EP1873469A2 - Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air - Google Patents
Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air Download PDFInfo
- Publication number
- EP1873469A2 EP1873469A2 EP07111391A EP07111391A EP1873469A2 EP 1873469 A2 EP1873469 A2 EP 1873469A2 EP 07111391 A EP07111391 A EP 07111391A EP 07111391 A EP07111391 A EP 07111391A EP 1873469 A2 EP1873469 A2 EP 1873469A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- nitrogen
- stream
- lng
- pressure
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000000926 separation method Methods 0.000 title claims abstract description 13
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 424
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 206
- 230000000153 supplemental effect Effects 0.000 claims abstract description 58
- 238000004821 distillation Methods 0.000 claims abstract description 41
- 238000005057 refrigeration Methods 0.000 claims abstract description 20
- 239000003949 liquefied natural gas Substances 0.000 claims description 116
- 239000007788 liquid Substances 0.000 claims description 48
- 238000004519 manufacturing process Methods 0.000 claims description 38
- 238000012545 processing Methods 0.000 claims description 25
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 22
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 21
- 239000001301 oxygen Substances 0.000 claims description 21
- 229910052760 oxygen Inorganic materials 0.000 claims description 21
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 16
- 238000010992 reflux Methods 0.000 claims description 9
- 229910052786 argon Inorganic materials 0.000 claims description 8
- 238000009835 boiling Methods 0.000 claims description 7
- 239000002826 coolant Substances 0.000 claims description 5
- 239000012535 impurity Substances 0.000 claims description 5
- 229910052743 krypton Inorganic materials 0.000 claims description 2
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 claims description 2
- 229910052724 xenon Inorganic materials 0.000 claims description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 2
- 230000009977 dual effect Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 24
- 239000003507 refrigerant Substances 0.000 description 13
- 229910001873 dinitrogen Inorganic materials 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000008016 vaporization Effects 0.000 description 6
- 230000006835 compression Effects 0.000 description 5
- 238000007906 compression Methods 0.000 description 5
- 239000012530 fluid Substances 0.000 description 5
- 239000007789 gas Substances 0.000 description 5
- 239000012263 liquid product Substances 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000013461 design Methods 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000011084 recovery Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000003463 adsorbent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- VUZPPFZMUPKLLV-UHFFFAOYSA-N methane;hydrate Chemical compound C.O VUZPPFZMUPKLLV-UHFFFAOYSA-N 0.000 description 1
- 230000008450 motivation Effects 0.000 description 1
- -1 streams 332 Chemical compound 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000009834 vaporization Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0257—Construction and layout of liquefaction equipments, e.g. valves, machines
- F25J1/0262—Details of the cold heat exchange system
- F25J1/0264—Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/0002—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
- F25J1/0012—Primary atmospheric gases, e.g. air
- F25J1/0015—Nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/003—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
- F25J1/0032—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
- F25J1/004—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0221—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
- F25J1/0224—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0228—Coupling of the liquefaction unit to other units or processes, so-called integrated processes
- F25J1/0234—Integration with a cryogenic air separation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0244—Operation; Control and regulation; Instrumentation
- F25J1/0245—Different modes, i.e. 'runs', of operation; Process control
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J1/00—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
- F25J1/02—Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
- F25J1/0243—Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
- F25J1/0279—Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
- F25J1/0292—Refrigerant compression by cold or cryogenic suction of the refrigerant gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04006—Providing pressurised feed air or process streams within or from the air fractionation unit
- F25J3/04048—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
- F25J3/0406—Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04151—Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
- F25J3/04187—Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
- F25J3/04218—Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
- F25J3/04224—Cores associated with a liquefaction or refrigeration cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04254—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
- F25J3/0426—The cryogenic component does not participate in the fractionation
- F25J3/04266—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
- F25J3/04272—The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04248—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
- F25J3/04333—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
- F25J3/04351—Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04406—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
- F25J3/04412—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04642—Recovering noble gases from air
- F25J3/04648—Recovering noble gases from air argon
- F25J3/04654—Producing crude argon in a crude argon column
- F25J3/04666—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
- F25J3/04672—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
- F25J3/04678—Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04769—Operation, control and regulation of the process; Instrumentation within the process
- F25J3/04812—Different modes, i.e. "runs" of operation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J3/00—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
- F25J3/02—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
- F25J3/04—Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
- F25J3/04763—Start-up or control of the process; Details of the apparatus used
- F25J3/04866—Construction and layout of air fractionation equipments, e.g. valves, machines
- F25J3/04969—Retrofitting or revamping of an existing air fractionation unit
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/02—Multiple feed streams, e.g. originating from different sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2210/00—Processes characterised by the type or other details of the feed stream
- F25J2210/62—Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/08—Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2230/00—Processes or apparatus involving steps for increasing the pressure of gaseous process streams
- F25J2230/42—Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25J—LIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
- F25J2245/00—Processes or apparatus involving steps for recycling of process streams
- F25J2245/42—Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen
Definitions
- the present invention concerns the known embodiment of the above-described Process wherein, in order to provide the refrigeration necessary when at least a portion of the product is desired as liquid, refrigeration is extracted from liquefied natural gas (hereafter "LNG”) by feeding nitrogen from the distillation column system to an insulated liquefier unit (hereafter “LNG-based liquefier”) where it is liquefied. If at least a portion of the liquid product desired is liquid oxygen, at least a portion of the liquefied nitrogen is returned to the distillation column system (or optionally the main heat exchanger). Otherwise, the liquefied nitrogen is withdrawn as product.
- LNG liquefied natural gas
- LNG-based liquefier insulated liquefier unit
- An LNG-based liquefier is typically oversized to accommodate a projected increase in demand of liquid products after the initial years of operation. This is particularly true for liquid nitrogen since the demand for liquid nitrogen out of any particularly ASU often grows faster than the demand for liquid oxygen above the base load of liquid oxygen for which the plant is designed. A problem with this oversizing approach however is the incremental capital cost incurred does not begin to pay off until the projected demand increase is actually realized (if at all). Furthermore, capital costs are particularly sensitive for LNG-based liquefiers since, as opposed to conventional liquefiers which are typically located near the customers of the liquid products, LNG-based liquefiers must be located near an LNG receiving terminal and thus incur a product transportation cost penalty.
- the capacity of an LNG-based liquefier can be increased by adding a dense fluid expander. However, only modest capacity increases can be achieved in this manner.
- the LNG is not sufficiently cold to liquefy a low-pressure nitrogen gas.
- the boiling temperature would be typically above -260°F (-162°C), and the nitrogen would need to be compressed to at least 15.5 bara (1.55 MPa) in order to condense.
- the LNG vaporization pressure is increased, so too will the required nitrogen pressure be increased. Therefore, multiple stages of nitrogen compression are required, and LNG can be used to provide cooling for the compressor intercooler and aftercooler.
- EP-A-0,304,355 (hereafter "EP '355") teaches the use of an inert gas recycle such as nitrogen or argon to act as a medium to transfer refrigeration from the LNG to the air separation plant.
- the high pressure inert gas stream is liquefied against vaporizing LNG then used to cool medium pressure streams from the air separation unit (ASU).
- ASU air separation unit
- One of the ASU streams, after cooling, is cold compressed, liquefied and returned to the ASU as refrigerant.
- the motivation here is to maintain the streams in the same heat exchanger as the LNG at a higher pressure than the LNG. This is done to assure that LNG cannot leak into the nitrogen streams, i.e. to ensure that methane cannot be transported into the ASU with the liquefied return nitrogen.
- the authors also assert that the bulk of the refrigeration needed for the ASU is blown as reflux liquid into a rectifying column.
- the low pressure nitrogen Prior to boosting the pressure of the low pressure nitrogen, the low pressure nitrogen may be combined with a gaseous nitrogen vent stream from the LNG-based liquefier and, after boosting the pressure of the low pressure nitrogen but before feeding it to the LNG-based liquefier, the low pressure nitrogen may be cooled by indirect heat exchange against a cooling medium in a supplemental aftercooling heat exchanger that is separate and distinct from the auxiliary heat exchanger.
- an apparatus for the cryogenic separation of air comprising:
- the system may comprise a supplemental aftercooling heat exchanger that is separate and distinct from the auxiliary heat exchanger for cooling LP nitrogen by indirect heat exchange against a cooling medium.
- Stream 182 is ultimately rejected to the atmosphere.
- Stream 176 is processed in the LNG-based liquefier 2 to create liquefied nitrogen product stream 188 and liquid nitrogen refrigerant stream 186.
- Liquid nitrogen refrigerant stream 186 is introduced into the distillation columns through valves 136 and 140.
- Refrigeration for LNG-based liquefier is provided from LNG stream 194, which is vaporized and heated to produce stream 198.
- the only nitrogen feed to the LNG-based liquefier is stream 176, which originates from the higher pressure column 114.
- Stream 182 is transformed utilizing a supplemental compressor and the associated heat exchange equipment (referred to hereunder as the "supplemental processing unit" which is depicted as unit 3 in Figure 1 a) to become stream 184, then mixed with stream 176, to form a feed to the LNG-based liquefier 2.
- supplemental processing unit which is depicted as unit 3 in Figure 1 a
- Liquefied nitrogen product stream 188 and liquid nitrogen refrigerant stream 186 are produced within the LNG-based liquefier.
- Liquid nitrogen refrigerant stream 186 is introduced into the distillation columns through valves 136 and 140.
- the source of the nitrogen feed to the LNG-based liquefier leaves the ASU as two streams, 182 and 176.
- the supplemental processing unit as depicted as unit 3 in Figures 3b and 3c does not necessarily refer to single physical unit.
- the supplemental compressor can be contained in a housing with other compressors while the supplemental heat exchanger can be contained in a housing with other heat exchangers.
- the supplemental compressor and heat exchanger operate at above ambient temperature in Figure 3c's embodiment of the present invention, this equipment operates at below ambient temperatures in Figure 3b's embodiment and therefore must be insulated.
- atmospheric air 100 is compressed in the main air compressor 102, purified in adsorbent bed 104 to remove impurities such as carbon dioxide and water, then divided into two fractions: stream 230 and stream 208.
- Stream 208 is cooled in main heat exchanger 110 to become stream 212, the vapor feed air to the higher pressure column 114.
- Stream 230 is cooled to a temperature near that of stream 212 then at least partially condensed to form stream 232, split into streams 434 and 438, then eventually reduced in pressure across valves 236 and 240 and introduced to the higher pressure column 114 and lower pressure column 116.
- the higher pressure column produces a nitrogen-enriched vapor from the top, stream 462, and an oxygen-enriched stream, 450, from the bottom.
- Stream 462 is split into stream 174 and stream 464.
- Stream 174 is warmed in the main heat exchanger then passed, as stream 176 to the LNG-based liquefier 2.
- Stream 464 is condensed in reboiler-condenser 418 to form stream 466.
- a portion of stream 466 is returned to the higher pressure column as reflux (stream 468); the remainder, stream 470, is eventually introduced to the lower pressure column as the top feed to that column through valve 472.
- Oxygen-enriched stream 450 is passed to the argon column's reboiler-condenser 484 through valve 452, and at least partially vaporized to form stream 456, which is directed to the lower pressure column.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Separation By Low-Temperature Treatments (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/477,924 US7712331B2 (en) | 2006-06-30 | 2006-06-30 | System to increase capacity of LNG-based liquefier in air separation process |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1873469A2 true EP1873469A2 (fr) | 2008-01-02 |
EP1873469A3 EP1873469A3 (fr) | 2012-08-01 |
Family
ID=38596366
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07111391A Withdrawn EP1873469A3 (fr) | 2006-06-30 | 2007-06-29 | Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air |
Country Status (9)
Country | Link |
---|---|
US (1) | US7712331B2 (fr) |
EP (1) | EP1873469A3 (fr) |
JP (1) | JP5015674B2 (fr) |
KR (1) | KR100874680B1 (fr) |
CN (1) | CN101097112B (fr) |
CA (1) | CA2593649C (fr) |
MX (1) | MX2007007878A (fr) |
SG (1) | SG138574A1 (fr) |
TW (1) | TWI302188B (fr) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010002500A3 (fr) * | 2008-06-30 | 2010-09-30 | Praxair Technology, Inc. | Montage a posteriori d'un liquéfacteur d'azote dans une installation de séparation d'air |
Families Citing this family (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090241595A1 (en) * | 2008-03-27 | 2009-10-01 | Praxair Technology, Inc. | Distillation method and apparatus |
US20090293537A1 (en) * | 2008-05-27 | 2009-12-03 | Ameringer Greg E | NGL Extraction From Natural Gas |
US20100050688A1 (en) * | 2008-09-03 | 2010-03-04 | Ameringer Greg E | NGL Extraction from Liquefied Natural Gas |
US9714789B2 (en) * | 2008-09-10 | 2017-07-25 | Praxair Technology, Inc. | Air separation refrigeration supply method |
US9291388B2 (en) * | 2009-06-16 | 2016-03-22 | Praxair Technology, Inc. | Method and system for air separation using a supplemental refrigeration cycle |
CN103429979B (zh) * | 2010-11-17 | 2015-10-21 | 普莱克斯技术有限公司 | 用于在多晶硅生产工艺中使用液态氮提纯硅烷的系统和方法 |
JP5781487B2 (ja) * | 2012-10-30 | 2015-09-24 | 株式会社神戸製鋼所 | 酸素富化空気製造システム |
TWI603044B (zh) | 2015-07-10 | 2017-10-21 | 艾克頌美孚上游研究公司 | 使用液化天然氣製造液化氮氣之系統與方法 |
TWI606221B (zh) | 2015-07-15 | 2017-11-21 | 艾克頌美孚上游研究公司 | 一倂移除溫室氣體之液化天然氣的生產系統和方法 |
TWI608206B (zh) | 2015-07-15 | 2017-12-11 | 艾克頌美孚上游研究公司 | 藉由預冷卻天然氣供給流以增加效率的液化天然氣(lng)生產系統 |
FR3044747B1 (fr) * | 2015-12-07 | 2019-12-20 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude | Procede de liquefaction de gaz naturel et d'azote |
CA3006957C (fr) | 2015-12-14 | 2020-09-15 | Exxonmobil Upstream Research Company | Procede de liquefaction de gaz naturel sur des methaniers stockant de l'azote liquide |
EP3390941A1 (fr) | 2015-12-14 | 2018-10-24 | Exxonmobil Upstream Research Company | Procédé et système pour séparer l'azote d'un gaz naturel liquéfié à l'aide d'azote liquéfié |
CN106196886A (zh) * | 2016-07-13 | 2016-12-07 | 浙江智海化工设备工程有限公司 | 一种新型低能耗氧内压缩氮膨胀无空气膨胀机的空分流程 |
JP6858267B2 (ja) | 2017-02-24 | 2021-04-14 | エクソンモービル アップストリーム リサーチ カンパニー | 二重目的lng/lin貯蔵タンクのパージ方法 |
CN106883897A (zh) * | 2017-03-29 | 2017-06-23 | 四川华亿石油天然气工程有限公司 | Bog分离提纯设备及工艺 |
WO2019236246A1 (fr) | 2018-06-07 | 2019-12-12 | Exxonmobil Upstream Research Company | Pré-traitement et pré-refroidissement de gaz naturel par compression et détente à haute pression |
US11326834B2 (en) | 2018-08-14 | 2022-05-10 | Exxonmobil Upstream Research Company | Conserving mixed refrigerant in natural gas liquefaction facilities |
EP3841342A1 (fr) | 2018-08-22 | 2021-06-30 | ExxonMobil Upstream Research Company | Gestion de la variation de la composition de gaz d'appoint pour un procédé de détendeur à haute pression |
AU2019325914B2 (en) | 2018-08-22 | 2023-01-19 | ExxonMobil Technology and Engineering Company | Primary loop start-up method for a high pressure expander process |
SG11202101058QA (en) | 2018-08-22 | 2021-03-30 | Exxonmobil Upstream Res Co | Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same |
WO2020106394A1 (fr) | 2018-11-20 | 2020-05-28 | Exxonmobil Upstream Research Company | Procédé prico utilisant des échangeurs de chaleur tolérants aux solides |
WO2020106397A1 (fr) | 2018-11-20 | 2020-05-28 | Exxonmobil Upstream Research Company | Procédés et appareils pour l'amélioration des échangeurs de chaleur à parois raclées multiplaques |
EP3918261A1 (fr) | 2019-01-30 | 2021-12-08 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Procédés d'élimination de l'humidité d'un fluide frigorigène de gnl |
US11668524B2 (en) | 2019-01-30 | 2023-06-06 | Exxonmobil Upstream Research Company | Methods for removal of moisture from LNG refrigerant |
US11465093B2 (en) | 2019-08-19 | 2022-10-11 | Exxonmobil Upstream Research Company | Compliant composite heat exchangers |
US20210063083A1 (en) | 2019-08-29 | 2021-03-04 | Exxonmobil Upstream Research Company | Liquefaction of Production Gas |
NL2026450B1 (en) | 2019-09-11 | 2022-02-21 | Cramwinckel Michiel | Process to convert a waste polymer product to a gaseous product |
EP4031822A1 (fr) | 2019-09-19 | 2022-07-27 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Prétraitement et prérefroidissement de gaz naturel par compression et détente à haute pression |
EP4031820A1 (fr) | 2019-09-19 | 2022-07-27 | Exxonmobil Upstream Research Company (EMHC-N1-4A-607) | Prétraitement, pré-refroidissement et récupération de condensat de gaz naturel par compression et détente à haute pression |
US11815308B2 (en) | 2019-09-19 | 2023-11-14 | ExxonMobil Technology and Engineering Company | Pretreatment and pre-cooling of natural gas by high pressure compression and expansion |
US11083994B2 (en) | 2019-09-20 | 2021-08-10 | Exxonmobil Upstream Research Company | Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration |
JP2022548529A (ja) | 2019-09-24 | 2022-11-21 | エクソンモービル アップストリーム リサーチ カンパニー | Lng及び液体窒素のための船舶又は浮遊貯蔵ユニット上の両用極低温タンクのための貨物ストリッピング機能 |
WO2021084016A1 (fr) | 2019-10-29 | 2021-05-06 | Michiel Cramwinckel | Procédé de conversion de produit plastique |
CN110748786B (zh) * | 2019-11-25 | 2023-08-11 | 杭氧集团股份有限公司 | 一种基于氩、氮、和正氢三级保温层的工业储存液氢的装置 |
NL2027029B1 (en) | 2020-12-03 | 2022-07-06 | Cramwinckel Michiel | Suspension of a waste plastic and a vacuum gas oil |
EP3878926A1 (fr) | 2020-03-09 | 2021-09-15 | Michiel Cramwinckel | Suspension d'un déchet plastique et d'un gazole sous vide, sa préparation et son utilisation dans fcc |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5139547A (en) * | 1991-04-26 | 1992-08-18 | Air Products And Chemicals, Inc. | Production of liquid nitrogen using liquefied natural gas as sole refrigerant |
US5220798A (en) * | 1990-09-18 | 1993-06-22 | Teisan Kabushiki Kaisha | Air separating method using external cold source |
EP0932002A2 (fr) * | 1998-01-22 | 1999-07-28 | Air Products And Chemicals, Inc. | Procédé à détendeur unique et à compresseur froid pour la production d'oxygène |
US6006545A (en) * | 1998-08-14 | 1999-12-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes | Liquefier process |
FR2783044A1 (fr) * | 1998-08-20 | 2000-03-10 | Air Liquide | Appareil de separation des gaz de l'air |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB422635A (en) | 1933-08-24 | 1935-01-16 | Distillers Co Yeast Ltd | Improvements in or relating to the catalytic hydration of olefines |
FR2060184B1 (fr) * | 1969-09-10 | 1973-11-16 | Air Liquide | |
FR2131985B1 (fr) | 1971-03-30 | 1974-06-28 | Snam Progetti | |
JPS57120077A (en) * | 1981-01-17 | 1982-07-26 | Nippon Oxygen Co Ltd | Air liquified separation utilizing chilling of liquified natural gas |
JPH0792324B2 (ja) * | 1985-12-27 | 1995-10-09 | 株式会社日立製作所 | 空気分離方法 |
JPH0789014B2 (ja) | 1987-07-28 | 1995-09-27 | テイサン株式会社 | 空気分離装置における外部冷熱源利用方法 |
JPH0252980A (ja) * | 1988-08-18 | 1990-02-22 | Kobe Steel Ltd | 空気分離装置 |
JP2622021B2 (ja) * | 1990-09-18 | 1997-06-18 | テイサン株式会社 | 外部冷熱源利用の空気分離方法 |
US5137558A (en) * | 1991-04-26 | 1992-08-11 | Air Products And Chemicals, Inc. | Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream |
US5141543A (en) * | 1991-04-26 | 1992-08-25 | Air Products And Chemicals, Inc. | Use of liquefied natural gas (LNG) coupled with a cold expander to produce liquid nitrogen |
FR2689224B1 (fr) * | 1992-03-24 | 1994-05-06 | Lair Liquide | Procede et installation de production d'azote sous haute pression et d'oxygene. |
JPH11142054A (ja) * | 1997-11-04 | 1999-05-28 | Nippon Sanso Kk | 液化天然ガスの冷熱を利用した空気液化分離装置及び方法 |
US5901579A (en) * | 1998-04-03 | 1999-05-11 | Praxair Technology, Inc. | Cryogenic air separation system with integrated machine compression |
JP3610246B2 (ja) | 1998-10-29 | 2005-01-12 | 大阪瓦斯株式会社 | Lngのボイルオフガス再液化および空気分離一体化装置 |
JP3474180B2 (ja) | 2001-06-14 | 2003-12-08 | エア・ウォーター株式会社 | ガス製品用空気分離装置およびその冷熱利用方法 |
US7228715B2 (en) * | 2003-12-23 | 2007-06-12 | L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude | Cryogenic air separation process and apparatus |
GB0422635D0 (en) * | 2004-10-12 | 2004-11-10 | Air Prod & Chem | Process for the cryogenic distillation of air |
-
2006
- 2006-06-30 US US11/477,924 patent/US7712331B2/en not_active Expired - Fee Related
- 2006-07-11 TW TW095125317A patent/TWI302188B/zh not_active IP Right Cessation
- 2006-08-11 CN CN2006101263809A patent/CN101097112B/zh not_active Expired - Fee Related
-
2007
- 2007-06-20 SG SG200704604-8A patent/SG138574A1/en unknown
- 2007-06-25 JP JP2007166660A patent/JP5015674B2/ja not_active Expired - Fee Related
- 2007-06-26 CA CA2593649A patent/CA2593649C/fr not_active Expired - Fee Related
- 2007-06-26 MX MX2007007878A patent/MX2007007878A/es active IP Right Grant
- 2007-06-29 EP EP07111391A patent/EP1873469A3/fr not_active Withdrawn
- 2007-06-29 KR KR1020070065173A patent/KR100874680B1/ko not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5220798A (en) * | 1990-09-18 | 1993-06-22 | Teisan Kabushiki Kaisha | Air separating method using external cold source |
US5139547A (en) * | 1991-04-26 | 1992-08-18 | Air Products And Chemicals, Inc. | Production of liquid nitrogen using liquefied natural gas as sole refrigerant |
EP0932002A2 (fr) * | 1998-01-22 | 1999-07-28 | Air Products And Chemicals, Inc. | Procédé à détendeur unique et à compresseur froid pour la production d'oxygène |
US6006545A (en) * | 1998-08-14 | 1999-12-28 | L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes | Liquefier process |
FR2783044A1 (fr) * | 1998-08-20 | 2000-03-10 | Air Liquide | Appareil de separation des gaz de l'air |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010002500A3 (fr) * | 2008-06-30 | 2010-09-30 | Praxair Technology, Inc. | Montage a posteriori d'un liquéfacteur d'azote dans une installation de séparation d'air |
Also Published As
Publication number | Publication date |
---|---|
TW200801423A (en) | 2008-01-01 |
TWI302188B (en) | 2008-10-21 |
MX2007007878A (es) | 2008-12-16 |
CN101097112A (zh) | 2008-01-02 |
US7712331B2 (en) | 2010-05-11 |
KR100874680B1 (ko) | 2008-12-18 |
CA2593649C (fr) | 2012-03-13 |
JP2008025986A (ja) | 2008-02-07 |
KR20080002673A (ko) | 2008-01-04 |
US20080000266A1 (en) | 2008-01-03 |
EP1873469A3 (fr) | 2012-08-01 |
SG138574A1 (en) | 2008-01-28 |
CN101097112B (zh) | 2012-09-19 |
JP5015674B2 (ja) | 2012-08-29 |
CA2593649A1 (fr) | 2007-12-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7712331B2 (en) | System to increase capacity of LNG-based liquefier in air separation process | |
US7552599B2 (en) | Air separation process utilizing refrigeration extracted from LNG for production of liquid oxygen | |
EP2050999B1 (fr) | Système pour compression froide d'un flux d'air utilisant une réfrigération au gaz naturel | |
US5644934A (en) | Process and device for low-temperature separation of air | |
CA3073932C (fr) | Systeme et procede de recuperation de gaz non condensables tels que le neon, l'helium, le xenon et le krypton a partir d'une unite de separation d'air | |
US5956973A (en) | Air separation with intermediate pressure vaporization and expansion | |
US20110192194A1 (en) | Cryogenic separation method and apparatus | |
JPH07159026A (ja) | 酸素と窒素を気体及び/又は液体製品として同時に製造するための空気の低温蒸留法 | |
US10408536B2 (en) | System and method for recovery of neon and helium from an air separation unit | |
JP2002327981A (ja) | 3塔式深冷空気分離方法 | |
US5006137A (en) | Nitrogen generator with dual reboiler/condensers in the low pressure distillation column | |
US6257020B1 (en) | Process for the cryogenic separation of gases from air | |
EP0580348B1 (fr) | Liquéfacteur hybride pour air et azote de recyclage | |
CA2206649C (fr) | Methode et appareil pour l'obtention de produits liquides a partir de l'air, en diverses proportions | |
TW202227766A (zh) | 以混合氣體渦輪機低溫分離空氣之方法及裝置 | |
US20230221069A1 (en) | Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit | |
US20210356205A1 (en) | Enhancements to a moderate pressure nitrogen and argon producing cryogenic air separation unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25J 3/04 20060101AFI20120628BHEP |
|
17P | Request for examination filed |
Effective date: 20130130 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F25J 1/02 20060101ALI20131105BHEP Ipc: F25J 1/00 20060101ALI20131105BHEP Ipc: F25J 3/04 20060101AFI20131105BHEP |
|
INTG | Intention to grant announced |
Effective date: 20131128 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140326 |
|
INTG | Intention to grant announced |
Effective date: 20140409 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20140820 |