EP1878782A1 - Verfahren zur Erzeugung von Wasserstoff mit Hilfe der Wassergas-Shift-Reaktion bei sehr niedrigen Temperaturen - Google Patents
Verfahren zur Erzeugung von Wasserstoff mit Hilfe der Wassergas-Shift-Reaktion bei sehr niedrigen Temperaturen Download PDFInfo
- Publication number
- EP1878782A1 EP1878782A1 EP07013229A EP07013229A EP1878782A1 EP 1878782 A1 EP1878782 A1 EP 1878782A1 EP 07013229 A EP07013229 A EP 07013229A EP 07013229 A EP07013229 A EP 07013229A EP 1878782 A1 EP1878782 A1 EP 1878782A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- gas
- hydrogen
- water
- reactor
- gas shift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
- C01B3/06—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents
- C01B3/12—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide
- C01B3/16—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of inorganic compounds containing electro-positively bound hydrogen, e.g. water, acids, bases, ammonia, with inorganic reducing agents by reaction of water vapour with carbon monoxide using catalysts
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/78—High-pressure apparatus
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
- C10K1/101—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K3/00—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide
- C10K3/02—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment
- C10K3/04—Modifying the chemical composition of combustible gases containing carbon monoxide to produce an improved fuel, e.g. one of different calorific value, which may be free from carbon monoxide by catalytic treatment reducing the carbon monoxide content, e.g. water-gas shift [WGS]
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/09—Details of the feed, e.g. feeding of spent catalyst, inert gas or halogens
- C10J2300/0913—Carbonaceous raw material
- C10J2300/0916—Biomass
- C10J2300/092—Wood, cellulose
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1621—Compression of synthesis gas
Definitions
- the invention relates to a process for the conversion of carbonaceous feedstocks into a hydrogen-rich product gas, wherein from the carbonaceous feedstocks in a first process step a hydrogen (H 2 ) and carbon monoxide (CO) containing synthesis gas is generated, of which at least part of a catalytically supported water Gas shift reaction to increase the hydrogen content is subjected.
- a hydrogen (H 2 ) and carbon monoxide (CO) containing synthesis gas is generated, of which at least part of a catalytically supported water Gas shift reaction to increase the hydrogen content is subjected.
- the synthesis crude gas (often after purification) is subjected to a catalytically assisted water-gas shift reaction in which carbon monoxide is converted with water into carbon dioxide and hydrogen.
- a catalytically assisted water-gas shift reaction in which carbon monoxide is converted with water into carbon dioxide and hydrogen.
- the stated object is achieved in that the water-gas shift reaction at temperatures between 50 and 200 ° C, but preferably between 60 and 150 ° C and pressures between 1 and 10bar, but preferably between 1 and 5bar in a reactor (water Gas shift reactor) in which a suitable catalyst is present.
- the reaction equilibrium can already be at low temperatures of 60 to 150.degree be shifted to high hydrogen yields.
- the temperature of the synthesis crude gas is therefore preferably between 60 and 150 ° C for this reason.
- a variant of the process according to the invention provides that by feeding water, the water content of the synthesis crude gas can be reduced before it is introduced into the water.
- Gas shift reactor is increased to a level that is high enough to meet the water demand of the running in the water-gas-Shiftreaktor water-gas shift reaction.
- the synthesis raw gases also contain unwanted substances, such as tars or dusts, in addition to the desired ones (eg H 2 , CO). Since such substances when flowing through bulk layers, as they are usually present in a water-gas shift reactor, lead to blockages, provides an expedient embodiment of the method according to the invention that the hydrogen gas shift reactor synthesis crude gas is supplied, which is free of undesirable substances .
- a purification step is provided in front of the water-gas shift reactor in which unwanted substances are removed from the synthesis crude.
- the cleaning step is carried out by means of a water wash.
- a preferred embodiment of the method according to the invention therefore provides that the hydrocarbon-containing starting materials are reacted at low pressures of less than 12 bar by pyrolysis (low pressure pyrolysis) in synthesis gas. Since synthesis crude gases produced in this way frequently contain aromatic compounds, tars and dusts, it is necessary to purify the synthesis crude gas before further processing. If the purification is carried out in a water wash, the synthesis gas, which exits the pyrolysis at a temperature of about 850 ° C, cooled to temperatures between 50 and 200 ° C and at the same time saturated with water, and therefore can immediately after water washing and without a further process step of the water-gas shift reaction according to the invention are supplied.
- Another preferred embodiment of the method according to the invention provides that substances produced on biological routes, such as, for example, wood or straw, are used as hydrocarbon-containing feedstocks.
- a further preferred embodiment of the method according to the invention provides that a so-called "Supported Lonic Liquid Phase” (SILP) reactor is used as the water-gas shift reactor, in which a suitable catalyst is present in an ionic liquid immobilized on a substrate.
- This system of catalyst, ionic liquid and carrier material is present as a solid and can accordingly be configured as a fixed bed reactor.
- the advantage of this embodiment is that even complicated z.
- organometallic catalyst systems can be used, which are otherwise accessible only for homogeneous catalytic applications.
- Further advantages of the SILP reactor are the mostly achievable selectivities combined with high turn-over rates, which allow for a smaller and more compact reactor design.
- a compression of the syngas synthesis gas takes place, wherein the water content of the synthesis raw gas for the compression, however, is unfavorable.
- the hydrogen-rich product gas emerging from the water-gas shift reactor according to the invention has too low a pressure for further use (for example in a fuel cell)
- a variant of the method according to the invention provides that the product gas is purified of water in a water separator and subsequently much more efficient than the hydrous gas - is compressed.
- the water is condensed out in the water by lowering the temperature and then removed from the product gas.
- Known compressor types include the reciprocating and screw compressors, which are both volumetrically-conveying compressors. Recent developments include the so-called turbo compressors such. B. axial or radial compressor. However, all these types of compressors are only conditionally suitable for the compression of explosive mixtures, which also include a hydrogen-rich product gas, since ignition sources can be created by mechanical friction in the compression space. Suitable for compressing explosive mixtures are water ring compressors, which, however, are expensive because of their complicated mechanical structure
- it is a method for producing hydrogen from wood chips.
- a synthesis gas containing hydrogen and carbon monoxide is produced from the wood chips by pyrolysis at low pressure, which is conducted at a temperature of about 850 ° C via line 1 to the gas scrubbing W.
- the gas scrubbing which is designed as a water wash, unwanted substances such as aromatic compounds, tars and dusts are washed out of the syngas, the gas temperature is lowered to about 100 ° C and the synthesis crude is saturated with water.
- the purified synthesis crude gas for carrying out a water-gas shift reaction via line 2 into the SILP reactor S is performed, which contains a suitable catalyst and in which the present in the synthesis gas carbon monoxide supported catalytically Water is converted to a few ppm in hydrogen and carbon dioxide.
- the product gas which in addition to hydrogen still other components such as carbon dioxide and water, withdrawn from the SILP reactor and fed to the water C, is condensed out in the water and removed from the product gas.
- Via line 4 an almost completely consisting of hydrogen and carbon dioxide gas mixture is withdrawn and fed to the compressor P, from which the gas mixture flows at elevated pressure via line 5 and a further processing (not shown) is supplied.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Combustion & Propulsion (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Inorganic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zur Umsetzung von kohlenstoffhaltigen Einsatzstoffen in ein wasserstoffreiches Produktgas, wobei aus den kohlenstoffhaltigen Einsatzstoffen in einem ersten Verfahrensschritt ein Wasserstoff (H2) und Kohlenmonoxid (CO) enthaltendes Syntheserohgas erzeugt wird, von welchem zumindest ein Teil einer katalytisch unterstützten Wasser-Gas-Shiftreaktion zur Erhöhung des Wasserstoffanteils unterzogen wird.
- Zur Erzeugung von Wasserstoff und Wasserstoff enthaltenden Gasgemischen, die bei einer Vielzahl von technischen Anwendungen als Rohstoffe Verwendung finden, ist eine Anzahl von Verfahren bekannt. Bei einem derartigen Verfahren werden kohlenstoffhaltige Einsatzstoffe durch unvollständige Verbrennung (partie Ile Oxidation) umgesetzt, während bei einem anderen Verfahren ein kohlenwasserstoffhaltiger Einsatzstoff gemeinsam mit Wasserdampf bei erhöhter Temperatur in einer katalytisch unterstützten Reaktion umgewandelt wird. Weiterhin bekannt ist beispielsweise auch die Wasserstoffgewinnung durch thermische Zersetzung (Pyrolyse) von Kohlenwasserstoffen. Bei allen diesen Verfahren wird ein Gasgemisch (Syntheserohgas) erzeugt, das neben Wasserstoff auch Kohlenmonoxid, Kohlendioxid, Wasser und nicht umgesetzte Mengen des Einsatzstoffes sowie evtl. auch Stäube und Teere enthält. Sofern bei der Umsetzung des Einsatzstoffes Luft verwendet wurde, enthält das erzeugte Gasgemisch atmosphärischen Stickstoff.
- Um die Wasserstoffausbeute bei der Umsetzung von kohlenstoffhaltigen Einsatzstoffen zu erhöhen, wird das Syntheserohgas (oft nach einer Reinigung) einer katalytisch unterstützten Wasser-Gas-Shiftreaktion unterzogen, bei welcher Kohlenmonoxid mit Wasser in Kohlendioxid und Wasserstoff konvertiert wird. Abhängig von der Art des hierbei eingesetzten Katalysators, spricht man von einer Hoch-, Mittel- oder Tieftemperaturkonvertierung.
- Durch Hochtemperaturkonvertierung, wie sie aus Gründen der einfachen Ausführung und hohen Katalysatorstabilität häufig angewendet wird, und die bei Temperaturen zwischen 300 und 450°C abläuft, ist es nicht möglich, das Kohlenmonoxid in einem Synthesegas vollständig in Wasserstoff umzusetzen. Bedingt durch das Reaktionsgleichgewicht enthält das Konvertierungsprodukt einen CO-Gehalt von bis zu 2,5%. Um auch das restliche Kohlenmonoxid umzuwandeln, wird oft das Produktgas aus einer Hochtemperaturkonvertierung einer Tieftemperaturkonvertierung, die bei Temperaturen zwischen 180 und 250°C durchgeführt wird, zugeführt. Auf diese Weise ist es zwar möglich, fast das gesamte CO mit Wasser in Wasserstoff umzusetzen, jedoch ist der dafür notwendige technische und finanzielle Aufwand erheblich. Darüber hinaus ist aufgrund des Restgehalts von CO eine Nachreinigung des Wasserstoffs in einer Druckwechselabsorption erforderlich.
- Bei der Wasserstoffgewinnung aus Biomasse, wird beispielsweise Holz durch Pyrolyse in ein Synthesegas umgesetzt, das mit Stäuben, Teeren und aromatischen Verbindungen angereichert ist und deswegen erst im Anschluss an eine Gaswäsche einer Wasser-Gas-Shiftreaktion' unterzogen werden kann. Da die Temperatur des Synthesegases bei den üblichen Waschverfahren auf Werte von weniger als 180°C abgesenkt wird, kann es nicht unmittelbar nach einem der Konvertierungsverfahren behandelt werden, wie sie bei der Wasserstoffgewinnung Stand der Technik sind. Vielmehr ist es notwendig die Synthesegastemperatur vor dem Konvertierungsschritt zu erhöhen, wodurch die Wirtschaftlichkeit des Verfahrens beeinträchtigt wird.
- Aufgabe der vorliegenden Erfindung ist es daher ein Verfahren anzugeben, mit dem es möglich ist, mit geringem finanziellem und apparativem Aufwand Wasserstoff mit hoher Reinheit aus kohlenwasserstoffhaltigen Einsatzstoffen zu gewinnen.
- Die gestellte Aufgabe wird erfindungsgemäß dadurch gelöst, dass die Wasser-Gas-Shiftreaktion bei Temperaturen zwischen 50 und 200°C, bevorzugt aber zwischen 60 und 150°C und Drücken zwischen 1 und 10bar, bevorzugt aber zwischen 1 und 5bar in einem Reaktor (Wasser-Gas-Shiftreaktor) durchgeführt wird, in dem ein geeigneter Katalysator vorliegt.
- Da der bei der erfindungsgemäßen Wasser-Gas-Shiftreaktion anfallende Wasserstoff im Wasser-Gas-Shiftreaktor bei niedrigen Drücken zwischen 1 und 10 bar vorliegt, kann das Reaktionsgleichgewicht schon bei niedrigen Temperaturen von 60 bis 150°C zu hohen Wasserstoffausbeuten verschoben werden. Die Temperatur des Syntheserohgases liegt aus diesem Grund bevorzugt zwischen 60 und 150°C.
- Ist der Wassergehalt des Syntheserohgases zur Deckung des Wasserbedarf der im Wasser-Gas-Shiftreaktor ablaufenden Wasser-Gas-Shiftreaktion zu gering, so sieht eine Variante des erfindungsgemäßen Verfahrens vor, dass durch Zuführung von Wasser der Wassergehalt des Syntheserohgases vor der Einleitung in den Wasser-Gas-Shiftreaktor auf einen Wert erhöht wird, der hoch genug ist, um den Wasserbedarf der im Wasser-Gas-Shiftreaktor ablaufenden Wasser-Gas-Shiftreaktion zu decken.
- Häufig enthalten die Syntheserohgase neben den erwünschten (z. B. H2, CO) auch unerwünschte Stoffe, wie Teere oder Stäube. Da derartige Stoffe beim Durchströmen von Schüttschichten, wie sie gewöhnlich in einem Wasser-Gas-Shiftreaktor vorliegen, zu Blockierungen führen, sieht eine zweckmäßige Ausgestaltung des erfindungsgemäßen Verfahrens vor, dass dem Wasser-Gas-Shiftreaktor Syntheserohgas zugeführt wird, das frei ist von unerwünschten Stoffen. Zweckmäßiger Weise ist vor dem Wasser-Gas-Shiftreaktor ein Reinigungsschritt vorgesehen, in welchem unerwünschte Stoffe aus dem Syntheserohgas entfernt werden. Bevorzugt wird der Reinigungsschritt mittels einer Wasserwäsche durchgeführt.
- Eine bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens sieht daher vor, dass die kohlenwasserstoffhaltigen Einsatzstoffe bei geringen Drücken von weniger als 12 bar durch Pyrolyse (Niederdruckpyrolyse) in Syntheserohgase umgesetzt werden. Da auf diese Weise erzeugte Syntheserohgase häufig aromatische Verbindungen, Teere und Stäube enthalten, ist es notwendig, das Syntheserohgas vor einer Weiterverarbeitung zu reinigen. Falls die Reinigung in einer Wasserwäsche durchgeführt wird, wird das Syntheserohgas, das mit einer Temperatur von ca. 850°C aus der Pyrolyse austritt, auf Temperaturen zwischen 50 und 200°C abgekühlt und gleichzeitig mit Wasser gesättigt, und kann daher unmittelbar nach der Wasserwäsche und ohne einen weiteren Verfahrensschritt der erfindungsgemäßen Wasser-Gas-Shiftreaktion zugeführt werden.
- Eine andere bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass auf biologischen Wegen erzeugte Stoffe, wie beispielsweise Holz oder Stroh als kohlenwasserstoffhaltige Einsatzstoffe verwendet werden.
- Eine weiter bevorzugte Ausgestaltung des erfindungsgemäßen Verfahrens sieht vor, dass als Wasser-Gas-Shiftreaktor ein sog. "Supported lonic Liquid Phase" (SILP)-Reaktor verwendet wird, in dem ein geeigneter Katalysator in einer auf einem Substrat immobilisierten ionischen Flüssigkeit vorliegt. Dieses System aus Katalysator, ionischer Flüssigkeit und Trägermaterial liegt als Feststoff vor und kann dem entsprechend als Festbettreaktor ausgestaltet werden. Der Vorteil dieser Ausgestaltung besteht darin, dass auch komplizierte z. B. metallorganische Katalysatorsysteme eingesetzt werden können, die ansonsten nur für homogenkatalytische Anwendungen zugänglich sind. Weitere Vorteile des SILP-Reaktors sind die zumeist hohen erreichbaren Selektivitäten bei gleichzeitig hohen turn-over-Raten, die ein kleineres und kompakteres Reaktordesign ermöglichen.
- Für viele Verfahren, wie beispielsweise der Synthese von Kraftstoffen in einer Fischer-Tropsch-Anlage, wird ein Einsatz benötigt, der Wasserstoff und Kohlenmonoxid in einem festen Verhältnis aufweist. Um einen derartigen Einsatz mit dem erfindungsgemäßen Verfahren erzeugen zu können, wird vorgeschlagen, dass ein Teil des Syntheserohgases im Bypass zum Wasser-Gas-Shiftreaktor geleitet und mit dem Produkt aus dem Wasser-Gas-Shiftreaktor zu einem wasserstoffreichen Produktgas zusammengeführt wird, wobei die Größe des Bypass-Stromes so geregelt wird, dass das H2/CO-Verhältnis im wasserstoffreichen Produktgas einem vorgegeben Wert entspricht.
- In den klassischen Pyrolyseverfahren mit anschließender Hoch- und/oder Tieftemperatur-CO-Konvertierung, findet vor der Wasser-Gas-Shiftreaktion eine Verdichtung des Syntheserohgases statt, wobei der Wassergehalt des Syntheserohgases für die Verdichtung allerdings ungünstig ist. Falls das wasserstoffreiche, aus dem erfindungsgemäßen Wasser-Gas-Shiftreaktor austretende Produktgas einen zu geringen Druck für eine weitere Nutzung (beispielsweise in einer Brennstoffzelle) aufweist, sieht eine Variante des erfindungsgemäßen Verfahrens vor, dass das Produktgas in einem Wasserabscheider von Wasser gereinigt und nachfolgend - wesentlich effizienter als das wasserhaltige Gas - verdichtet wird. Zweckmäßiger Weise wird das Wasser im Wasserabscheider durch Temperaturerniedrigung auskondensiert und anschließend aus dem Produktgas entfernt.
- Zu den bekannten Verdichtertypen gehören der Hubkolben- und der Schraubenverdichter, welche beide volumetrisch fördernde Verdichter sind. Zu den neueren Entwicklungen gehören die sog. Turboverdichter, wie z. B. Axial- oder Radialverdichter. Alle diese Typen von Verdichtern sind allerdings nur bedingt für die Komprimierung von explosionsfähigen Gemischen, zu denen auch ein wasserstoffreiches Produktgas zählt, geeignet, da durch mechanische Reibung im Kompressionsraum Zündquellen entstehen können. Zum Komprimieren explosionsfähiger Gemische geeignet sind Wasserring-Verdichter, die allerdings wegen ihres komplizierten mechanischen Aufbaus teuer sind
- In der Offenlegungsschrift
WO2006/034748 , deren Offenbarungsgehalt mit der Zitierung vollständig in die Beschreibung aufgenommen wird, sind Verdichter zum Verdichten insbesondere von wasserstoffreichen Gasen beschrieben, die die oben beschriebenen Nachteile nicht aufweisen. Das erfindungsgemäße Verfahren weiterbildend wird vorgeschlagen, dass zur Druckerhöhung des wasserstoffreichen Produktgases ein Verdichter eingesetzt wird, wie er inWO2006/034748 beschrieben ist. - Im Folgenden soll die Erfindung anhand eines in der Figur schematisch dargestellten Ausführungsbeispiels näher erläutert werden.
- Bei dem Ausführungsbeispiel handelt es sich um ein Verfahren zur Erzeugung von Wasserstoff aus Holzhackschnitzeln.
- Im Biomassevergaser V wird aus den Holzhackschnitzeln durch Pyrolyse bei geringem Druck ein Wasserstoff und Kohlenmonoxid enthaltendes Syntheserohgase erzeugt, das mit einer Temperatur von ca. 850°C über Leitung 1 zur Gaswäsche W geführt wird. In der Gaswäsche, die als Wasserwäsche ausgeführt ist, werden unerwünschte Stoffe, wie aromatische Verbindungen, Teere und Stäube aus dem Syntheserohgas ausgewaschen, wobei die Gastemperatur auf ca. 100°C abgesenkt und das Syntheserohgas mit Wasser gesättigt wird. Aus der Wasserwäsche W wird das gereinigte Syntheserohgas zur Durchführung einer Wasser-Gas-Shiftreaktion über Leitung 2 in den SILP-Reaktor S geführt, der einen geeigneten Katalysator enthält und in dem das im Syntheserohgas vorliegende Kohlenmonoxid katalytisch unterstützt mit Wasser bis auf wenige ppm in Wasserstoff und Kohlendioxid umgewandelt wird. Über Leitung 3 wird das Produktgas, das neben Wasserstoff noch weitere Komponenten, wie Kohlendioxid und Wasser enthält, aus dem SILP-Reaktor abgezogen und dem Wasserabscheider C zugeführt, in dem Wasser auskondensiert und aus dem Produktgas entfernt wird. Über Leitung 4 wird ein nahezu vollständig aus Wasserstoff und Kohlendioxid bestehendes Gasgemisch abgezogen und dem Verdichter P zugeleitet, aus dem das Gasgemisch mit erhöhtem Druck über Leitung 5 abströmt und einer Weiterverarbeitung (nicht dargestellt) zugeleitet wird.
Claims (6)
- Verfahren zur Umsetzung von kohlenstoffhaltigen Einsatzstoffen in ein wasserstoffreiches Produktgas, wobei aus den kohlenstoffhaltigen Einsatzstoffen in einem ersten Verfahrensschritt ein Wasserstoff (H2) und Kohlenmonoxid (CO) enthaltendes Syntheserohgas erzeugt wird, von welchem zumindest ein Teil einer katalytisch unterstützten Wasser-Gas-Shiftreaktion zur Erhöhung des Wasserstoffanteils unterzogen wird, dadurch gekennzeichnet, dass die Wasser-Gas-Shiftreaktion bei Temperaturen zwischen 50 und 200°C, bevorzugt aber zwischen 60 und 150°C und Drücken zwischen 1 und 10 bar, bevorzugt aber zwischen 1 und 5 bar in einem Reaktor durchgeführt wird, in dem ein geeigneter Katalysator vorliegt.
- Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die kohlenwasserstoffhaltigen.Einsatzstoffe bei geringen Drücken von weniger als 12 bar durch Pyrolyse (Niederdruckpyrolyse) in Syntheserohgase umgesetzt werden.
- Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass das Syntheserohgas vor der Einleitung in den Wasser-Gas-Shiftreaktor einer Gaswäsche mit Wasser unterzogen wird.
- Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das es sich bei den kohlenstoffhaltigen Einsatzstoffen um auf biologischen Wegen erzeugte Stoffe handelt.
- Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Wasser-Gas-Shiftreaktor ein sog. "Supported lonic Liquid Phase" (SILP)-Reaktor verwendet wird, in dem ein geeigneter Katalysator in einer auf einem Substrat immobilisierten ionischen Flüssigkeit vorliegt.
- Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass ein Teil des Syntheserohgases im Bypass zum Wasser-Gas-Shiftreaktor geleitet und mit dem Produkt aus dem Wasser-Gas-Shiftreaktor zu einem wasserstoffreichen Produktgas zusammengeführt wird, wobei die Größe des Bypass-Stromes so geregelt wird, dass das H2/CO-Verhältnis im wasserstoffreichen Produktgas einem vorgegeben Wert entspricht.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102006032104A DE102006032104A1 (de) | 2006-07-11 | 2006-07-11 | Verfahren zur Erzeugung von Wasserstoff und Wasserstoff enthaltenden Gasgemischen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1878782A1 true EP1878782A1 (de) | 2008-01-16 |
Family
ID=38521688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07013229A Withdrawn EP1878782A1 (de) | 2006-07-11 | 2007-07-06 | Verfahren zur Erzeugung von Wasserstoff mit Hilfe der Wassergas-Shift-Reaktion bei sehr niedrigen Temperaturen |
Country Status (3)
Country | Link |
---|---|
US (1) | US20080014126A1 (de) |
EP (1) | EP1878782A1 (de) |
DE (1) | DE102006032104A1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008012735A1 (de) | 2008-03-05 | 2009-09-10 | Uhde Gmbh | Dampfbetriebener Ejektor für eine Druckwechseladsorptionseinheit |
WO2011023368A1 (de) * | 2009-08-24 | 2011-03-03 | Szesni, Normen | Katalysatorzusammensetzung für die umsetzung von kohlenmonoxid in gasströmen |
CN103449365A (zh) * | 2013-04-28 | 2013-12-18 | 山东齐鲁科力化工研究院有限公司 | 高浓度co耐硫变换工艺及其装置 |
CN114015472A (zh) * | 2020-07-15 | 2022-02-08 | 中国石油大学(华东) | 一种逆水煤气变换反应及其与电解水制氢耦合的煤制甲醇工艺 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB0805020D0 (en) * | 2008-03-18 | 2008-04-16 | Al Chalabi Rifat | Active reformer |
SE533049C2 (sv) * | 2008-06-12 | 2010-06-15 | Cortus Ab | Förfarande och anläggning för framställning av vätgas från biomassa |
WO2010056458A2 (en) * | 2008-11-12 | 2010-05-20 | Uni-Control, Llc | Hydrogen production by biological water-gas shift reaction using carbon monoxide |
WO2010056463A2 (en) * | 2008-11-12 | 2010-05-20 | Uni-Control, Llc | Waste to energy process comprising biological water shift reaction using carbon monoxide produced via gasification to produce hydrogen |
CN104291269A (zh) * | 2013-07-18 | 2015-01-21 | 通用电气公司 | 发电系统和方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4021366A (en) * | 1975-06-30 | 1977-05-03 | Texaco Inc. | Production of hydrogen-rich gas |
US20030021741A1 (en) * | 2001-04-26 | 2003-01-30 | Robert Childress | Compact fuel processor |
WO2004062764A2 (en) * | 2003-01-13 | 2004-07-29 | Fluor Corporation | Improved configuration and process for shift conversion |
WO2004072207A1 (en) * | 2003-02-17 | 2004-08-26 | Fortum Oyj | Method for producing synthesis gas |
US20050276741A1 (en) * | 2004-06-10 | 2005-12-15 | Chevron U.S.A. Inc. | Method for making hydrogen using a gold containing water-gas shift catalyst |
-
2006
- 2006-07-11 DE DE102006032104A patent/DE102006032104A1/de not_active Withdrawn
-
2007
- 2007-07-06 EP EP07013229A patent/EP1878782A1/de not_active Withdrawn
- 2007-07-10 US US11/775,737 patent/US20080014126A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4021366A (en) * | 1975-06-30 | 1977-05-03 | Texaco Inc. | Production of hydrogen-rich gas |
US20030021741A1 (en) * | 2001-04-26 | 2003-01-30 | Robert Childress | Compact fuel processor |
WO2004062764A2 (en) * | 2003-01-13 | 2004-07-29 | Fluor Corporation | Improved configuration and process for shift conversion |
WO2004072207A1 (en) * | 2003-02-17 | 2004-08-26 | Fortum Oyj | Method for producing synthesis gas |
US20050276741A1 (en) * | 2004-06-10 | 2005-12-15 | Chevron U.S.A. Inc. | Method for making hydrogen using a gold containing water-gas shift catalyst |
Non-Patent Citations (4)
Title |
---|
DINESH C YERAGI ET AL: "Low-temperature water-gas shift reaction over Mn-promoted Cu/Al2O3 catalysts", CATALYSIS LETTERS, KLUWER ACADEMIC PUBLISHERS-PLENUM PUBLISHERS, NE, vol. 112, no. 3-4, 1 December 2006 (2006-12-01), pages 139 - 148, XP019447785, ISSN: 1572-879X * |
HAMELINCK C N ET AL: "Future prospects for production of methanol and hydrogen from biomass", JOURNAL OF POWER SOURCES, ELSEVIER, AMSTERDAM, NL, vol. 111, no. 1, 18 September 2002 (2002-09-18), pages 1 - 22, XP004380118, ISSN: 0378-7753 * |
MAIYA P S ET AL: "Maximizing H2 production by combined partial oxidation of CH4 and water gas shift reaction", APPLIED CATALYSIS A: GENERAL, ELSEVIER SCIENCE, AMSTERDAM, NL, vol. 196, no. 1, 27 March 2000 (2000-03-27), pages 65 - 72, XP004272265, ISSN: 0926-860X * |
RIISAGER ET AL: "Supported ionic liquid phase (SILP) catalysis. An innovative concept for homogeneous catalysis in continuous fixed-bed reactors", EUROPEAN JOURNAL OF INORGANIC CHEMISTRY, WILEY-VCH VERLAG, WEINHEIM, DE, no. 4, 1 February 2006 (2006-02-01), pages 695 - 706, XP002444152, ISSN: 1434-1948 * |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008012735A1 (de) | 2008-03-05 | 2009-09-10 | Uhde Gmbh | Dampfbetriebener Ejektor für eine Druckwechseladsorptionseinheit |
US8361198B2 (en) | 2008-03-05 | 2013-01-29 | Uhde Gmbh | Process and device for the separation of foreign gases from a reducing useful gas by steam-driven pressure swing adsorption |
WO2011023368A1 (de) * | 2009-08-24 | 2011-03-03 | Szesni, Normen | Katalysatorzusammensetzung für die umsetzung von kohlenmonoxid in gasströmen |
CN103449365A (zh) * | 2013-04-28 | 2013-12-18 | 山东齐鲁科力化工研究院有限公司 | 高浓度co耐硫变换工艺及其装置 |
CN114015472A (zh) * | 2020-07-15 | 2022-02-08 | 中国石油大学(华东) | 一种逆水煤气变换反应及其与电解水制氢耦合的煤制甲醇工艺 |
Also Published As
Publication number | Publication date |
---|---|
DE102006032104A1 (de) | 2008-01-24 |
US20080014126A1 (en) | 2008-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1878782A1 (de) | Verfahren zur Erzeugung von Wasserstoff mit Hilfe der Wassergas-Shift-Reaktion bei sehr niedrigen Temperaturen | |
EP1648817B1 (de) | Verfahren zur gewinnung von wasserstoff aus einem methanhaltigen gas, insbesondere erdgas und anlage zur durchführung des verfahrens | |
EP3847146B1 (de) | Verfahren zur herstellung von methanol aus synthesegas ohne emission von kohlendioxid | |
DE102012112705A1 (de) | Verfahren zur Herstellung von Methanol aus Kohlendioxid | |
DE102009022509A1 (de) | Verfahren zur Herstellung von Synthesegas | |
EP3176152A1 (de) | Verfahren zur erzeugung von harnstoff | |
EP3323786A1 (de) | Verfahren zur kombinierten herstellung von methanol und ammoniak | |
EP3219697A1 (de) | Methanolsynthese aus synthesegasen mit wasserstoffmangel | |
EP3102309B1 (de) | Verfahren zur herstellung höhermolekularer verbindungen aus synthesegas unter verwendung eines indirekt beheizten co2-tsa | |
DE69804331T2 (de) | Verfahren zur herstellung von flüssigen kohlenwasserstoffen | |
DE3510096C2 (de) | ||
EP2014614B1 (de) | Verfahren und Vorrichtung zur Nutzung von Russ in POX-Anlagen | |
EP3969433A1 (de) | Verfahren und anlage zur synthese von methanol | |
EP3466869B1 (de) | Verfahren zur kombinierten herstellung von methanol und von ammoniak | |
EP4031640B1 (de) | Anlage und verfahren zur herstellung von synthetischen kraftstoffen ohne frischwasser | |
DE102014202803B4 (de) | Verfahren zur Herstellung flüssiger und/oder fester Kohlenwasserstoffverbindungen | |
WO2016102533A1 (de) | Verfahren zur herstellung und nutzung eines kohlenwasserstoffgemisches | |
EP1818310A1 (de) | Verfahren zur Erzeugung von Kohlenmonoxid aus Synthesegas | |
BE1029787B1 (de) | Verfahren zur Ammoniaksynthese und Anlage zur Herstellung von Ammoniak | |
EP4197967A1 (de) | Verfahren und anlage zum herstellen von methanol und kohlenmonoxid | |
DE102016006713A1 (de) | Verfahren und Anlage zur Herstellung von Ethanol | |
DE102020208458A1 (de) | Anlagenverbund sowie Verfahren zum Betrieb eines solchen Anlagenverbundes zur Herstellung höherer Alkohole | |
DE102015004214A1 (de) | Verfahren zur Erzeugung von Synthesegas aus einem CO2-reichen, kohlenwasserstoffhaltigen Einsatzgas | |
WO2014072033A1 (de) | Verfahren und vorrichtung zur gewinnung von synthesegas aus einem kohlenwasserstoffhaltigen restgas | |
WO2023046860A1 (de) | Verfahren zur ammoniaksynthese und anlage zur herstellung von ammoniak |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20080219 |
|
17Q | First examination report despatched |
Effective date: 20080318 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20080930 |