EP1881283A2 - Integrierte NGL-Gewinnung bei der Erzeugung von Flüssigerdgas - Google Patents
Integrierte NGL-Gewinnung bei der Erzeugung von Flüssigerdgas Download PDFInfo
- Publication number
- EP1881283A2 EP1881283A2 EP07112504A EP07112504A EP1881283A2 EP 1881283 A2 EP1881283 A2 EP 1881283A2 EP 07112504 A EP07112504 A EP 07112504A EP 07112504 A EP07112504 A EP 07112504A EP 1881283 A2 EP1881283 A2 EP 1881283A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- stream
- methane
- enriched
- liquid
- condensed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000003949 liquefied natural gas Substances 0.000 title claims description 27
- 238000011084 recovery Methods 0.000 title claims description 18
- 238000004519 manufacturing process Methods 0.000 title description 9
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 508
- 239000007788 liquid Substances 0.000 claims abstract description 158
- 238000010992 reflux Methods 0.000 claims abstract description 112
- 150000002430 hydrocarbons Chemical class 0.000 claims abstract description 106
- 229930195733 hydrocarbon Natural products 0.000 claims abstract description 105
- 239000003345 natural gas Substances 0.000 claims abstract description 64
- 238000000034 method Methods 0.000 claims abstract description 58
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 claims description 70
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 claims description 64
- 239000003507 refrigerant Substances 0.000 claims description 59
- 238000001816 cooling Methods 0.000 claims description 50
- 239000000047 product Substances 0.000 claims description 41
- 239000001294 propane Substances 0.000 claims description 35
- 239000001273 butane Substances 0.000 claims description 30
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 claims description 30
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 claims description 26
- 230000008016 vaporization Effects 0.000 claims description 23
- 238000010792 warming Methods 0.000 claims description 11
- 239000012263 liquid product Substances 0.000 claims description 5
- 238000009833 condensation Methods 0.000 claims description 4
- 230000005494 condensation Effects 0.000 claims description 4
- 229920006395 saturated elastomer Polymers 0.000 claims description 4
- 125000004432 carbon atom Chemical group C* 0.000 claims description 3
- 230000001419 dependent effect Effects 0.000 claims 1
- 238000005086 pumping Methods 0.000 claims 1
- 238000004821 distillation Methods 0.000 abstract description 31
- 239000004215 Carbon black (E152) Substances 0.000 description 26
- 238000005057 refrigeration Methods 0.000 description 14
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical compound CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 13
- 239000000203 mixture Substances 0.000 description 9
- 238000005194 fractionation Methods 0.000 description 8
- 235000013847 iso-butane Nutrition 0.000 description 7
- 239000001282 iso-butane Substances 0.000 description 6
- QWTDNUCVQCZILF-UHFFFAOYSA-N isopentane Chemical compound CCC(C)C QWTDNUCVQCZILF-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 238000007906 compression Methods 0.000 description 4
- 230000006835 compression Effects 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000000356 contaminant Substances 0.000 description 3
- AFABGHUZZDYHJO-UHFFFAOYSA-N dimethyl butane Natural products CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910001868 water Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- MEKDPHXPVMKCON-UHFFFAOYSA-N ethane;methane Chemical compound C.CC MEKDPHXPVMKCON-UHFFFAOYSA-N 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 230000005514 two-phase flow Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0204—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the feed stream
- F25J3/0209—Natural gas or substitute natural gas
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0022—Hydrocarbons, e.g. natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/0045—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by vaporising a liquid return stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0047—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
- F25J1/0052—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
- F25J1/0055—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream originating from an incorporated cascade
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0211—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
- F25J1/0214—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
- F25J1/0215—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
- F25J1/0216—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0229—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock
- F25J1/0231—Integration with a unit for using hydrocarbons, e.g. consuming hydrocarbons as feed stock for the working-up of the hydrocarbon feed, e.g. reinjection of heavier hydrocarbons into the liquefied gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0235—Heat exchange integration
- F25J1/0237—Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
- F25J1/0239—Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
- F25J1/0241—Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
- F25J1/0247—Different modes, i.e. 'runs', of operation; Process control start-up of the process
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
- F25J1/0265—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0233—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 1 carbon atom or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0238—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 2 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0242—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 3 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/0228—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream
- F25J3/0247—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream characterised by the separated product stream separation of CnHm with 4 carbon atoms or more
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/04—Processes or apparatus using separation by rectification in a dual pressure main column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/30—Processes or apparatus using separation by rectification using a side column in a single pressure column system
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/70—Refluxing the column with a condensed part of the feed stream, i.e. fractionator top is stripped or self-rectified
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/72—Refluxing the column with at least a part of the totally condensed overhead gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2200/00—Processes or apparatus using separation by rectification
- F25J2200/78—Refluxing the column with a liquid stream originating from an upstream or downstream fractionator column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/30—Processes or apparatus using other separation and/or other processing means using a washing, e.g. "scrubbing" or bubble column for purification purposes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2205/00—Processes or apparatus using other separation and/or other processing means
- F25J2205/50—Processes or apparatus using other separation and/or other processing means using absorption, i.e. with selective solvents or lean oil, heavier CnHm and including generally a regeneration step for the solvent or lean oil
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/62—Ethane or ethylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/64—Propane or propylene
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2215/00—Processes characterised by the type or other details of the product stream
- F25J2215/66—Butane or mixed butanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/02—Recycle of a stream in general, e.g. a by-pass stream
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/12—External refrigeration with liquid vaporising loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2270/00—Refrigeration techniques used
- F25J2270/66—Closed external refrigeration cycle with multi component refrigerant [MCR], e.g. mixture of hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2280/00—Control of the process or apparatus
- F25J2280/10—Control for or during start-up and cooling down of the installation
Definitions
- Raw natural gas comprises primarily methane and also contains numerous minor constituents which may include water, hydrogen sulfide, carbon dioxide, mercury, nitrogen, and light hydrocarbons typically having two to six carbon atoms. Some of these constituents, such as water, hydrogen sulfide, carbon dioxide, and mercury, are contaminants which are harmful to downstream steps such as natural gas processing or the production of liquefied natural gas (LNG), and these contaminants must be removed upstream of these processing steps.
- LNG liquefied natural gas
- the hydrocarbons heavier than methane typically are condensed and recovered as natural gas liquids (NGL) and fractionated to yield valuable hydrocarbon products.
- the first step in the NGL recovery process utilizes a distillation column or scrub column to separate the hydrocarbons heavier than methane from the pretreated natural gas feed to yield purified methane for liquefaction and NGL for separation and recovery.
- This process utilizes cooling, partial condensation, and fractionation steps that require significant amounts of refrigeration.
- This refrigeration may be provided by work expansion of pressurized natural gas feed and vaporization of the resulting condensed hydrocarbons.
- Additional refrigeration typically is provided by external closed-loop refrigeration using a refrigerant such as propane and/or a mixed refrigerant to liquefy the methane in the main heat exchanger.
- Reflux for the NGL scrub column may utilize a portion of the partially-liquefied natural gas from the main heat exchanger.
- An embodiment of the invention relates to a process for the liquefaction of natural gas and the recovery of components heavier than methane from the natural gas.
- the process comprises
- the liquefied methane-containing reflux stream may be provided by a method selected from
- the stream of unrecovered liquid hydrocarbons may comprise any of the following: (1) a portion of the liquid stream enriched in ethane; (2) a portion of the liquid stream enriched in propane; (3) a portion of the liquid stream enriched in butane; (4) a portion of the liquid stream enriched in pentane; and (5) all or a portion of the residual vapor stream dissolved in a portion of the liquid stream enriched in propane and/or a portion of the liquid stream enriched in butane and/or a portion of the liquid stream enriched in pentane.
- the liquefied methane-containing reflux stream may be introduced into the top of the first distillation column.
- the stream of unrecovered liquid hydrocarbons may be introduced into the top of the first distillation column.
- the combined stream comprising the liquefied methane-containing reflux stream and the stream of unrecovered liquid hydrocarbons may be introduced into the top of the first distillation column.
- the stream of unrecovered liquid hydrocarbons may be introduced into the first distillation column at a location below the top of the column and above a location at which the cooled natural gas feed is introduced into the column.
- the cooling and condensing of at least a portion of the overhead vapor stream may be effected in a main heat exchanger by indirect heat exchange with a first vaporizing refrigerant provided by reducing the pressure of a first cooled multicomponent liquid refrigerant.
- a portion of the overhead vapor stream may be condensed in a heat exchanger separate from the main heat exchanger by indirect heat exchange with a stream of vaporizing refrigerant provided by withdrawing and reducing the pressure of a portion of the first cooled multicomponent liquid refrigerant.
- the first cooled multicomponent liquid refrigerant may be provided by cooling a saturated multicomponent liquid refrigerant in the main heat exchanger and wherein the warming of the portion of the condensed methane-enriched stream to provide the liquefied methane-containing reflux stream is effected in a heat exchanger separate from the main heat exchanger by indirect heat exchange with a portion of the saturated multicomponent liquid refrigerant.
- At least a portion of the condensed methane-enriched stream may be subcooled to provide a pressurized liquefied natural gas product, wherein the subcooling is effected in the main heat exchanger by indirect heat exchange with a second vaporizing refrigerant provided by reducing the pressure of a second cooled multicomponent liquid refrigerant.
- the cooling of the natural gas feed to provide the cooled natural gas feed may be effected by indirect heat exchange with the overhead vapor stream enriched in methane.
- the stream of unrecovered liquid hydrocarbons may contain greater than 50 mole % of hydrocarbons having three or more carbon atoms.
- the stream of unrecovered liquid hydrocarbons may contain greater than 50 mole % of pentane.
- the stream of unrecovered liquid hydrocarbons may comprise a portion of the liquid stream enriched in propane and a portion of the liquid stream enriched in butane.
- the stream of unrecovered liquid hydrocarbons may comprise a portion of the liquid stream enriched in ethane.
- the stream of unrecovered liquid hydrocarbons may comprise a portion of the residual vapor stream comprising methane dissolved in a liquid comprising hydrocarbons heavier than methane.
- the molar flow rate of the unrecovered liquid hydrocarbons may be less than 25% of the molar flow rate of the liquefied methane reflux stream.
- Another embodiment of the invention includes an apparatus for the liquefaction of natural gas and the recovery of components heavier than methane from the natural gas, wherein the apparatus comprises
- the apparatus also may comprise a heat exchanger separate from the main heat exchanger that is adapted to condense a portion of the overhead vapor stream from the first distillation column by indirect heat exchange with a stream of vaporizing refrigerant.
- the main heat exchanger may be a wound coil heat exchanger and may comprise a first bundle adapted to cool and condense at least a portion of the overhead vapor stream to provide a condensed methane-enriched stream and a second bundle adapted to further cool the condensed methane-enriched stream to provide a subcooled liquid product.
- the first vapor portion of the overhead vapor stream may be condensed in a heat exchanger separate from the main heat exchanger by indirect heat exchange with a stream of vaporizing refrigerant.
- the warming of the first portion of the condensed methane-enriched stream to provide the liquefied methane-containing reflux stream may be effected in a heat exchanger separate from the main heat exchanger.
- the subcooling of at least a portion of the condensed methane-enriched stream to provide a pressurized liquefied natural gas product may be effected in the main heat exchanger by indirect heat exchange with a stream of vaporizing refrigerant.
- the apparatus may include a heat exchanger separate from the main heat exchanger that is adapted to condense the portion of the overhead vapor stream from the first distillation column by indirect heat exchange with a stream of vaporizing refrigerant.
- the apparatus may include a heat exchanger separate from the main heat exchanger that is adapted to warm the portion of the condensed methane-enriched stream to provide the liquefied methane-containing reflux stream.
- the main heat exchanger may be a wound coil heat exchanger.
- the main heat exchanger may comprise a first bundle adapted to cool and condense at least a portion of the overhead vapor stream to provide the condensed methane-enriched stream and a second bundle adapted to further cool at least a portion of the condensed methane-enriched stream to provide a subcooled liquid product.
- the embodiments of the invention provide improved integrated processes for NGL recovery in the production of LNG that simplify the equipment configuration by eliminating the need for feed expansion and scrub column overhead compression.
- the scrub column utilizes reflux comprising scrub column overhead that is condensed in a wound coil main heat exchanger, there is no need for splitting the warm bundle of the heat exchanger to partially condense the column overhead, and a phase separator to recover the liquid required for reflux is not required.
- Reflux for the scrub column in the embodiments described below is provided by various combinations of condensed scrub column overhead vapor and unrecovered liquid hydrocarbons from the NGL recovery system.
- the terms "recovered hydrocarbon” and “recovered hydrocarbons” are equivalent and mean any hydrocarbon stream withdrawn from the integrated LNG production and NGL recovery system as a product that is exported from the integrated system.
- the recovered hydrocarbons may be exported as one or more product streams enriched in any of the hydrocarbons in the natural gas feed.
- the exported streams may include, for example, any of an enriched ethane stream, an enriched propane stream, an enriched butane plus isobutane stream, an enriched pentane plus isopentane stream, and a mixed methane-ethane stream enriched in ethane.
- the LNG product may be considered as a recovered hydrocarbon.
- the term "unrecovered liquid hydrocarbon” and “unrecovered liquid hydrocarbons” are equivalent and mean any liquid portion of the hydrocarbons separated in the NGL recovery system that are not immediately present in the product streams of the recovered hydrocarbons that are exported from the integrated LNG production and NGL recovery system. Unrecovered liquid hydrocarbons may be considered as internal recycle streams within the integrated LNG production and NGL recovery system.
- enriched as applied to any stream withdrawn from a process means that the withdrawn stream contains a concentration of a particular component that is higher than the concentration of that component in the feed stream to the process.
- Reflux is defined as a stream introduced into a distillation column at any location above the location at which the feed is introduced into the column, wherein the reflux comprises one or more components previously withdrawn from the column. Reflux typically is liquid but may be a vapor-liquid mixture.
- indefinite articles “a” and “an” as used herein mean one or more when applied to any feature in embodiments of the present invention described in the specification and claims. The use of “a” and “an” does not limit the meaning to a single feature unless such a limit is specifically stated.
- the definite article “the” preceding singular or plural nouns or noun phrases denotes a particular specified feature or particular specified features and may have a singular or plural connotation depending upon the context in which it is used.
- the adjective “any” means one, some, or all indiscriminately of whatever quantity.
- the term “and/or” placed between a first entity and a second entity means one of (1) the first entity, (2) the second entity, and (3) the first entity and the second entity.
- a first embodiment of the invention is shown in the integrated LNG production and NGL recovery system illustrated by Fig. 1.
- Pretreated pressurized natural gas feed in line 100 contains primarily methane with heavier hydrocarbons in the C 2 -C 6 range. Contaminants comprising water, CO 2 , H 2 S, and mercury are removed in an upstream pretreatment system (not shown) by known methods.
- the feed gas typically provided at a pressure between 600 and 900 psia (4 and 6.25 MPa)and ambient temperature, is cooled in heat exchanger 110 to between -20°F (-29°C) and -35°F (-37°C) to provide a cooled feed stream in line 112.
- Heat exchanger 110 may include multiple stages of cooling by evaporating propane at different pressures; alternatively or additionally, other means of cooling may be used, such as vaporizing mixed refrigerant in a single exchanger.
- This stream which may be further cooled in optional economizer heat exchanger 114, is introduced via line 116 to first distillation column or scrub column 118.
- Scrub column 118 separates the feed provided via line 116 into a bottoms liquid product in line 134 that is enriched in hydrocarbons heavier than methane and an overhead vapor product in line 120 that is enriched in methane.
- a portion of the bottoms liquid may be withdrawn via line 130 and vaporized in reboiler 132 to provide boilup for the scrub column.
- the reboiler may cool a portion (not shown) of stream 100 to provide heat therein for vaporizing the liquid in line 130.
- the scrub column may also have an intermediate reboiler (not shown) above the bottom of the column and below the location of feed line 116, and this reboiler also may be heated by a portion of the feed stream.
- the bottoms liquid in line 134 flows to generic NGL fractionation system 136.
- the NGL feed stream typically is reduced in pressure (not shown) and separated in or more additional distillation columns including any of a demethanizer, a deethanizer, a depropanizer, a debutanizer, and a depentanizer to provide two or more hydrocarbon fractions.
- a demethanizer typically is reduced in pressure (not shown) and separated in or more additional distillation columns including any of a demethanizer, a deethanizer, a depropanizer, a debutanizer, and a depentanizer to provide two or more hydrocarbon fractions.
- three streams of recovered hydrocarbons are withdrawn and exported from the integrated LNG production and NGL recovery system as C 2 , C 3 , and C 4 product streams representing streams enriched in ethane, propane, and butane plus isobutane, respectively.
- Unrecovered liquid hydrocarbons are withdrawn from the NGL recovery system via line 138.
- the overhead vapor stream enriched in methane is withdrawn from scrub column 118 via line 120 and may be warmed by indirect heat exchange with the feed stream in line 112 in economizer heat exchanger 114.
- the resulting warmed overhead vapor stream in line 122 is cooled, totally condensed, and optionally subcooled in passage 123 of the first or warm (lower) bundle of wound coil main heat exchanger 124 to provide a condensed methane-enriched stream in line 125.
- a first portion of the liquid in line 125 is withdrawn via line 126 from line 125 downstream of passage 123 and pumped by pump 127 to provide a liquefied methane-containing reflux stream.
- the liquefied methane-containing reflux stream is combined with the unrecovered liquid hydrocarbons in line 138 and returned to the top of scrub column 118 as a combined liquid reflux steam.
- liquefied methane-containing reflux stream from pump 127 may be introduced into the top of scrub column 118 and the unrecovered liquid hydrocarbons in line 138 may be introduced into scrub column 118 at a separate location (not shown) below the top of the column and above the location at which the cooled feed is introduced into the column via line 116.
- the liquefied methane-containing reflux stream from pump 127 and the unrecovered hydrocarbons in line 138 may be introduced into the top of scrub column 118 as separate streams (not shown).
- the molar flow rate of the unrecovered liquid hydrocarbons in line 138 is less than 25% of the molar flow rate of the methane-rich stream in line 126. If the natural gas feed in line 100 does not contain a sufficient amount of the components needed to provide the unrecovered liquid hydrocarbon stream in line 138, the necessary components may be imported from any appropriate source.
- the second portion of the condensed methane-enriched stream in line 125 is further cooled in passage 128 the second or cold (upper) bundle of wound coil main heat exchanger 124 and withdrawn as LNG product via line 129.
- the LNG may be reduced in pressure before and/or after subcooling in the cold bundle if desired. If the LNG product is stored at high pressure (PLNG), there is no need for subcooling, and the cold bundle is not required. It is possible to use a portion of the LNG product in line 129 as a methane-rich reflux to scrub column 118 if desired, but such a configuration would waste refrigeration by providing reflux at a temperature much lower than required.
- the temperature of the liquefied methane-containing reflux stream withdrawn from main heat exchanger 124 via line 126 and pump 127 in Fig. 1 may be lower than that actually required based on the temperature at the top of scrub column 118.
- the warm bundle of main heat exchanger 124 would have to be split to allow the withdrawal of a methane-rich reflux stream at an intermediate location.
- a phase separator would be required when the withdrawn stream is a mixed vapor-liquid stream.
- the thermodynamic inefficiency of providing the reflux at a temperature colder than required in the embodiment of Fig. 1, however, is compensated for by eliminating the need to split the warm bundle of main heat exchanger 124.
- Refrigeration to main heat exchanger 124 may be provided by any known refrigeration system used in the production of LNG.
- a single mixed refrigerant (MR) system may be used in which a liquid refrigerant is provided via line 152 and a vapor refrigerant is provided via line 156.
- the vapor in line 156 is condensed and cooled in main heat exchanger 124 and expanded through throttling valve 158 to provide a first vaporizing refrigerant to the cold (upper) bundle of the exchanger and subsequently to the warm (lower) bundle of the exchanger.
- Liquid refrigerant 152 is cooled in main heat exchanger 124 to yield subcooled liquid refrigerant in line 153, expanded through throttling valve 154, and combined with vaporizing refrigerant from the cold (upper) bundle at a location near the cold end of the warm bundle of the main heat exchanger.
- expansion may be effected by isentropic dense fluid expanders (hydraulic turbines).
- the refrigerant streams are completely vaporized and leave main heat exchanger 124 as refrigerant vapor via line 150.
- the mixed refrigerant vapor flows to a refrigeration system (not shown) where it is compressed, cooled by multiple stages of vaporizing propane, and separated to provide liquid refrigerant 152 and lighter vapor refrigerant 156.
- Any other refrigeration system or a combination of systems known in the art may be used to provide refrigeration to main heat exchanger 124.
- the pure fluid cascade and isentropic vapor expansion process may be used as described in U.S. Patent 6,308,531 .
- Using a portion of condensed scrub column overhead as methane-enriched reflux via line 126 in the embodiment of Fig. 1 avoids breaking the warm bundle of the main heat exchanger 124 into two separate bundles to withdraw a methane-rich stream for use as reflux. It also eliminates the potential need for separating a two-phase methane-rich stream in a phase separator if the methane-rich stream is a vapor-liquid mixture in order to use the liquid portion as reflux and redistribute the vapor portion for further condensation in the main heat exchanger. A smaller phase separator may be required at startup as explained below.
- Using economizer heat exchanger 114 ensures that the overhead stream in line 122 enters main heat exchanger 124 at about the same temperature as the refrigerant streams in lines 152 and 156, which typically are generated by propane refrigeration.
- FIG. 2 Another embodiment of the invention is illustrated in Fig. 2.
- a portion of the scrub column overhead vapor in line 120 is withdrawn via line 220 and condensed in heat exchanger 200 to produce a liquefied methane-containing reflux stream that is combined with the unrecovered liquid hydrocarbons in line 138 and introduced as a combined stream via line 221 to the top of scrub column 118.
- the liquefied methane-containing reflux stream from heat exchanger 200 may be pumped if necessary.
- the liquefied methane-containing reflux stream from heat exchanger 200 may be introduced into the top of scrub column 118 and the unrecovered liquid hydrocarbons in line 138 may be introduced into scrub column 118 at a separate location (not shown) below the top of the column and above the location at which the cooled feed is introduced into the column via line 116.
- the liquefied methane-containing reflux stream from heat exchanger 200 and the unrecovered liquid hydrocarbons in line 138 may be introduced into the top of scrub column 118 as separate streams (not shown).
- Refrigeration for main heat exchanger 124 is provided in the same manner as described above with reference to Fig. 1 to provide liquid refrigerant 152 and vapor refrigerant 156.
- Refrigeration for heat exchanger 200 is provided by withdrawing a portion of the liquid mixed refrigerant in line 153 via line 252, reducing the pressure of the refrigerant through throttling valve 254, and introducing the reduced-pressure refrigerant into the heat exchanger. Vaporized mixed refrigerant from heat exchanger 200 is combined with vaporized mixed refrigerant from main heat exchanger 124 to provide the vaporized refrigerant in line 150.
- refrigerant in line 252 may be withdrawn from line 152 prior to main heat exchanger 124, expanded to an intermediate pressure or pressures, vaporized in heat exchanger 200, and returned to the mixed refrigerant compressor (not shown) at an appropriate stage location or locations.
- All other process features of Fig. 2 are identical to those described above with reference to Fig. 1.
- situations may arise in which it is desirable to export all hydrocarbons recovered in the bottoms from scrub column 118 and fractionated in the NGL fractionation system. In this case, the flow rate of the unrecovered hydrocarbon stream in line 138 would be zero, and scrub column 118 would utilize reflux in line 221 provided by condensing the portion of the scrub column 118 overhead stream in line 220 in heat exchanger 200.
- Fig. 3 An alternative embodiment of the invention is illustrated in Fig. 3.
- the liquefied methane-containing reflux stream from pump 127 is warmed in heat exchanger 300 by indirect heat exchange with a portion of mixed refrigerant liquid withdrawn from line 152 via line 352.
- the combined reflux stream is closer to its optimum temperature when it is introduced into scrub column 118.
- Cooled refrigerant from heat exchanger 300 flows via line 302 and is combined with the refrigerant in line 153 prior to throttling valve 154.
- the condensed methane-rich stream from heat exchanger 300 may be introduced into the top of scrub column 118 and the unrecovered hydrocarbons in line 138 may be introduced into scrub column 118 at a location (not shown) below the top of the column and above the location at which the cooled feed is introduced into the column via line 116.
- the liquefied methane-containing reflux stream from heat exchanger 300 and the unrecovered liquid hydrocarbons in line 138 may be introduced into the top of scrub column 118 as separate streams (not shown). All other process features of Fig. 3 are identical to those described above with reference to Fig. 1.
- Fig. 4 shows an optional configuration that can be used to return the condensed methane-enriched stream in line 126 to scrub column 118.
- the condensed methane-enriched stream in line 126 is reduced in pressure through throttle valve 426 to its bubble point, introduced into drum 427 that maintains some vapor inventory, and pumped by pump 127 to the scrub column pressure.
- a portion of the pumped stream is recycled to drum 427 through valve 428 to maintain the liquid level in the drum and the remaining portion flows to scrub column 118 through optional valve 429.
- excess vapor may be vented (not shown) from the top of drum 427 and flared or compressed and recovered.
- drum 127 is much smaller than a reflux drum typically used in a conventional plant to separate a partially condensed methane-rich stream withdrawn from the main heat exchanger to provide reflux liquid to the scrub column.
- Throttling valve 426 and drum 427 can be avoided by detecting liquid in line 126 (for example with a thermocouple) and redirecting vapor or two-phase flow from the main heat exchanger 124 at a startup situation (at normal operation it is subcooled liquid) to another existing drum such as helium recovery or fuel gas flash drum or simply by flaring it.
- the system can be simplified by using a type of pump 127 that can tolerate two-phase flow at off-design conditions, such as a cryogenic gear or screw pump or a centrifugal pump with a high-performance inducer.
- FIG. 5 An exemplary NGL recovery system that can be used with embodiments of the present invention is illustrated in Fig. 5 and comprises four distillation columns including demethanizer 501, deethanizer 503, depropanizer 505, and debutanizer 507 operating in series. Bottoms liquid from scrub column 118 via line 134 is cooled in heat exchanger 510 to approximately ambient temperature and flows to demethanizer column 501. Overhead vapor containing methane and some ethane is withdrawn from the top of the demethanizer as a recovered hydrocarbon stream via line 509 and may used as fuel or liquefied and reinjected into the LNG product.
- a bottoms liquid enriched in ethane and heavier hydrocarbons is withdrawn via line 511 and is partially vaporized in heat exchanger 513, boilup vapor is returned to the column via line 517, and the remaining stream flows via line 519 and valve 521 into deethanizer column 503.
- High purity ethane vapor is withdrawn from the column via line 523 and is condensed in overhead condenser 525. A portion of the condensed liquid is returned as reflux via line 527 and another portion is withdrawn via line 529 as a recovered hydrocarbon comprising high purity ethane typically containing greater than 98 mole % ethane.
- the bottoms liquid from the deethanizer via line 531 is partially vaporized in heat exchanger 533, boilup vapor is returned to the column via line 535, and the remaining stream flows via line 537 and valve 539 into depropanizer column 505.
- High purity propane vapor is withdrawn from the column via line 541 and is condensed in overhead condenser 543. A portion of the condensed liquid is returned as reflux via line 545 and another portion is withdrawn via line 547 as a recovered hydrocarbon comprising high purity propane typically containing greater than 98 mole % propane.
- the bottoms liquid from the depropanizer via line 549 is partially vaporized in heat exchanger 551, boilup vapor is returned to the column via line 553, and the remaining stream flows via line 555 and valve 557 into debutanizer column 507.
- High purity butane (plus isobutane if present) vapor is withdrawn from the column via line 559 and is condensed in overhead condenser 561.
- a portion of the condensed liquid is returned as reflux via line 563 and another portion is withdrawn via line 565 as a recovered hydrocarbon comprising high purity butane (plus isobutane if present) typically containing greater than 98 mole % butane plus isobutane.
- the bottoms liquid from the debutanizer is withdrawn via line 567 and partially vaporized in heat exchanger 569, boilup vapor is returned to the column via line 571, and the remaining stream is withdrawn via line 573 as a recovered hydrocarbon comprising pentane (plus isopentane if present) and heavier hydrocarbons.
- propane and butane liquid streams may be withdrawn as unrecovered liquid hydrocarbons via lines 575 and 577, respectively, and mixed in line 579.
- the mixed unrecovered liquid hydrocarbon stream is cooled to temperature of vaporizing propane refrigerant in heat exchanger 581, is pumped to scrub column pressure in pump 583, and flows via line 138 to the scrub column in any of the embodiments of Figs. 1, 2, and 3.
- a portion of the ethane liquid from the deethanizer may be withdrawn as unrecovered liquid hydrocarbon via line 585 and combined with the unrecovered propane and/or butane in line 579.
- a portion of the overhead vapor in line 509 from demethanizer 501 may be withdrawn via line 587 and absorbed in the unrecovered liquid propane and/or butane in line 579. No compression of the demethanizer overhead vapor is needed in this option.
- all butane from the debutanizer is recovered via line 565 and none is withdrawn as unrecovered liquid hydrocarbon via line 577.
- all propane from the depropanizer is recovered via line 547 and none is withdrawn as unrecovered liquid hydrocarbon via line 575.
- any of the dissolved overhead from demethanizer 501 and the condensed ethane, propane, and butane overhead streams from deethanizer 503, depropanizer 505, and debutanizer 507, respectively, may be wholly or partially withdrawn as unrecovered liquid hydrocarbons for return to scrub column 118 as long as the withdrawn hydrocarbon product requirements are satisfied.
- NGL fractionation systems may be used depending on the particular hydrocarbons to be recovered.
- the system may utilize a depentanizer column to recover high purity pentanes and a residual product containing hydrocarbons heavier than pentane. A portion of the pentanes may be returned as an unrecovered hydrocarbon to scrub column 118.
- the demethanizer is not used and the deethanizer is operated to withdraw the ethane liquid product at an intermediate stage and to withdraw a mixture of methane and ethane vapor from the reflux drum as a recovered hydrocarbon product. A portion of this vapor may be withdrawn as an unrecovered hydrocarbon product and dissolved in the unrecovered liquid hydrocarbon mixture as described above.
- the following Example illustrates an embodiment of the present invention but does not limit embodiments of the invention to any of the specific details described therein.
- a process simulation was carried out to illustrate the embodiment of Fig. 1.
- a pre-purified natural gas stream in line 100 has a flow rate of 100,000 Ibmol/h (45,000 kgmol/h) and pressure of 960 psia (6.6 MPa) and contains (in mole %) 1.9% helium, 5.8% nitrogen, 83.2% methane, 7.1 % ethane, 2.3% propane, 0.4% isobutane, 0.6% butane, 0.1 % isopentane, 0.2% pentane, and 0.2% hexanes.
- the stream is cooled by three stages of propane cooling to -29°F (-34.5°C), is further cooled in the economizer heat exchanger to -62.8°F (-52.5°C), and is fed to scrub column 118.
- the column operates at an average pressure of 886 psia (6.1 MPa).
- Column overhead in line 120 at a flow rate of 104,770 Ibmol/h (47500 kgmol/h) is warmed from -73°F (-58°C) to -32°F (-36°C) against the feed in heat exchanger 114.
- the resulting stream in line 122 is cooled and liquefied in passage 123 of the warm bundle of main heat exchanger 124 to provide a condensed methane-enriched stream in line 125.
- a portion of this liquid is withdrawn via line 126 at a flow rate of 10,943 Ibmol/h (4963.5 kgmol/h) and temperature of -197.6°F (-127.5°C).
- the stream is pumped in pump 127 to the scrub column pressure, since the liquid head typically is not sufficient to overcome the pressure drop in heat exchanger 124.
- the remainder of the liquid in line 125 is subcooled in passage 128 and withdrawn from the cold bundle of the exchanger as a liquefied natural gas product in line 129 at a flow rate of 93,827 lbmol/h (42559 kgmol/h) and a temperature of -228.8°F (-144.9°C).
- the product stream may be further processed to recover helium before being reduced in pressure to the storage pressure.
- the scrub column bottoms stream is withdrawn via line 134 at a flow rate of 1862 Ibmol/h (844.5 kgmol/h) and is sent to NGL fractionation system 136, which is a series of distillation columns as shown in Fig. 5 comprising a demethanizer producing a methane-ethane mixture as a vapor overhead product, a deethanizer producing high purity ethane as a liquid overhead product, a depropanizer producing high purity propane as a liquid overhead product, and a debutanizer producing high purity butane as a liquid overhead product.
- the ethane, propane, and butane liquids have purities in excess of 98 mole %.
- the methane and ethane mixture from the demethanizer is withdrawn as a recovered hydrocarbon and is used as fuel.
- Unrecovered liquid propane and butane in lines 575 and 577 are combined in line 138, cooled by propane refrigeration to -32.3°F (-35.7°C) in heat exchanger 581, and pumped to the scrub column pressure in pump 583.
- the unrecovered propane in line 575 is 50% of the overhead stream in depropanizer overhead line 541 and the unrecovered butane in line 577 butane is 60% of the overhead stream in debutanizer overhead line 559.
- the combined unrecovered hydrocarbon stream in line 579 has a flow rate of 1116 Ibmol/h (506 kgmol/h) and a composition (in mole %) of 39% propane, 60% butane plus isobutanes, and 1 % components heavier than butane.
- the pumped unrecovered liquid hydrocarbon is combined with the liquefied methane-containing reflux stream from pump 127 and the combined stream is introduced into the top of scrub column 118.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/491,329 US20080016910A1 (en) | 2006-07-21 | 2006-07-21 | Integrated NGL recovery in the production of liquefied natural gas |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1881283A2 true EP1881283A2 (de) | 2008-01-23 |
EP1881283A3 EP1881283A3 (de) | 2013-04-10 |
Family
ID=38819612
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07112504.1A Withdrawn EP1881283A3 (de) | 2006-07-21 | 2007-07-16 | Integrierte NGL-Gewinnung bei der Erzeugung von Flüssigerdgas |
Country Status (13)
Country | Link |
---|---|
US (1) | US20080016910A1 (de) |
EP (1) | EP1881283A3 (de) |
JP (1) | JP4713548B2 (de) |
KR (1) | KR100891907B1 (de) |
CN (1) | CN101108977B (de) |
AU (1) | AU2007203296B2 (de) |
CA (1) | CA2593886C (de) |
EG (1) | EG25242A (de) |
MY (1) | MY157897A (de) |
NO (1) | NO20073829L (de) |
PE (1) | PE20080391A1 (de) |
RU (1) | RU2374575C2 (de) |
TW (1) | TWI349034B (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2502545C1 (ru) * | 2012-08-08 | 2013-12-27 | Открытое акционерное общество "Газпром" | Способ переработки природного газа и устройство для его осуществления |
WO2012001001A3 (en) * | 2010-06-30 | 2014-08-28 | Shell Internationale Research Maatschappij B.V. | Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor |
WO2016134815A1 (de) * | 2015-02-26 | 2016-09-01 | Linde Aktiengesellschaft | Verfahren zur verflüssigen von erdgas |
US9441877B2 (en) | 2010-03-17 | 2016-09-13 | Chart Inc. | Integrated pre-cooled mixed refrigerant system and method |
RU2614947C1 (ru) * | 2016-05-11 | 2017-03-31 | Публичное акционерное общество "Газпром" | Способ переработки природного газа с извлечением С2+ и установка для его осуществления |
US10480851B2 (en) | 2013-03-15 | 2019-11-19 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US10663221B2 (en) | 2015-07-08 | 2020-05-26 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11408673B2 (en) | 2013-03-15 | 2022-08-09 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11428463B2 (en) | 2013-03-15 | 2022-08-30 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
Families Citing this family (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2893627B1 (fr) * | 2005-11-18 | 2007-12-28 | Total Sa | Procede pour l'ajustement du pouvoir calorifique superieur du gaz dans la chaine du gnl. |
WO2007131850A2 (en) * | 2006-05-15 | 2007-11-22 | Shell Internationale Research Maatschappij B.V. | Method and apparatus for liquefying a hydrocarbon stream |
US20080300056A1 (en) * | 2007-05-30 | 2008-12-04 | Ntn Buzztime, Inc. | Telephone Enabled Elimination Game |
EA016149B1 (ru) * | 2007-07-19 | 2012-02-28 | Шелл Интернэшнл Рисерч Маатсхаппий Б.В. | Способ и устройство для выделения и разделения на фракции сырьевого потока смешанных углеводородов |
US20090090131A1 (en) * | 2007-10-09 | 2009-04-09 | Chevron U.S.A. Inc. | Process and system for removing total heat from base load liquefied natural gas facility |
US20090090049A1 (en) * | 2007-10-09 | 2009-04-09 | Chevron U.S.A. Inc. | Process for producing liqefied natural gas from high co2 natural gas |
FR2923000B1 (fr) * | 2007-10-26 | 2015-12-11 | Inst Francais Du Petrole | Procede de liquefaction d'un gaz naturel avec recuperation amelioree de propane. |
JP5683277B2 (ja) * | 2008-02-14 | 2015-03-11 | シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイShell Internationale Research Maatschappij Beslotenvennootshap | 炭化水素流の冷却方法及び装置 |
JP2009216122A (ja) | 2008-03-07 | 2009-09-24 | Jatco Ltd | 自動変速機 |
GB2459484B (en) * | 2008-04-23 | 2012-05-16 | Statoilhydro Asa | Dual nitrogen expansion process |
US20110174017A1 (en) * | 2008-10-07 | 2011-07-21 | Donald Victory | Helium Recovery From Natural Gas Integrated With NGL Recovery |
WO2010124250A1 (en) * | 2009-04-24 | 2010-10-28 | Ebara International Corporation | Method to liquefy ammonia gas |
US9021832B2 (en) * | 2010-01-14 | 2015-05-05 | Ortloff Engineers, Ltd. | Hydrocarbon gas processing |
WO2012000998A2 (en) * | 2010-06-30 | 2012-01-05 | Shell Internationale Research Maatschappij B.V. | Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor |
CN102465000B (zh) * | 2010-11-05 | 2015-02-18 | 中国石油化工股份有限公司 | 一种油气冷凝回收方法 |
CN102464999B (zh) * | 2010-11-05 | 2015-04-15 | 中国石油化工股份有限公司 | 一种油气吸收回收方法 |
WO2012075266A2 (en) * | 2010-12-01 | 2012-06-07 | Black & Veatch Corporation | Ngl recovery from natural gas using a mixed refrigerant |
CA2728716C (en) * | 2011-01-18 | 2017-12-05 | Jose Lourenco | Method of recovery of natural gas liquids from natural gas at ngls recovery plants |
KR101346172B1 (ko) * | 2011-12-19 | 2013-12-31 | 삼성중공업 주식회사 | 분별증류 장치 및 이를 이용한 분별증류 방법 |
CA2763081C (en) | 2011-12-20 | 2019-08-13 | Jose Lourenco | Method to produce liquefied natural gas (lng) at midstream natural gas liquids (ngls) recovery plants. |
CA2772479C (en) | 2012-03-21 | 2020-01-07 | Mackenzie Millar | Temperature controlled method to liquefy gas and a production plant using the method. |
CA2790961C (en) | 2012-05-11 | 2019-09-03 | Jose Lourenco | A method to recover lpg and condensates from refineries fuel gas streams. |
CN104736504A (zh) * | 2012-07-26 | 2015-06-24 | 氟石科技公司 | 用于深度的进料气体烃露点调整的构造和方法 |
WO2014018045A1 (en) * | 2012-07-26 | 2014-01-30 | Fluor Technologies Corporation | Configurations and methods for deep feed gas hydrocarbon dewpointing |
CA2787746C (en) | 2012-08-27 | 2019-08-13 | Mackenzie Millar | Method of producing and distributing liquid natural gas |
AU2013203120B2 (en) * | 2012-09-18 | 2014-09-04 | Woodside Energy Technologies Pty Ltd | Production of ethane for startup of an lng train |
CA2798057C (en) | 2012-12-04 | 2019-11-26 | Mackenzie Millar | A method to produce lng at gas pressure letdown stations in natural gas transmission pipeline systems |
CN105074370B (zh) | 2012-12-28 | 2017-04-19 | 林德工程北美股份有限公司 | 一种ngl(液化天然气回收)和lng(液化天然气)的组合工艺 |
WO2014150024A1 (en) * | 2013-03-15 | 2014-09-25 | Conocophillips Company | Mixed-reflux for heavies removal in lng processing |
CA2813260C (en) | 2013-04-15 | 2021-07-06 | Mackenzie Millar | A method to produce lng |
CN103265987A (zh) * | 2013-06-05 | 2013-08-28 | 中国石油集团工程设计有限责任公司 | 一种lpg脱除天然气中重烃的工艺装置及方法 |
US20140366577A1 (en) * | 2013-06-18 | 2014-12-18 | Pioneer Energy Inc. | Systems and methods for separating alkane gases with applications to raw natural gas processing and flare gas capture |
US20150033793A1 (en) * | 2013-07-31 | 2015-02-05 | Uop Llc | Process for liquefaction of natural gas |
CN103453730A (zh) * | 2013-08-29 | 2013-12-18 | 杭州福斯达实业集团有限公司 | 一种带有轻烃回收的天然气液化方法及其装置 |
US10267560B2 (en) * | 2013-12-30 | 2019-04-23 | Air Products And Chemicals, Inc. | Process for recovering hydrocarbons from crude carbon dioxide fluid |
CA2958091C (en) | 2014-08-15 | 2021-05-18 | 1304338 Alberta Ltd. | A method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations |
US10808999B2 (en) | 2014-09-30 | 2020-10-20 | Dow Global Technologies Llc | Process for increasing ethylene and propylene yield from a propylene plant |
US20160216030A1 (en) * | 2015-01-23 | 2016-07-28 | Air Products And Chemicals, Inc. | Separation of Heavy Hydrocarbons and NGLs from Natural Gas in Integration with Liquefaction of Natural Gas |
US10619918B2 (en) | 2015-04-10 | 2020-04-14 | Chart Energy & Chemicals, Inc. | System and method for removing freezing components from a feed gas |
TWI707115B (zh) * | 2015-04-10 | 2020-10-11 | 美商圖表能源與化學有限公司 | 混合製冷劑液化系統和方法 |
EP3115721A1 (de) | 2015-07-10 | 2017-01-11 | Shell Internationale Research Maatschappij B.V. | Verfahren und system zum kühlen und trennen eines kohlenwasserstoffstroms |
US11173445B2 (en) | 2015-09-16 | 2021-11-16 | 1304338 Alberta Ltd. | Method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (LNG) |
CN105695015B (zh) * | 2016-03-31 | 2018-09-25 | 成都深冷液化设备股份有限公司 | 一种新型天然气脱重烃装置及方法 |
US11668522B2 (en) * | 2016-07-21 | 2023-06-06 | Air Products And Chemicals, Inc. | Heavy hydrocarbon removal system for lean natural gas liquefaction |
AU2018239332B2 (en) * | 2017-03-21 | 2023-06-15 | Conocophillips Company | Light oil reflux heavies removal process |
CN107560319B (zh) * | 2017-10-12 | 2019-08-23 | 中国石油工程建设有限公司 | 一种采用阶式制冷的天然气乙烷回收装置及方法 |
JP7051372B2 (ja) * | 2017-11-01 | 2022-04-11 | 東洋エンジニアリング株式会社 | 炭化水素の分離方法及び装置 |
JP7026490B2 (ja) * | 2017-11-21 | 2022-02-28 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | Bog再凝縮装置およびそれを備えるlng貯蔵システム。 |
JP7084219B2 (ja) * | 2018-06-15 | 2022-06-14 | レール・リキード-ソシエテ・アノニム・プール・レテュード・エ・レクスプロワタシオン・デ・プロセデ・ジョルジュ・クロード | 天然ガスの製造装置および天然ガスの製造方法 |
CA3154957A1 (en) | 2019-10-17 | 2021-04-22 | Jinghua CHAN | Standalone high-pressure heavies removal unit for lng processing |
CN110760348B (zh) * | 2019-11-05 | 2021-02-02 | 安徽香杨新能源科技发展股份有限公司 | 一种生物质燃气净化系统 |
RU2730291C1 (ru) * | 2019-12-24 | 2020-08-21 | Андрей Владиславович Курочкин | Установка низкотемпературного фракционирования для комплексной подготовки газа |
US20240067590A1 (en) * | 2022-08-30 | 2024-02-29 | Saudi Arabian Oil Company | Reflux arrangement for distillation columns |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0094010A2 (de) * | 1982-05-10 | 1983-11-16 | Air Products And Chemicals, Inc. | Verfahren zur Herstellung von Flüssigerdgas |
US6662589B1 (en) * | 2003-04-16 | 2003-12-16 | Air Products And Chemicals, Inc. | Integrated high pressure NGL recovery in the production of liquefied natural gas |
US20060065015A1 (en) * | 2004-09-29 | 2006-03-30 | Chevron U.S.A. Inc. | Recovering natural gas liquids from LNG using vacuum distillation |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1939114B2 (de) * | 1969-08-01 | 1979-01-25 | Linde Ag, 6200 Wiesbaden | Verflüssigungsverfahren für Gase und Gasgemische, insbesondere für Erdgas |
US3902329A (en) * | 1970-10-28 | 1975-09-02 | Univ California | Distillation of methane and hydrogen from ethylene |
US4445916A (en) * | 1982-08-30 | 1984-05-01 | Newton Charles L | Process for liquefying methane |
GB8411686D0 (en) * | 1984-05-08 | 1984-06-13 | Stothers W R | Recovery of ethane and natural gas liquids |
US4657571A (en) * | 1984-06-29 | 1987-04-14 | Snamprogetti S.P.A. | Process for the recovery of heavy constituents from hydrocarbon gaseous mixtures |
DE3511636A1 (de) * | 1984-12-17 | 1986-07-10 | Linde Ag, 6200 Wiesbaden | Verfahren zur gewinnung von c(pfeil abwaerts)2(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)- oder von c(pfeil abwaerts)3(pfeil abwaerts)(pfeil abwaerts)+(pfeil abwaerts)-kohlenwasserstoffen |
US4809154A (en) * | 1986-07-10 | 1989-02-28 | Air Products And Chemicals, Inc. | Automated control system for a multicomponent refrigeration system |
US4710212A (en) * | 1986-09-24 | 1987-12-01 | Union Carbide Corporation | Process to produce high pressure methane gas |
IT1222733B (it) * | 1987-09-25 | 1990-09-12 | Snmprogetti S P A | Procedimento di frazionamento di miscele gassose idrocarburiche ad alto contenuto di gas acidi |
US4987744A (en) * | 1990-01-26 | 1991-01-29 | Union Carbide Industrial Gases Technology Corporation | Cryogenic distillation with unbalanced heat pump |
US5685170A (en) * | 1995-11-03 | 1997-11-11 | Mcdermott Engineers & Constructors (Canada) Ltd. | Propane recovery process |
TW366409B (en) * | 1997-07-01 | 1999-08-11 | Exxon Production Research Co | Process for liquefying a natural gas stream containing at least one freezable component |
MY114649A (en) * | 1998-10-22 | 2002-11-30 | Exxon Production Research Co | A process for separating a multi-component pressurized feed stream using distillation |
MY122625A (en) * | 1999-12-17 | 2006-04-29 | Exxonmobil Upstream Res Co | Process for making pressurized liquefied natural gas from pressured natural gas using expansion cooling |
US6742358B2 (en) * | 2001-06-08 | 2004-06-01 | Elkcorp | Natural gas liquefaction |
US6743829B2 (en) * | 2002-01-18 | 2004-06-01 | Bp Corporation North America Inc. | Integrated processing of natural gas into liquid products |
US6978638B2 (en) * | 2003-05-22 | 2005-12-27 | Air Products And Chemicals, Inc. | Nitrogen rejection from condensed natural gas |
ES2284429T1 (es) * | 2004-07-01 | 2007-11-16 | Ortloff Engineers, Ltd | Procesamiento de gas natural licuado. |
EP1789739B1 (de) | 2004-09-14 | 2020-03-04 | Exxonmobil Upstream Research Company | Verfahren zur extraktion von ethan aus flüssigerdgas |
-
2006
- 2006-07-21 US US11/491,329 patent/US20080016910A1/en not_active Abandoned
-
2007
- 2007-07-16 TW TW096125912A patent/TWI349034B/zh not_active IP Right Cessation
- 2007-07-16 CA CA2593886A patent/CA2593886C/en not_active Expired - Fee Related
- 2007-07-16 EP EP07112504.1A patent/EP1881283A3/de not_active Withdrawn
- 2007-07-17 MY MYPI20071148A patent/MY157897A/en unknown
- 2007-07-17 EG EG2007070379A patent/EG25242A/xx active
- 2007-07-17 AU AU2007203296A patent/AU2007203296B2/en not_active Ceased
- 2007-07-19 PE PE2007000939A patent/PE20080391A1/es not_active Application Discontinuation
- 2007-07-19 KR KR1020070072447A patent/KR100891907B1/ko not_active IP Right Cessation
- 2007-07-20 RU RU2007128005/06A patent/RU2374575C2/ru not_active IP Right Cessation
- 2007-07-20 JP JP2007189675A patent/JP4713548B2/ja not_active Expired - Fee Related
- 2007-07-20 CN CN2007101373339A patent/CN101108977B/zh not_active Expired - Fee Related
- 2007-07-20 NO NO20073829A patent/NO20073829L/no not_active Application Discontinuation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0094010A2 (de) * | 1982-05-10 | 1983-11-16 | Air Products And Chemicals, Inc. | Verfahren zur Herstellung von Flüssigerdgas |
US6662589B1 (en) * | 2003-04-16 | 2003-12-16 | Air Products And Chemicals, Inc. | Integrated high pressure NGL recovery in the production of liquefied natural gas |
US20060065015A1 (en) * | 2004-09-29 | 2006-03-30 | Chevron U.S.A. Inc. | Recovering natural gas liquids from LNG using vacuum distillation |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10502483B2 (en) | 2010-03-17 | 2019-12-10 | Chart Energy & Chemicals, Inc. | Integrated pre-cooled mixed refrigerant system and method |
US9441877B2 (en) | 2010-03-17 | 2016-09-13 | Chart Inc. | Integrated pre-cooled mixed refrigerant system and method |
US10215485B2 (en) | 2010-06-30 | 2019-02-26 | Shell Oil Company | Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor |
WO2012001001A3 (en) * | 2010-06-30 | 2014-08-28 | Shell Internationale Research Maatschappij B.V. | Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor |
RU2502545C1 (ru) * | 2012-08-08 | 2013-12-27 | Открытое акционерное общество "Газпром" | Способ переработки природного газа и устройство для его осуществления |
US10480851B2 (en) | 2013-03-15 | 2019-11-19 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11408673B2 (en) | 2013-03-15 | 2022-08-09 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11428463B2 (en) | 2013-03-15 | 2022-08-30 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
WO2016134815A1 (de) * | 2015-02-26 | 2016-09-01 | Linde Aktiengesellschaft | Verfahren zur verflüssigen von erdgas |
US10663221B2 (en) | 2015-07-08 | 2020-05-26 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US11408676B2 (en) | 2015-07-08 | 2022-08-09 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
US12104849B2 (en) | 2015-07-08 | 2024-10-01 | Chart Energy & Chemicals, Inc. | Mixed refrigerant system and method |
RU2614947C1 (ru) * | 2016-05-11 | 2017-03-31 | Публичное акционерное общество "Газпром" | Способ переработки природного газа с извлечением С2+ и установка для его осуществления |
Also Published As
Publication number | Publication date |
---|---|
RU2007128005A (ru) | 2009-01-27 |
TW200806784A (en) | 2008-02-01 |
PE20080391A1 (es) | 2008-05-16 |
EG25242A (en) | 2011-11-20 |
KR100891907B1 (ko) | 2009-04-06 |
CA2593886A1 (en) | 2008-01-21 |
CA2593886C (en) | 2012-03-27 |
TWI349034B (en) | 2011-09-21 |
JP2008057962A (ja) | 2008-03-13 |
MY157897A (en) | 2016-08-15 |
CN101108977B (zh) | 2012-07-18 |
AU2007203296B2 (en) | 2008-12-18 |
CN101108977A (zh) | 2008-01-23 |
KR20080008984A (ko) | 2008-01-24 |
JP4713548B2 (ja) | 2011-06-29 |
NO20073829L (no) | 2008-01-22 |
AU2007203296A1 (en) | 2008-02-07 |
US20080016910A1 (en) | 2008-01-24 |
RU2374575C2 (ru) | 2009-11-27 |
EP1881283A3 (de) | 2013-04-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2593886C (en) | Integrated ngl recovery in the production of liquefied natural gas | |
US20130061632A1 (en) | Integrated NGL Recovery In the Production Of Liquefied Natural Gas | |
AU2006248647B2 (en) | Integrated NGL recovery and liquefied natural gas production | |
US6125653A (en) | LNG with ethane enrichment and reinjection gas as refrigerant | |
JP4216765B2 (ja) | 凝縮天然ガスからの窒素除去方法及び装置 | |
US6662589B1 (en) | Integrated high pressure NGL recovery in the production of liquefied natural gas | |
EP1369652A2 (de) | Trennung von Wasserstoff-Kohlenwasserstoff- Gasgemischen unter Verwendung eines geschlossenen Gasentspannungs-Kühlkreislaufes | |
US20110174017A1 (en) | Helium Recovery From Natural Gas Integrated With NGL Recovery | |
WO2001088447A1 (en) | Enhanced ngl recovery utilizing refrigeration and reflux from lng plants | |
AU2001261633A1 (en) | Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants | |
EP1131144A2 (de) | Verfahren zur trennung eines einspeisungsstroms mit mehreren komponenten durch destillation | |
EP2245403A2 (de) | Verfahren und vorrichtung zum kühlen eines kohlenwasserstoffstroms | |
US20190041128A1 (en) | Recovery Of Helium From Nitrogen-Rich Streams | |
EP3115721A1 (de) | Verfahren und system zum kühlen und trennen eines kohlenwasserstoffstroms |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25J 1/02 20060101AFI20121112BHEP Ipc: F25J 3/02 20060101ALI20121112BHEP |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25J 3/02 20060101ALI20130304BHEP Ipc: F25J 1/02 20060101AFI20130304BHEP |
|
AKY | No designation fees paid | ||
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R108 Effective date: 20131218 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20131011 |