EP1873469A2 - Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air - Google Patents

Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air Download PDF

Info

Publication number
EP1873469A2
EP1873469A2 EP07111391A EP07111391A EP1873469A2 EP 1873469 A2 EP1873469 A2 EP 1873469A2 EP 07111391 A EP07111391 A EP 07111391A EP 07111391 A EP07111391 A EP 07111391A EP 1873469 A2 EP1873469 A2 EP 1873469A2
Authority
EP
European Patent Office
Prior art keywords
nitrogen
stream
lng
pressure
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP07111391A
Other languages
German (de)
English (en)
Other versions
EP1873469A3 (fr
Inventor
Douglas Paul Dee
Jung Soo Choe
Donn Michael Herron
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
Air Products and Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Products and Chemicals Inc filed Critical Air Products and Chemicals Inc
Publication of EP1873469A2 publication Critical patent/EP1873469A2/fr
Publication of EP1873469A3 publication Critical patent/EP1873469A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0012Primary atmospheric gases, e.g. air
    • F25J1/0015Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/004Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by flash gas recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0221Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop
    • F25J1/0224Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using the cold stored in an external cryogenic component in an open refrigeration loop in combination with an internal quasi-closed refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0234Integration with a cryogenic air separation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0292Refrigerant compression by cold or cryogenic suction of the refrigerant gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04048Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams
    • F25J3/0406Providing pressurised feed air or process streams within or from the air fractionation unit by compression of cold gaseous streams, e.g. intermediate or oxygen enriched (waste) streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04151Purification and (pre-)cooling of the feed air; recuperative heat-exchange with product streams
    • F25J3/04187Cooling of the purified feed air by recuperative heat-exchange; Heat-exchange with product streams
    • F25J3/04218Parallel arrangement of the main heat exchange line in cores having different functions, e.g. in low pressure and high pressure cores
    • F25J3/04224Cores associated with a liquefaction or refrigeration cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04254Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using the cold stored in external cryogenic fluids
    • F25J3/0426The cryogenic component does not participate in the fractionation
    • F25J3/04266The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons
    • F25J3/04272The cryogenic component does not participate in the fractionation and being liquefied hydrocarbons and comprising means for reducing the risk of pollution of hydrocarbons into the air fractionation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04333Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/04351Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using quasi-closed loop internal vapor compression refrigeration cycles, e.g. of intermediate or oxygen enriched (waste-)streams of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04769Operation, control and regulation of the process; Instrumentation within the process
    • F25J3/04812Different modes, i.e. "runs" of operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04763Start-up or control of the process; Details of the apparatus used
    • F25J3/04866Construction and layout of air fractionation equipments, e.g. valves, machines
    • F25J3/04969Retrofitting or revamping of an existing air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/02Multiple feed streams, e.g. originating from different sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/62Liquefied natural gas [LNG]; Natural gas liquids [NGL]; Liquefied petroleum gas [LPG]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/08Cold compressor, i.e. suction of the gas at cryogenic temperature and generally without afterstage-cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/42Processes or apparatus involving steps for increasing the pressure of gaseous process streams the fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2245/00Processes or apparatus involving steps for recycling of process streams
    • F25J2245/42Processes or apparatus involving steps for recycling of process streams the recycled stream being nitrogen

Definitions

  • the present invention concerns the known embodiment of the above-described Process wherein, in order to provide the refrigeration necessary when at least a portion of the product is desired as liquid, refrigeration is extracted from liquefied natural gas (hereafter "LNG”) by feeding nitrogen from the distillation column system to an insulated liquefier unit (hereafter “LNG-based liquefier”) where it is liquefied. If at least a portion of the liquid product desired is liquid oxygen, at least a portion of the liquefied nitrogen is returned to the distillation column system (or optionally the main heat exchanger). Otherwise, the liquefied nitrogen is withdrawn as product.
  • LNG liquefied natural gas
  • LNG-based liquefier insulated liquefier unit
  • An LNG-based liquefier is typically oversized to accommodate a projected increase in demand of liquid products after the initial years of operation. This is particularly true for liquid nitrogen since the demand for liquid nitrogen out of any particularly ASU often grows faster than the demand for liquid oxygen above the base load of liquid oxygen for which the plant is designed. A problem with this oversizing approach however is the incremental capital cost incurred does not begin to pay off until the projected demand increase is actually realized (if at all). Furthermore, capital costs are particularly sensitive for LNG-based liquefiers since, as opposed to conventional liquefiers which are typically located near the customers of the liquid products, LNG-based liquefiers must be located near an LNG receiving terminal and thus incur a product transportation cost penalty.
  • the capacity of an LNG-based liquefier can be increased by adding a dense fluid expander. However, only modest capacity increases can be achieved in this manner.
  • the LNG is not sufficiently cold to liquefy a low-pressure nitrogen gas.
  • the boiling temperature would be typically above -260°F (-162°C), and the nitrogen would need to be compressed to at least 15.5 bara (1.55 MPa) in order to condense.
  • the LNG vaporization pressure is increased, so too will the required nitrogen pressure be increased. Therefore, multiple stages of nitrogen compression are required, and LNG can be used to provide cooling for the compressor intercooler and aftercooler.
  • EP-A-0,304,355 (hereafter "EP '355") teaches the use of an inert gas recycle such as nitrogen or argon to act as a medium to transfer refrigeration from the LNG to the air separation plant.
  • the high pressure inert gas stream is liquefied against vaporizing LNG then used to cool medium pressure streams from the air separation unit (ASU).
  • ASU air separation unit
  • One of the ASU streams, after cooling, is cold compressed, liquefied and returned to the ASU as refrigerant.
  • the motivation here is to maintain the streams in the same heat exchanger as the LNG at a higher pressure than the LNG. This is done to assure that LNG cannot leak into the nitrogen streams, i.e. to ensure that methane cannot be transported into the ASU with the liquefied return nitrogen.
  • the authors also assert that the bulk of the refrigeration needed for the ASU is blown as reflux liquid into a rectifying column.
  • the low pressure nitrogen Prior to boosting the pressure of the low pressure nitrogen, the low pressure nitrogen may be combined with a gaseous nitrogen vent stream from the LNG-based liquefier and, after boosting the pressure of the low pressure nitrogen but before feeding it to the LNG-based liquefier, the low pressure nitrogen may be cooled by indirect heat exchange against a cooling medium in a supplemental aftercooling heat exchanger that is separate and distinct from the auxiliary heat exchanger.
  • an apparatus for the cryogenic separation of air comprising:
  • the system may comprise a supplemental aftercooling heat exchanger that is separate and distinct from the auxiliary heat exchanger for cooling LP nitrogen by indirect heat exchange against a cooling medium.
  • Stream 182 is ultimately rejected to the atmosphere.
  • Stream 176 is processed in the LNG-based liquefier 2 to create liquefied nitrogen product stream 188 and liquid nitrogen refrigerant stream 186.
  • Liquid nitrogen refrigerant stream 186 is introduced into the distillation columns through valves 136 and 140.
  • Refrigeration for LNG-based liquefier is provided from LNG stream 194, which is vaporized and heated to produce stream 198.
  • the only nitrogen feed to the LNG-based liquefier is stream 176, which originates from the higher pressure column 114.
  • Stream 182 is transformed utilizing a supplemental compressor and the associated heat exchange equipment (referred to hereunder as the "supplemental processing unit" which is depicted as unit 3 in Figure 1 a) to become stream 184, then mixed with stream 176, to form a feed to the LNG-based liquefier 2.
  • supplemental processing unit which is depicted as unit 3 in Figure 1 a
  • Liquefied nitrogen product stream 188 and liquid nitrogen refrigerant stream 186 are produced within the LNG-based liquefier.
  • Liquid nitrogen refrigerant stream 186 is introduced into the distillation columns through valves 136 and 140.
  • the source of the nitrogen feed to the LNG-based liquefier leaves the ASU as two streams, 182 and 176.
  • the supplemental processing unit as depicted as unit 3 in Figures 3b and 3c does not necessarily refer to single physical unit.
  • the supplemental compressor can be contained in a housing with other compressors while the supplemental heat exchanger can be contained in a housing with other heat exchangers.
  • the supplemental compressor and heat exchanger operate at above ambient temperature in Figure 3c's embodiment of the present invention, this equipment operates at below ambient temperatures in Figure 3b's embodiment and therefore must be insulated.
  • atmospheric air 100 is compressed in the main air compressor 102, purified in adsorbent bed 104 to remove impurities such as carbon dioxide and water, then divided into two fractions: stream 230 and stream 208.
  • Stream 208 is cooled in main heat exchanger 110 to become stream 212, the vapor feed air to the higher pressure column 114.
  • Stream 230 is cooled to a temperature near that of stream 212 then at least partially condensed to form stream 232, split into streams 434 and 438, then eventually reduced in pressure across valves 236 and 240 and introduced to the higher pressure column 114 and lower pressure column 116.
  • the higher pressure column produces a nitrogen-enriched vapor from the top, stream 462, and an oxygen-enriched stream, 450, from the bottom.
  • Stream 462 is split into stream 174 and stream 464.
  • Stream 174 is warmed in the main heat exchanger then passed, as stream 176 to the LNG-based liquefier 2.
  • Stream 464 is condensed in reboiler-condenser 418 to form stream 466.
  • a portion of stream 466 is returned to the higher pressure column as reflux (stream 468); the remainder, stream 470, is eventually introduced to the lower pressure column as the top feed to that column through valve 472.
  • Oxygen-enriched stream 450 is passed to the argon column's reboiler-condenser 484 through valve 452, and at least partially vaporized to form stream 456, which is directed to the lower pressure column.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation By Low-Temperature Treatments (AREA)
EP07111391A 2006-06-30 2007-06-29 Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air Withdrawn EP1873469A3 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/477,924 US7712331B2 (en) 2006-06-30 2006-06-30 System to increase capacity of LNG-based liquefier in air separation process

Publications (2)

Publication Number Publication Date
EP1873469A2 true EP1873469A2 (fr) 2008-01-02
EP1873469A3 EP1873469A3 (fr) 2012-08-01

Family

ID=38596366

Family Applications (1)

Application Number Title Priority Date Filing Date
EP07111391A Withdrawn EP1873469A3 (fr) 2006-06-30 2007-06-29 Système pour augmenter la capacité d'un liquéfacteur à base de GNL dans un procédé de séparation d'air

Country Status (9)

Country Link
US (1) US7712331B2 (fr)
EP (1) EP1873469A3 (fr)
JP (1) JP5015674B2 (fr)
KR (1) KR100874680B1 (fr)
CN (1) CN101097112B (fr)
CA (1) CA2593649C (fr)
MX (1) MX2007007878A (fr)
SG (1) SG138574A1 (fr)
TW (1) TWI302188B (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002500A3 (fr) * 2008-06-30 2010-09-30 Praxair Technology, Inc. Montage a posteriori d'un liquéfacteur d'azote dans une installation de séparation d'air

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090241595A1 (en) * 2008-03-27 2009-10-01 Praxair Technology, Inc. Distillation method and apparatus
US20090293537A1 (en) * 2008-05-27 2009-12-03 Ameringer Greg E NGL Extraction From Natural Gas
US20100050688A1 (en) * 2008-09-03 2010-03-04 Ameringer Greg E NGL Extraction from Liquefied Natural Gas
US9714789B2 (en) * 2008-09-10 2017-07-25 Praxair Technology, Inc. Air separation refrigeration supply method
US9291388B2 (en) * 2009-06-16 2016-03-22 Praxair Technology, Inc. Method and system for air separation using a supplemental refrigeration cycle
CN103429979B (zh) * 2010-11-17 2015-10-21 普莱克斯技术有限公司 用于在多晶硅生产工艺中使用液态氮提纯硅烷的系统和方法
JP5781487B2 (ja) * 2012-10-30 2015-09-24 株式会社神戸製鋼所 酸素富化空気製造システム
TWI603044B (zh) 2015-07-10 2017-10-21 艾克頌美孚上游研究公司 使用液化天然氣製造液化氮氣之系統與方法
TWI606221B (zh) 2015-07-15 2017-11-21 艾克頌美孚上游研究公司 一倂移除溫室氣體之液化天然氣的生產系統和方法
TWI608206B (zh) 2015-07-15 2017-12-11 艾克頌美孚上游研究公司 藉由預冷卻天然氣供給流以增加效率的液化天然氣(lng)生產系統
FR3044747B1 (fr) * 2015-12-07 2019-12-20 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procede de liquefaction de gaz naturel et d'azote
CA3006957C (fr) 2015-12-14 2020-09-15 Exxonmobil Upstream Research Company Procede de liquefaction de gaz naturel sur des methaniers stockant de l'azote liquide
EP3390941A1 (fr) 2015-12-14 2018-10-24 Exxonmobil Upstream Research Company Procédé et système pour séparer l'azote d'un gaz naturel liquéfié à l'aide d'azote liquéfié
CN106196886A (zh) * 2016-07-13 2016-12-07 浙江智海化工设备工程有限公司 一种新型低能耗氧内压缩氮膨胀无空气膨胀机的空分流程
JP6858267B2 (ja) 2017-02-24 2021-04-14 エクソンモービル アップストリーム リサーチ カンパニー 二重目的lng/lin貯蔵タンクのパージ方法
CN106883897A (zh) * 2017-03-29 2017-06-23 四川华亿石油天然气工程有限公司 Bog分离提纯设备及工艺
WO2019236246A1 (fr) 2018-06-07 2019-12-12 Exxonmobil Upstream Research Company Pré-traitement et pré-refroidissement de gaz naturel par compression et détente à haute pression
US11326834B2 (en) 2018-08-14 2022-05-10 Exxonmobil Upstream Research Company Conserving mixed refrigerant in natural gas liquefaction facilities
EP3841342A1 (fr) 2018-08-22 2021-06-30 ExxonMobil Upstream Research Company Gestion de la variation de la composition de gaz d'appoint pour un procédé de détendeur à haute pression
AU2019325914B2 (en) 2018-08-22 2023-01-19 ExxonMobil Technology and Engineering Company Primary loop start-up method for a high pressure expander process
SG11202101058QA (en) 2018-08-22 2021-03-30 Exxonmobil Upstream Res Co Heat exchanger configuration for a high pressure expander process and a method of natural gas liquefaction using the same
WO2020106394A1 (fr) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Procédé prico utilisant des échangeurs de chaleur tolérants aux solides
WO2020106397A1 (fr) 2018-11-20 2020-05-28 Exxonmobil Upstream Research Company Procédés et appareils pour l'amélioration des échangeurs de chaleur à parois raclées multiplaques
EP3918261A1 (fr) 2019-01-30 2021-12-08 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Procédés d'élimination de l'humidité d'un fluide frigorigène de gnl
US11668524B2 (en) 2019-01-30 2023-06-06 Exxonmobil Upstream Research Company Methods for removal of moisture from LNG refrigerant
US11465093B2 (en) 2019-08-19 2022-10-11 Exxonmobil Upstream Research Company Compliant composite heat exchangers
US20210063083A1 (en) 2019-08-29 2021-03-04 Exxonmobil Upstream Research Company Liquefaction of Production Gas
NL2026450B1 (en) 2019-09-11 2022-02-21 Cramwinckel Michiel Process to convert a waste polymer product to a gaseous product
EP4031822A1 (fr) 2019-09-19 2022-07-27 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Prétraitement et prérefroidissement de gaz naturel par compression et détente à haute pression
EP4031820A1 (fr) 2019-09-19 2022-07-27 Exxonmobil Upstream Research Company (EMHC-N1-4A-607) Prétraitement, pré-refroidissement et récupération de condensat de gaz naturel par compression et détente à haute pression
US11815308B2 (en) 2019-09-19 2023-11-14 ExxonMobil Technology and Engineering Company Pretreatment and pre-cooling of natural gas by high pressure compression and expansion
US11083994B2 (en) 2019-09-20 2021-08-10 Exxonmobil Upstream Research Company Removal of acid gases from a gas stream, with O2 enrichment for acid gas capture and sequestration
JP2022548529A (ja) 2019-09-24 2022-11-21 エクソンモービル アップストリーム リサーチ カンパニー Lng及び液体窒素のための船舶又は浮遊貯蔵ユニット上の両用極低温タンクのための貨物ストリッピング機能
WO2021084016A1 (fr) 2019-10-29 2021-05-06 Michiel Cramwinckel Procédé de conversion de produit plastique
CN110748786B (zh) * 2019-11-25 2023-08-11 杭氧集团股份有限公司 一种基于氩、氮、和正氢三级保温层的工业储存液氢的装置
NL2027029B1 (en) 2020-12-03 2022-07-06 Cramwinckel Michiel Suspension of a waste plastic and a vacuum gas oil
EP3878926A1 (fr) 2020-03-09 2021-09-15 Michiel Cramwinckel Suspension d'un déchet plastique et d'un gazole sous vide, sa préparation et son utilisation dans fcc

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5139547A (en) * 1991-04-26 1992-08-18 Air Products And Chemicals, Inc. Production of liquid nitrogen using liquefied natural gas as sole refrigerant
US5220798A (en) * 1990-09-18 1993-06-22 Teisan Kabushiki Kaisha Air separating method using external cold source
EP0932002A2 (fr) * 1998-01-22 1999-07-28 Air Products And Chemicals, Inc. Procédé à détendeur unique et à compresseur froid pour la production d'oxygène
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
FR2783044A1 (fr) * 1998-08-20 2000-03-10 Air Liquide Appareil de separation des gaz de l'air

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB422635A (en) 1933-08-24 1935-01-16 Distillers Co Yeast Ltd Improvements in or relating to the catalytic hydration of olefines
FR2060184B1 (fr) * 1969-09-10 1973-11-16 Air Liquide
FR2131985B1 (fr) 1971-03-30 1974-06-28 Snam Progetti
JPS57120077A (en) * 1981-01-17 1982-07-26 Nippon Oxygen Co Ltd Air liquified separation utilizing chilling of liquified natural gas
JPH0792324B2 (ja) * 1985-12-27 1995-10-09 株式会社日立製作所 空気分離方法
JPH0789014B2 (ja) 1987-07-28 1995-09-27 テイサン株式会社 空気分離装置における外部冷熱源利用方法
JPH0252980A (ja) * 1988-08-18 1990-02-22 Kobe Steel Ltd 空気分離装置
JP2622021B2 (ja) * 1990-09-18 1997-06-18 テイサン株式会社 外部冷熱源利用の空気分離方法
US5137558A (en) * 1991-04-26 1992-08-11 Air Products And Chemicals, Inc. Liquefied natural gas refrigeration transfer to a cryogenics air separation unit using high presure nitrogen stream
US5141543A (en) * 1991-04-26 1992-08-25 Air Products And Chemicals, Inc. Use of liquefied natural gas (LNG) coupled with a cold expander to produce liquid nitrogen
FR2689224B1 (fr) * 1992-03-24 1994-05-06 Lair Liquide Procede et installation de production d'azote sous haute pression et d'oxygene.
JPH11142054A (ja) * 1997-11-04 1999-05-28 Nippon Sanso Kk 液化天然ガスの冷熱を利用した空気液化分離装置及び方法
US5901579A (en) * 1998-04-03 1999-05-11 Praxair Technology, Inc. Cryogenic air separation system with integrated machine compression
JP3610246B2 (ja) 1998-10-29 2005-01-12 大阪瓦斯株式会社 Lngのボイルオフガス再液化および空気分離一体化装置
JP3474180B2 (ja) 2001-06-14 2003-12-08 エア・ウォーター株式会社 ガス製品用空気分離装置およびその冷熱利用方法
US7228715B2 (en) * 2003-12-23 2007-06-12 L'air Liquide, Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic air separation process and apparatus
GB0422635D0 (en) * 2004-10-12 2004-11-10 Air Prod & Chem Process for the cryogenic distillation of air

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5220798A (en) * 1990-09-18 1993-06-22 Teisan Kabushiki Kaisha Air separating method using external cold source
US5139547A (en) * 1991-04-26 1992-08-18 Air Products And Chemicals, Inc. Production of liquid nitrogen using liquefied natural gas as sole refrigerant
EP0932002A2 (fr) * 1998-01-22 1999-07-28 Air Products And Chemicals, Inc. Procédé à détendeur unique et à compresseur froid pour la production d'oxygène
US6006545A (en) * 1998-08-14 1999-12-28 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Liquefier process
FR2783044A1 (fr) * 1998-08-20 2000-03-10 Air Liquide Appareil de separation des gaz de l'air

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002500A3 (fr) * 2008-06-30 2010-09-30 Praxair Technology, Inc. Montage a posteriori d'un liquéfacteur d'azote dans une installation de séparation d'air

Also Published As

Publication number Publication date
TW200801423A (en) 2008-01-01
TWI302188B (en) 2008-10-21
MX2007007878A (es) 2008-12-16
CN101097112A (zh) 2008-01-02
US7712331B2 (en) 2010-05-11
KR100874680B1 (ko) 2008-12-18
CA2593649C (fr) 2012-03-13
JP2008025986A (ja) 2008-02-07
KR20080002673A (ko) 2008-01-04
US20080000266A1 (en) 2008-01-03
EP1873469A3 (fr) 2012-08-01
SG138574A1 (en) 2008-01-28
CN101097112B (zh) 2012-09-19
JP5015674B2 (ja) 2012-08-29
CA2593649A1 (fr) 2007-12-30

Similar Documents

Publication Publication Date Title
US7712331B2 (en) System to increase capacity of LNG-based liquefier in air separation process
US7552599B2 (en) Air separation process utilizing refrigeration extracted from LNG for production of liquid oxygen
EP2050999B1 (fr) Système pour compression froide d'un flux d'air utilisant une réfrigération au gaz naturel
US5644934A (en) Process and device for low-temperature separation of air
CA3073932C (fr) Systeme et procede de recuperation de gaz non condensables tels que le neon, l'helium, le xenon et le krypton a partir d'une unite de separation d'air
US5956973A (en) Air separation with intermediate pressure vaporization and expansion
US20110192194A1 (en) Cryogenic separation method and apparatus
JPH07159026A (ja) 酸素と窒素を気体及び/又は液体製品として同時に製造するための空気の低温蒸留法
US10408536B2 (en) System and method for recovery of neon and helium from an air separation unit
JP2002327981A (ja) 3塔式深冷空気分離方法
US5006137A (en) Nitrogen generator with dual reboiler/condensers in the low pressure distillation column
US6257020B1 (en) Process for the cryogenic separation of gases from air
EP0580348B1 (fr) Liquéfacteur hybride pour air et azote de recyclage
CA2206649C (fr) Methode et appareil pour l'obtention de produits liquides a partir de l'air, en diverses proportions
TW202227766A (zh) 以混合氣體渦輪機低溫分離空氣之方法及裝置
US20230221069A1 (en) Integrated nitrogen liquefier for a nitrogen and argon producing cryogenic air separation unit
US20210356205A1 (en) Enhancements to a moderate pressure nitrogen and argon producing cryogenic air separation unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 3/04 20060101AFI20120628BHEP

17P Request for examination filed

Effective date: 20130130

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F25J 1/02 20060101ALI20131105BHEP

Ipc: F25J 1/00 20060101ALI20131105BHEP

Ipc: F25J 3/04 20060101AFI20131105BHEP

INTG Intention to grant announced

Effective date: 20131128

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140326

INTG Intention to grant announced

Effective date: 20140409

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20140820