EP1883774B1 - Condensing system - Google Patents

Condensing system Download PDF

Info

Publication number
EP1883774B1
EP1883774B1 EP06742362A EP06742362A EP1883774B1 EP 1883774 B1 EP1883774 B1 EP 1883774B1 EP 06742362 A EP06742362 A EP 06742362A EP 06742362 A EP06742362 A EP 06742362A EP 1883774 B1 EP1883774 B1 EP 1883774B1
Authority
EP
European Patent Office
Prior art keywords
windbreak
windbreak wall
condensation plant
wind
fans
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06742362A
Other languages
German (de)
French (fr)
Other versions
EP1883774A1 (en
Inventor
Heinrich Schulze
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Energietchnik GmbH
Original Assignee
GEA Energietchnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GEA Energietchnik GmbH filed Critical GEA Energietchnik GmbH
Publication of EP1883774A1 publication Critical patent/EP1883774A1/en
Application granted granted Critical
Publication of EP1883774B1 publication Critical patent/EP1883774B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium

Definitions

  • the invention relates to a condensation plant according to the features in the preamble of claim 1.
  • a condensation plant it for example in WO 98/02701 shown.
  • Condensing systems are used to cool turbines or process vapors and have been used in energy engineering in very large dimensions for many years.
  • the efficiency of a power plant depends not insignificantly on the condensation capacity of the condensation plant.
  • the local climatic conditions and the associated wind speeds and wind directions have a significant influence on the condensation performance.
  • Today's condenser designs have windbreak walls surrounding the heat exchanger elements in their entirety to prevent immediate recirculation of the heated cooling air.
  • the windbreak walls are usually arranged vertically or partially inclined even outwards, as required by the building codes.
  • Wind crosses divide the intake space below the fans into individual areas. It should be noted that the fans are partially mounted at a height of up to 50 m. The wind crosses are usually built up to a height of about 30% of this space, so that laterally oncoming wind can not flow unhindered under the fans, but deflected upon impact on the wind cross upwards and fed to the fans. Although the wind crosses cause an improvement in the efficiency or a reduction in the pressure loss of the peripheral fans, the flow of the peripheral fans is often unsatisfactory.
  • the invention has for its object to reduce the adverse effects of laterally oncoming winds on a mounted on a support structure condensation plant.
  • the object is essentially achieved in that the windbreak wall is arranged inclined in the wind direction or that its lower edge is exposed to the outside than its upper edge.
  • Model calculations confirmed a reduction of wind induced additional pressure losses in one Magnitude of at least 10% regardless of whether an additional wind cross is located below the fans.
  • the advantages come in particular on the edge of the condensation plant arranged fans to bear, the pressure loss could be reduced here by about 20%.
  • the windbreak can be designed inclined overall or even in a portion of its height.
  • An inclination angle of 5 ° to 35 °, in particular 15 ° to 30 °, relative to a vertical is considered appropriate.
  • the angle of inclination must not be so great that there is a significant cross-sectional constriction, which hinders the unhindered upward flow of the heated cooling air, as this would have a negative impact on the efficiency.
  • a windbreak with a height of about 10 m could be displaced at its upper edge by 1 m to 3 m in the direction of the heat exchanger element.
  • the cross section is reduced only to a small extent.
  • the lower edge of the windbreak can be shifted to the outside.
  • the inclination can be increased without the outflow cross section being reduced.
  • the windbreak wall can be made concave in the direction of the heat exchanger elements curved. This also deflects a larger portion of the laterally flowing wind upward, so that the pressure drop below the peripheral fans is lower. As the volumetric flow of the deflected upward wind increases, an additional barrier of cold air is created, which also counteracts a warm air recirculation in an advantageous manner. Also on the leeward side of the condensation plant, the inclination of the windbreak has advantages in terms of warm air circulation, since the hot air edge not perpendicular, but according to the inclination of the windbreak wall on flows inside. As a result, the flow path of the recirculating hot air is longer.
  • the windbreak wall has a horizontally extending profiling, at least in a height region adjacent to the lower edge.
  • windbreak walls are constructed of trapezoidal profiles, in which the profiling in the vertical direction, that is from bottom to top. Although this orientation of the profiling has a positive effect on the flow behavior, in the form that the wind is deflected downwards and upwards. However, just the derivative down is undesirable. Therefore, at least the lower edge of the adjacent height range can have a horizontally extending profiling, which serves as a fluidic barrier.
  • the upper height range of the windbreak may have a vertical profiling, so as not to hinder the upward flow of wind.
  • FIG. 1 shows the model calculation of a condensation plant 1, as it belongs to the prior art.
  • the condensation plant is flowed laterally through the wind W in the model calculation.
  • the heat exchanger elements are not shown in detail. Only the heat distribution elements associated steam distribution lines 2 can be seen in cross section. Below the Steam distribution lines 2, the heat exchanger elements are arranged roof-shaped. Only schematically indicated fans 3 suck from below cooling air, wherein the heated cooling air flows past the steam distribution lines 2 upwards. It can be clearly seen that not all fans 3 are flown evenly. In particular, the edge-side fan 4 promotes noticeably less air than, for example, the fans 3 arranged in the middle region.
  • FIG. 2 shows in a highly simplified representation of the edge region of a condensation plant 8, in which a plurality of rows roof-shaped arranged heat exchanger elements are arranged on a support structure 9, of which for simplicity, only peripheral heat exchanger elements 10 of the outer row are shown.
  • a fan 11 Below the heat exchanger elements 10 is a fan 11, the cooling air K sucks from below and according to the arrows to the heat exchanger elements 10 supplies, where the cooling air K heated and flows in the direction of the arrow WL upwards.
  • steam is introduced in the direction of the arrows D in the heat exchanger elements 10 from the arranged in the ridge region of the heat exchanger elements 10 steam distribution line 12, where the steam condenses.
  • Essential in this embodiment of a condensation plant is the design of the windbreak wall 13, which in the embodiment of the FIG. 2 is arranged inclined relative to the vertical V.
  • the windbreak wall 13 extends in height approximately to the upper edge of the steam distribution line 12.
  • the lower edge 14 of the windbreak wall 13 is further exposed to the outside than the upper edge 15 of the windbreak wall 13.
  • the inclination angle NW is about 5 °. Due to the set inclination of the wind protection wall 13, transverse wind W is diverted upward to a greater extent than would be the case with a vertically oriented wind protection wall.
  • the pressure difference .DELTA.PL measured between the inlet side 16 and the outlet side 17 of the fan 11 is lower than with vertically oriented windbreak walls.
  • the same effect is obtained even if the windbreak is not straight, but according to the embodiment of FIG. 3 is concavely curved.
  • the windbreak 18 of the FIG. 3 is according to the FIG. 2 configured so that its lower edge 19 is exposed to the outside than its upper edge 20, only with the difference that the windbreak 18 from the lower edge 19 to the upper edge 20 is not straight, but curved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

Die Erfindung betrifft eine Kondensationsanlage gemäß den Merkmalen im Oberbegriff des Patentanspruchs 1. Eine derartige kondensationsanlage it zum Beispiel in WO 98/02701 gezeigt.The invention relates to a condensation plant according to the features in the preamble of claim 1. Such a condensation plant it for example in WO 98/02701 shown.

Kondensationsanlagen werden zur Kühlung von Turbinen oder Prozessabdämpfen verwendet und sind im energietechnischen Bereich in sehr großen Dimensionen seit vielen Jahren im Einsatz. Der Wirkungsgrad eines Kraftwerks hängt nicht unerheblich von der Kondensationsleistung der Kondensationsanlage ab. Die lokalen klimatischen Verhältnisse und die hiermit zusammenhängenden Windgeschwindigkeiten und Windrichtungen haben einen wesentlichen Einfluss auf die Kondensationsleistung. Heutige Bauformen von Kondensationsanlagen weisen Windschutzwände auf, welche die Wärmetauscherelemente in ihrer Gesamtheit umgeben, um eine unmittelbare Rezirkulation der erwärmten Kühlluft zu verhindern. Die Windschutzwände sind in der Regel vertikal oder teilweise sogar schräg nach außen geneigt angeordnet, je nachdem wie es die baulichen Vorschriften vorschreiben.Condensing systems are used to cool turbines or process vapors and have been used in energy engineering in very large dimensions for many years. The efficiency of a power plant depends not insignificantly on the condensation capacity of the condensation plant. The local climatic conditions and the associated wind speeds and wind directions have a significant influence on the condensation performance. Today's condenser designs have windbreak walls surrounding the heat exchanger elements in their entirety to prevent immediate recirculation of the heated cooling air. The windbreak walls are usually arranged vertically or partially inclined even outwards, as required by the building codes.

Es wurde festgestellt, dass seitlich anströmende Winde, die unter die Ventilatoren gedrückt werden, bei höheren Windgeschwindigkeiten zu einem lokalen Druckabfall unterhalb der Ventilatoren führen. Durch den Unterdruck können die Ventilatoren nicht genügend Kühlluft fördern, wodurch die Kondensationsleistung sinkt. Das hat zur Folge, dass anfallender Dampf nicht schnell genug kondensiert werden kann. Daraus resultiert, dass eine an den Dampfkreislauf angeschlossene Turbine unter Umständen in ihrer Leistung zurückgefahren werden muss.It has been found that laterally inflating winds, which are forced under the fans, become local at higher wind speeds Lead to pressure drop below the fans. Due to the negative pressure, the fans can not deliver enough cooling air, which reduces the condensation capacity. This has the consequence that accumulating steam can not be condensed fast enough. As a result, a turbine connected to the steam cycle may have to be reduced in power.

Dieser seit langem bekannten Problematik wurde beispielsweise dadurch begegnet, dass in den Ansaugraum unterhalb der Ventilatoren Hindernisse montiert wurden, so genannte Windkreuze. Windkreuze teilen den Ansaugraum unterhalb der Ventilatoren in einzelne Bereiche. Hierbei ist zu berücksichtigen, dass die Ventilatoren teilweise in einer Höhe von bis zu 50 m montiert sind. Die Windkreuze werden üblicherweise bis zu einer Höhe von ca. 30 % dieses Freiraums errichtet, so dass seitlich anströmender Wind nicht ungehindert unter den Ventilatoren hindurch strömen können, sondern bei Aufprall auf das Windkreuz nach oben abgelenkt und den Ventilatoren zugeleitet wird. Obschon die Windkreuze eine Verbesserung des Wirkungsgrads bzw. eine Reduzierung des Druckverlustes der randseitigen Ventilatoren bewirken, ist die Anströmung der randseitigen Ventilatoren häufig nicht zufrieden stellend.This long-known problem was, for example, encountered in that obstacles were mounted in the intake below the fans, so-called wind crosses. Wind crosses divide the intake space below the fans into individual areas. It should be noted that the fans are partially mounted at a height of up to 50 m. The wind crosses are usually built up to a height of about 30% of this space, so that laterally oncoming wind can not flow unhindered under the fans, but deflected upon impact on the wind cross upwards and fed to the fans. Although the wind crosses cause an improvement in the efficiency or a reduction in the pressure loss of the peripheral fans, the flow of the peripheral fans is often unsatisfactory.

Der Erfindung liegt die Aufgabe zugrunde, die nachteiligen Einflüsse seitlich anströmender Winde auf eine auf einer Stützkonstruktion angebrachten Kondensationsanlage zu reduzieren.The invention has for its object to reduce the adverse effects of laterally oncoming winds on a mounted on a support structure condensation plant.

Diese Aufgabe ist bei einer Kondensationsanlage mit den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved in a condensation plant with the features of claim 1.

Vorteilhafte Ausgestaltungen des Erfindungsgedankens sind Gegenstand der Unteransprüche.Advantageous embodiments of the inventive concept are the subject of the dependent claims.

Die Aufgabe wird im Wesentlichen dadurch gelöst, dass die Windschutzwand in Windrichtung geneigt angeordnet ist bzw. dass ihre Unterkante weiter nach außen ausgestellt ist als ihre Oberkante. Modellberechnungen bestätigten eine Reduzierung der vom Wind induzierten zusätzlichen Druckverluste in einer Größenordnung von mindestens 10 % unabhängig davon, ob ein zusätzliches Windkreuz unterhalb der Ventilatoren angeordnet ist. Die Vorteile kommen insbesondere an den randseitig der Kondensationsanlage angeordneten Ventilatoren zum Tragen, wobei der Druckverlust hier um ca. 20 % reduziert werden konnte.The object is essentially achieved in that the windbreak wall is arranged inclined in the wind direction or that its lower edge is exposed to the outside than its upper edge. Model calculations confirmed a reduction of wind induced additional pressure losses in one Magnitude of at least 10% regardless of whether an additional wind cross is located below the fans. The advantages come in particular on the edge of the condensation plant arranged fans to bear, the pressure loss could be reduced here by about 20%.

Die Windschutzwand kann insgesamt oder auch nur in einem Teilbereich ihrer Höhe geneigt ausgeführt sein. Ein Neigungswinkel von 5° bis 35°, insbesondere von 15° bis 30°, gegenüber einer Vertikalen wird als zweckmäßig angesehen. Der Neigungswinkel darf allerdings nicht so groß sein, dass es zu einer signifikanten Querschnittsverengung kommt, die das ungehinderte Abströmen der erwärmten Kühlluft nach oben behindert, da dies einen negativen Einfluss auf den Wirkungsgrad hätte. Beispielsweise könnte eine Windschutzwand mit einer Höhe von ca. 10 m an ihrer Oberkante um 1 m bis 3 m in Richtung auf das Wärmetauscherelement verlagert werden. Dadurch wird der Querschnitt nur in geringem Umfang reduziert. Wenn ein entsprechender Bauraum zur Verfügung steht, kann auch grundsätzlich die Unterkante der Windschutzwand nach außen verlagert werden. Dadurch lässt sich die Neigung noch vergrößern, ohne dass der Abströmquerschnitt reduziert wird. Bei einer ca. 10 m hohen Windschutzwand wäre dann beispielsweise ein maximaler seitlicher Versatz von 3 m + 3 m = 6 m möglich.The windbreak can be designed inclined overall or even in a portion of its height. An inclination angle of 5 ° to 35 °, in particular 15 ° to 30 °, relative to a vertical is considered appropriate. However, the angle of inclination must not be so great that there is a significant cross-sectional constriction, which hinders the unhindered upward flow of the heated cooling air, as this would have a negative impact on the efficiency. For example, a windbreak with a height of about 10 m could be displaced at its upper edge by 1 m to 3 m in the direction of the heat exchanger element. As a result, the cross section is reduced only to a small extent. If a suitable space is available, in principle, the lower edge of the windbreak can be shifted to the outside. As a result, the inclination can be increased without the outflow cross section being reduced. For example, with a windscreen about 10 m high, a maximum lateral offset of 3 m + 3 m = 6 m would be possible.

Zusätzlich oder optional kann die Windschutzwand konkav in Richtung zu den Wärmetauscherelementen gekrümmt ausgeführt sein. Auch hierdurch wird ein größerer Anteil des seitlich anströmenden Windes nach oben abgelenkt, so dass der Druckabfall unterhalb der randseitigen Ventilatoren geringer ist. Da der Volumenstrom des nach oben abgelenkten Windes zunimmt, wird eine zusätzliche Barriere aus Kaltluft geschaffen, die einer Warmluftrezirkulation ebenfalls in vorteilhafter Weise entgegenwirkt. Auch auf der windabgewandten Seite der Kondensationsanlage hat die Neigung der Windschutzwände Vorteile im Hinblick auf die Warmluftzirkulation, da die Warmluft randseitig nicht senkrecht, sondern entsprechend der Neigung der Windschutzwand weiter innen abströmt. Dadurch ist der Strömungspfad der rezirkulierenden Warmluft länger.Additionally or optionally, the windbreak wall can be made concave in the direction of the heat exchanger elements curved. This also deflects a larger portion of the laterally flowing wind upward, so that the pressure drop below the peripheral fans is lower. As the volumetric flow of the deflected upward wind increases, an additional barrier of cold air is created, which also counteracts a warm air recirculation in an advantageous manner. Also on the leeward side of the condensation plant, the inclination of the windbreak has advantages in terms of warm air circulation, since the hot air edge not perpendicular, but according to the inclination of the windbreak wall on flows inside. As a result, the flow path of the recirculating hot air is longer.

Zusätzlich kann vorgesehen sein, dass die Windschutzwand zumindest in einem der Unterkante benachbarten Höhenbereich eine horizontal verlaufende Profilierung aufweist. Üblicherweise werden Windschutzwände aus Trapezprofilen errichtet, bei denen die Profilierung in Hochrichtung, das heißt von unten nach oben verläuft. Diese Ausrichtung der Profilierung wirkt sich zwar insofern positiv auf das Strömungsverhalten aus, in der Form, dass der Wind nach unten und oben abgeleitet wird. Allerdings ist gerade die Ableitung nach unten unerwünscht. Daher kann zumindest der der Unterkante benachbarte Höhenbereich eine horizontal verlaufende Profilierung aufweisen, die als strömungstechnische Barriere dient. Der obere Höhenbereich der Windschutzwand kann hingegen eine vertikal verlaufende Profilierung aufweisen, um das Abströmen des Windes nach oben nicht zu behindern.In addition, it may be provided that the windbreak wall has a horizontally extending profiling, at least in a height region adjacent to the lower edge. Usually windbreak walls are constructed of trapezoidal profiles, in which the profiling in the vertical direction, that is from bottom to top. Although this orientation of the profiling has a positive effect on the flow behavior, in the form that the wind is deflected downwards and upwards. However, just the derivative down is undesirable. Therefore, at least the lower edge of the adjacent height range can have a horizontally extending profiling, which serves as a fluidic barrier. The upper height range of the windbreak, however, may have a vertical profiling, so as not to hinder the upward flow of wind.

Die Erfindung wird nachfolgend anhand der in den Zeichnungen dargestellten Ausführungsbeispiele näher erläutert. Es zeigen:

Figur 1
zum Stand der Technik ein Berechnungsmodell zu einer seitlich angeströmten Kondensationsanlage mit vertikal verlaufender Windschutzwand;
Figur 2
eine erste Ausführungsform einer Kondensationsanlage mit geneigter Windschutzwand und
Figur 3
eine weitere Ausführungsform einer Kondensationsanlage mit konkav gestalteter Windschutzwand.
The invention will be explained in more detail with reference to the embodiments illustrated in the drawings. Show it:
FIG. 1
to the prior art, a calculation model for a laterally flowed condensation plant with vertically extending windbreak wall;
FIG. 2
a first embodiment of a condensation plant with inclined windshield and
FIG. 3
a further embodiment of a condensation plant with a concave windshield.

Figur 1 zeigt die Modellberechnung einer Kondensationsanlage 1, wie sie zum Stand der Technik zählt. Die Kondensationsanlage wird in der Modellberechnung seitlich durch den Wind W angeströmt. Die Wärmetauscherelemente sind nicht im Detail dargestellt. Lediglich die den Wärmetauscherelementen zugeordneten Dampfverteilleitungen 2 sind im Querschnitt erkennbar. Unterhalb der Dampfverteilleitungen 2 sind die Wärmetauscherelemente dachförmig angeordnet. Lediglich schematisch angedeutete Ventilatoren 3 saugen von unten her Kühlluft an, wobei die erwärmte Kühlluft an den Dampfverteilleitungen 2 vorbei nach oben abströmt. Es ist deutlich zu erkennen, dass nicht alle Ventilatoren 3 gleichmäßig angeströmt werden. Insbesondere fördert der randseitige Ventilator 4 erkennbar weniger Luft als beispielsweise die im mittleren Bereich angeordneten Ventilatoren 3. Dies ist darauf zurückzuführen, dass der seitlich anströmende Wind W auf eine gerade Windschutzwand 5 trifft und teilweise nach oben, das heißt über die Kondensationsanlage 1, teilweise aber auch in den Ansaugraum unterhalb der Ventilatoren 3, 4 umgelenkt wird. Durch ein Strömungshindernis 6 sowie ein Windkreuz 7 kann die Strömungsrichtung des Windes W zumindest teilweise geändert werden, so dass der Wind den Ventilatoren 3 zugeführt wird. Dies trifft allerdings nur begrenzt auf den randseitigen Ventilatoren 4 zu. Unterhalb des Ventilators 4 herrscht in einem mit ΔP bezeichneten Bereich ein geringerer Druck als unterhalb der anderen Ventilatoren 3. Das heißt, der randseitige Ventilator 4 kann weniger Kühlluft fördern, wodurch der Wirkungsgrad der Kondensationsanlage 1 reduziert wird. FIG. 1 shows the model calculation of a condensation plant 1, as it belongs to the prior art. The condensation plant is flowed laterally through the wind W in the model calculation. The heat exchanger elements are not shown in detail. Only the heat distribution elements associated steam distribution lines 2 can be seen in cross section. Below the Steam distribution lines 2, the heat exchanger elements are arranged roof-shaped. Only schematically indicated fans 3 suck from below cooling air, wherein the heated cooling air flows past the steam distribution lines 2 upwards. It can be clearly seen that not all fans 3 are flown evenly. In particular, the edge-side fan 4 promotes noticeably less air than, for example, the fans 3 arranged in the middle region. This is due to the fact that the side-by-side wind W strikes a straight windbreak wall 5 and partly upwards, that is to say via the condensation plant 1, but in part also in the suction space below the fans 3, 4 is deflected. By a flow obstacle 6 and a wind cross 7, the flow direction of the wind W can be at least partially changed, so that the wind is supplied to the fans 3. However, this is only limited to the peripheral fans 4. Below the fan 4, there is a lower pressure in an area denoted ΔP than below the other fans 3. That is, the peripheral fan 4 can promote less cooling air, whereby the efficiency of the condensation plant 1 is reduced.

Zur Lösung dieses Problems wird vorgeschlagen, dass die Windschutzwände geneigt angeordnet werden, wie es beispielhaft in den Figuren 2 und 3 dargestellt ist. Figur 2 zeigt in stark vereinfachter Darstellung den Randbereich einer Kondensationsanlage 8, bei welcher auf einer Stützkonstruktion 9 mehrere Reihen dachförmig angeordneter Wärmetauscherelemente angeordnet sind, von denen der Einfachheit halber nur randseitige Wärmetauscherelemente 10 der äußeren Reihe dargestellt sind. Unterhalb der Wärmetauscherelemente 10 befindet sich ein Ventilator 11, der Kühlluft K von unten ansaugt und entsprechend der eingezeichneten Pfeile den Wärmetauscherelementen 10 zuführt, wo sich die Kühlluft K erwärmt und in Richtung des Pfeils WL nach oben abströmt. Gleichzeitig wird aus der im Firstbereich der Wärmetauscherelemente 10 angeordneten Dampfverteilleitung 12 Dampf in Richtung der Pfeile D in die Wärmetauscherelemente 10 eingeleitet, wo der Dampf kondensiert.To solve this problem, it is proposed that the windbreak walls are arranged inclined, as exemplified in the FIGS. 2 and 3 is shown. FIG. 2 shows in a highly simplified representation of the edge region of a condensation plant 8, in which a plurality of rows roof-shaped arranged heat exchanger elements are arranged on a support structure 9, of which for simplicity, only peripheral heat exchanger elements 10 of the outer row are shown. Below the heat exchanger elements 10 is a fan 11, the cooling air K sucks from below and according to the arrows to the heat exchanger elements 10 supplies, where the cooling air K heated and flows in the direction of the arrow WL upwards. At the same time steam is introduced in the direction of the arrows D in the heat exchanger elements 10 from the arranged in the ridge region of the heat exchanger elements 10 steam distribution line 12, where the steam condenses.

Wesentlich bei dieser Ausführungsform einer Kondensationsanlage ist die Gestaltung der Windschutzwand 13, die im Ausführungsbeispiel der Figur 2 gegenüber der Vertikalen V geneigt angeordnet ist. Die Windschutzwand 13 erstreckt sich in der Höhe etwa bis zur Oberkante der Dampfverteilleitung 12. Die Unterkante 14 der Windschutzwand 13 ist weiter nach außen ausgestellt als die Oberkante 15 der Windschutzwand 13. In diesem Ausführungsbeispiel beträgt der Neigungswinkel NW ca. 5°. Durch die eingestellte Neigung der Windschutzwand 13 wird quer anströmender Wind W zu einem größeren Teil nach oben abgeleitet als es bei einer vertikal ausgerichteten Windschutzwand der Fall wäre. Dadurch ist die Druckdifferenz ΔPL die zwischen der Einlassseite 16 und der Auslassseite 17 des Ventilators 11 gemessen wird, geringer als bei vertikal orientierten Windschutzwänden.Essential in this embodiment of a condensation plant is the design of the windbreak wall 13, which in the embodiment of the FIG. 2 is arranged inclined relative to the vertical V. The windbreak wall 13 extends in height approximately to the upper edge of the steam distribution line 12. The lower edge 14 of the windbreak wall 13 is further exposed to the outside than the upper edge 15 of the windbreak wall 13. In this embodiment, the inclination angle NW is about 5 °. Due to the set inclination of the wind protection wall 13, transverse wind W is diverted upward to a greater extent than would be the case with a vertically oriented wind protection wall. As a result, the pressure difference .DELTA.PL measured between the inlet side 16 and the outlet side 17 of the fan 11 is lower than with vertically oriented windbreak walls.

Der gleiche Effekt ergibt sich auch dann, wenn die Windschutzwand nicht gerade ist, sondern entsprechend der Ausführungsform der Figur 3 konkav gekrümmt ist. Die Windschutzwand 18 der Figur 3 ist entsprechend der Figur 2 so konfiguriert, dass ihre Unterkante 19 weiter nach außen ausgestellt ist als ihre Oberkante 20, nur mit dem Unterschied, dass die Windschutzwand 18 von der Unterkante 19 zur Oberkante 20 nicht gerade, sondern gekrümmt verläuft.The same effect is obtained even if the windbreak is not straight, but according to the embodiment of FIG. 3 is concavely curved. The windbreak 18 of the FIG. 3 is according to the FIG. 2 configured so that its lower edge 19 is exposed to the outside than its upper edge 20, only with the difference that the windbreak 18 from the lower edge 19 to the upper edge 20 is not straight, but curved.

Bezugszeichen:Reference numerals:

1 -1 -
KondesationsanlageKondesationsanlage
2 -2 -
Dampfverteilleitungsteam manifold
3 -3 -
Ventilatorfan
4 -4 -
Ventilatorfan
5 -5 -
WindschutzwandWindbreak wall
6 -6 -
Strömungshindernisflow obstruction
7 -7 -
Windkreuzcross wind
8 -8th -
Kondensationsanlagecondensation plant
9 -9 -
Stützkonstruktionsupport structure
10 -10 -
WärmetauscherelementHeat exchanger element
11 -11 -
Ventilatorfan
12 -12 -
Dampfverteilleitungsteam manifold
13 -13 -
WindschutzwandWindbreak wall
14 -14 -
Unterkante v. 13Lower edge v. 13
15 -15 -
Oberkante v. 13Top edge v. 13
16 -16 -
Einlassseite v. 11Inlet side v. 11
17 -17 -
Auslassseite v. 11Outlet side v. 11
18 -18 -
WindschutzwandWindbreak wall
19 -19 -
Unterkante v. 18Lower edge v. 18
20 -20 -
Oberkante v. 18Top edge v. 18
D -D -
Dampfsteam
ΔP -ΔP -
Druckdifferenzpressure difference
ΔPL-ΔPL-
Druckdifferenzpressure difference
K -K -
Kühlluftcooling air
NWnorthwest
-Neigungswinkeltilt angle
V -V -
Vertikalevertical
W -W -
Windwind
WL-WL
Warmlufthot air

Claims (4)

  1. Condensation plant with heat exchanger elements (10) which are attached to a support structure (9) and which are arranged, in particular, in a roof-shaped manner and to which cooling air (K) is supplied via fans (11), and which condensation plant has a windbreak wall (13, 18), the lower edge (14, 19) of the windbreak wall (13, 18) being set further outward than the upper edge (15, 20) of the windbreak wall (13, 18), characterized in that the windbreak wall (13, 18) extends in height approximately up to an upper edge of a vapour distributing line (12).
  2. Condensation plant according to Claim 1, characterized in that the windbreak wall (13, 18) has, at least over a partial region of its height, an angle of inclination (NW) of 5° to 35°, in particular of 15° to 30°, with respect to a vertical (V).
  3. Condensation plant according to Claim 1 or 2, characterized in that the windbreak wall (18) is concavely curved in the direction of the heat exchanger elements (10).
  4. Condensation plant according to one of Claims 1 to 3, characterized in that the windbreak wall has a horizontally running profile at least in a height region adjacent to the lower edge.
EP06742362A 2005-05-23 2006-05-22 Condensing system Not-in-force EP1883774B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005024156A DE102005024156B3 (en) 2005-05-23 2005-05-23 Condensation assembly, for cooling turbines or process vapors, has heat exchangers in a roof-shape array on a support structure within an angled wind shrouding wall to prevent wind effects on the assembly
PCT/DE2006/000878 WO2006125419A1 (en) 2005-05-23 2006-05-22 Condensing system

Publications (2)

Publication Number Publication Date
EP1883774A1 EP1883774A1 (en) 2008-02-06
EP1883774B1 true EP1883774B1 (en) 2009-01-07

Family

ID=36872896

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06742362A Not-in-force EP1883774B1 (en) 2005-05-23 2006-05-22 Condensing system

Country Status (14)

Country Link
US (1) US20080210403A1 (en)
EP (1) EP1883774B1 (en)
CN (1) CN101213413A (en)
AP (1) AP2007004175A0 (en)
AT (1) ATE420331T1 (en)
AU (1) AU2006251720B2 (en)
DE (2) DE102005024156B3 (en)
ES (1) ES2317535T3 (en)
MA (1) MA29546B1 (en)
MX (1) MX2007012613A (en)
RU (1) RU2363903C1 (en)
TN (1) TNSN07377A1 (en)
WO (1) WO2006125419A1 (en)
ZA (1) ZA200710040B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006031830B4 (en) * 2006-07-07 2008-04-24 Gea Energietechnik Gmbh condensation plant
DE102007012539B4 (en) * 2007-03-13 2011-03-03 Gea Energietechnik Gmbh condensation plant
DE102008031221B3 (en) * 2008-07-03 2009-08-13 Gea Energietechnik Gmbh Condensation system for use in e.g. power plant, has wind guiding wall, where distance between wind guiding wall and longitudinal sides in middle longitudinal section is larger than distance in end-sided longitudinal section
CN104296552B (en) * 2014-09-17 2016-08-24 南京航空航天大学 Novel air cooling tubes condenser and turbine discharge condensation method with aspiration leg

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3385197A (en) * 1966-08-05 1968-05-28 Greber Henry Wind ejector for cooling towers and stacks
DE1946915B2 (en) * 1969-09-17 1977-09-08 GEA-Luftkühlergesellschaft Happel GmbH & Co KG, 4630 Bochum AIR-COOLED CONDENSER FOR THE HEAD PRODUCT OF A DISTILLATION OR RECTIFICATION COLUMN
DE1962061C3 (en) * 1969-12-11 1979-05-10 Kraftwerk Union Ag, 4330 Muelheim Air condensation system
US3939906A (en) * 1973-12-28 1976-02-24 The Lummus Company Air cooled exchanger
DE2405999C3 (en) * 1974-02-08 1981-06-04 GEA Luftkühlergesellschaft Happel GmbH & Co KG, 4630 Bochum Natural draft dry cooling tower
US3918518A (en) * 1974-03-15 1975-11-11 Hudson Engineering Corp Atmospheric heat exchangers
US3987845A (en) * 1975-03-17 1976-10-26 General Atomic Company Air-cooling tower
DE2602058A1 (en) * 1976-01-21 1977-07-28 Krupp Gmbh Cooling tower with central mast and tensioned wall - has lower wall ring used as support for cooling elements
GB2031139A (en) * 1978-10-03 1980-04-16 Renault Tech Nouvelles Process and apparatus for correcting the draught in natural draught dry-process cooling towers
US4243095A (en) * 1979-02-15 1981-01-06 The Lummus Company Cooling tower
SE8007516L (en) * 1980-10-27 1982-04-28 Svenska Flaektfabriken Ab PROCEDURAL KIT FOR REGULATING AN OUTDOOR ORGANIZED CONDENSOR AND DEVICE IMPLEMENTATION KIT
FR2558581B1 (en) * 1984-01-25 1988-05-20 Electricite De France ATMOSPHERIC REFRIGERANT WITH REDUCED PANACHE
DE3427664A1 (en) * 1984-07-26 1986-02-06 Kraftwerk Union AG, 4330 Mülheim EVAPORATIVE COOLING TOWER
DE3441514A1 (en) * 1984-11-14 1986-05-15 Balcke-Dürr AG, 4030 Ratingen NATURAL TRAIN COOLING TOWER
HU221152B1 (en) * 1996-07-17 2002-08-28 Energiagazdalkodasi Intezet Condenser unit working by natural draught and method to exploit it
DE19937800B4 (en) * 1999-08-10 2005-06-16 Gea Energietechnik Gmbh Plant for the condensation of steam
DE10323791A1 (en) * 2003-05-23 2004-12-09 Gea Energietechnik Gmbh Air impingement steam condenser for turbine has angled coolers defining triangular configuration with upper vapor distributor
EP1496326B1 (en) * 2003-07-10 2008-02-20 Balcke-Dürr GmbH Method and apparatus for guiding air in air-cooled condensers

Also Published As

Publication number Publication date
ZA200710040B (en) 2008-11-26
AU2006251720B2 (en) 2009-05-21
AP2007004175A0 (en) 2007-10-31
ATE420331T1 (en) 2009-01-15
CN101213413A (en) 2008-07-02
DE102005024156B3 (en) 2006-10-19
ES2317535T3 (en) 2009-04-16
WO2006125419A1 (en) 2006-11-30
RU2363903C1 (en) 2009-08-10
TNSN07377A1 (en) 2009-03-17
EP1883774A1 (en) 2008-02-06
AU2006251720A1 (en) 2006-11-30
MX2007012613A (en) 2008-01-11
MA29546B1 (en) 2008-06-02
US20080210403A1 (en) 2008-09-04
DE502006002590D1 (en) 2009-02-26

Similar Documents

Publication Publication Date Title
CH654098A5 (en) METHOD FOR REGULATING THE COOLING OF AN AIR-COOLED STEAM CONDENSER AND STEAM CONDENSER.
DE102005024155B4 (en) condensation plant
DE202006008289U1 (en) Wind turbine tower has anti-clockwise multi-stage rotor with three aerodynamic turbine blades per stage
EP1883774B1 (en) Condensing system
DE2820490A1 (en) SPRAY BAR FOR A CROSS-CURRENT COOLING TOWER
EP3728975B1 (en) Air-cooled condenser installation
EP2710251B1 (en) Device for separating water from the combustion air to be fed to an internal combustion engine
DE2538216A1 (en) ATMOSPHERIC COOLING TOWER WITH DRY HEAT EXCHANGERS
EP2064444A2 (en) Wind power installation
DE112017004377B4 (en) wind turbine plant
EP2141428A2 (en) Wet cooling tower
DE2250776A1 (en) PROCESS AND DEVICES TO REDUCE PUMP WORK FOR THE COOLING WATER CIRCUIT IN WET COOLING TUBES
DE19513201C1 (en) Decentralised air conditioning system for industrial halls
EP1996797B1 (en) Power station comprising a condenser installation for the condensation of water vapour
DE10158049B4 (en) Arrangement of hybrid cooling towers
DE2547719A1 (en) Noise redn. system for cooling towers - using a grid of impingement plates preventing direct impact of water drops on the liquid surface
DE102010055452A1 (en) Flow guide device for use in manhole of sloping fluid channel of fluid distributor for wound heat exchanger for guiding fluid flow, has flow breaker dividing fluid flow into fluid flows so that fluid flows unblock passage opening for gas
WO2010000212A1 (en) Hybrid cooling tower
DE2431851A1 (en) DRY CROSS-FLOW COOLING TOWER
EP4384766A1 (en) Condensation plant
DE1401643C (en) Air guiding device for cooling towers
WO2013164198A1 (en) Cell cooling tower
DE102013201366A1 (en) heat exchanger device
DE1071728B (en)
DE1776057A1 (en) Heat exchanger with evaporative cooling

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070919

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006002590

Country of ref document: DE

Date of ref document: 20090226

Kind code of ref document: P

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20090400362

Country of ref document: GR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2317535

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090507

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090608

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: GEA ENERGIETECHNIK G.M.B.H.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

26N No opposition filed

Effective date: 20091008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090407

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100525

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100519

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100519

Year of fee payment: 5

Ref country code: TR

Payment date: 20100427

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20100528

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090708

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090107

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110522

REG Reference to a national code

Ref country code: GR

Ref legal event code: ML

Ref document number: 20090400362

Country of ref document: GR

Effective date: 20111202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111202

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110522

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110522

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120717

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110523

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110522