connection 47 connecting an output of the summator 39 to an input of the filter 38.
  • HM (v) * (GI (v) + DI (v)) corresponding to the signal C (v) electrical frequency of its central.
  • the frequency signal C (v) thus has a third component v3 zero, a second component v2 equal to 1.2 and a first component v1 equal to 0.2.
  • This signal C (v) mainly comprises the in-phase components of the GI (v) and DI (v) signals.
  • the signal C (v) is then applied at the input of a cell 40 of inverse Fourier transform, via a connection 48 connecting the output of the filter 38 to the input of the cell 40.
  • This cell 40 produces thus the signal C (t) electrical time of its central.
  • This signal C (t) can then be applied to an input of a loudspeaker to be broadcast.
  • the MIN minimum is taken between the frequency component of the electrical DI (v) signal of its initial right and the frequency component of the electric GI (v) signal of its initial left. This MIN minimum is then compared with the generated frequency component of the electrical signal C (v) of its central. If the generated frequency component of the electric signal C (v) of its central unit is greater than this minimum MIN, then this minimum is retained. In the opposite case, we keep the component.
  • MIN 0.1.
  • the value of the second component of the signal C (v) is replaced by 0.6, in order to avoid a phase difference appearing between the electrical signals of its left and right front ends.
  • the frequency frequency residues are directly used as weighting coefficients in the HM filter (v).
  • the figure 3a shows a detailed schematic representation of cell 13 of the figure 1 which makes it possible to obtain the temporal electrical signals DA (t) and GA (t) from its rear from the initial electrical time signals GI (t) and DI (t).
  • the electrical signals DI (t) and GI (t) of its left and right temporal are applied to two distinct inputs of a Fourier transform cell 51, via the connections 22 and 23.
  • a GI signal (v) electrical frequency of its initial left and an electrical signal DI (v) frequency of its right are observable at the exit of this cell 51.
  • figure 3b shows the signals DI (v) and GI (v).
  • the signal DI (v) has three first components v1-v3 frequency respectively worth 0.5; 0.2 and 0.6.
  • the signal GI (v) comprises three first components v1-v3 frequency respectively worth 0; -0.2 and 0.6.
  • the signals DI (v) and GI (v) are respectively applied to inputs of a cell 52, via two connections 53 and 54 connecting the outputs of the cell 51 to inputs of the cell 52.
  • This cell 52 adds, component to component, the frequency components of the signal DI (v) its initial right to those of the electric signal GI (v) of its initial left to obtain frequency components sum.
  • This cell 52 then calculates a frequency modulus of sum for each frequency component sum. This cell 52 thus makes it possible to identify the out-of-phase components in the initial electrical frequency signals GI (v) and DI (v).
  • corresponding to the sum modulus of the signals GI (v) and DI (v) gives a zero value for the out-of-phase components, such as the second components v2 GI (v) and DI (v) signals, and a high value for the in-phase frequency components of the GI (v) and DI (v) signals.
  • electrical output obtained from the cell 52 is applied to the input of the cell 55, via a connection 56 connecting the output of the cell 52 to the input of the cell 55.
  • This cell 55 subtracts each frequency module from a threshold value K'1, so as to obtain frequency residuals sum.
  • K'1-K'N there may be several thresholds K'1-K'N, each threshold K'1-K'N corresponding to a particular frequency range. These thresholds K'1-K'N give to the extraction of the signals GA (v) and DA (v) a certain tolerance by allowing, as we will see, to preserve components which are not completely in opposition of phase with each other.
  • the cell 55 normalizes the residues by dividing them by the threshold value K'1. Normalized components are thus obtained which are equal to 1 for the components of the signals DI (v) and GI (v) exactly in phase opposition, such as the second components v2, and negative normalized components for the in-phase components of the GI signals ( v) and DI (v), such as the third components v3.
  • the signal obtained at the output of the cell 55 is then applied at the input of two identical filters 59, 60 called HSG (v) and HSD (v), respectively via a first and a second connection 57, 58 connecting an output of the cell 55 to an input of the filters 59 and 60.
  • HSG (v) and HSD (v) respectively via a first and a second connection 57, 58 connecting an output of the cell 55 to an input of the filters 59 and 60.
  • each of these filters 59-60 the components of the normalized signal that are less than zero are suppressed.
  • a frequency module of the signal GI (v) and DI (v) is greater than the threshold value K1
  • the value zero is assigned to the frequency component concerned.
  • the frequency component concerned is retained.
  • the first and second coefficients of HS (v) are thus equal to the standardized residuals corresponding to them.
  • the third coefficient of HS (v) corresponding to in-phase frequency components of the signals DI (v) and GI (v) is zero.
  • the component-component stereo filters 59 and 60 are respectively applied to frequency components of the electrical DI (v) signal of its initial right and frequency components of the electric GI (v) signal of its initial left.
  • the signals DI (v) and GI (v) are respectively applied at the input of the filters 59 and 60, via the connections 61 and 62 respectively connecting an output of the cell 51 to an input of the filters 59 and 60.
  • signals DA (v) and GA (v) electrical frequencies of its right and left back mainly comprising frequency components out of phase with each other.
  • signals DA (v) and GA (v) respectively correspond to the signals HS (v) * DI (v) and HS (v) * GI (v).
  • the signals DA (v) and GA (v) are applied at the input of an inverse Fourier transform cell 63 via a connection 64 and 65 connecting an output of the filters 59 and 60 to an input of the cell 63.
  • Electrical signals DA (t) and GA (t) of its right and left rear transposed in the time domain are thus observable at the output of the cell 63.
  • These signals DA (t) and GA (t) ) can be applied as speaker input for broadcast.
  • the value 0.1 of the first component v1 of the signal DA (v) is greater than the minimum MIN 'of the value of the first component of the signals DI (v) and GI (v) which is zero. Therefore the value 0.1 of the first component of the electrical signal of its right rear is replaced by the value 0.
  • the other values of the components v2 and v3 of the signals GA (v) and DA (v) are retained. By performing this step, it is thus possible to keep, in the electrical signals GA (v) and DA (v) of its rear only the components which are out of phase with each other.
  • the sum frequency residues are used as weighting coefficients of the frequency components in each stereophonic HS (v) filter.
  • the frequency components of the signal C (v) are subtracted from the frequency components of the signals GI (v) and DI (v) using subtracters 66 and 67. And the signals observable at the output of these subtracters 66 and 67 are applied to inputs of the cell 52 and to the inputs of the filters 59 and 60.
  • Such a variant makes it possible to ensure that no frequency component in phase of the signals DI (v) and GI (v) will be present in the Rear DA (v) and GA (v) signals produced.
  • a two-speaker broadcast system such as a computer, a television set or a mobile telephone
  • the electrical signals DF (t) and GF (t) From DF (t), we subtract a part of GF (t) and GF (t), we subtract a part of DF (t).
  • the signal C (t) is then added. This gives two sum time signals and is broadcast using speakers.
  • the figure 4a shows a system 71 which implements a method of transmitting N original electrical signals S1 (t) -SN (t) and independent via two electric transport signals L (t) and R (t).
  • the system 71 comprises an encoder 72 at the input terminals of which, the signals S1 (t) -SN (t) are applied.
  • This encoder 72 applies different filters on these signals S1 (t) -SN (t) and combines them so that they are transformed into two transport signals L (t) and R (t).
  • transport signals L (t) and R (t) are applied at the input of a decoder 75, via connections 73 and 74 interconnecting the outputs of the encoder 72 and the inputs of the decoder 75.
  • decoder 75 applies inverse filters to those applied by the encoder 72 on the L (t) and R (t) signals.
  • the decoder 75 then extracts the components frequency signals which are in phase, so that the N original signals S1 (t) -SN (t) are observable on its outputs.
  • the figure 4b shows a detailed schematic representation of the encoder 72 according to the invention. Only the first four signals are represented here. The processing performed on the N original signals is similar to that performed on the first two signals S1 (t) -S2 (t).
  • the encoder 72 modulates each of the signals S1 (t), S2 (t) by a first amplitude modulation G1, G2, and applies a first delay R1, R2 on each of these signals.
  • This first modulation and this first delay are defined by first parameters: G1 and G2 can thus be multiplying coefficients or attenuators of a few decibels. While the delays R1, R2 may be worth a few milliseconds.
  • a first modulated signal T [S1 (t)], T [S2 (t)] is then obtained which is applied to an input terminal of an adder 76.
  • the encoder 72 also modulates each of the signals S1 (t), S2 (t) by a second amplitude modulation G'1, G'2, and applies a second delay R'1, R'2 on each of these signals.
  • This second modulation and second delay are defined by second parameters: G'1, G'2 can thus be multiplying coefficients or attenuators of a few decibels. While the delays R'1, R'2 may be worth a few milliseconds.
  • a second modulated signal T '[S1 (t)], T' [S2 (t)] is then obtained which is applied to an input terminal of a second adder 77.
  • the first summator 76 is the sum of the first modulated signals T [S1 (t)], T [(S2 (t)] of each of the original independent electrical signals, and a first transport signal L (t) corresponding to this sum is thus observable at its exit.
  • the second summator 77 is the sum of the modulated second signals T '[S1 (t)], T' [(S2 (t)] of each of the original independent electrical signals A second transport signal R (t) corresponding to this sum is thus observable at its exit.
  • the original signals S1 (t), S2 (t) are also modulated by a first phase modulation ⁇ 1 and a second phase modulation ⁇ '1, respectively to obtain the first T [S1 (t)], T [ (S2 (t)] and second T '[S1 (t)], T' [(S2 (t)] signals.
  • the first and second signals are all delayed and modulated in phase and amplitude, the delay may be zero in some cases, as the phase shift.
  • a signal applied as it is to an input of an adder thus has a zero phase shift and an amplitude modulation ratio equal to 1.
  • the figure 4c shows a detailed representation of a decoder according to the invention.
  • the first and second transport signals L (t), R (t) are applied to inputs of the decoder 75, via the connections 73 and 74.
  • These first 2N demodulations and N first delays are defined by 2N first inverse parameters.
  • Each of the first 3N inverse parameters correspond to the inverse or opposite parameters of the first and second parameters.
  • Amplitude demodulation allows to recover the amplitude of the original signals while the introduced delays make it possible to recalibrate in time and put back in phase the original signals. For delays, either introduce the inverse delay of each original delay, or introduce the difference between the two original delays as is the case in the figure.
  • the decoder 75 demodulates the second transport signal R (t) by N second amplitude demodulations 1 / G'1, 1 / G'2, and applies N second delays. These N second demodulations and N second delays are again defined by 2N second inverse parameters. These second inverse parameters have inverse or opposite values to those of the first and second parameters, so as to recover the amplitude and the phase of the original signals. N second demodulated signals D 1 (t) -D 2 (t) are thus obtained.
  • Couples of these first 2N D1 (t) -D2 (t) and second D1 (t) -D'2 (t) demodulated signals are selected and combined in monophonic filters 78-79.
  • monophonic filters 78-79 an original electrical signal S1 (t) -S2 (t) is reconstructed from components frequency in phase of the electrical transport signals.
  • the first D1 (t) and the second D 1 (t) demodulated signal are applied to the input terminals of the monophonic filter 78.
  • the demodulated signals D1 (t) and D'1 (t) comprise frequency components which have the same amplitude, which are in phase and which correspond to the frequency components of the original signal S1 (t).
  • the filter 78 which extracts the frequency components in phase from the signals applied to it at input, the signal S1 (t) is found again.
  • the demodulated signals D2 (t) and D'2 (t) are applied at the input of the filter 79.
  • phase modulations ⁇ 1, - ⁇ '1 had been made on the original signals to carry them, we would introduce N first inverse phase demodulations on the first transport signal L (t) and N second reverse phase demodulations. on the second transport signal R (t).
  • N first inverse phase demodulations on the first transport signal L (t)
  • R second transport signal

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Stereophonic System (AREA)

Description

L'invention concerne essentiellement un procédé pour produire plus de deux signaux électriques temporels distincts à partir d'un premier et d'un deuxième signal électrique temporel. L'invention trouve une application particulièrement avantageuse dans le domaine du traitement sonore, pour transformer un signal sonore stéréophonique en un signal sonore multicanal comme, par exemple, le système dit 5.1 qui est diffusé à l'aide d'au moins cinq haut-parleurs. Dans un système audiophonique diffusant un signal 5.1, chaque haut-parleur est destiné à diffuser un signal sonore qui est distinct des autres signaux diffusés.The invention essentially relates to a method for producing more than two distinct temporal electrical signals from a first and a second time electrical signal. The invention finds a particularly advantageous application in the field of sound processing, for transforming a stereophonic sound signal into a multichannel sound signal such as, for example, the so-called 5.1 system which is broadcast using at least five loudspeakers. . In a sound system broadcasting a 5.1 signal, each speaker is intended to broadcast a sound signal which is distinct from other broadcast signals.

Dans la pratique, les signaux 5.1 sont généralement diffusés par des systèmes audiophoniques disposés à l'intérieur d'un cinéma, d'un appartement ou d'une voiture. De tels systèmes procurent à un auditeur, situé au centre de l'espace délimité par les cinq haut-parleurs, la sensation d'être enveloppé par un son riche qui provient de cinq sources différentes. En effet, la diffusion simultanée des cinq ou six signaux distincts par autant de haut-parleurs indépendants confère au signal sonore un certain enveloppement.In practice, the 5.1 signals are generally broadcast by audio systems arranged inside a cinema, an apartment or a car. Such systems provide a listener in the center of the five-speaker space with the feeling of being enveloped by rich sound from five different sources. Indeed, the simultaneous broadcast of the five or six separate signals by as many independent speakers gives the sound signal a certain wrap.

En revanche, avec un système stéréophonique classique, l'auditeur n'a pas cette sensation d'enveloppement et de profondeur du son. En effet, l'auditeur a uniquement l'impression que le son se propage à partir d'un plan passant par les haut-parleurs, car le nombre de signaux et de sources sonores est généralement limité à deux dans un système stéréophonique.On the other hand, with a conventional stereophonic system, the listener does not have that feeling of enveloping and depth of sound. Indeed, the listener only has the impression that the sound is propagated from a plane passing through the speakers, because the number of signals and sound sources is generally limited to two in a stereophonic system.

Un des buts de certains procédés existants est donc de transformer les signaux sonores stéréophoniques en signaux sonores 5.1, afin d'obtenir le meilleur confort auditif possible. Un signal 5.1 est diffusé par un système comportant au moins cinq haut-parleurs : un haut-parleur central, deux haut-parleurs gauche et droite, et deux haut-parleurs arrières gauche et droite. Un sixième haut-parleur peut éventuellement être ajouté à ce dispositif pour gérer les fréquences graves.One of the aims of certain existing methods is therefore to transform stereophonic sound signals into 5.1 sound signals, in order to obtain the best possible auditory comfort. A 5.1 signal is broadcast by a system with at least five speakers: a center speaker, two left and right speakers, and two left and right rear speakers. A sixth speaker can optionally be added to this device to manage the low frequencies.

Dans une première approche, pour obtenir un signal 5.1 à partir d'un signal stéréophonique, il serait possible de dupliquer les deux signaux stéréophoniques sur les cinq haut-parleurs. Toutefois, une telle duplication ne procurerait pas le sentiment d'enveloppement souhaité à l'utilisateur. En effet, même si on multiplie le nombre de sources sonores, on ne multiplie pas le nombre de signaux distincts diffusés qui donnent cette richesse au son.In a first approach, to obtain a 5.1 signal from a stereophonic signal, it would be possible to duplicate the two stereophonic signals on the five loudspeakers. However, such duplication would not provide the desired feeling of wrap to the user. Indeed, even if one multiplies the number of sound sources, one does not multiply the number of distinct signals diffused which give this richness to the sound.

Dans d'autres procédés connus, on sépare les composantes monophoniques des composantes stéréophoniques contenues à l'intérieur des signaux sonores d'un système stéréophonique et on diffuse les signaux correspondants à l'aide de cinq haut-parleurs.In other known methods, the monophonic components are separated from the stereophonic components contained within the sound signals of a stereophonic system and the corresponding signals are broadcast by means of five loudspeakers.

Plus précisément, dans ces procédés, on détecte les composantes monophoniques des signaux sonores stéréophoniques d'origine et on diffuse le signal correspondant à l'aide du haut-parleur central. Par ailleurs, pour produire des signaux sonores frontaux, on soustrait la composante monophonique des signaux sonores d'origine et on diffuse les signaux sonores obtenus à l'aide des haut-parleurs frontaux. Pour produire les signaux arrière, on détecte les composantes en opposition de phase des signaux sonores d'origine et on diffuse les signaux sonores obtenus à l'aide des haut-parleurs arrière. En effet, les signaux en opposition de phase donnent le sentiment que le son diffusé provient de l'arrière ou qu'il est plus éloigné du point d'écoute que les autres sons. Un des enjeux des procédés est donc de réaliser une bonne discrimination sonore entre les différents signaux sonores de manière que chaque haut-parleur diffuse un son particulier qui lui est propre.More precisely, in these methods, the monophonic components of the original stereophonic sound signals are detected and the corresponding signal is broadcast using the central loudspeaker. In addition, to produce front-end sound signals, the monophonic component is subtracted from the original sound signals and the sound signals obtained are broadcast using the front speakers. In order to produce the rear signals, the anti-phase components of the original sound signals are detected and the sound signals obtained are broadcast using the rear loudspeakers. Indeed, the signals in opposition of phase give the feeling that the diffused sound comes from the back or that it is further away from the point of listening than the other sounds. One of the challenges of the process is therefore to achieve a good sound discrimination between the different sound signals so that each speaker diffuse a particular sound of its own.

Pour produire ces cinq signaux sonores, on connaît un procédé dans lequel on applique un filtre sur les signaux électriques de son stéréophoniques et temporels. Or, ce traitement temporel implique l'utilisation de compresseurs qui possèdent des temps de réponse relativement longs. Ces temps de réponse longs engendrent un pompage, c'est à dire une variation brutale d'intensité en particulier sur les canaux gauche et droit lorsque le signal monophonique central passe d'un niveau sonore important à un niveau sonore faible. En effet, les signaux sonores frontaux gauche et droit comportent la composante monophonique qui est fortement atténuée dès qu'elle devient forte au centre et qui est mise en relief dès qu'elle s'atténue au centre. Or, il existe une certaine inertie entre l'atténuation et la mise en relief de la composante monophonique. Cette inertie donne des sensations de vide sonore à certains moments.To produce these five sound signals, a method is known in which a filter is applied to the stereo and sound electrical sound signals. However, this temporal processing involves the use of compressors which have relatively long response times. These long response times cause a pumping, ie a sudden change in intensity especially on the left and right channels when the central monophonic signal passes from a high noise level to a low noise level. Indeed, the left and right frontal sound signals include the monophonic component which is strongly attenuated as soon as it becomes strong in the center and is highlighted as soon as it fades to the center. However, there is a certain inertia between the attenuation and the highlighting of the monophonic component. This inertia gives sensations of void sound at certain times.

En outre, ce procédé ne permet pas d'obtenir une bonne stéréophonie arrière. En effet, pour obtenir les signaux arrière, on diffuse un même signal électrique de son sur les deux haut-parleurs arrière. Les signaux arrière comportent ainsi les composantes des signaux stéréophoniques en opposition de phase, mais sont monophoniques entre eux.In addition, this method does not provide a good stereo back. In fact, to obtain the rear signals, a same electrical sound signal is broadcast on the two rear loudspeakers. The rear signals thus comprise the components of the stereophonic signals in phase opposition, but are monophonic with each other.

On connaît également un procédé dans lequel on dissocie plus clairement un signal de son d'un autre. A cet effet, une des étapes de ce procédé consiste à supprimer certaines composantes des signaux obtenus qui sont inférieurs à un seuil. Cette étape permet de diminuer une diaphonie mesurée entre deux haut-parleurs adjacents. Cette diaphonie caractérise la séparation entre deux haut-parleurs adjacents. Toutefois, l'effet de pompage est toujours présent.A method is also known in which a sound signal is more clearly separated from another. For this purpose, one of the steps of this method consists in eliminating certain components of the signals obtained which are below a threshold. This step reduces a measured crosstalk between two adjacent speakers. This crosstalk characterizes the separation between two adjacent speakers. However, the pumping effect is still present.

On connaît aussi un autre procédé de transformation du son dans lequel un filtrage est susceptible de s'adapter au cours du temps. Toutefois, ce procede possede une certaine instabilité. En effet, au cours du temps, les sources sonores situées autour de l'auditeur semblent bouger. Avec un tel procédé, il n'est pas possible d'obtenir le même effet sonore tout au long de la diffusion. Ce procédé donne ainsi une sensation peu agréable à l'auditeur de variations sonores et il ne respecte pas l'effet sonore souhaité par le créateur de la bande sonore d'origine.Another method of sound transformation is known in which filtering is likely to adapt over time. However, this method has some instability. Indeed, over time, the sound sources around the listener seem to move. With such a method, it is not possible to obtain the same sound effect throughout the broadcast. This method thus gives an unpleasant sensation to the listener of sound variations and does not respect the sound effect desired by the creator of the original soundtrack.

On connaît aussi un procédé dans lequel une réverbération importante est appliquée aux signaux de son stéréophoniques. Cette réverbération correspond à des échos de plus en plus denses. Le procédé procure ainsi un certain effet d'enveloppement virtuel mais ne peut pas rendre la richesse de la diffusion de cinq signaux sonores différents autour de l'auditeur. En effet, tous les signaux sonores comportent une information commune de modification. Dans ce procédé, on ne fait pas véritablement de discrimination de l'information entre les cinq signaux sonores, mais on joue sur le timbre des morceaux. En conséquence, là aussi, on change la nature de l'oeuvre originale diffusée.Also known is a method in which a large reverberation is applied to stereo sound signals. This reverberation corresponds to increasingly dense echoes. The method thus provides some virtual enveloping effect but can not make the richness of the diffusion of five different sound signals around the listener. Indeed, all the sound signals comprise a common modification information. In this process, we do not really discriminate information between the five sound signals, but we play on the stamp of the pieces. As a result, here too, we change the nature of the original work broadcast.

L'invention se propose, notamment, de réaliser une meilleure discrimination entre les différents signaux sonores, tout en résolvant ces problèmes de pompage et de respect de l'oeuvre originale.The invention proposes, in particular, to achieve a better discrimination between the different sound signals, while solving these pumping problems and respect for the original work.

Les explications qui vont suivre sont données pour des signaux de son. L'enseignement de l'invention est cependant applicable à d'autres domaines, notamment au transport de signaux électriques quelconques.The explanations that follow are given for sound signals. The teaching of the invention is however applicable to other fields, particularly to the transport of any electrical signals.

A cet effet, dans l'invention, les transformations des signaux de son stéréophoniques se font essentiellement dans le domaine fréquentiel. En effet, dans l'invention, on transforme les signaux électriques stéréophoniques temporels en signaux électriques stéréophoniques fréquentiels. Ensuite, on identifie les composantes fréquentielles en phase et les composantes fréquentielles déphasées pour les diffuser respectivement sur le haut-parleur central et les haut-parleurs arrières.For this purpose, in the invention, the transformations of stereophonic sound signals are essentially in the frequency domain. Indeed, in the invention, the temporal stereophonic electrical signals are converted into frequency stereophonic electrical signals. Next, the frequency components in phase and the out-of-phase frequency components are identified for broadcasting on the central loudspeaker and the rear loudspeakers, respectively.

Plus précisément, dans l'invention, pour identifier les composantes en phase, on crée un filtre monophonique dont les coefficients sont élaborés notamment à partir de la différence des signaux électriques fréquentiels stéréophoniques, et on applique ce filtre sur la somme des composantes fréquentielles des signaux électriques stéréophoniques.More precisely, in the invention, in order to identify the in-phase components, a monophonic filter is created, the coefficients of which are developed in particular from the difference of the stereophonic frequency electrical signals, and this filter is applied to the sum of the frequency components of the signals. stereophonic

Ces composantes fréquentielles en phase sont, par ailleurs, soustraites aux composantes frequentielles des signaux électriques de son stéréophoniques afin d'obtenir les signaux sonores frontaux gauche et droit.These in-phase frequency components are, moreover, subtracted from the frequency components of the electrical signals of sound stereophonic in order to obtain the left and right frontal sound signals.

Pour obtenir les composantes hors phases, on créé un filtre stéréophonique dont les coefficients sont élaborés, notamment, à partir de la somme des composantes fréquentielles des deux signaux électriques stéréophoniques, et on applique ce filtre sur chacune des composantes fréquentielles des signaux électriques stéréophoniques.To obtain the out-of-phase components, a stereophonic filter is created whose coefficients are elaborated, in particular, from the sum of the frequency components of the two stereophonic electrical signals, and this filter is applied to each of the frequency components of the stereophonic electrical signals.

Le fait d'utiliser des signaux fréquentiels permet d'obtenir une excellente réjection de la composante monophonique et ainsi d'éviter les effets de pompage puisqu'il n'est plus nécessaire de moduler les niveaux des signaux droit et gauche afin de masquer la composante monophonique résiduelle. De plus, le traitement est très rapide, et même s'il devait être différé ou retardé, le retard s'applique sur tous les signaux simultanément. Il n'y a donc pas d'impression de variation d'intensité sonore. En outre, dans l'invention, on s'attache uniquement à la discrimination des différentes composantes des signaux stéréophoniques, sans modifier les signaux sonores en introduisant par exemple un effet acoustique virtuel du type réverbération. L'oeuvre en tant que telle est donc parfaitement respectée lors de sa diffusion qui est celle qui était voulue par son créateur.The fact of using frequency signals makes it possible to obtain an excellent rejection of the monophonic component and thus to avoid the effects of pumping since it is no longer necessary to modulate the levels of the right and left signals in order to mask the component monophonic residual. In addition, the processing is very fast, and even if it had to be delayed or delayed, the delay applies to all the signals simultaneously. There is therefore no impression of variation of sound intensity. Furthermore, in the invention, only the discrimination of the different components of the stereophonic signals is concerned, without modifying the sound signals by introducing for example a virtual acoustic effect of the reverberation type. The work as such is therefore perfectly respected during its dissemination which is the one wanted by its creator.

En outre, la reconstruction stéréophonique à partir des cinq signaux électriques sonores générés par l'invention est parfaite, c'est-à-dire qu'on retrouve exactement le signal d'origine, ce qui n'est pas le cas des autres procédés connus.In addition, the stereophonic reconstruction from the five electrical sound signals generated by the invention is perfect, that is to say that we find exactly the original signal, which is not the case of other known methods.

En variante, il est possible d'appliquer un filtre passe-bas et un filtre passe-haut sur le signal électrique de son central. Il est ainsi possible de créer une nouvelle source sonore de basse rendant encore plus riche l'espace sonore de l'auditeur.Alternatively, it is possible to apply a low-pass filter and a high-pass filter on the electrical signal of its central. It is thus possible to create a new bass sound source making the listener's sound space even richer.

En outre, le filtre selon l'invention permettant d'extraire les composantes en phase peut être utilisé pour transporter N signaux originels par l'intermédiaire de deux signaux de transport. En effet, en sommant les N signaux originels avec chaque signal de transport, après les avoir modulé ou retardé chacun de manière particulière, il est possible de retrouver ces N signaux originels en appliquant aux signaux de transport des modulations ou des retards inverses de ceux appliqués au départ, et en appliquant un filtre monophonique sur les signaux de transport remis ainsi en phase.In addition, the filter according to the invention for extracting the in-phase components can be used to transport N original signals via two transport signals. Indeed, by summing the N original signals with each transport signal, after modulating or delaying each one in a particular way, it is possible to find these N original signals by applying to the transport signals modulations or inverse delays of those applied. initially, and applying a monophonic filter on the transport signals thus put in phase.

L'invention concerne donc un procédé pour produire plus de deux signaux électriques temporels de son distincts à partir d'un signal électrique temporel de son droit initial et d'un signal électrique temporel de son gauche initial, caractérisé en ce que :

  • on produit, dans le domaine fréquentiel, un signal électrique fréquentiel de son central comportant des composantes fréquentielles à partir de composantes fréquentielles en phase, en particulier présentes dans des proportions voisines dans les signaux électriques temporels de son droit et gauche initiaux, et
  • on convertit le signal électrique fréquentiel de son central en un signal électrique temporel de son central,
  • on produit, un signal électrique temporel de son gauche frontal par soustraction du signal électrique temporel de son central du signal électrique temporel de son gauche initial,
  • on produit un signal électrique temporel de son droit frontal par soustraction du signal électrique temporel de son central du signal électrique temporel de son droit initial.
The invention therefore relates to a method for producing more than two distinct temporal electrical sound signals from a temporal electrical signal of its initial right and of a temporal electrical signal from its initial left, characterized in that:
  • in the frequency domain, an electrical frequency signal of its central sound is produced comprising frequency components from frequency components in phase, in particular present in neighboring proportions in the initial temporal electrical signals of its right and left, and
  • the electrical frequency signal of its central is converted into a temporal electrical signal of its central,
  • producing a temporal electrical signal from its front left by subtracting the temporal electrical signal from its central from the temporal electrical signal from its initial left,
  • a temporal electrical signal is produced from its front right by subtracting the time electrical signal from its central from the temporal electrical signal of its initial right.

Bien entendu, in fine, les signaux électriques produits sont diffusés acoustiquement. Toutefois, après cette production et avant cette diffusion, ils peuvent subir des modifications supplémentaires.Of course, in fine, the electrical signals produced are broadcast acoustically. However, after this production and before this broadcast, they may undergo additional modifications.

Dans un domaine connexe à celui de la diffusion de type loisir évoquée ci-dessus, l'invention permet de contribuer à une meilleure intelligibilité des messages dans le domaine des prothèses auditives. Dans un exemple particulier, on se sert de deux signaux gauche et droite temporels de départ, on applique la transformation ci-dessus, et recombine tous ou certains des signaux produits pour ne sortir et n'écouter que deux signaux temporels avec les écouteurs des prothèses. Les signaux électriques de départ sont soit des signaux mesurés par des microphones à l'endroit de chacune des prothèses, soit deux signaux mesurés par deux microphones à l'endroit d'une seule prothèses. De ce fait l'appellation son gauche et son droit identifie essentiellement le fait que les sons de départ sont différents (indépendamment de leur lieu d'origine). Dans ce cas, on arrive à créer avec l'invention une profondeur de son dans les oreilles des utilisateurs. Cette profondeur augmente l'intelligibilité des message transmis.In a field related to that of leisure-type broadcasting mentioned above, the invention makes it possible to contribute to a better intelligibility of messages in the field of hearing aids. In a particular example, two starting left and right temporal signals are used, the above transformation is applied, and all or some of the signals produced are recombined so that only two time signals can be heard and heard with the prosthesis earphones. . The starting electrical signals are either signals measured by microphones at the location of each of the prostheses, or two signals measured by two microphones at a single prosthesis. As a result, the name "left" and "right" essentially identifies the fact that the starting sounds are different (regardless of their place of origin). In this case, we manage to create with the invention a depth of sound in the ears of users. This depth increases the intelligibility of the messages transmitted.

En outre l'invention concerne un procédé de transmission de N signaux électriques indépendants et originels par l'intermédiaire de deux signaux électriques de transport caractérisé en ce que, pour chacun des N signaux originels,

  • on module chacun de ces signaux par une première modulation de phase, par une première modulation d'amplitude, et on lui applique un premier retard, ces premières modulations et premier retard étant définis par des premiers paramètres, et on obtient un premier signal modulé,
  • on module chacun de ces signaux par une deuxième modulation de phase, par une deuxième modulation d'amplitude, et on lui applique un deuxième retard, ces deuxièmes modulations et deuxième retard étant définis par des deuxièmes paramètres, et on obtient un deuxième signal modulé,
  • on somme les premiers signaux modulés de chacun des N signaux électriques indépendants originels, et on somme les deuxièmes signaux modulés de chacun des N signaux électriques indépendants originels et on obtient respectivement le premier et le deuxième signal de transport.
In addition, the invention relates to a method for transmitting N independent and original electrical signals via two electrical transport signals, characterized in that, for each of the N original signals,
  • each of these signals is modulated by a first phase modulation, by a first amplitude modulation, and a first delay is applied to it, these first modulations and first delay being defined by first parameters, and a first modulated signal is obtained,
  • each of these signals is modulated by a second phase modulation, by a second amplitude modulation, and a second delay is applied to it, these second modulations and the second delay being defined by second parameters, and a second modulated signal is obtained,
  • the first modulated signals of each of the N original independent electrical signals are summed, and the second modulated signals of each of the N original independent electrical signals are summed and the first and second transport signals are respectively obtained.

L'invention sera mieux comprise à la lecture de la description qui suit et à l'examen des figures qui l'accompagnent. Ces figures sont données à titre explicatif mais nullement limitatif de l'invention. Ces figures montrent :

  • Figure 1 : une représentation schématique d'un système à au moins cinq haut-parleurs mettant en oeuvre le procédé selon l'invention ;
  • Figure 2a : une représentation schématique d'une cellule appliquée aux signaux de son stéréophoniques produisant le signal électrique de son central comportant les composantes en phase de ces signaux ;
  • Figure 2b : des représentations de composantes fréquentielles de signaux observables à différents endroits de la cellule de la figure 2a ;
  • Figure 3a : une représentation schématique d'une cellule appliquée aux signaux de son stéréophoniques produisant les signaux arrière comportant des composantes en opposition de phase de ces signaux ;
  • Figure 3b : des représentations de composantes fréquentielles de signaux observables à différents endroits de la cellule de la figure 3a ;
  • Figure 4a : des représentations graphiques d'un système à encodeur décodeur mettant en oeuvre le procédé selon l'invention pour faire transiter N signaux électriques sur deux signaux de transport ;
  • Figure 4b : une représentation schématique d'un encodeur selon l'invention permettant de transformer N signaux électriques en deux signaux électriques de transport;
  • Figure 4c : une représentation schématique du décodeur selon l'invention permettant de reconstruire les N signaux à partir des deux signaux de transport émis par l'encodeur.
The invention will be better understood on reading the description which follows and on examining the figures which accompany it. These figures are given for explanatory purposes but in no way limitative of the invention. These figures show:
  • Figure 1 : a schematic representation of a system with at least five loudspeakers implementing the method according to the invention;
  • Figure 2a : a schematic representation of an applied cell stereophonic sound signals producing the electrical signal of its central comprising the in-phase components of these signals;
  • Figure 2b : representations of frequency components of observable signals at different locations in the cell of the figure 2a ;
  • Figure 3a : a schematic representation of a cell applied to the stereophonic sound signals producing the back signals having counter-phase components of these signals;
  • Figure 3b : representations of frequency components of observable signals at different locations in the cell of the figure 3a ;
  • Figure 4a : graphic representations of a decoder encoder system implementing the method according to the invention for passing N electrical signals on two transport signals;
  • Figure 4b : a schematic representation of an encoder according to the invention for transforming N electrical signals into two electrical transport signals;
  • Figure 4c : a schematic representation of the decoder according to the invention for reconstructing the N signals from the two transport signals transmitted by the encoder.

La figure 1 montre un appareil 1 stéréophonique qui émet un signal GI(t) électrique temporel de son gauche initial et un signal DI(t) électrique temporel de son droit initial. Ce système 1 stéréophonique peut par exemple être un lecteur de CD ou de fichiers MP3 de type portable ou fixe, une télévision, un ordinateur portable, ou encore un téléphone portable. Dans la suite du document, on désignera par S(t) un signal exprimé dans le domaine temporel et par S(v) un signal exprimé dans le domaine fréquentiel.The figure 1 shows a stereophonic apparatus 1 which emits a temporal electrical signal GI (t) from its initial left and an electrical time signal DI (t) of its initial right. This stereophonic system 1 may for example be a CD player or MP3 files of portable or fixed type, a television, a laptop, or a mobile phone. In the remainder of the document, a signal expressed in the time domain will be designated S (t) and a signal expressed in the frequency domain by S (v).

Dans un cas classique, les signaux GI(t) et DI(t) électriques initiaux seraient appliqués respectivement sur des entrées des haut-parleurs 2 et 3 pour être diffusés. Or, ici, ces signaux sont appliqués aux bornes d'un système 4 pour être transformés en au moins cinq signaux électriques 5.1 distincts : un signal C(t) électrique de son central, un signal GF(t) électrique de son gauche frontal, un signal DF(t) électrique de son droit frontal, un signal GA(t) électrique de son gauche arrière et un signal DA(t) électrique de son droit arrière diffusés respectivement par des haut-parleurs 5-9.In a typical case, the initial electrical signals GI (t) and DI (t) would be applied respectively to inputs of the loudspeakers 2 and 3 to be broadcast. Now, here, these signals are applied across a system 4 to be transformed into at least five distinct electrical signals 5.1: an electric signal C (t) of its central, an electric signal GF (t) of its left frontal, an electric signal DF (t) of its front right, an electric signal GA (t) of its left rear and an electric signal DA (t) of its rear right respectively diffused by loudspeakers 5-9.

Pour obtenir le signal C(t) électrique de son central, le signal GI(t) électrique de son gauche initial et le signal DI(t) électrique de son droit initial sont appliqués aux bornes d'une cellule 10, respectivement par l'intermédiaire d'une connexion 16 et d'une connexion 17 reliant des sorties de l'appareil 1 à des entrées de la cellule 10. Cette cellule 10 produit, dans le domaine fréquentiel, le signal C(v) électrique fréquentiel de son central, à partir de composantes fréquentielles en phase des signaux GI(v) et DI(v) électriques de son droit et gauche initiaux. Cette cellule transforme ensuite lé signal C(v) en un signal C(t) observable sur sa sortie. Ce signal C(t) est appliqué sur une entrée du haut-parleur 5 pour être diffusé.To obtain the signal C (t) of its central sound, the signal GI (t) electrical of its initial left and the signal DI (t) electrical of its initial right are applied across a cell 10, respectively via a connection 16 and a connection 17 connecting outputs of the apparatus 1 to inputs of the cell 10. This cell 10 produces, in the field frequency, the signal C (v) electrical frequency of its central, from phase frequency components of the signals GI (v) and DI (v) electrical of its right and left initial. This cell then transforms the signal C (v) into a signal C (t) observable on its output. This signal C (t) is applied to an input of the speaker 5 to be broadcast.

Pour produire les signaux GF(t) et DF(t) électriques temporel de son gauche et droit frontaux, le signal GI(t) électrique de son gauche initial et le signal DI(t) électrique de son droit initial sont appliqués respectivement sur une borne d'un soustracteur 11 et 12, par l'intermédiaire de connexions 18 et 19 reliant les sorties de l'appareil 1 et des entrées des soustracteurs 11 et 12. Le signal C(t) électrique de son central est appliqué sur une borne de ce soustracteur 11 et de ce soustracteur 12, via deux connexions 20 et 21 reliant la sortie de la cellule 10 aux entrées soustractives des soustracteurs 11 et 12.In order to produce the electrical signals GF (t) and DF (t) temporally of its left and front right sides, the signal GI (t) of its initial left and the signal DI (t) of its initial right are respectively applied to a terminal of a subtractor 11 and 12, via connections 18 and 19 connecting the outputs of the apparatus 1 and inputs of the subtractors 11 and 12. The signal C (t) of its central sound is applied to a terminal of this subtractor 11 and this subtracter 12, via two connections 20 and 21 connecting the output of the cell 10 to the subtractive inputs of the subtractors 11 and 12.

La cellule 11 produit ainsi un signal GF(t) électrique temporel de son gauche frontal par soustraction du signal C(t) électrique temporel du son central du signal GI(t) électrique de son gauche initial. Et la cellule 12 produit un signal DF(t) électrique temporel de son droit frontal par soustraction du signal C(t) électrique de son central du signal DI(t) électrique de son droit initial. Ces signaux GF(t) et DF(t) sont appliqués sur des entrées des haut-parleurs 6 et 7 pour être diffusés.The cell 11 thus produces a temporal electrical signal GF (t) of its frontal left by subtraction of the temporal electrical signal C (t) from the central sound of the electric signal GI (t) from its initial left. And the cell 12 produces a time electric signal DF (t) of its front right by subtraction of the electric signal C (t) from its central signal DI (t) electrical of its initial right. These signals GF (t) and DF (t) are applied to inputs of the speakers 6 and 7 to be broadcast.

Pour produire le signal GA(t) électrique de son gauche arrière et le signal DA(t) électrique de son droit arrière, les signaux GI(t) et DI(t) électriques de son gauche et droit initiaux sont appliqués aux bornes d'une cellule 13, par l'intermédiaire de connexions 22 et 23 reliant des sorties de l'appareil 1 à des entrées de la cellule 13. Cette cellule 13 transforme les signaux GI(t) et DI(t) en signaux GI(v) et DI(v) fréquentiels et produit, dans le domaine fréquentiel, le signal GA(v) électrique fréquentiel de son gauche arrière et le signal DA(v) électrique de son droit arrière, respectivement à partir des signaux GI(v) et DI(v). Les signaux GA(v) et DA(v) comportent essentiellement des composantes fréquentielles à des valeurs fréquentielles hors phase. Ces valeurs fréquentielles hors phase sont des valeurs pour lesquelles les composantes fréquentielles du signal GI(v) électrique de son gauche initial présentent un déphasage important par rapport à celles du signal DI(v) électrique de son droit initial.To produce the electric signal GA (t) of its left rear and the electric signal DA (t) of its rear right, the signals GI (t) and DI (t) electrical of its left and right initial are applied to the terminals of a cell 13, via connections 22 and 23 connecting outputs of the apparatus 1 to inputs of the cell 13. This cell 13 transforms the signals GI (t) and DI (t) into GI (v) signals and DI (v) frequency and produces, in the frequency domain, the electric frequency signal GA (v) of its left rear and the electric signal DA (v) of its rear right, respectively from the GI (v) and DI signals. (v). The signals GA (v) and DA (v) essentially comprise frequency components with out-of-phase frequency values. These out of phase frequency values are values for which the frequency components of the electric GI (v) signal of its initial left have a significant phase shift compared to those of the electrical signal DI (v) of its initial right.

La cellule 13 transforme ensuite les signaux GA(v) et DA(v) obtenus en signaux temporels GA(t) et DA(t). Ces signaux GA(t) et DA(t) temporels sont appliqués sur des entrées des haut-parleurs 8 et 9, via des connexions 27 et 28 reliant respectivement une sortie de la cellule 13 à une entrée des haut-parleurs 8 et 9.The cell 13 then transforms the GA (v) and DA (v) signals obtained into time signals GA (t) and DA (t). These time signals GA (t) and DA (t) are applied to inputs of the loudspeakers 8 and 9 via connections 27 and 28 respectively connecting an output of the cell 13 to an input of the loudspeakers 8 and 9.

En variante, il est possible de produire en outre un signal B(t) de basse en appliquant le signal C(t) électrique temporel central en entrée d'un filtre 14 passe-bas, par l'intermédiaire d'une connexion 24 reliant la sortie de la cellule 10 et l'entrée du filtre 14. Ce signal B(t) peut être appliqué sur une entrée d'un haut-parleur 16 de grave pour être diffusé. La partie haute fréquence du signal C(t) électrique central est filtrée à l'aide d'un filtre 15 passe-haut. Le signal observable en sortie de ce filtre 15 est alors appliqué en entrée du haut-parleur 5, par l'intermédiaire d'une 26 connexion reliant la sortie du filtre 15 à l'entrée du haut-parleur 5.Alternatively, it is possible to further produce a bass signal B (t) by applying the central temporal electric signal C (t) at the input of a low-pass filter 14 via a connecting connection 24. the output of the cell 10 and the input of the filter 14. This signal B (t) can be applied to an input of a bass speaker 16 to be broadcast. The high frequency portion of the central electrical signal C (t) is filtered using a high pass filter. The observable signal at the output of this filter 15 is then applied to the input of the loudspeaker 5, via a connection connecting the output of the filter 15 to the input of the loudspeaker 5.

En variante, dans le procédé selon l'invention, on ne produit que certains signaux C(t), GF(t), DF(t), GA(t) et DA(t), et on les combine entre eux par soustraction, addition ou convolution avant de les diffuser. En effet, il pourrait être intéressant de ne diffuser que certains de ces signaux pour créer, par exemple, des effets sonores particuliers.As a variant, in the method according to the invention, only certain signals C (t), GF (t), DF (t), GA (t) and DA (t) are produced, and they are combined with one another by subtraction. , addition or convolution before broadcasting. Indeed, it may be interesting to broadcast only some of these signals to create, for example, special sound effects.

La figure 2a montre une représentation schématique détaillée de la cellule 10 de la figure 1 permettant d'obtenir le signal C(t) électrique de son central à partir des signaux GI(t) et DI(t) électriques de son gauche et droit.The figure 2a shows a detailed schematic representation of cell 10 of the figure 1 to obtain the electric signal C (t) of its central from the signals GI (t) and DI (t) electrical left and right.

Plus précisément, ces signaux GI(t) et DI(t) initiaux sont appliqués en entrée d'une cellule 35 de transformée de Fourier via les connexions 16 et 17. Cette cellule 35 de transformée de Fourier transforme les signaux GI(t) et DI(t) temporels respectivement en signaux DI(v) et GI(v) fréquentiels. Sur la figure 2b, sont représentées les trois premières composantes fréquentielles v1, v2, v3 des signaux DI(v) et GI(v). La première, deuxième et troisième composante du signal DI(v) possèdent respectivement une amplitude de 0.1 ; 0.6 et -0.3. La première, deuxième et troisième composante du signal GI(v) possèdent respectivement une amplitude de 0.5; 0.6 et 0.6.More precisely, these initial signals GI (t) and DI (t) are applied at the input of a Fourier transform cell 35 via the connections 16 and 17. This Fourier transform cell transforms the signals GI (t) and DI (t) time respectively in DI (v) and GI (v) frequency signals. On the figure 2b , are represented the first three frequency components v1, v2, v3 of the signals DI (v) and GI (v). The first, second and third components of the signal DI (v) respectively have an amplitude of 0.1; 0.6 and -0.3. The first, second and third components of the signal GI (v) respectively have an amplitude of 0.5; 0.6 and 0.6.

Les signaux DI(v) et GI(v) sont appliqués en entrée d'une cellule 36 par l'intermédiaire de connexions 41 et 42 reliant des sorties de la cellule 35 à des entrées de la cellule 36. Cette cellule 36 soustrait, composante à composante, les composantes fréquentielles du signal DI(v) électrique de son droit initial de celles du signal GI(v) électrique de son gauche initial pour obtenir des composantes fréquentielles de différence. La cellule 36 calcule ensuite un module fréquentiel de différence pour chaque composante de différence. On obtient ainsi en sortie de la cellule 36 le signal |GI(v) - DI(v)|.The signals DI (v) and GI (v) are applied at the input of a cell 36 via connections 41 and 42 connecting the outputs of the cell 35 to inputs of the cell 36. This cell 36 subtracts, component component, the frequency components of the electrical signal DI (v) of its initial right from those of the signal GI (v) electric sound of its initial left to obtain frequency components of difference. The cell 36 then calculates a frequency difference module for each difference component. Thus, at the output of the cell 36, the signal | GI (v) - DI (v) | is obtained.

La figure 2b montre ce signal |GI(v) - DI(v)|. On observe ainsi que, pour les composantes en phase des signaux DI(v) et GI(v), telles que les deuxièmes composantes v2, le signal |GI(v) - DI(v)| est nul. Et pour les composantes des signaux DI(v) et GI(v) qui sont déphasées, telles que les troisièmes composantes v3, le signal |GI(v) - DI(v)| possède des valeurs relativement grandes. Pour les composantes v1 de GI(v) et DI(v), on obtient une composante v1 du signal |GI(v) - DI(v)| valant 0,4.The figure 2b show this signal | GI (v) - DI (v) |. It is thus observed that, for the phase components of the signals DI (v) and GI (v), such as the second components v2, the signal | GI (v) - DI (v) | is zero. And for the components of the signals DI (v) and GI (v) which are out of phase, such as the third components v3, the signal | GI (v) - DI (v) | has relatively large values. For the components v1 of GI (v) and DI (v), we obtain a component v1 of the signal | GI (v) - DI (v) | worth 0.4.

Le signal |GI(v) - DI(v)| est appliqué en entrée d'une cellule 37 par l'intermédiaire d'une connexion 43 reliant la sortie de la cellule 36 à l'entrée de la cellule 37. Cette cellule 37 soustrait chaque module fréquentiel de différence d'une valeur seuil K1 permettant d'obtenir des résidus fréquentiels de différence. En variante, il est possible de définir plusieurs seuils K1-KN que l'on attribue à des gammes différentes de fréquence. La création d'un seuil K1 permet, comme on va le voir, de fixer une tolérance lors de l'extraction du signal C(v). Plus le seuil est grand, plus on tolère des composantes qui ne sont pas exclusivement monophoniques. Moins le seuil est grand, moins on tolère les composantes qui ne sont pas monophoniques.The signal | GI (v) - DI (v) | is applied at the input of a cell 37 via a connection 43 connecting the output of the cell 36 to the input of the cell 37. This cell 37 subtracts each difference frequency module from a threshold value K1 allowing to obtain frequency residuals of difference. As a variant, it is possible to define several thresholds K1-KN that are assigned to different frequency ranges. The creation of a threshold K1 allows, as we will see, to set a tolerance when extracting the signal C (v). The higher the threshold, the more we tolerate components that are not exclusively monophonic. The lower the threshold, the less we tolerate components that are not monophonic.

La cellule 37 normalise ensuite les résidus fréquentiels en les divisant par la valeur seuil K1. On obtient ainsi, sur la figure 2b, une valeur de 0.3 pour le premier résidu normalisé, une valeur de 1 pour le deuxième résidu normalisé et une valeur négative pour le troisième résidu normalisé qui est supérieure à la valeur seuil. Les résidus normalisés associés aux composantes en phase des signaux DI(v) et GI(v) possèdent ainsi la valeur 1 tandis que les résidus normalisés associés aux composantes déphasée des signaux DI(v) et GI(v) possèdent une valeur inférieure à 1.Cell 37 then normalizes the frequency residues by dividing them by the threshold value K1. We thus obtain, on the figure 2b , a value of 0.3 for the first normalized residue, a value of 1 for the second normalized residual and a negative value for the third normalized residual which is greater than the threshold value. The normalized residuals associated with the in-phase components of the signals DI (v) and GI (v) thus have the value 1 while the normalized residuals associated with the out-of-phase components of the signals DI (v) and GI (v) have a value less than 1 .

On utilise ensuite les valeurs de ces résidus comme paramètres pour produire un filtre 38 monophonique appelé HM(v). En effet, le signal électrique correspondant aux résidus normalisés est appliqué sur une entrée du filtre 38 par l'intermédiaire d'une connexion 44 reliant la sortie de la cellule 37 à l'entrée de la cellule 38.The values of these residues are then used as parameters to produce a monophonic filter 38 called HM (v). Indeed, the electrical signal corresponding to the standardized residues is applied to an input of the filter 38 via a connection 44 connecting the output of the cell 37 to the input of the cell 38.

Pour construire ce filtre HM(v), si un module fréquentiel est supérieur à la valeur seuil K1, alors on affecte la valeur 0 à la composante fréquentielle concernée. Dans le cas contraire, on conserve la composante fréquentielle concernée. Ainsi, le coefficient du filtre HM(v) correspondant aux troisièmes composantes fréquentielles v3 des signaux GI(v) et DI(v) possède une valeur nulle. Tandis que les coefficients du filtre correspondant aux composantes fréquentielles v1 et v2 des signaux GI(v) et DI(v) sont inchangés.To construct this HM filter (v), if a frequency module is greater than the threshold value K1, then the value 0 is assigned to the frequency component concerned. In the opposite case, the frequency component concerned is retained. Thus, the coefficient of the HM filter (v) corresponding to the third frequency components v3 of the GI (v) and DI (v) signals has a zero value. Whereas the coefficients of the filter corresponding to the frequency components v1 and v2 of the GI (v) and DI (v) signals are unchanged.

Le filtre HM(v) monophonique est ensuite appliqué sur une somme, composante à composante, des composantes fréquentielles du signal électrique de son droit initial DI(v) et de celles du signal électrique de son gauche initial GI(v). A cet effet, les signaux DI(v) et GI(v) sont appliqués sur des entrées d'un sommateur 39, via des connexions 45 et 46 reliant les sorties de la cellule 35 à une entrée du sommateur 39. Le signal observable en sortie du sommateur 39 est appliqué en entrée de la cellule 38, via une connexion 47 reliant une sortie du sommateur 39 à une entrée du filtre 38.The monophonic HM (v) filter is then applied to a sum, component to component, of the frequency components of the electrical signal of its initial right DI (v) and those of the electrical signal of its initial left GI (v). For this purpose, the signals DI (v) and GI (v) are applied to inputs of an adder 39, via connections 45 and 46 connecting the outputs of the cell 35 to an input of the adder 39. The signal observable in FIG. output of the summator 39 is applied to the input of the cell 38, via a connection 47 connecting an output of the summator 39 to an input of the filter 38.

En sortie du filtre 38, est donc observable un signal HM(v)*(GI(v)+DI(v)) correspondant au signal C(v) électrique fréquentiel de son central. Sur la figure 2b, le signal fréquentiel C(v) comporte ainsi une troisième composante v3 nulle, une deuxième composante v2 valant 1,2 et une première composante v1 valant 0,2. Ce signal C(v) comporte bien principalement les composantes en phase des signaux GI(v) et DI(v).At the output of the filter 38, is therefore observable a signal HM (v) * (GI (v) + DI (v)) corresponding to the signal C (v) electrical frequency of its central. On the figure 2b the frequency signal C (v) thus has a third component v3 zero, a second component v2 equal to 1.2 and a first component v1 equal to 0.2. This signal C (v) mainly comprises the in-phase components of the GI (v) and DI (v) signals.

Le signal C(v) est alors appliqué en entrée d'une cellule 40 de transformée de Fourier inverse, par l'intermédiaire d'une connexion 48 reliant la sortie du filtre 38 à l'entrée de le cellule 40. Cette cellule 40 produit ainsi le signal C(t) électrique temporel de son central. Ce signal C(t) peut alors être appliqué sur une entrée d'un haut-parleur pour être diffusé.The signal C (v) is then applied at the input of a cell 40 of inverse Fourier transform, via a connection 48 connecting the output of the filter 38 to the input of the cell 40. This cell 40 produces thus the signal C (t) electrical time of its central. This signal C (t) can then be applied to an input of a loudspeaker to be broadcast.

On a vu que pour obtenir des signaux GF(t) et DF(t) électriques temporels de son droit et gauche frontaux, on soustrait le signal C(t) temporel de son central des signaux GI(t) et DI(t). Or, on s'aperçoit qu'ici, avec un signal C(v) électrique de son central comportant une première composante d'amplitude 0.2, on va obtenir un signal DF(v) électrique de son droit frontal comportant une première composante négative de valeur -0.1 et un signal GF(v) électrique de son gauche frontal comportant une première composante de valeur 0.4.It has been seen that in order to obtain temporal electrical signals GF (t) and DF (t) from its front right and left, the signal C (t) of its central signal is subtracted from the signals GI (t) and DI (t). Now, we notice that here, with an electric signal C (v) of its central sound having a first component of amplitude 0.2, we will obtain an electric signal DF (v) of its frontal right having a first negative component of value -0.1 and an electrical GF (v) signal of its frontal left, including a first value component 0.4.

Or, dans certaines mises en oeuvre du procédé selon l'invention, il n'est pas souhaitable de créer entre les signaux temporels frontaux GF(t) et DF(t) gauche et droit une opposition de phase qui n'existait pas au départ. Pour résoudre ce problème de déphasage non souhaité, on prend le minimum MIN entre la composante fréquentielle du signal DI(v) électrique de son droit initial et la composante fréquentielle du signal GI(v) électrique de son gauche initial. On compare ensuite ce minimum MIN avec la composante fréquentielle produite du signal C(v) électrique de son central. Si la composante fréquentielle produite du signal C(v) électrique de son central est supérieure à ce minimum MIN, alors on retient ce minimum. Dans le cas contraire, on conserve la composante.However, in some implementations of the method according to the invention, it is undesirable to create a phase opposition between the front temporal signals GF (t) and DF (t) left and right which did not exist at the beginning. . To solve this undesired phase shift problem, the MIN minimum is taken between the frequency component of the electrical DI (v) signal of its initial right and the frequency component of the electric GI (v) signal of its initial left. This MIN minimum is then compared with the generated frequency component of the electrical signal C (v) of its central. If the generated frequency component of the electric signal C (v) of its central unit is greater than this minimum MIN, then this minimum is retained. In the opposite case, we keep the component.

Ici, pour la première composante v1 du signal C(v), la valeur 0,2 sera donc remplacée par MIN=0,1. un obtient alors une première composante du signal DF(v) électrique de son droit frontal qui vaut 0 et une première composante du signal GF(v) électrique de son gauche valant 0,4. De même, la valeur de la deuxième composante du signal C(v) est remplacée par 0,6, afin d'éviter qu'une différence de phase n'apparaisse entre les signaux électriques de son frontaux gauche et droit.Here, for the first component v1 of the signal C (v), the value 0.2 will therefore be replaced by MIN = 0.1. one then obtains a first component of the electrical signal DF (v) of its frontal right which is equal to 0 and a first component of the electric signal GF (v) of its left equal to 0.4. Similarly, the value of the second component of the signal C (v) is replaced by 0.6, in order to avoid a phase difference appearing between the electrical signals of its left and right front ends.

En variante, on utilise directement les résidus fréquentiels de fréquence à titre de coefficients pondérateurs dans le filtre HM(v).Alternatively, the frequency frequency residues are directly used as weighting coefficients in the HM filter (v).

La figure 3a montre une représentation schématique détaillée de la cellule 13 de la figure 1 qui permet d'obtenir les signaux DA(t) et GA(t) électriques temporels de son arrière à partir des signaux GI(t) et DI(t) électriques temporels initiaux.The figure 3a shows a detailed schematic representation of cell 13 of the figure 1 which makes it possible to obtain the temporal electrical signals DA (t) and GA (t) from its rear from the initial electrical time signals GI (t) and DI (t).

Plus précisément, les signaux électriques DI(t) et GI(t) de son gauche et droit temporel sont appliqués sur deux entrées distinctes d'une cellule 51 de transformée de Fourier, par l'intermédiaire des connexions 22 et 23. Un signal GI(v) électrique fréquentiel de son gauche initial et un signal DI(v) électrique fréquentiel de son droit sont observables en sortie de cette cellule 51. La figure 3b montre les signaux DI(v) et GI(v). Le signal DI(v) comporte trois premières composantes v1-v3 fréquentielles valant respectivement 0.5; 0.2 et 0.6. Le signal GI(v) comporte trois premières composantes v1-v3 fréquentielles valant respectivement 0; -0.2 et 0.6.More specifically, the electrical signals DI (t) and GI (t) of its left and right temporal are applied to two distinct inputs of a Fourier transform cell 51, via the connections 22 and 23. A GI signal (v) electrical frequency of its initial left and an electrical signal DI (v) frequency of its right are observable at the exit of this cell 51. figure 3b shows the signals DI (v) and GI (v). The signal DI (v) has three first components v1-v3 frequency respectively worth 0.5; 0.2 and 0.6. The signal GI (v) comprises three first components v1-v3 frequency respectively worth 0; -0.2 and 0.6.

Les signaux DI(v) et GI(v) sont respectivement appliqués sur des entrées d'une cellule 52, par l'intermédiaire de deux connexions 53 et 54 reliant des sorties de la cellule 51 à des entrées de la cellule 52. Cette cellule 52 additionne, composante à composante, les composantes fréquentielles du signal DI(v) électrique de son droit initial à celles du signal GI(v) électrique de son gauche initial pour obtenir des composantes fréquentielles de somme. Cette cellule 52 calcule ensuite un module fréquentiel de somme pour chaque composante fréquentielle de somme. Cette cellule 52 permet ainsi d'identifier les composantes hors phase dans les signaux GI(v) et DI(v) électriques fréquentiels initiaux. Sur la figure 3b, on voit ainsi que le signal |(GI(v)+DI(v)| correspondant au module de somme des signaux GI(v) et DI(v) donne une valeur nulle pour les composantes déphasées, telles que les deuxièmes composantes v2 des signaux GI(v) et DI(v), et une valeur élevée pour les composantes fréquentielles en phase des signaux GI(v) et DI(v).The signals DI (v) and GI (v) are respectively applied to inputs of a cell 52, via two connections 53 and 54 connecting the outputs of the cell 51 to inputs of the cell 52. This cell 52 adds, component to component, the frequency components of the signal DI (v) its initial right to those of the electric signal GI (v) of its initial left to obtain frequency components sum. This cell 52 then calculates a frequency modulus of sum for each frequency component sum. This cell 52 thus makes it possible to identify the out-of-phase components in the initial electrical frequency signals GI (v) and DI (v). On the figure 3b it is thus seen that the signal | (GI (v) + DI (v) | corresponding to the sum modulus of the signals GI (v) and DI (v) gives a zero value for the out-of-phase components, such as the second components v2 GI (v) and DI (v) signals, and a high value for the in-phase frequency components of the GI (v) and DI (v) signals.

Ensuite, le signal |GI(v)+ DI(v)| électrique obtenu en sortie de la cellule 52 est appliqué en entrée de la cellule 55, par l'intermédiaire d'une connexion 56 reliant la sortie de la cellule 52 à l'entrée de la cellule 55. Cette cellule 55 soustrait chaque module fréquentiel d'une valeur seuil K'1, de manière à obtenir des résidus fréquentiels de somme. Là encore, il peut y avoir plusieurs seuils K'1-K'N, chaque seuil K'1-K'N correspondant à une gamme de fréquence particulière. Ces seuils K'1-K'N donnent à l'extraction des signaux GA(v) et DA(v) une certaine tolérance en permettant, comme on va le voir, de conserver des composantes qui ne se trouvent pas complètement en opposition de phase les unes par rapport aux autres.Then the signal | GI (v) + DI (v) | electrical output obtained from the cell 52 is applied to the input of the cell 55, via a connection 56 connecting the output of the cell 52 to the input of the cell 55. This cell 55 subtracts each frequency module from a threshold value K'1, so as to obtain frequency residuals sum. Here again, there may be several thresholds K'1-K'N, each threshold K'1-K'N corresponding to a particular frequency range. These thresholds K'1-K'N give to the extraction of the signals GA (v) and DA (v) a certain tolerance by allowing, as we will see, to preserve components which are not completely in opposition of phase with each other.

Ensuite, la cellule 55 normalise les résidus en les divisant par la valeur seuil K'1. On obtient ainsi des composantes normalisées qui valent 1 pour les composantes des signaux DI(v) et GI(v) exactement en opposition de phase, telles que les deuxièmes composantes v2, et des composantes normalisées négatives pour les composantes en phase des signaux GI(v) et DI(v), telles que les troisièmes composantes v3.Then, the cell 55 normalizes the residues by dividing them by the threshold value K'1. Normalized components are thus obtained which are equal to 1 for the components of the signals DI (v) and GI (v) exactly in phase opposition, such as the second components v2, and negative normalized components for the in-phase components of the GI signals ( v) and DI (v), such as the third components v3.

Le signal obtenu en sortie de la cellule 55 est alors appliqué en entrée de deux filtres 59, 60 identiques appelés HSG(v) et HSD(v), par l'intermédiaire respectivement d'une première et d'une deuxième connexion 57, 58 reliant une sortie de la cellule 55 à une entrée des filtres 59 et 60. Ainsi, à partir de ces résidus normalisés, les coefficients des filtres HS(v) stéréophoniques vont pouvoir être élaborés.The signal obtained at the output of the cell 55 is then applied at the input of two identical filters 59, 60 called HSG (v) and HSD (v), respectively via a first and a second connection 57, 58 connecting an output of the cell 55 to an input of the filters 59 and 60. Thus, from these normalized residuals, the coefficients of the stereophonic filters HS (v) will be able to be developed.

Plus précisément, pour créer chacun de ces filtres 59-60, on supprime les composantes du signal normalisé qui sont inférieures à zéro. Autrement dit : si un module fréquentiel du signal GI(v) et DI(v) est supérieur à la valeur seuil K1, alors on affecte la valeur zéro à la composante fréquentielle concernée. Dans le cas contraire, on conserve la composante fréquentielle concernée. Les premier et deuxième coefficients de HS(v) sont ainsi égaux aux résidus normalisés leur correspondant. Le troisième coefficient de HS(v) correspondant à des composantes fréquentielles en phase des signaux DI(v) et GI(v) est nul.More precisely, to create each of these filters 59-60, the components of the normalized signal that are less than zero are suppressed. In other words: if a frequency module of the signal GI (v) and DI (v) is greater than the threshold value K1, then the value zero is assigned to the frequency component concerned. In the opposite case, the frequency component concerned is retained. The first and second coefficients of HS (v) are thus equal to the standardized residuals corresponding to them. The third coefficient of HS (v) corresponding to in-phase frequency components of the signals DI (v) and GI (v) is zero.

Dans une étape suivante, on applique les filtres 59 et 60 stéréophoniques, composante à composante, respectivement sur des composantes fréquentielles du signal DI(v) électrique de son droit initial et des composantes fréquentielles du signal GI(v) électrique de son gauche initial. Ainsi, les signaux DI(v) et GI(v) sont respectivement appliqués en entrée des filtres 59 et 60, par l'intermédiaire des connexions 61 et 62 reliant respectivement une sortie de la cellule 51 à une entrée des filtres 59 et 60.In a next step, the component-component stereo filters 59 and 60 are respectively applied to frequency components of the electrical DI (v) signal of its initial right and frequency components of the electric GI (v) signal of its initial left. Thus, the signals DI (v) and GI (v) are respectively applied at the input of the filters 59 and 60, via the connections 61 and 62 respectively connecting an output of the cell 51 to an input of the filters 59 and 60.

On obtient ainsi des signaux DA(v) et GA(v) électriques fréquentiels de son droit et gauche arrière comportant principalement des composantes fréquentielles déphasées entre elles. Ces signaux DA(v) et GA(v) correspondent respectivement aux signaux HS(v)*DI(v) et HS(v)*GI(v).This results in signals DA (v) and GA (v) electrical frequencies of its right and left back mainly comprising frequency components out of phase with each other. These signals DA (v) and GA (v) respectively correspond to the signals HS (v) * DI (v) and HS (v) * GI (v).

Dans une étape ultérieure, les signaux DA(v) et GA(v) sont appliqués en entrée d'une cellule 63 de transformée de Fourier inverse par l'intermédiaire d'une connexion 64 et 65 reliant une sortie des filtres 59 et 60 à une entrée de la cellule 63. Des signaux DA(t) et GA(t) électriques de son droit et gauche arrière transposés dans le domaine temporel sont ainsi observables en sortie de la cellule 63. Ces signaux DA(t) et GA(t) peuvent être appliqués en entrée de haut-parleurs pour être diffusés.In a subsequent step, the signals DA (v) and GA (v) are applied at the input of an inverse Fourier transform cell 63 via a connection 64 and 65 connecting an output of the filters 59 and 60 to an input of the cell 63. Electrical signals DA (t) and GA (t) of its right and left rear transposed in the time domain are thus observable at the output of the cell 63. These signals DA (t) and GA (t) ) can be applied as speaker input for broadcast.

Dans une étape subsidiaire, pour chaque composante fréquentielle des signaux DA(v) et GA(v), on teste si sa valeur est supérieure en valeur absolue au minimum MIN' en valeur absolue des composantes des signaux DI(v) et GI(v) initiaux. Dans le cas où cette valeur de composante est supérieure au minimum, on remplace la valeur de la composante concernée par le minimum. Dans le cas contraire, on conserve la composante.In a subsidiary step, for each frequency component of the signals DA (v) and GA (v), it is tested whether its value is greater in absolute value than the minimum MIN 'in absolute value of the signal components DI (v) and GI (v). ) initial. In the case where this component value is greater than the minimum, the value of the component concerned is replaced by the minimum. In the opposite case, we keep the component.

Sur la figure 3b, la valeur 0.1 de la première composante v1 du signal DA(v) est supérieure au minimum MIN' de la valeur de la première composante des signaux DI(v) et GI(v) qui vaut zéro. On remplace donc la valeur 0.1 de la première composante du signal électrique de son droit arrière par la valeur 0. Les autres valeurs des composantes v2 et v3 des signaux GA(v) et DA(v) sont conservées. En réalisant cette étape, il est ainsi possible de conserver, dans les signaux GA(v) et DA(v) électriques de son arrière uniquement les composantes qui sont déphasées entre elles.On the figure 3b , the value 0.1 of the first component v1 of the signal DA (v) is greater than the minimum MIN 'of the value of the first component of the signals DI (v) and GI (v) which is zero. Therefore the value 0.1 of the first component of the electrical signal of its right rear is replaced by the value 0. The other values of the components v2 and v3 of the signals GA (v) and DA (v) are retained. By performing this step, it is thus possible to keep, in the electrical signals GA (v) and DA (v) of its rear only the components which are out of phase with each other.

En variante, les résidus fréquentiels de somme sont utilisés à titre de coefficients pondérateurs des composantes fréquentielles dans chaque filtre HS(v) stéréophonique.As a variant, the sum frequency residues are used as weighting coefficients of the frequency components in each stereophonic HS (v) filter.

En variante, les composantes fréquentielles du signal C(v) sont soustraites des composantes fréquentielles des signaux GI(v) et DI(v) à l'aide de soustracteurs 66 et 67. Et les signaux observables en sortie de ces soustracteurs 66 et 67 sont appliqués sur des entrées de la cellule 52 et sur les entrées des filtres 59 et 60. Une telle variante permet de s'assurer qu'aucune composante fréquentielle en phase des signaux DI(v) et GI(v) ne sera présente dans les signaux DA(v) et GA(v) arrière produits.As a variant, the frequency components of the signal C (v) are subtracted from the frequency components of the signals GI (v) and DI (v) using subtracters 66 and 67. And the signals observable at the output of these subtracters 66 and 67 are applied to inputs of the cell 52 and to the inputs of the filters 59 and 60. Such a variant makes it possible to ensure that no frequency component in phase of the signals DI (v) and GI (v) will be present in the Rear DA (v) and GA (v) signals produced.

Dans une application particulière d'un système de diffusion à deux haut-parleurs, tel qu'un ordinateur, un téléviseur ou un téléphone portable, pour donner une sensation de largeur sonore à un auditeur, on produit les signaux électriques DF(t) et GF(t). De DF(t), on soustrait une partie de GF(t) et de GF(t), on soustrait une partie de DF(t). A ces nouveaux signaux , on ajoute ensuite le signal C(t). On obtient ainsi deux signaux temporels de somme et on les diffuse à l'aide de haut-parleurs.In a particular application of a two-speaker broadcast system, such as a computer, a television set or a mobile telephone, to give a listener a feeling of soundwidth, the electrical signals DF (t) and GF (t). From DF (t), we subtract a part of GF (t) and GF (t), we subtract a part of DF (t). To these new signals, the signal C (t) is then added. This gives two sum time signals and is broadcast using speakers.

La figure 4a montre un système 71 qui met en oeuvre un procédé de transmission de N signaux S1(t)-SN(t) électriques originels et indépendants par l'intermédiaire de deux signaux L(t) et R(t) électriques de transport.The figure 4a shows a system 71 which implements a method of transmitting N original electrical signals S1 (t) -SN (t) and independent via two electric transport signals L (t) and R (t).

Plus précisément, le système 71 comporte un encodeur 72 aux bornes d'entrée duquel, les signaux S1(t)-SN(t) sont appliqués. Cet encodeur 72 applique des filtres différents sur ces signaux S1(t)-SN(t) et les combine de manière qu'ils soient transformés en deux signaux L(t) et R(t) de transport.More precisely, the system 71 comprises an encoder 72 at the input terminals of which, the signals S1 (t) -SN (t) are applied. This encoder 72 applies different filters on these signals S1 (t) -SN (t) and combines them so that they are transformed into two transport signals L (t) and R (t).

Ces signaux L(t) et R(t) de transport sont appliqués en entrée d'un décodeur 75, par l'intermédiaire de connexions 73 et 74 reliant entre elles les sorties de l'encodeur 72 et les entrées du décodeur 75. Ce décodeur 75 applique des filtres inverses de ceux appliqués par l'encodeur 72 sur les signaux L(t) et R(t). Le décodeur 75 extrait alors les composantes fréquentielles des signaux qui sont en phase, de manière que les N signaux originels S1(t)-SN(t) soient observables sur ses sorties.These transport signals L (t) and R (t) are applied at the input of a decoder 75, via connections 73 and 74 interconnecting the outputs of the encoder 72 and the inputs of the decoder 75. decoder 75 applies inverse filters to those applied by the encoder 72 on the L (t) and R (t) signals. The decoder 75 then extracts the components frequency signals which are in phase, so that the N original signals S1 (t) -SN (t) are observable on its outputs.

La figure 4b montre une représentation schématique détaillée de l'encodeur 72 selon l'invention. Seuls les quatre premiers signaux sont ici représentés. Le traitement effectué sur les N signaux originels est semblable à celui effectué sur les deux premiers signaux S1(t)-S2(t).The figure 4b shows a detailed schematic representation of the encoder 72 according to the invention. Only the first four signals are represented here. The processing performed on the N original signals is similar to that performed on the first two signals S1 (t) -S2 (t).

L'encodeur 72 module chacun des signaux S1(t), S2(t) par une première modulation d'amplitude G1, G2, et applique un premier retard R1, R2 sur chacun de ces signaux. Cette première modulation et ce premier retard sont définis par des premiers paramètres : G1 et G2 peuvent ainsi être des coefficients multiplicateurs ou des atténuateurs de quelques décibels. Tandis que les retards R1, R2 peuvent valoir quelques millisecondes. On obtient alors un premier signal T[S1(t)], T[S2(t)] modulé qui est appliqué sur une borne d'entrée d'un sommateur 76.The encoder 72 modulates each of the signals S1 (t), S2 (t) by a first amplitude modulation G1, G2, and applies a first delay R1, R2 on each of these signals. This first modulation and this first delay are defined by first parameters: G1 and G2 can thus be multiplying coefficients or attenuators of a few decibels. While the delays R1, R2 may be worth a few milliseconds. A first modulated signal T [S1 (t)], T [S2 (t)] is then obtained which is applied to an input terminal of an adder 76.

L'encodeur 72 module également chacun des signaux S1(t), S2(t) par une deuxième modulation d'amplitude G'1, G'2, et applique un deuxième retard R'1, R'2 sur chacun de ces signaux S1(t), S2(t). Cette deuxième modulation et ce deuxième retard sont définis par des deuxièmes paramètres : G'1, G'2 peuvent ainsi être des coefficients multiplicateurs ou des atténuateurs de quelques décibels. Tandis que les retards R'1, R'2 peuvent valoir quelques millisecondes. On obtient alors un deuxième signal T'[S1(t)], T'[S2(t)] modulé qui est appliqué sur une borne d'entrée d'un deuxième sommateur 77.The encoder 72 also modulates each of the signals S1 (t), S2 (t) by a second amplitude modulation G'1, G'2, and applies a second delay R'1, R'2 on each of these signals. S1 (t), S2 (t). This second modulation and second delay are defined by second parameters: G'1, G'2 can thus be multiplying coefficients or attenuators of a few decibels. While the delays R'1, R'2 may be worth a few milliseconds. A second modulated signal T '[S1 (t)], T' [S2 (t)] is then obtained which is applied to an input terminal of a second adder 77.

Le premier sommateur 76 fait la somme des premiers signaux T[S1(t)], T[(S2(t)] modulés de chacun des signaux électriques indépendants originels. Un premier signal L(t) de transport correspondant à cette somme est ainsi observable à sa sortie.The first summator 76 is the sum of the first modulated signals T [S1 (t)], T [(S2 (t)] of each of the original independent electrical signals, and a first transport signal L (t) corresponding to this sum is thus observable at its exit.

Le deuxième sommateur 77 fait la somme des deuxièmes signaux T'[S1(t)], T'[(S2(t)] modulés de chacun des signaux électriques indépendants originels. Un deuxième signal R(t) de transport correspondant à cette somme est ainsi observable à sa sortie.The second summator 77 is the sum of the modulated second signals T '[S1 (t)], T' [(S2 (t)] of each of the original independent electrical signals A second transport signal R (t) corresponding to this sum is thus observable at its exit.

En variante, on module également les signaux S1(t), S2(t) originels par une première modulation de phase ϕ1 et une deuxième modulation de phase ϕ'1, pour obtenir respectivement les premiers T[S1(t)], T[(S2(t)] et deuxièmes T'[S1(t)], T'[(S2(t)] signaux.As a variant, the original signals S1 (t), S2 (t) are also modulated by a first phase modulation φ1 and a second phase modulation φ'1, respectively to obtain the first T [S1 (t)], T [ (S2 (t)] and second T '[S1 (t)], T' [(S2 (t)] signals.

Ainsi, les premiers et les deuxièmes signaux sont tous retardés et modulés en phase et en amplitude, le retard pouvant être nul dans certains cas, tout comme le déphasage. Un signal appliqué tel quel sur une entrée d'un sommateur possède ainsi un déphasage nul et un rapport de modulation d'amplitude égal à 1.Thus, the first and second signals are all delayed and modulated in phase and amplitude, the delay may be zero in some cases, as the phase shift. A signal applied as it is to an input of an adder thus has a zero phase shift and an amplitude modulation ratio equal to 1.

La figure 4c montre une représentation détaillée d'un décodeur selon l'invention. Le premier et le deuxième signal L(t), R(t) de transport sont appliqués sur des entrées du décodeur 75, par l'intermédiaire des connexions 73 et 74.The figure 4c shows a detailed representation of a decoder according to the invention. The first and second transport signals L (t), R (t) are applied to inputs of the decoder 75, via the connections 73 and 74.

Ce décodeur 75 démodule le premier signal L(t) de transport par N (ici N=2) premières démodulations d'amplitude 1/G1, 1/G2, et on lui applique N premiers retards. Ces 2N premières démodulations et N premiers retards sont définis par 2N premiers paramètres inverses. Chacun des 3N premiers paramètres inverses correspondent aux paramètres inverses ou opposés des premiers et deuxièmes paramètres. Les démodulations d'amplitude permettent de retrouver l'amplitude des signaux originels tandis que les retards introduits permettent de recaler dans le temps et remettre en phase les signaux originels. Pour les retards, soit on introduit le retard inverse de chaque retard d'origine, soit on introduit la différence entre les deux retards d'origine comme c'est le cas sur la figure. En effet, au lieu d'introduire un retard -R1 dans le signal L(t) et un retard -R'1 dans le signal R(t), on introduit un seul retard R'1-R1 dans le signal L(t). Il en est de même pour le retard R'2-R2. On obtient ainsi N premiers signaux D1(t)-D2(t) démodulés.This decoder 75 demodulates the first transport signal L (t) by N (here N = 2) first amplitude demodulations 1 / G1, 1 / G2, and it applies first N delays. These first 2N demodulations and N first delays are defined by 2N first inverse parameters. Each of the first 3N inverse parameters correspond to the inverse or opposite parameters of the first and second parameters. Amplitude demodulation allows to recover the amplitude of the original signals while the introduced delays make it possible to recalibrate in time and put back in phase the original signals. For delays, either introduce the inverse delay of each original delay, or introduce the difference between the two original delays as is the case in the figure. Indeed, instead of introducing a delay -R1 in the signal L (t) and a delay -R'1 in the signal R (t), a single delay R'1-R1 is introduced into the signal L (t). ). It is the same for the delay R'2-R2. N first demodulated signals D1 (t) -D2 (t) are thus obtained.

D'une manière semblable, le décodeur 75 démodule le deuxième signal R(t) de transport par N deuxièmes démodulations d'amplitude 1/G'1, 1/G'2, et applique N deuxièmes retards. Ces N deuxièmes démodulations et N deuxièmes retards sont là encore définis par 2N deuxièmes paramètres inverses. Ces deuxièmes paramètres inverses possèdent des valeurs inverses ou opposées de celles des premiers et deuxièmes paramètres, de manière à retrouver l'amplitude et la phase des signaux originels. On obtient ainsi N deuxièmes signaux D'1(t)-D'2(t) démodulés.In a similar manner, the decoder 75 demodulates the second transport signal R (t) by N second amplitude demodulations 1 / G'1, 1 / G'2, and applies N second delays. These N second demodulations and N second delays are again defined by 2N second inverse parameters. These second inverse parameters have inverse or opposite values to those of the first and second parameters, so as to recover the amplitude and the phase of the original signals. N second demodulated signals D 1 (t) -D 2 (t) are thus obtained.

On sélectionne et on combine des couples de ces 2N premiers D1(t)-D2(t) et deuxièmes D'1(t)-D'2(t) signaux démodulés dans des filtres 78-79 monophoniques. Dans chacun de ces filtres 78-79 monophoniques, on reconstruit un signal S1(t)-S2(t) électrique originel à partir de composantes fréquentielles en phase des signaux électriques de transport.Couples of these first 2N D1 (t) -D2 (t) and second D1 (t) -D'2 (t) demodulated signals are selected and combined in monophonic filters 78-79. In each of these monophonic filters 78-79, an original electrical signal S1 (t) -S2 (t) is reconstructed from components frequency in phase of the electrical transport signals.

A cet effet, on applique le premier D1 (t) et le deuxième D'1(t) signal démodulé sur les bornes d'entrée du filtre 78 monophonique. Après démodulation, les signaux démodulés D1(t) et D'1(t) comportent des composantes fréquentielles qui possèdent la même amplitude, qui sont en phase et qui correspondent aux composantes fréquentielles du signal originel S1(t). En appliquant le filtre 78 qui extrait les composantes fréquentielles en phase des signaux qui lui sont appliqués en entrée, on retrouve le signal S1(t). De la même manière, pour reconstruire le signal originel S2(t), les signaux démodulés D2(t) et D'2(t) sont appliqués en entrée du filtre 79.For this purpose, the first D1 (t) and the second D 1 (t) demodulated signal are applied to the input terminals of the monophonic filter 78. After demodulation, the demodulated signals D1 (t) and D'1 (t) comprise frequency components which have the same amplitude, which are in phase and which correspond to the frequency components of the original signal S1 (t). By applying the filter 78 which extracts the frequency components in phase from the signals applied to it at input, the signal S1 (t) is found again. In the same way, to reconstruct the original signal S2 (t), the demodulated signals D2 (t) and D'2 (t) are applied at the input of the filter 79.

En variante, si des modulations de phase ϕ1, -ϕ'1 avaient été réalisées sur les signaux originels pour les transporter, on introduirait N premières démodulations de phase inverses sur le premier signal L(t) de transport et N deuxièmes démodulations de phase inverses sur le deuxième signal R(t) de transport. Ainsi, pour reconstruire le signal originel S1(t), on pourrait introduire un déphasage - ϕ1 sur L(t) et un déphasage -ϕ'1 sur R(t).Alternatively, if phase modulations φ1, -φ'1 had been made on the original signals to carry them, we would introduce N first inverse phase demodulations on the first transport signal L (t) and N second reverse phase demodulations. on the second transport signal R (t). Thus, to reconstruct the original signal S1 (t), we could introduce a phase shift - φ1 on L (t) and a phase shift -φ'1 on R (t).

Claims (15)

  1. A method for producing more than two different electric time sound signals (C(t), GF(t), DF(t) GA(t), DA(t)) from an initial left electric time sound signal (GI(t)) and an initial right electric time sound signal (DI(t)), characterised in that:
    - in the frequency field, a central electric frequency signal (C(v)) is produced, comprising frequency components (v1, v3) from in-phase frequency components of the initial left and right electric sound signals (GI(v), DI(v)), these in-phase components having amplitudes, the difference between which is less than a threshold (K1-KN),
    - the central electric frequency sound signal (C(v)) is converted into a central electric time sound signal (C(t)),
    - a front left electric time sound signal (GF(t)) is produced by subtracting the central electric time sound signal (C(t)) from the initial left electric sound signal (GI(t)), and
    - a front right electric time sound signal (DF(t)) is produced by subtracting the central electric time sound signal (C(t)) from the initial right electric sound signal (DI(t)).
  2. A method according to claim 1, characterised in that:
    - in the frequency field, a rear left electric frequency sound signal (GA(v)) and a rear right electric sound signal (DA(v)) are produced from the initial left and right electric sound signals (GI(v), DI(v)) respectively,
    - these rear left and right sound signals (GA(v), DA(v)) essentially comprising out-of-phase frequency components (v1-v3),
    - these out-of-phase components being components for which the frequency components of the initial left electric sound signal (GI(v)) have a significant phase difference compared to those of the initial right electric sound signal (DI(v)).
  3. A method according to claim 1 or 2, characterised in that to produce the central electric sound signal (C(v)):
    - a monophonic filter (HM(v)) is applied to a sum total, component by component, of the frequency components of the initial left electric sound signal (GI(v)) and of those of the initial right electric sound signal (DI(v)), and
    - in the monophonic filter (HM(v))
    - the frequency components of the initial right electric sound signal (DI(v)) are subtracted, component by component, from those of the initial left electric sound signal (GI(v)) to obtain the differential frequency components,
    - a differential frequency module is calculated for each differential frequency component,
    - each differential frequency module is subtracted from a threshold value (K1) to obtain the differential frequency remainders, and
    - the differential frequency remainders are used as weighting coefficients for the frequency components in the monophonic filter (HM(v)).
  4. A method according to claim 3, characterised in that to produce the central electric sound signal (C(v)),
    - the remainders are standardised by dividing them by the threshold value (K1).
  5. A method according to claim 3 or 4, characterised in that to produce the central electric sound signal (C(v)),
    - if a frequency module is greater than the threshold value (K1), the value of zero is applied to the frequency component in question.
  6. A method according to one of claims 3 to 5, characterised in that, for a given frequency component of the central electric sound signal (C(v)),
    - the minimum (MIN) between the frequency component of the right electric sound signal (DI(v)) and the frequency component of the left electric sound signal (GI(v)) is taken, and
    - this minimum is compared to the frequency component produced from the central electric sound signal (C(v)), and
    - if the frequency component produced from the central electric sound signal (C(v)) is greater than this minimum (MIN), this minimum is retained, and
    - if the frequency component produced from the central electric sound signal (C(v)) is lower than this minimum (MIN), this component is retained.
  7. A method according to one of claims 1 to 6, characterised in that to produce the rear left and right electric signals (GA(v), DA(v)),
    - monophonic filters (HS(v)) are applied, component by component, to the frequency components of the initial left electric sound signal (GI(v)) and to the frequency components of the initial right electric sound signal (DI(v)) respectively, and
    - in each monophonic filter (HS(v))
    - the frequency components of the initial left electric sound signal (GI(v)) are added, component by component, to those of the initial right electric sound signal (DI(v)) to obtain the sum frequency components,
    - a sum frequency module is calculated for each sum frequency component,
    - each sum frequency module is subtracted from a threshold value (K1) to obtain the sum frequency remainders, and
    - the sum frequency remainders are used as weighting coefficients for the frequency components in each monophonic filter (HS(v)).
  8. A method according to claim 7, characterised in that to produce the rear left and right electric sound signals (GA(v), DA(v)),
    - the remainders are standardised by dividing them by the threshold value (K1).
  9. A method according to claim 7 or 8, characterised in that to produce the rear left and right electric sound signals (GA(v), DA(v)),
    - if a frequency module is greater than the threshold value, the value of zero is applied to the frequency component in question.
  10. A method according to one of claims 7 to 9, characterised in that
    - for each frequency component of the rear electric sound signals,
    - the value of this component is compared to the minimum of the frequency component values of the front left and right electric sound signals, and
    - if this value is greater than the minimum, the component in question is replaced by the minimum.
  11. A method according to one of claims 7 to 10, characterised in that, before applying the monophonic filters (HS(v)),
    - the frequency components of the central electric sound signal (C(v)) are subtracted from the frequency components of the initial left and right electric sound signals (GI(v), DI(v)).
  12. A method according to one of claims 1 to 11, characterised in that
    - a low frequency central electric sound signal (C(v)) is produced by applying a low frequency filter (14) to the frequency components of the central electric sound signal.
  13. A method according to one of claims 1 to 12, characterised in that
    - some of the more than two time signals produced are combined in order to produce only two combined time signals.
  14. A method for transmitting N original and independent electric signals (S1-SN) via the intermediary of two electric transport signals (L(t), R(t)), characterised in that, for each of the N original signals,
    - each of these signals (S1(t)-SN(t)) is modulated by a first phase modulation (ϕ1), by a first amplitude modulation (G1, G2), and a first delay (R1, R2) is applied, these first modulations and this first delay being defined by first parameters to obtain a first modulated signal (T[S1(t)], T[(S2(t)]),
    - each of these signals (S1(t)-SN(t)) is modulated by a second phase modulation (ϕ'1), by a second amplitude modulation (G'1, G'2), and a second delay is applied, these second modulations and this second delay being defined by second parameters to obtain a second modulated signal (T'[S1(t)], T'[(S2(t)]),
    - the first modulated signals (T[S1 (t)], T[(S2(t)]) of each of the N original independent electric signals are added together, and the second modulated signals (T'[S1(t)], T'[(S2(t)]) of each of the N original independent electric signals are added together to obtain the first and second transport signals (L(t), R(t)) respectively.
  15. A method according to claim 14, characterised in that
    - the first and second transport signals (L(t), R(t)) are received,
    - the first transport signal (L(t)) is demodulated by N first phase demodulations (-ϕ1), by N first amplitude demodulations (1/G1, 1/G2), and N first delays are applied, these 2N first demodulations and N first delays being defined by 3N first opposite parameters to obtain N first demodulated signals, each of the 3N first opposite parameters being the opposite parameter to the first parameters,
    - the second transport signal is demodulated by N second phase demodulations (-ϕ'1), by N second amplitude demodulations (1/G'1, 1/G'2), and N second delays are applied, these 2N second demodulations and N second delays being defined by 3N second parameters to obtain N second demodulated signals,
    - couples of these 2N first and second demodulated signals are selected and combined in monophonic filters, and
    - in each of the monophonic filters
    - an original electric signal is reconstructed from in-phase frequency components of the electric transport signals.
EP06764713.1A 2005-05-27 2006-05-26 Method of producing a plurality of time signals Active EP1886535B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0551399A FR2886503B1 (en) 2005-05-27 2005-05-27 METHOD FOR PRODUCING MORE THAN TWO SEPARATE TEMPORAL ELECTRIC SIGNALS FROM A FIRST AND A SECOND TIME ELECTRICAL SIGNAL
PCT/FR2006/001244 WO2006125931A1 (en) 2005-05-27 2006-05-26 Method of producing a plurality of time signals

Publications (2)

Publication Number Publication Date
EP1886535A1 EP1886535A1 (en) 2008-02-13
EP1886535B1 true EP1886535B1 (en) 2013-10-16

Family

ID=35635587

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06764713.1A Active EP1886535B1 (en) 2005-05-27 2006-05-26 Method of producing a plurality of time signals

Country Status (4)

Country Link
US (1) US8064607B2 (en)
EP (1) EP1886535B1 (en)
FR (1) FR2886503B1 (en)
WO (1) WO2006125931A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2918532B1 (en) 2007-07-05 2015-04-24 Arkamys METHOD FOR THE SOUND PROCESSING OF A STEREO PHONE SIGNAL INSIDE A MOTOR VEHICLE AND A MOTOR VEHICLE USING THE SAME
FR2954654B1 (en) 2009-12-23 2012-10-12 Arkamys METHOD OF GENERATING LEFT AND RIGHT SURROUND SIGNAL SIGNALS FROM A SOUND STEREO SIGNAL
EP2544465A1 (en) * 2011-07-05 2013-01-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Method and apparatus for decomposing a stereo recording using frequency-domain processing employing a spectral weights generator
US10609475B2 (en) 2014-12-05 2020-03-31 Stages Llc Active noise control and customized audio system
US9747367B2 (en) 2014-12-05 2017-08-29 Stages Llc Communication system for establishing and providing preferred audio
US9654868B2 (en) 2014-12-05 2017-05-16 Stages Llc Multi-channel multi-domain source identification and tracking
US9508335B2 (en) 2014-12-05 2016-11-29 Stages Pcs, Llc Active noise control and customized audio system
US9980075B1 (en) 2016-11-18 2018-05-22 Stages Llc Audio source spatialization relative to orientation sensor and output
US10945080B2 (en) 2016-11-18 2021-03-09 Stages Llc Audio analysis and processing system
US9980042B1 (en) 2016-11-18 2018-05-22 Stages Llc Beamformer direction of arrival and orientation analysis system

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4837825A (en) * 1987-02-28 1989-06-06 Shivers Clarence L Passive ambience recovery system for the reproduction of sound
KR910008762B1 (en) * 1988-12-07 1991-10-19 삼성전자 주식회사 Circuit for generating 4-channel surround sound of speaker system
JPH05219598A (en) * 1992-02-07 1993-08-27 Toshiba Corp Phase compensating circuit
JPH08256400A (en) * 1995-03-17 1996-10-01 Matsushita Electric Ind Co Ltd Sound field processing circuit
US5737427A (en) * 1996-09-09 1998-04-07 Ambourn; Paul R. Surround sound processor unit
US7254239B2 (en) * 2001-02-09 2007-08-07 Thx Ltd. Sound system and method of sound reproduction
DE60311891T2 (en) * 2003-05-27 2008-02-07 Koninklijke Philips Electronics N.V. AUDIO CODING
US7817812B2 (en) * 2005-05-31 2010-10-19 Polk Audio, Inc. Compact audio reproduction system with large perceived acoustic size and image
CN102113351B (en) * 2008-07-28 2013-07-31 皇家飞利浦电子股份有限公司 Audio system and method of operation therefor
JP5682103B2 (en) * 2009-08-27 2015-03-11 ソニー株式会社 Audio signal processing apparatus and audio signal processing method
EP2326108B1 (en) * 2009-11-02 2015-06-03 Harman Becker Automotive Systems GmbH Audio system phase equalizion

Also Published As

Publication number Publication date
WO2006125931A1 (en) 2006-11-30
EP1886535A1 (en) 2008-02-13
US20080152153A1 (en) 2008-06-26
FR2886503A1 (en) 2006-12-01
US8064607B2 (en) 2011-11-22
FR2886503B1 (en) 2007-08-24

Similar Documents

Publication Publication Date Title
EP1886535B1 (en) Method of producing a plurality of time signals
KR100626233B1 (en) Equalisation of the output in a stereo widening network
EP1600042B1 (en) Method for the treatment of compressed sound data for spatialization
EP2489206A1 (en) Processing of sound data encoded in a sub-band domain
EP2042001B1 (en) Binaural spatialization of compression-encoded sound data
WO2004086818A1 (en) Method for treating an electric sound signal
EP1999998A1 (en) Method for binaural synthesis taking into account a theater effect
FR2762467A1 (en) MULTI-CHANNEL ACOUSTIC ECHO CANCELLATION METHOD AND MULTI-CHANNEL ACOUSTIC ECHO CANCELLATOR
WO2007101958A2 (en) Optimization of binaural sound spatialization based on multichannel encoding
CN111418219A (en) Enhanced virtual stereo reproduction for unmatched auditory transmission loudspeaker systems
EP2517387B1 (en) Method of optimizing stereo reception for analogue radio and associated analogue radio receiver
EP3025514B1 (en) Sound spatialization with room effect
EP2247122A1 (en) Method and apparatus for controlling the reproduction of audio contents by two loudspeakers
FR3065137A1 (en) SOUND SPATIALIZATION METHOD
EP1994526B1 (en) Joint sound synthesis and spatialization
EP2517485B1 (en) Method of generating left and right surround sound signals on the basis of a stereo sound signal
WO2013060761A1 (en) Acoustic chamber including a coaxial loudspeaker having a controlled and variable directivity
EP1251717A1 (en) Method and circuit for headphone listening of audio recording
KR100566115B1 (en) Apparatus and Method for Creating 3D Sound
EP3108670B1 (en) Method and device for rendering of a multi-channel audio signal in a listening zone
FR3111040A1 (en) Centralized processing of an input audio stream
EP3701730A1 (en) Spatial arrangement of sound broadcasting devices
FR2943867A1 (en) Three dimensional audio signal i.e. ambiophonic signal, processing method for computer, involves determining equalization processing parameters according to space components based on relative tolerance threshold and acquisition noise level
WO2017032946A1 (en) Method of measuring phrtf filters of a hearer, booth for implementing the method, and methods making it possible to culminate in the restitution of a personalized multichannel sound band
FR2931614A1 (en) Audio data channel restituting method for e.g. home cinema, involves selecting channel for substituting three audio data channels based on information representative of audio data channels, where channels is restituted by receiver devices

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20071205

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110118

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20130503

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 636978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006038861

Country of ref document: DE

Effective date: 20131212

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20131016

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 636978

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131016

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140216

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140217

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006038861

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

26N No opposition filed

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006038861

Country of ref document: DE

Effective date: 20140717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140526

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140531

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20131016

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140531

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180526

Year of fee payment: 13

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20190705

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190526

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20190705

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230512

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230530

Year of fee payment: 18

Ref country code: DE

Payment date: 20230526

Year of fee payment: 18