EP1872378B1 - Detection de position sans capteur dans un actionneur electromagnetique - Google Patents

Detection de position sans capteur dans un actionneur electromagnetique Download PDF

Info

Publication number
EP1872378B1
EP1872378B1 EP06742532.2A EP06742532A EP1872378B1 EP 1872378 B1 EP1872378 B1 EP 1872378B1 EP 06742532 A EP06742532 A EP 06742532A EP 1872378 B1 EP1872378 B1 EP 1872378B1
Authority
EP
European Patent Office
Prior art keywords
coil
coils
pole
voltage
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06742532.2A
Other languages
German (de)
English (en)
Other versions
EP1872378A1 (fr
Inventor
Reiner Keller
Kai Heinrich
Michael Pantke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Friedrichshafen AG
Original Assignee
ZF Friedrichshafen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ZF Friedrichshafen AG filed Critical ZF Friedrichshafen AG
Publication of EP1872378A1 publication Critical patent/EP1872378A1/fr
Application granted granted Critical
Publication of EP1872378B1 publication Critical patent/EP1872378B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/40Methods of operation thereof; Control of valve actuation, e.g. duration or lift
    • F01L2009/409Determination of valve speed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F2007/1692Electromagnets or actuators with two coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1844Monitoring or fail-safe circuits
    • H01F2007/185Monitoring or fail-safe circuits with armature position measurement

Definitions

  • the invention relates to an electromagnetic actuator having at least two coils, an armature and a drive or power electronics according to the preamble of claim 1 and a method for controlling such an actuator according to the preamble of claim 9.
  • the DE 103 10 448 A1 discloses an electromagnetic actuator with two coils and an armature. By energizing the coils of the armature is moved in the axial direction.
  • the DE 199 10 497 A1 describes a method in which the position of an armature is detected in an actuator with a coil on the determination of the differential inductance of the coil. For this purpose, during a current drop, the current fall time is determined as a time difference between two threshold values. The current fall time depends strongly on the resistance of the coil and this is temperature dependent.
  • the DE 100 33 923 A1 discloses a method in which the position of an armature in dependence on the mutual induction, which causes the movement of an armature in a coil, is determined.
  • the mutual induction depends on the speed of the anchor.
  • the speed of the armature is highly dependent on the viscosity of the fluid.
  • the viscosity of a fluid is also temperature-dependent.
  • the US 2003/0098686 discloses the preamble of claim 1.
  • an actuator which consists of at least two coils, an armature and a drive or power electronics.
  • the power electronics is connected to a logic unit and is controlled by them.
  • the power electronics contain at least switches, which are turned on or off, whereby a current flow allows or is interrupted. About the switch, the two coils are energized.
  • the armature can be displaced via the regulation of the current in the coils and / or the position of the armature can be measured.
  • the armature is slidably mounted between the two coils and back and forth between two end positions, wherein the anchor can also assume intermediate positions. To each of the two coils, a measuring amplifier is connected, which measures the voltage curve across the coils over time.
  • the measuring signals of the measuring amplifiers are forwarded to a differentiator.
  • a third voltage profile is calculated from the measurement signals, which contains a maximum value that depends on the position of the armature. This is because the inductance of a coil increases when an armature is pushed into it. Since the resistance of a coil depends on its inductance, the armature position influences the voltage curve.
  • the maximum value of the third voltage profile is detected by the logic unit and, depending on this, it calculates the armature position.
  • the power electronics has 3 or 4 switches.
  • the logic unit consists for example of a ⁇ -controller or ⁇ -processor.
  • the replacement diagram of one of the at least two coils may be presented for AC considerations by a known L-C-R resonant circuit.
  • a resonant circuit consists of a first and a consultedt parallel-connected AC resistors.
  • the first AC resistance consists of a series connection of a model coil and an ohmic resistance, the second AC resistance of a series circuit of a capacitor and another ohmic resistance. Both AC resistances are dependent on the frequency of the excitation.
  • the coils are acted upon by a sudden energizing with a voltage jump. This moment, the turn-on torque, can be described by applying the coils to an alternating current of infinitely high frequency (f ⁇ ⁇ ).
  • the AC resistance of the model coils depends on their inductance. Since the inductance of a coil increases when an armature is immersed in it, the AC resistances of the model coils change depending on the armature position.
  • the voltage curves at the two coils are measured via the measuring amplifiers. Now, if the coils suddenly loaded with a surging voltage and the anchor is not in the middle between the two coils, results in the two coils two different voltage waveforms. These are subtracted from each other in the subtractor, resulting in a curve with a maximum value corresponding to the anchor position.
  • This third voltage profile is forwarded to the logic unit, which detects the maximum value.
  • the anchor position can be determined, for example, by a comparison with a map.
  • Fig. 1 shows an electromagnetic actuator, which consists of two coils 1, 2 and an armature 3.
  • the armature 3 is slidably mounted between the two coils 1, 2.
  • the input of the first coil 1 is connected to a first pole 5 of a voltage source 6.
  • the output 7 of the first coil 1 can be connected either via a first switch 8 to the second pole 9 of the voltage source 6 or via a third switch 10 to the input 11 of the second coil 2.
  • the input 11 of the second coil 2 can be connected to the first pole 5 of the voltage source 6 either via a second switch 12 or to the output 7 of the first coil 1 via the third switch 10.
  • the three switches 8, 10, 12 form the power electronics of the actuator.
  • the output 13 of the second coil 2 is in turn connectable to the second pole 9 of the voltage source 6.
  • a respective measuring amplifier 14, 15 is connected with the input and output 4, 7 of the first coil 1 and the input and output 11, 13 of the second coil 2, a respective measuring amplifier 14, 15 is connected.
  • the measuring amplifiers 14, 15 are connected to the difference former 16, which is connected to the logic unit 17, to which it in turn conducts data.
  • the logic unit 17 controls the three switches 8, 10, 12.
  • the three switches 8, 10, 12 are so controlled that either the armature 3 shifts, or the two coils 1, 2 are subjected to a voltage jump. If now of the logic unit 17 of the first and the second switch 8, 12 are driven so that they are open and at the same time the third switch 10 is closed, the two coils 1, 2 are subjected to a voltage jump. In this switch-on the position of the armature 3 is determined from the voltage waveform across the two coils 1, 2.
  • the inventive arrangement therefore, a position detection of an actuator is possible without the need for an extra sensor is used. As a result, costs and installation space can be saved.
  • Fig. 2 shows a further embodiment of an electromagnetic actuator, which consists of two coils 1, 2 and an armature 3. This is a permanent magnetic anchor.
  • the two coils 1, 2 are wound in opposite directions, the winding direction of a first coil 1 is thus opposite to the winding direction of the second coil 2.
  • the input 4 of the first coil 1 can be connected to the first pole 5 either via the first switch 8 or to the second pole 9 of the voltage source 6 via the second switch 12.
  • the output 7 of the first coil 1 is connected to the input 11 of the second coil 2.
  • the output 13 of the second coil 2 can be connected either to the first pole 5 via a third switch 10 or to the second pole 9 of the voltage source 6 via the fourth switch 18.
  • a respective measuring amplifier 14, 15 is connected with the input and output 4, 7 of the first coil 1 and the input and output 11, 13 of the second coil 2, a respective measuring amplifier 14, 15 is connected.
  • the measuring amplifiers 14, 15 are furthermore connected to the differential former 16.
  • the difference generator 16 passes data to the logic unit 17.
  • the logic unit 17 controls the four switches 8, 10, 12, 18, which form the power electronics of the actuator. By controlling the power electronics, the armature 3 can be moved and at the same time its position can be measured.
  • the inventive arrangement therefore, a position detection of an actuator is possible without the need for an extra sensor is used.
  • the position measurement is possible during the switching operations. As a result, costs and space and also time can be saved.
  • the voltage jump is switched in this embodiment by two switch positions. Either the first and fourth switches 8, 18, or the second and third switches 12, 10 are closed.
  • the input 4 of the first coil 1 is connected to the first pole 5 of the voltage source 6 and the output 13 of the second coil 2 to the second pole 9 of the voltage source 6.
  • the input 4 of the first coil 1 with the second pole 9 and the output 13 of the second coil 2 connected to the first pole 5 of the voltage source 6. Because the two Coils 1, 2 are connected directly to each other results in a voltage jump in both cases.
  • the armature 3 is acted upon for adjustment with a pulse width modulated signal. Since the voltage is switched on and off again and again with such a signal, the coils 1, 2 are repeatedly subjected to a voltage jump. Thus, the position of the armature 3 can be determined at any time of the switching of the voltage signal.
  • Fig. 3 shows the structure of a known LCR resonant circuit 27, with which the coils 1, 2 can be described when connecting an AC voltage.
  • the input of the resonant circuit corresponds to the inputs 4, 11 of the coils.
  • the output of the resonant circuit corresponds to the outputs 7, 13 of the two coils.
  • the resonant circuit has two paths. The first path is described by the model coil 19 and a first ohmic resistor 20 and forms a first AC resistance 31.
  • the second path is described by a capacitance 21 and a second ohmic resistance 22 and forms a second AC resistance 32.
  • Fig. 4 shows a voltage curve, which is measured by the measuring amplifiers 14, 15 at the two coils 1, 2.
  • a first time 28 describes the switch-on time at which a voltage jump is applied to both coils 1, 2. This is described in an exemplary way by applying an alternating voltage with an infinitely high frequency (f ⁇ ⁇ ). As a result, the course of the voltages on the coils 1, 2 depends on the respective AC resistors 31, 32. Up to a second time 29 (eg 5 ms), a first voltage curve 23 rises to a maximum value and the second voltage curve drops to a minimum value. The course up to the first time 28 is based on the influence of the parasitic capacitances 22. These occur in principle due to the interaction between the individual turns of the windings.
  • the AC resistance of a Capacity goes to zero at f ⁇ ⁇ .
  • a transient begins at the second time 29 and the current flows through the model coil 19 until a third time 30 (eg, 50 ms).
  • the AC resistance 31 depends on the inductance of the model coil 19, which in turn depends on the position of the armature 3.
  • the inductance is higher, the further an armature 3 is immersed in a coil.
  • the transient is completed. and the voltage curves 23, 24 are determined only by the two ohmic resistors 20 of the two coils 1, 2.
  • DC states prevail again.
  • the DC resistances of the two coils 1, 2 are advantageously the same size, resulting in no difference between the two voltage curves 23, 24 results.
  • the first voltage waveform 23 shows the voltage waveform of the first coil 1 when the armature 3 is immersed in it.
  • the second voltage curve represents the voltage curve in the second coil 2.
  • both measured voltage profiles 23, 24 are subtracted from each other. This results in a third voltage curve 25 corresponding to the Fig. 5 . From the maximum value 26 of the third voltage curve 25, the anchor position in the logic unit 17 is determined, for example, by a comparison with a characteristic map stored there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Control Of Linear Motors (AREA)

Claims (15)

  1. Actionneur électromagnétique comportant au moins un induit (3), deux bobines (1, 2) ainsi qu'une électronique de commande ou de puissance, dans lequel l'induit (3) est monté de manière coulissante entre les bobines (1, 2), dans lequel l'entrée (4) de la première bobine (1) est reliée à un amplificateur de mesure (14), caractérisé en ce que la sortie (7) de la première bobine (1) ainsi que les entrée et sortie (11, 13) de la deuxième bobine sont respectivement reliées à des amplificateurs de mesure (14, 15), en ce que les amplificateurs de mesure (14, 15) sont reliés à un calculateur de différence (16), en ce que le calculateur de différence (16) est relié à une unité logique (17) et en ce que l'unité logique (17) est reliée à l'électronique de puissance.
  2. Actionneur selon la revendication 1, caractérisé en ce que l'électronique de puissance comporte au moins 3 ou 4 commutateurs (8, 10, 12, 18).
  3. Actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'unité logique (17) se compose d'un microcontrôleur ou d'un microprocesseur.
  4. Actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce que l'entrée (4) d'une première bobine (1) est reliée à un premier pôle (5) d'une source de tension (6), en ce que la sortie (7) de la première bobine (1) peut être reliée par l'intermédiaire d'un premier commutateur (8) à un deuxième pôle (9) de la source de tension (6) et/ou par l'intermédiaire d'un troisième commutateur (12) à l'entrée (11) d'une deuxième bobine (2), en ce que l'entrée (11) de la deuxième bobine (2) peut être reliée par l'intermédiaire du deuxième commutateur (12) au premier pôle (5) de la source de tension (6) et/ou par l'intermédiaire du troisième commutateur (10) à la première bobine (1), et en ce que la sortie (13) de la deuxième bobine (2) est reliée au deuxième pôle (9) de la source de tension (6).
  5. Actionneur selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'une entrée (4) de la première bobine (1) peut être reliée par l'intermédiaire d'un premier commutateur (8) à un premier pôle (5) d'une source de tension (6) et/ou par l'intermédiaire d'un deuxième commutateur (12) à un deuxième pôle (9) de la source de tension (6), en ce que la sortie (7) de la première bobine (1) est reliée à une entrée (11) de la deuxième bobine (2) et en ce qu'une sortie (13) de la deuxième bobine (2) peut être reliée par l'intermédiaire d'un troisième commutateur (10) au premier pôle (5) et/ou par l'intermédiaire d'un quatrième commutateur (18) au deuxième pôle (9) de la source de tension (6).
  6. Actionneur selon la revendication 5, caractérisé en ce qu'un enroulement de l'une des bobines (1, 2) est réalisé en sens horaire et en ce que l'enroulement de l'autre bobine (2, 1) respective est réalisée en sens antihoraire.
  7. Actionneur selon la revendication 5 ou 6, caractérisé en ce qu'un induit à magnétisation permanente (3) est monté de manière coulissante entre les première et deuxième bobines (1, 2).
  8. Actionneur selon l'une quelconque des revendications précédentes, caractérisé en ce que deux bobines identiques sont utilisées.
  9. Procédé de commande d'un actionneur selon au moins l'une des revendications précédentes, caractérisé en ce que les deux bobines (1, 2) sont attaquées brusquement par une tension croissant brusquement, en ce que les amplificateurs de mesure (14, 15) mesurent les variations de tension (23, 24) au cours du temps sur les deux bobines (1, 2) et en ce que les valeurs de mesure sont envoyées au calculateur de différence (16) qui calcule à partir de celles-ci une troisième variation de tension (25), qui est évaluée dans l'unité logique (17).
  10. Procédé selon la revendication 9, caractérisé en ce que
    - l'unité logique (17) commande l'électronique de puissance, et
    - les deux bobines (1, 2) sont attaquées brusquement par une tension au moyen de l'électronique de puissance, et en ce que
    - les amplificateurs de mesure (14, 15) mesurent les variations de tension (23, 24) sur les deux bobines (1, 2) au cours du temps et envoient les signaux de mesure (23, 24) au calculateur de différence (16), dans lequel
    - le calculateur de différence (16) soustrait l'une à l'autre les deux variations de tension (23, 24) et calcule une troisième variation de tension (25) à partir de la différence, et
    - l'unité logique (17) détermine la position de l'induit (3) en fonction de la hauteur de la valeur maximale (26) de la troisième variation de tension (25).
  11. Procédé selon la revendication 10, caractérisé en ce que l'unité logique (17) commande l'électronique de puissance de manière à ce que le premier commutateur et un deuxième commutateur (8, 12) soient ouverts et à ce que le troisième commutateur (10) soit fermer, de sorte que les deux bobines (1, 2) soient connectées en série et que l'entrée (4) de la première bobine (1) soit reliée au premier pôle (5) de la source de tension (6) et que la sortie (13) de la deuxième bobine (2) soit reliée au deuxième pôle (9) de la source de tension (6) et par conséquent, que les deux bobines (1, 2) soient brusquement attaquées par une tension croissant brusquement.
  12. Procédé selon la revendication 10, caractérisé en ce que l'unité logique (17) commande des premier et deuxième commutateurs (8, 18) de manière à ce que les deux commutateurs (8, 18) soient fermés et par conséquent, que l'entrée (4) de la première bobine (1) soit reliée au premier pôle (5) de la source de tension (6) et que la sortie (7) de la deuxième bobine (2) soit reliée au deuxième pôle (9) de la source de tension (6).
  13. Procédé selon la revendication 10, caractérisé en ce que l'unité logique (17) commande des deuxième et troisième commutateurs (12, 10) de manière à ce que les deux commutateurs (12, 10) soient respectivement fermés et par conséquent, que l'entrée (4) de la première bobine (1) soit reliée au deuxième pôle (9) de la source de tension (6) et que la sortie (13) la deuxième bobine (2) soit reliée au premier pôle (5) de la source de tension (6).
  14. Procédé selon la revendication 12 ou 13, caractérisé en ce que l'induit (3) est attaqué par l'unité logique (17) par l'intermédiaire de l'électronique de puissance au moyen d'un signal modulé en largeur d'impulsion.
  15. Utilisation d'un induit selon l'une quelconque des revendications 1 à 7 dans une transmission de véhicule automobile.
EP06742532.2A 2005-04-18 2006-04-04 Detection de position sans capteur dans un actionneur electromagnetique Active EP1872378B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005018012A DE102005018012A1 (de) 2005-04-18 2005-04-18 Sensorlose Positionserkennung in einem elektromagnetischen Aktuator
PCT/EP2006/003040 WO2006111268A1 (fr) 2005-04-18 2006-04-04 Detection de position sans capteur dans un actionneur electromagnetique

Publications (2)

Publication Number Publication Date
EP1872378A1 EP1872378A1 (fr) 2008-01-02
EP1872378B1 true EP1872378B1 (fr) 2017-08-23

Family

ID=36645668

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06742532.2A Active EP1872378B1 (fr) 2005-04-18 2006-04-04 Detection de position sans capteur dans un actionneur electromagnetique

Country Status (6)

Country Link
US (1) US7804674B2 (fr)
EP (1) EP1872378B1 (fr)
JP (1) JP5253151B2 (fr)
CN (1) CN101164125B (fr)
DE (1) DE102005018012A1 (fr)
WO (1) WO2006111268A1 (fr)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008043340A1 (de) 2008-10-31 2010-05-06 Zf Friedrichshafen Ag Verfahren zur Positionserfassung des Magnetankers eines elektromagnetischen Aktuators
DE102009055270B4 (de) 2009-12-23 2022-06-02 Robert Bosch Gmbh Verfahren zum Einstellen der Größe eines Arbeitsluftspalts eines Magnetkreisbauteils sowie entsprechende Einrichtung
DE102010001914A1 (de) * 2010-02-15 2011-08-18 Robert Bosch GmbH, 70469 Lenkvorrichtung für ein Kraftfahrzeug
DE102010041086A1 (de) 2010-09-21 2012-03-22 Zf Friedrichshafen Ag Aktuatorvorrichtung und Verfahren zur Ansteuerung
DE102011102060A1 (de) 2011-02-18 2012-08-23 Svm Schultz Verwaltungs-Gmbh & Co. Kg Verfahren und Vorrichtung zur Bestimmung der Lage eines Gegenstandes an einem Elektromagneten
DE102011102041A1 (de) * 2011-05-19 2012-11-22 Pierburg Gmbh Elektromagnetventil sowie ein Verfahren zur Ansteuerung eines derartigen Elektromagnetventils
DE102011102629A1 (de) 2011-05-27 2012-11-29 Volkswagen Aktiengesellschaft Diagnoseverfahren für Hubmagnete in Lenkungsverriegelungen
GB201110699D0 (en) 2011-06-24 2011-08-10 Camcon Oil Ltd Electromagnetic actuators and monitoring thereof
US9837229B2 (en) 2011-06-24 2017-12-05 Tavrida Electric Holding Ag Method and apparatus for controlling circuit breaker operation
DE102012204321A1 (de) * 2012-03-19 2013-09-19 Zf Friedrichshafen Ag Elektromagnetische Stellvorrichtung mit Eignung zur Ankerpositionserfassung
EP3032560B2 (fr) 2012-05-07 2023-03-01 S & C Electric Co. Dispositif actionneur bistable
CN103047936B (zh) * 2012-12-07 2015-11-25 深圳大学 用于检测球面运动的位移传感器
DE102013200698A1 (de) 2013-01-18 2014-07-24 Zf Friedrichshafen Ag Spulenanordnung mit zwei Spulen
DE102013201776A1 (de) * 2013-02-04 2014-08-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erkennung eines Defekts eines elektromechanischen Aktuators
DE102013208982A1 (de) * 2013-05-15 2014-11-20 Zf Friedrichshafen Ag Schaltung und Verfahren zur Regelung eines Stromes für einen elektromechanischen Verbraucher
DE102014212058A1 (de) * 2014-06-13 2015-12-17 Zf Friedrichshafen Ag Rückstelleinrichtung für einen Getriebe-Wählhebel
WO2016153972A1 (fr) * 2015-03-20 2016-09-29 Dana Automotive Systems Group, Llc Détection de position basée sur une induction dans un actionneur électromagnétique
DE102016002677A1 (de) * 2016-03-05 2017-09-07 Wabco Gmbh Bistabile Magnetventil-Einrichtung und Verfahren zum Ermitteln einer Ankerstellung eines bistabilen Magnetventils
DE102016221477A1 (de) 2016-11-02 2018-05-03 Zf Friedrichshafen Ag Vorrichtung zum Betreiben und zur Ermittlung eines Betriebszustands eines elektromagnetischen Aktors sowie Kupplungsvorrichtung und Kraftfahrzeugantriebsstrang
DE102017001319A1 (de) * 2017-02-11 2018-08-16 Wabco Gmbh Bistabile Magnetventil-Einrichtung und Verfahren zu deren Überwachung
CN107843377B (zh) * 2017-09-28 2024-02-09 浙江大学 一种二维电磁激励器的力标定装置
DE102018203166A1 (de) 2018-03-02 2019-09-05 Zf Friedrichshafen Ag Parksperre in einem Getriebe eines Kraftfahrzeugs
GB2573139B (en) 2018-04-25 2021-06-23 Ge Aviat Systems Ltd Zero crossing contactor and method of operating
DE102018209216A1 (de) 2018-06-11 2019-12-12 Zf Friedrichshafen Ag Positionsbestimmung für einen von einem Zweipunktregler bestromten Aktuator
DE102018131749A1 (de) * 2018-12-11 2020-06-18 Phoenix Contact Gmbh & Co. Kg Anordnung zum Bestimmen einer Ankerstellung eines Relais
DE102019135209A1 (de) * 2019-12-19 2021-06-24 Fte Automotive Gmbh Verfahren zur Ermittlung einer Position eines Ankers innerhalb einer Magnetspule sowie Hubmagnetaktor
CN112896453B (zh) * 2021-01-20 2022-04-08 东莞市中联船务工程有限公司 一种船用锚的维修工艺
US11948739B2 (en) * 2021-05-09 2024-04-02 Cirrus Logic Inc. Minimizing transient artifact of position estimate in inductively-sensed electromagnetic actuator system with shared inductive sensor

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3343885C2 (de) * 1983-04-21 1996-12-12 Wabco Gmbh Induktiver Sensor
US4887214A (en) * 1987-10-27 1989-12-12 The Boeing Company Flight control system employing two dual controllers operating a dual actuator
JP3141670B2 (ja) * 1994-02-10 2001-03-05 トヨタ自動車株式会社 内燃機関の弁駆動装置及び弁体の初期位置設定方法
DE19505219A1 (de) * 1995-02-16 1996-08-22 Juergen Weimer Gerät zur Lageerkennung von elektromagnetischen Stelleinrichtungen
DE19530121A1 (de) * 1995-08-16 1997-02-20 Fev Motorentech Gmbh & Co Kg Verfahren zur Reduzierung der Auftreffgeschwindigkeit eines Ankers an einem elektromagnetischen Aktuator
DE19544207C2 (de) * 1995-11-28 2001-03-01 Univ Dresden Tech Verfahren zur modellbasierten Messung und Regelung von Bewegungen an elektromagnetischen Aktoren
JP3405881B2 (ja) * 1996-03-15 2003-05-12 株式会社東芝 磁気浮上型リニアアクチュエータ
US5889645A (en) * 1997-04-14 1999-03-30 International Controls And Measurement Corp Energy preservation and transfer mechanism
US5982605A (en) * 1998-03-05 1999-11-09 The United States Of America As Represented By The Secretary Of The Navy Solenoid driver circuit for use with digital magnetic latching solenoids
DE19910497A1 (de) * 1999-03-10 2000-09-14 Bosch Gmbh Robert Lagemessung eines in einer Magnetspule betätigten Magnetankers
DE19955251A1 (de) * 1999-11-17 2001-05-23 Bosch Gmbh Robert Verfahren zur Regelung der Nachführung einer Abtastvorrichtung und Laufwerk dafür
DE10020896A1 (de) * 2000-04-29 2001-10-31 Lsp Innovative Automotive Sys Verfahren zur Bestimmung der Position eines Ankers/ eines Ventils
DE10033923A1 (de) * 2000-07-12 2002-01-24 Lsp Innovative Automotive Sys Verfahren zur sensorlosen Ermittlung der Geschwindigkeit und Position elektromagnetischer Stellsysteme
DE10141764A1 (de) * 2000-10-20 2002-06-27 Micro Epsilon Messtechnik Vorrichtung und Verfahren zur Detektion der Position eines Objekts
DE20203718U1 (de) * 2002-03-07 2002-07-04 Eto Magnetic Kg Elektromagnetische Stellvorrichtung
JP2004007882A (ja) * 2002-05-31 2004-01-08 Mitsubishi Electric Corp レーダ駆動用電磁アクチュエータ
DE10235188B3 (de) * 2002-07-26 2004-04-01 Hydac Electronic Gmbh Verfahren zum Ermitteln der Position eines Stellelements eines elektrisch antreibbaren Aktuators, zugehörige Schaltungsanordnung und Vorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
CN101164125B (zh) 2011-04-06
WO2006111268A1 (fr) 2006-10-26
CN101164125A (zh) 2008-04-16
JP5253151B2 (ja) 2013-07-31
US20080191826A1 (en) 2008-08-14
DE102005018012A1 (de) 2006-10-19
US7804674B2 (en) 2010-09-28
EP1872378A1 (fr) 2008-01-02
JP2008537464A (ja) 2008-09-11

Similar Documents

Publication Publication Date Title
EP1872378B1 (fr) Detection de position sans capteur dans un actionneur electromagnetique
EP2603807B1 (fr) Procédé et dispositif de détermination de l'état d'une vanne à commande électrique
EP1830370B1 (fr) Dispositif destiné à la commande d'un mécanisme de commande électromagnétique
EP1165944B1 (fr) Procede permettant de determiner la position d'un induit
DE102007063479A1 (de) Verfahren und Schaltungsanordnung zum Erzeugen eines eine Endlage eines Elektromagneten anzeigenden Signals
DE102011016895A1 (de) Verfahren zur Bestimmung des Verschleißzustandes eines elektromagnetischen Aktors während dessen Betriebs
EP2340544B1 (fr) Procédé de détermination de la position d'une armature magnétique d'un actionneur électromagnétique
DE10315282B4 (de) Schaltungsanordnung und Verfahren zur Ansteuerung eines bistabilen Magnetventils
EP1703629B1 (fr) Procédé pour la commande digitale de courant
EP2884233B1 (fr) Mesure de paramètres dans un entraînement électromagnétique d'un appareil de commutation
DE10235433B4 (de) Verfahren zur Bestimmung einer Temperatur eines Fluids, insbesondere einer Getriebeöltemperatur
EP1920146A1 (fr) Appareil de commande servant a faire fonctionner au moins un injecteur de carburant d'un moteur a combustion interne
DE102009022314A1 (de) Verfahren und Schaltungsanordnung zur Messung des Stroms durch eine induktive Last
DE102008000784A1 (de) Elektromotor mit einer Temperaturerfassung und Verfahren zur Erfassung einer Temperatur in einem Elektromotor
DE102017201758A1 (de) Verfahren zur Messung einer Ankerlage sowie Kopplungseinrichtung unter Verwendung des Verfahrens
DE102007048261A1 (de) Verfahren und Vorrichtung zur Bestimmung der Position eines Ankers eines Linearstellglieds
EP3413459A1 (fr) Procédé de détection de blocage des moteurs électriques à commutation électrique
DE102018207417A1 (de) Bestimmung einer Kenngröße eines magnetischen Schaltventils
DE102018215687B4 (de) Aktoreinrichtung, Ventileinrichtung und Verfahren zur Erfassung einer Stellung eines Stellglieds
DE102018218799A1 (de) Aktoreinrichtung, Ventileinrichtung und Verfahren zur Erfassung einer Stellung eines Stellglieds
DE102012112201A1 (de) Temperaturbestimmung in Schützantrieben
DE102018218800A1 (de) Aktoreinrichung, Ventileinrichtung und Verfahren zur Erfassung einer Stellung eines Stellglieds
DE102006021418A1 (de) Verfahren zur Steuerung eines Schrittmotors sowie Vorrichtung mit einem Schrittmotor
WO2017050332A1 (fr) Unité de commande et procédé de surveillance de la fonction d'un actionneur électromagnétique
EP1288449B1 (fr) Dispositif et méthode pour détecter la position d'un objet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070924

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KELLER, REINER

Inventor name: PANTKE, MICHAEL

Inventor name: HEINRICH, KAI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PANTKE, MICHAEL

Inventor name: KELLER, REINER

Inventor name: HEINRICH, KAI

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160531

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170410

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 922161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015635

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170823

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171124

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171123

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20171223

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015635

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180524

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180404

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 922161

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060404

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170823

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230307

Year of fee payment: 18