EP1872067A1 - Sonde de captage de l'energie thermique du sol pour pompe a chaleur, et reseau de captage muni de telles sondes - Google Patents
Sonde de captage de l'energie thermique du sol pour pompe a chaleur, et reseau de captage muni de telles sondesInfo
- Publication number
- EP1872067A1 EP1872067A1 EP06755427A EP06755427A EP1872067A1 EP 1872067 A1 EP1872067 A1 EP 1872067A1 EP 06755427 A EP06755427 A EP 06755427A EP 06755427 A EP06755427 A EP 06755427A EP 1872067 A1 EP1872067 A1 EP 1872067A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- tube
- fluid
- tubes
- probe
- return
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/15—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using bent tubes; using tubes assembled with connectors or with return headers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24T—GEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
- F24T10/00—Geothermal collectors
- F24T10/10—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
- F24T10/13—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
- F24T10/17—Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/10—Geothermal energy
Definitions
- the invention relates to a sensor for collecting heat energy from the ground for heat pumps, the latter being of the type called “water / water” or type "gas / water”.
- This equipment makes it possible to capture the thermal energy available in the upper layers of the earth's crust, to concentrate (at higher temperature) this energy and to return it in this concentrated form to supply a heating circuit.
- the pump core comprises a compressor and two heat exchangers respectively connected to the collection and heat recovery networks, with a refrigerant circuit (refrigerant) comprising a condenser, a pressure reducer and an evaporator.
- refrigerant refrigerant
- the compressor concentrates evaporator energy collected in the ground and restores the condenser side energy to be returned to the heating circuit.
- a "sensing probe” consisting of a coolant circuit, usually a liquid such as water added with ethylene glycol, but which can also be a gaseous fluid.
- This collection fluid or coolant after being cooled by the evaporator of the heat pump, is sent into the ground to warm in contact with the surrounding environment, which gives its thermal energy to the fluid.
- Each linear meter of probe immersed in the environment environment solicited can thus bring a few joules of thermal energy to the heat pump when the circuit is in operation, and the heated fluid then returns to the heat pump which will concentrate and restore the thermal energy thus captured.
- DE-A-103 27 602 discloses a comparable technique, where a tube receives a condensate of CO 2 that flows down in the form of a film along the walls of the tube to a deeper, warmer zone, where the CO 2 vaporizes and is released under pressure up the tube .
- a "capture probe" is never directly connected to the compressor, and the heat transfer fluid circulating therein is different from the refrigerant of the circuit including the compressor.
- the sensing probes are generally made in the form of a tube forming a loop connected at each of its ends to a respective outlet of the heat pump.
- the nature of the tube particularly the thermal conductivity of its wall, conditions the heat exchange with the surrounding environment.
- the diameter of the tube and the greater or lesser length of the loop determine the exchange surface, and therefore the mass of the surrounding medium solicited by the capture.
- a first technique called “horizontal capture” consists of burying the tube in the ground at a shallow depth (of the order of 50 to 70 cm) by making it snake so as to occupy a maximum area of ground to solicit sufficient mass surrounding environment.
- This technique requires for the burying of the probe the stripping of the ground over a large area or the digging of trenches, with a certain number of constraints which result from it: cost of earthworks; impossibility of disposing of the collection network under a house; restrictions on the use of the land after burial of the tube, for example the impossibility of planting trees there.
- a second technique called “vertical capture” involves drilling a vertical well, the depth of which can reach 100 m, and then burying over this whole depth one or more tubes in a loop. Given the depth to be achieved, this technique involves a relatively large diameter of drilling, of the order of 200 mm, which requires specialized equipment, heavy and bulky to implement.
- US Pat. No. 5,339,890 describes a "sensing probe" made in the form of a flexible tubular element provided at one of its ends with both the fluid inlet and outlet, and the other end of which is a free end. This configuration allows to introduce the tubular element by its free part in a gallery opening on the surface by a single point. The burying tubular element is strong enough to be pushed into this gallery along the entire length of it only by one of its ends.
- the probe proposed by the invention is a probe of the type known from the aforementioned US-A-5 339 890, that is to say having a coolant circulation circuit with a fluid inlet and an outlet of fluid adapted to be connected to respective sockets of a heat pump.
- This circuit comprises at least two tubes extending in parallel, with a fluid intake tube connected to the fluid inlet and a fluid return tube connected to the fluid outlet.
- the fluid inlet and return tubes are communicated with one another at their distal ends, and they are made with a common wall along their entire length, thus forming a single, bendable tubular element with a proximal end including the fluid inlet and outlet, and a distal end III.
- the inner surface of the wall of the fluid return tube is provided with reliefs capable of creating turbulences in the fluid flowing in this tube, and the inner surface of the wall of the intake tube of the fluid.
- fluid is a smooth surface capable of promoting a laminar flow of fluid flowing in this tube.
- the reliefs in the fluid return tube provide a slow and turbulent return flow favoring the heat exchange with the surrounding medium, opposite to the smooth surface of the intake tube, which on the contrary favors a fast flow minimizing the thermal losses.
- US-A-5,339,890 discloses no such probe configuration: the only reliefs that are present are on the outer surface of the fluid tube, and therefore have no effect on the flow regime of the fluid. circulating inside this tube.
- the present invention proposes to control the respective flow regimes of the inlet and fluid return tubes by providing the inner surface of these tubes with patterns to promote the desired flow pattern.
- the common wall is an isothermal wall and / or enclosing insulating cavities;
- the fluid passage section of the return tube is greater than the fluid passage section of the intake tube
- the outer section of the tubular buryable element is uniform, in particular circular, over the entire length of this element;
- the overall diameter of the buryable tubular element is less than 150 mm, preferably less than 100 mm, very preferably less than 50 mm;
- the tubes are made of a flexible material capable of providing flexibility to the tubular burying element
- the distal end of the tubular burying element is externally provided with a tip added;
- the probe further comprises, on selected portions of its length, a reinforced insulation of the fluid inlet tube and / or the fluid return tube.
- the inlet tubes and fluid return tubes are fitted into one another, one of the tubes being an inner tube open at its distal end and whose wall constitutes said wall common, and the other of the tubes being an outer tube developing the inner tube and closed at its distal end.
- the inner surface of the inner tube is smooth, and the outer surface of the same inner tube is provided with said reliefs.
- the inlet and fluid return tubes are adjacent tubes. It may be a single intake tube associated with a single fluid return tube, the section of the return tube being greater than the section of the intake tube. But it can also provide at least three tubes, with a number of inlet tubes less than that of the fluid return tubes, the total section of (the) return tube (s) being greater than the total section of (of) ) Admission tube (s).
- the invention also covers a thermal energy collection network of the soil for a heat pump comprising a plurality of probes as above, buried in tunnels dug in the ground.
- This network has a three-dimensional configuration limited by an envelope volume extending over a given land area and depth of burying.
- the probes advantageously comprise a reinforced insulation of the intake tube and / or the fluid return tube, on their portion extending between the ground level and said envelope volume.
- the envelope volume extends to a depth of between 0.5 and 10 meters below ground level, and the probes are arranged with their end end at the lowest point to prevent the formation of bubbles.
- This characteristic configuration makes it possible to introduce the tubular element, by its free part into a gallery of small diameter (a few tens of millimeters) opening on the surface by a single point.
- the use of the sensing probe of the invention thus causes a minimum of nuisance during burial, and can be implemented at lower cost and without subsequent limitation in the use of the land.
- Figure 1 is a vertical section of a sensor sensor according to a first embodiment of the invention.
- FIG. 2 is a plane section along the line H-II of FIG.
- Figure 3 shows the detail marked III in Figure 1.
- Figure 4 is a section along the line IV-IV of Figure 1.
- Figures 5, 6 and 7 are similar to Figure 4 for other embodiments of the invention.
- Figure 8 is a schematic view illustrating how to connect in series a plurality of probes according to the invention associated with the same heat pump.
- the reference 10 generally designates the sensing probe of the invention, which in this embodiment consists of two tubes fitted one inside the other, with an outer tube 12 and an inner tube 14.
- the outer diameter d of the outer tube is for example of the order of 40 mm, which allows to introduce it into a gallery or well 16 of diameter D slightly higher, for example a diameter of 50 mm.
- the outer tube 12 is closed at its distal end 18 by any appropriate means, for example by mechanical closure or hot occlusive molding.
- This end 18 is also advantageously covered with a protective cap 20, for example metal, to facilitate the threading of the tube in the gallery.
- the two outer tubes 12 and inner 14 are connected to a head connecting member 26 for securing to one another the two tubes, with the inner tube 14 in the central position emerging at 28.
- head connection 26 further includes longitudinal passages 30 (also visible on the section of Figure 2) opening into an annular chamber 32 itself communicating with an outlet port 34, which is thus placed in fluid communication with the volume outer tube 12 between the wall of this tube and that of the inner tube 14.
- the inner tube 14 may advantageously be made in the manner shown in the detail of Figure 3, with an inner wall 36 whose free surface 38 is smooth and an outer wall 40 whose outer surface 42 is provided with reliefs such as 44.
- An isothermal core 46 thermally isolates between them flows flowing on either side of the tube 14.
- the walls of the tube may be hollow, with cavities such as 48 which provide enhanced insulation flows flowing on both sides of the wall.
- the circulation of the fluid in the probe is carried out as follows.
- the cold fluid exiting the heat pump is introduced (arrow 50) into the free end 28, proximal side, of the inner tube 14 (fluid intake tube), where it flows to the end distal 22, the smooth surface 38 promoting a laminar flow of fluid in the tube.
- the fluid then opens into the zone 24 situated at the distal end of the outer tube 12 (fluid return tube), from where it is pushed towards the opposite end of this same tube (arrows 52, 54) over the entire length of the latter, to be collected (arrow 56) through the passages 30 to the outlet 34 of the head link 26 (arrow 58).
- the presence of reliefs 44 promotes the creation of turbulence in the fluid, which slow down and increase the heat exchange with the outside.
- the fluid introduced from the proximal end of the inner tube 14 is directly routed to the distal opening 22 of the same tube, without going through other accidents than the curves followed by the tube. At this point, the fluid is at the distal end of the outer tube and returns to the proximal end of the outer tube.
- the sensing fluid receives the thermal energy transferred by the surrounding medium, then returns to the heat pump, which will concentrate and extract this heat energy before returning the cooled fluid to the probe for a new capture cycle.
- the thermal sensing starts in the distal region of the probe, which is the one most likely to be the hottest and whose temperature will be the most rapidly renewed, then to go back to the pump. heat that feeds it into heated fluid.
- the direction of flow of the fluid can be reversed, that is to say that the fluid will be admitted through the orifice 34 in the outer tube 12 (which becomes the fluid intake tube) to go through the one along its entire length then be collected at the distal end by the tube 14 (which becomes the fluid return tube) and be extracted from it by the- 28.
- the tube 14 which becomes the fluid return tube
- it is then the part of the surrounding environment closest to the head link 26 which will be mainly solicited for heat exchange.
- the choice of one or the other configuration is made by a simple reversal of the direction of flow of the fluid in the capture probe, which makes it possible to optimize very simply the heat exchange in according to needs, or possibly by testing both configurations and comparing the results obtained.
- the outer tube 12 is selected from a material having sufficient mechanical strength and semi-rigidity to be able, in the majority of cases encountered, to be pushed into the gallery 16 after the digging thereof; if necessary, the tube may be pressurized so that its rigidity and mechanical strength are increased.
- the material should also be chosen with sufficient stretching resistance to allow, if necessary, pulling the tube into the gallery from another far, open end thereof.
- the tube must also be resistant to crushing and be inert vis-à-vis the fluid that will flow.
- polypropylene drinking water pipes (diameter 32 mm, thickness 3.6 mm) can be used in most cases for heat pumps using a mixture of water and water. ethylene glycol as heat transfer fluid of the collection network.
- the heat transfer fluid of the collection network is a gas
- a stainless steel tube closed at its end by welding and spliced by welding TIG orbital welding for example
- welding TIG orbital welding for example
- the inner tube 14, meanwhile, may be a sufficiently flexible plastic tube provided with reliefs 44, for example grooves, bosses, etc.. come from casting. Its length is adjusted to that of the outer tube so as to locate its low opening 22 a few centimeters before the occlusion 18 of the outer tube, this low opening can be beveled to maximize the exhaust. Lateral slots (not shown) may be provided to allow fluid flow even in the event of crushing or other occlusion of the distal portion of the probe.
- the inner tube 14 must be neutral with respect to the sensing fluid. It must have along its length a minimum radius of curvature less than or equal to that of the outer tube, and its outer diameter must be smaller than the inner diameter of the outer tube to be able to be threaded inside the latter.
- the material of the inner tube 14 is preferably a material of low thermal conductivity, or constituted by a structure incorporating an isothermal core 46 and / or insulating cavities 48, as illustrated in FIG. 3.
- the respective sections of the outer and inner tubes are advantageously chosen so as to define an optimum ratio between the flow section of the intake flow (in the inner tube 14) and the return flow passage section (between the outer tube 12 and the inner tube 14). With a lower intake section than the return section, the flow rate of the intake flow is higher than that of the return flow.
- the fast admission flow minimizes the losses in the inner tube 14, while the slow and turbulent return flow favors the heat exchange between the outer tube 12 and the surrounding medium.
- Other embodiments of the invention can be envisaged, with a tube configuration different from that just described where, as illustrated in FIG. 4, an inner tube 14 was fitted into an outer tube 12 defining two concentric spaces 60, 62, respectively for the return flow and the intake flow.
- a sensor probe with an outer tube 64 and an inner tube 66 which is no longer fitted into the outer tube, but is internally joined thereto with a wall common 68, the same side of which extend the two tubes.
- the assembly is for example made by extrusion or coextrusion.
- the dimensions of the outer tube 64 and inner tube 66 are chosen so as to define a passage section of the return flow 70 substantially greater than the passage section of the intake flow 72, to slow down the speed of the return flow and to favor the heat exchange.
- the two tubes are no longer contiguous internally, but externally, the probe being in the form of two adjacent tubes 74, 76 with a common wall 78 on either side of which extend the two tubes. Again, it is possible to choose different tube sizes to optimize the respective flow of admission and return.
- FIG. 7 Another variant, illustrated in FIG. 7, consists in providing a number of tubes greater than two, for example three tubes 80, 82, 84. If the tubes are of the same diameter, it is thus possible to use two tubes 80, 82 for the return flow and a single tube 84 for the intake flow. This again makes it possible to increase the section of the return flow globally.
- FIG. 8 schematically illustrates an installation in which a plurality of sensing probes 10, 10 ', 10 "according to the invention are used and connected in series to further increase the heat exchange with the surrounding medium.
- the inlet 28 of the first probe 10 is connected to the fluid outlet 86 of the heat pump 88, the outlet 34 of this first probe is connected to the inlet 28 'of the second probe 10', and so on the outlet 34 "of the third probe 10 '" being connected to the fluid inlet 90 of the heat pump 88.
- the capture probe of the invention can be buried in a gallery whose course has been defined according to the topographic constraints and the nature of the sub -ground.
- This gallery can be as well an oblique gallery, a vertical gallery, a gallery with an oblique departure then a horizontal plate, a curved gallery, etc. It is possible to provide an installation with galleries plunging to various depths in the ground and arranged one above the other with sufficient spacing. This latter configuration makes it possible in particular to solicit a mass of the capture medium that is much greater than in linear or two-dimensional configurations, as with conventional vertical or horizontal capture systems.
- Figures 9 and 10 show, in elevation and in section, a network of probes and installed in the soil in a particularly advantageous configuration.
- this network comprises five probes 10 as described above, which are introduced into galleries dug substantially from the same place and which open to the air only through a single orifice. After having been introduced into the galleries, the probes 10 are connected in series and / or in parallel and connected to the heat pump 88.
- the array of probes extends in the basement , radially from the point of connection, in the manner of tentacles which, in plan ( Figure 10) can take any form depending on the requirements of the surrounding terrain, the only limit being the radius of curvature allowed by the tunnel digging machine and the radius of curvature allowed by the probe.
- At depth FIG.
- the probe array extends to a depth chosen according to the thermal characteristics of the soil and the regulation, typically of the order of 0.5 to 10 meters below the level of the ground. soil, that is to say in the subsoil regions likely to have a uniform temperature in all seasons (of the order of 9 ° in temperate climate at low altitude).
- These probes are preferably arranged with their end end at the lowest point, so as to avoid the appearance of bubbles.
- the mass of terrain solicited for the capture of calories is thus delimited by a three-dimensional volume 92, located at shallow depth and on the right-of-way around the heat pump.
- this collection volume 92 extends at least 50 cm below the floor level, it is possible to implant the probe array even in the presence of trees 94, or also by passing under the dwelling 96 , as can be seen in Figure 10.
- two probes which, in plan, intersect, which is quite possible because the galleries will not be drilled exactly at the same level at this time. in law. It is thus possible to modulate the location and the intensity of the thermal exchanges with the surrounding environment as a function of topographic constraints, and to overcome all the disadvantages associated with prior known loop systems.
- the tubes and probes 10 are advantageously provided with a thermal insulation 98, for example an insulating sleeve, in their part lying between the ground level (heat pump connection manifold 88) and the upper level of the volume. 92.
- a thermal insulation 98 for example an insulating sleeve, in their part lying between the ground level (heat pump connection manifold 88) and the upper level of the volume. 92.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Combustion & Propulsion (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Geophysics And Detection Of Objects (AREA)
- Measuring Volume Flow (AREA)
- Road Paving Structures (AREA)
Abstract
Cette sonde (10) comporte un circuit de circulation de fluide caloporteur avec une entrée (28) et une sortie (34) de fluide reliées à une pompe à chaleur. Ce circuit comporte au moins deux tubes (12, 14) s' étendant parallèlement, avec un tube d'admission de fluide (14) et un tube de retour de fluide (12), les tubes d'admission et de retour étant mis en communication (24) entre eux à leurs extrémités distales (18, 22). Ces tubes sont réalisés avec une paroi commune, sur toute leur longueur. L'ensemble forme un élément tubulaire enfouissable unique avec une extrémité distale libre. Le tube de retour est pourvu de reliefs intérieurs (44) aptes à créer des turbulences dans le fluide circulant dans ce tube, tandis que la paroi intérieure du tube d'admission de fluide est lisse pour favoriser un écoulement laminaire du fluide qui y circule .
Description
Sonde de captage de l'énergie thermique du sol pour pompe à chaleur, et réseau de captage muni de telles sondes
L'invention concerne une sonde de captage de l'énergie thermique du sol pour pompes à chaleur, ces dernières pouvant être du type dit "eau/eau" ou du type "gaz/eau".
Ces équipements permettent de capter l'énergie thermique disponible dans les couches supérieures de la croûte terrestre, de concentrer (à température plus élevée) cette énergie et de la restituer sous cette forme concentrée pour alimenter un circuit de chauffage.
Le cœur de pompe comporte un compresseur et deux échangeurs de chaleur reliés respectivement aux réseaux de captage et de restitution de chaleur, avec un circuit de fluide frigorigène (réfrigérant) comprenant un condenseur, un détendeur et un évaporateur. Le compresseur concentre côté évaporateur l'énergie captée dans le sol et restitue côté condenseur l'énergie à restituer au circuit de chauffage.
Du côté du réseau de captage, il est prévu une "sonde de captage" constituée d'un circuit de fluide caloporteur, généralement un liquide tel que de l'eau additionnée d'éthylène-glycol, mais qui peut être également un fluide gazeux. Ce fluide de captage ou fluide caloporteur, après avoir été refroidi par l'évaporateur de la pompe à chaleur, est envoyé dans le sol pour se réchauffer au contact du milieu environnant, qui cède son énergie thermique au fluide. Chaque mètre linéaire de sonde plongé dans le milieu environnant sollicité peut ainsi apporter quelques joules d'énergie thermique à la pompe à chaleur lorsque le circuit est en fonctionnement, et le fluide ainsi réchauffé retourne ensuite vers la pompe à chaleur qui concentrera et restituera l'énergie thermique ainsi captée.
La technique décrite ci-dessus est à distinguer de celle décrite par exemple dans le US-A-5 561 985, qui ne met pas en jeu de "sonde de captage" au sens de l'invention, c'est-à-dire un circuit où circule un fluide caloporteur (et non un fluide frigorigène), sans changement de phase. Ce document propose d'enfouir un évaporateur, c'est-à-dire un échangeur thermique dans lequel le fluide frigorigène en provenance du compresseur est amené à l'évaporateur en phase liquide et quitte ce dernier en phase va- peur. Le DE-A-103 27 602 décrit une technique comparable, où un tube
reçoit un condensât de CO2 qui s'écoule vers le bas sous forme d'un film le long des parois du tube jusqu'à une zone profonde, plus chaude, où le CO2 se vaporise et est restitué sous pression en remontant le tube. Au contraire, une "sonde de captage" n'est jamais directement reliée au com- presseur, et le fluide caloporteur qui y circule est différent du fluide frigori- gène du circuit incluant le compresseur.
Les sondes de captage sont généralement réalisées sous forme d'un tube formant une boucle reliée à chacune de ses extrémités à une prise respective de la pompe à chaleur. La nature du tube, tout particulièrement la conductibilité thermique de sa paroi, conditionne l'échange thermique avec le milieu environnant. Par ailleurs, le diamètre du tube et la longueur plus ou moins grande de la boucle déterminent la surface d'échange, et donc la masse du milieu environnant sollicitée par le captage. Une première technique dite de "captage horizontal" consiste à enfouir le tube dans le sol à une faible profondeur (de l'ordre de 50 à 70 cm) en le faisant serpenter de manière à occuper une surface de terrain maximale pour solliciter une masse suffisante du milieu environnant. Cette technique nécessite pour l'enfouissement de la sonde le décapage du terrain sur une grande étendue ou le creusement de tranchées, avec un certain nombre de contraintes qui en découlent : coût du terrassement ; impossibilité de disposer le réseau de captage sous une maison ; restrictions à l'emploi du terrain après enfouissement du tube, par exemple impossibilité d'y planter des arbres. Une deuxième technique dite de "captage vertical" consiste à forer un puits vertical, dont la profondeur peut atteindre 100 m, et à enfouir ensuite sur toute cette profondeur un ou plusieurs tubes en boucle. Compte tenu de la profondeur à atteindre, cette technique implique un diamètre de forage relativement important, de l'ordre de 200 mm, qui nécessite des équipements spécialisés, lourds et encombrants à mettre en œuvre. Elle peut certes être mise en œuvre sur un terrain d'étendue limitée, mais présente d'autres inconvénients : coût et durée du forage ; échanges thermiques mal contrôlés ; milieu sollicité sur la seule masse cylindrique environnant le forage. Le US-A-5 339 890 décrit une "sonde de captage" réalisée sous forme d'un élément tubulaire souple pourvu à l'une de ses extrémités à la fois de
l'entrée et de la sortie de fluide, et dont l'autre extrémité est une extrémité libre. Cette configuration permet d'introduire l'élément tubulaire par sa partie libre dans une galerie ouvrant en surface par un seul point. L'élément tubulaire enfouissable est assez résistant pour pouvoir être poussé dans cette galerie sur toute la longueur de celle-ci uniquement par l'une de ses extrémités.
Cependant, aucune solution proposée jusqu'à présent pour l'enfouissement d'une sonde de captage pour pompe à chaleur ne s'est révélée véritablement satisfaisante, ni sur le plan économique ni sur le plan de l'effi- cacité des échanges thermiques.
L'un des but de l'invention est de proposer une sonde de captage qui puisse être notablement optimisée du point de vue de l'efficacité thermique par rapport aux solutions proposées jusqu'à présent. Le point de départ de l'invention réside dans la constatation de l'impor- tance qu'il y a à contrôler le régime d'écoulement du fluide par une configuration particulière des surfaces intérieures respectives du tube de retour et du tube d'admission, pour obtenir une augmentation sensible de l'efficacité thermique. La sonde proposée par l'invention est une sonde du type connu d'après le US-A-5 339 890 précité, c'est-à-dire comportant un circuit de circulation de fluide caloporteur avec une entrée de fluide et une sortie de fluide aptes à être reliées à des prises respectives d'une pompe à chaleur. Ce circuit comporte au moins deux tubes s'étendant parallèlement, avec un tube d'admission de fluide relié à l'entrée de fluide et un tube de retour de fluide relié à la sortie de fluide. Les tubes d'admission et de retour de fluide sont mis en communication entre eux à leurs extrémités distales, et ils sont réalisés avec une paroi commune sur toute leur longueur, formant ainsi un élément tubulaire enfouissable unique avec une extrémité proxi- male comportant l'entrée et la sortie de fluide, et une extrémité distale Ii- bre.
De façon caractéristique de l'invention, la surface intérieure de la paroi du tube de retour de fluide est pourvue de reliefs aptes à créer des turbulences dans le fluide circulant dans ce tube, et la surface intérieure de la paroi du tube d'admission de fluide est une surface lisse apte à favoriser un écoulement laminaire du fluide circulant dans ce tube.
Les reliefs dans le tube de retour de fluide procurent un flux de retour lent et turbulent favorisant l'échange thermique avec le milieu environnant, à l'opposé de la surface lisse du tube d'admission, qui favorise au contraire un flux rapide minimisant les pertes thermiques. Le US-A-5 339 890 ne décrit aucune configuration de sonde de ce type : les seuls reliefs qui sont présents le sont sur la surface extérieure du tube de fluide, et n'ont donc aucune incidence sur le régime d'écoulement du fluide circulant à l'intérieur de ce tube. Bien au contraire, ce document estime (colonne 5 lignes 44 à 50) qu'"il n'y a pas besoin d'entretoises ou d'ailettes pour contrôler l'intervalle annulaire entre le tube interne 60 et le tube externe 42 ou pour créer des turbulences, car le positionnement du tube interne 60 par rapport au tube externe 42 n'a pas d'importance et les diagrammes d'écoulement du fluide sont contrôlés par d'autres facteurs comprenant le diamètre, l'ouverture et le débit". À l'opposé, la présente in- vention propose de contrôler les régimes d'écoulement respectifs des tubes d'admission et de retour de fluide en donnant à la surface intérieure de ces tubes des configurations propres à favoriser le type d'écoulement recherché. Selon diverses caractéristiques préférentielles avantageuses : - la paroi commune est une paroi isotherme et/ou enfermant des cavités isolantes ;
- la section de passage de fluide du tube de retour est supérieure à la section de passage de fluide du tube d'admission ;
- la section extérieure de l'élément tubulaire enfouissable est uniforme, notamment circulaire, sur toute la longueur de cet élément ;
- le diamètre hors-tout de l'élément tubulaire enfouissable est inférieur à 150 mm, de préférence inférieure à 100 mm, très préférentiellement inférieure à 50 mm ;
- les tubes sont réalisés en un matériau souple apte à conférer de la flexibilité à l'élément tubulaire enfouissable ;
- l'extrémité distale de l'élément tubulaire enfouissable est pourvue extérieurement d'un embout rapporté ;
- la sonde comprend en outre, sur des parties choisies de sa longueur, une isolation renforcée du tube d'admission de fluide et/ou du tube de retour de fluide.
Dans une première forme de réalisation, les tubes d'admission et de retour de fluide sont des tubes emmanchés l'un dans l'autre, l'un des tubes étant un tube interne ouvert à son extrémité distale et dont la paroi constitue ladite paroi commune, et l'autre des tubes étant un tube extérieur en- veloppant le tube interne et obturé à son extrémité distale. La surface interne du tube interne est lisse, et la surface externe de ce même tube interne est pourvue desdits reliefs.
Dans une autre forme de réalisation, les tubes d'admission et de retour de fluide sont des tubes attenants. Il peut s'agir d'un seul tube d'admission associé à un seul tube de retour de fluide, la section du tube de retour étant supérieure à la section du tube d'admission. Mais on peut également prévoir au moins trois tubes, avec un nombre de tubes d'admission inférieur à celui des tubes de retour de fluide, la section totale du (des) tube(s) de retour étant supérieure à la section totale du (des) tube(s) d'ad- mission.
L'invention couvre également un réseau de captage de l'énergie thermique du sol pour pompe à chaleur comprenant une pluralité de sondes telles que ci-dessus, enfouies dans des galeries creusées dans le sol. Ce réseau présente une configuration tridimensionnelle limitée par un volume enveloppe s'étendant sur une emprise de terrain et sur une profondeur d'enfouissage données. Les sondes comprennent avantageusement une isolation renforcée du tube d'admission et/ou du tube de retour de fluide, sur leur partie s'étendant entre le niveau du sol et ledit volume enveloppe. Typiquement, le volume enveloppe s'étend à une profondeur comprise entre 0,5 et 10 mètres au-dessous du niveau du sol, et les sondes sont disposées avec leur extrémité terminale au point le plus bas pour éviter la formation de bulles.
Cette configuration caractéristique permet d'introduire l'élément tubulaire, par sa partie libre dans une galerie de faible diamètre (quelques dizaines de millimètres) ouvrant en surface par un seul point.
Elle est rendue possible notamment par la souplesse de l'élément tubulaire enfouissable, qui lui permet de s'adapter à des courbes complexes que le tracé de la galerie est susceptible de suivre, tout en étant assez résistant pour pouvoir être poussé dans cette galerie sur toute la longueur de celle-ci uniquement par l'une de ses extrémités.
II existe en effet des foreuses de petite dimension qui permettent de creuser très aisément et à faible coût des galeries de plusieurs dizaines de mètres de longueur et de quelques dizaines de millimètres de diamètre (par exemple 50 mm de diamètre), par exemple les foreuses miniatures ou "taupes" utilisées pour faire passer des tubes d'adduction d'eau sous des routes ou des habitations, sans qu'il soit besoin de creuser une tranchées ouverte. Les galeries creusées par ces foreuses ne sont pas nécessairement verticales ou horizontales, mais peuvent suivre un parcours courbe quelconque adapté à la configuration des lieux. Le creusement d'une telle galerie n'introduit pas de dommages importants au terrain, ce qui supprime l'inconvénient majeur des captages horizontaux, en permettant en outre de creuser une galerie suffisamment profonde pour ne pas entraver la plantation d'arbres ni le percement de trous dans le sol. Enfin, le percement d'une telle galerie ne réclame qu'une faible surface, qui peut même être prise à l'intérieur d'un bâtiment, le captage de l'énergie thermique se faisant alors, totalement ou partiellement, sous ce bâtiment.
L'utilisation de la sonde de captage de l'invention n'entraîne ainsi qu'un minimum de nuisances lors de l'enfouissement, et peut être mise en œu- vre à moindre coût et sans limitation ultérieure dans l'utilisation du terrain.
0
On va maintenant décrire un exemple de mise en œuvre du dispositif de l'invention, en référence aux dessins annexés où les mêmes références numériques désignent d'une figure à l'autre des éléments identiques ou fonctionnellement semblables.
La figure 1 est une coupe verticale d'une sonde de captage selon un premier mode de réalisation de l'invention. La figure 2 est une coupe en plan selon la ligne H-Il de la figure 1.
La figure 3 montre le détail repéré III sur la figure 1.
La figure 4 est une section selon la ligne IV-IV de la figure 1.
Les figures 5, 6 et 7 sont homologues de la figure 4, pour d'autres modes de réalisation de l'invention.
La figure 8 est une vue schématique illustrant la manière de relier en série une pluralité de sondes selon l'invention associées à une même pompe à chaleur.
0
Sur la figure 1 , la référence 10 désigne de façon générale la sonde de captage de l'invention, qui est dans ce mode de réalisation constituée de deux tubes emmanchés l'un dans l'autre, avec un tube extérieur 12 et un tube interne 14. Le diamètre externe d du tube extérieur est par exemple de l'ordre de 40 mm, ce qui permet de l'introduire dans une galerie ou puits 16 de diamètre D légèrement supérieur, par exemple un diamètre de 50 mm.
Le tube extérieur 12 est fermé à son extrémité distale 18 par tout moyen approprié, par exemple par bouchage mécanique ou par moulage occlusif à chaud. Cette extrémité 18 est en outre avantageusement recouverte d'un embout de protection 20, par exemple métallique, pour faciliter l'enfilage du tube dans la galerie.
Le tube interne 14, quant à lui, est ouvert à son extrémité distale 22 de manière à laisser subsister un intervalle 24 entre cette extrémité 22 et la paroi obturée 18 en vis-à-vis du tube extérieur 12.
À leur extrémité proximale, les deux tubes extérieur 12 et interne 14 sont reliés à un élément de liaison de tête 26 permettant de solidariser l'un à l'autre les deux tubes, avec le tube interne 14 en position centrale émergeant en 28. La liaison de tête 26 comporte par ailleurs des passages longitudinaux 30 (visibles également sur la coupe de la figure 2) débouchant dans une chambre annulaire 32 communiquant elle-même avec un orifice de sortie 34, qui est ainsi mise en communication de fluide avec le volume du tube extérieur 12 compris entre la paroi de ce tube et celle du tube interne 14. Le tube interne 14 peut être avantageusement réalisé de la manière représentée sur le détail de la figure 3, avec une paroi interne 36 dont la surface libre 38 est lisse et une paroi externe 40 dont la surface externe 42 est pourvue de reliefs tels que 44. Un cœur isotherme 46 permet d'isoler thermiquement entre eux les flux s'écoulant de part et d'autre du tube 14. En variante ou en complément,
les parois du tube peuvent être creuses, avec des cavités telles que 48 qui procurent une isolation renforcée des flux s'écoulant de part et d'autre de la paroi.
La circulation du fluide dans la sonde s'effectue de la manière suivante. Le fluide froid en sortie de la pompe à chaleur est introduit (flèche 50) dans l'extrémité libre 28, côté proximal, du tube interne 14 (tube d'admission de fluide), où il s'écoule jusqu'à l'extrémité distale 22, la surface lisse 38 favorisant un écoulement laminaire du fluide dans le tube. Le fluide débouche alors dans la zone 24 située à l'extrémité distale du tube extérieur 12 (tube de retour de fluide), d'où il est refoulé vers l'extrémité opposée de ce même tube (flèches 52, 54) sur toute la longueur de ce dernier, pour être collecté (flèche 56) par les passages 30 jusqu'à la sortie 34 de la liaison de tête 26 (flèche 58). La présence des reliefs 44 favorise la création de turbulences dans le fluide, qui le ralentissent et ac- croissent l'échange thermique avec l'extérieur.
Le fluide introduit depuis l'extrémité proximale du tube interne 14 est directement acheminé vers l'ouverture distale 22 de ce même tube, sans passer par d'autres accidents que les courbes suivies par le tube. Parvenu à cet endroit, le fluide se retrouve à l'extrémité distale du tube extérieur et retourne vers l'extrémité proximale de ce dernier.
Au cours du trajet dans le tube extérieur 12, le fluide de captage reçoit l'énergie thermique cédée par le milieu environnant, puis retourne vers la pompe à chaleur, qui concentrera et extraira cette énergie thermique avant de renvoyer le fluide refroidi vers la sonde pour un nouveau cycle de captage.
On notera qu'avec la configuration illustrée, le captage thermique commence dans la région distale de la sonde, qui est celui le plus susceptible d'être le plus chaud et dont la température sera le plus rapidement renouvelée, pour remonter ensuite vers la pompe à chaleur qui l'alimente en fluide réchauffé.
Dans certaines circonstances, le sens de circulation du fluide peut être inversé, c'est-à-dire que le fluide sera admis par l'orifice 34 dans le tube extérieur 12 (qui devient le tube d'admission de fluide) pour parcourir celui-ci sur toute sa longueur puis être collecté à l'extrémité distale par le tube 14 (qui devient le tube de retour de fluide) et être extrait de celui-ci par l'ou-
verture 28. Dans un tel cas, à la différence de la configuration précédente, c'est alors la partie du milieu environnant la plus proche de la liaison de tête 26 qui sera majoritairement sollicitée pour l'échange thermique. Comme on le comprend aisément, le choix de l'une ou l'autre configura- tion se fait par une simple inversion du sens de circulation du fluide dans la sonde de captage, ce qui permet d'optimiser très simplement l'échange thermique en fonction des besoins, ou éventuellement en testant les deux configurations et en comparant les résultats obtenus. Le tube extérieur 12 est choisi dans un matériau présentant une résis- tance mécanique et une semi-rigidité suffisantes pour pouvoir, dans la majorité des cas rencontrés, être poussé dans la galerie 16 après le creusement de celle-ci ; si nécessaire, le tube pourra être mis en pression pour que sa rigidité et sa tenue mécanique soient accrues. Le matériau devra également être choisi avec une résistance à l'étirement suffisante pour permettre, le cas échéant, le tirage du tube dans la galerie depuis une autre extrémité éloignée, ouverte, de celle-ci. Le tube doit également être résistant à l'écrasement et être inerte vis-à-vis du fluide qui y circulera. En pratique, les tubes d'adduction d'eau potable en polypropylène (diamè- tre 32 mm, épaisseur 3,6 mm) peuvent parfaitement être utilisés dans la majorité des cas pour des pompes à chaleur utilisant un mélange d'eau et d'éthylène-glycol comme fluide caloporteur du réseau de captage. Si le fluide caloporteur du réseau de captage est un gaz, on pourra utiliser un tube métallique de petit diamètre, de manière à limiter la quantité de gaz utilisée et réduire les pertes de charge. On pourra notamment utiliser un tube en acier inoxydable fermé à son extrémité par soudage et rabouté par soudure (soudure orbitale TIG par exemple) soit au préalable, soit au fur et à mesure de l'enfouissement : dans ce dernier cas, il sera possible de constituer rapidement un tube continu de résistance parfaitement ho- mogène sur toute sa longueur, à partir de sections de tubes de longueurs quelconques.
Le tube interne 14, quant à lui, peut être un tube en matière plastique suffisamment souple pourvu de reliefs 44, par exemple des cannelures, bossages, etc. venus de moulage. Sa longueur est ajustée à celle du tube ex- térieur de manière à situer son ouverture basse 22 quelques centimètres
avant l'occlusion 18 du tube extérieur, cette ouverture basse pouvant être biseautée pour maximiser l'échappement. Des fentes latérales (non représentées) peuvent être prévues pour permettre la circulation du fluide même en cas d'écrasement ou autre occlusion de la partie distale de la sonde.
Comme le tube extérieur 12, le tube interne 14 doit être neutre à l'égard du fluide de captage. Il doit présenter sur sa longueur un rayon de courbure minimum inférieur ou égal à celui du tube extérieur, et son diamètre externe doit être inférieur au diamètre interne du tube extérieur pour pou- voir être enfilé à l'intérieur de ce dernier.
On notera qu'il n'est pas nécessaire que les tubes interne et extérieur soient coaxiaux ; la venue en contact du tube interne 14 avec la paroi interne du tube extérieur 12, par exemple dans les régions de courbure de la sonde, n'est pas gênante du point de vue de la circulation du fluide : la section de passage est conservée dès lors que les tubes ne sont pas écrasés et de plus, du point de vue thermique, cette singularité est avantageusement susceptible de créer des turbulences supplémentaires en cet endroit. Le matériau du tube interne 14 est de préférence un matériau de faible conductivité thermique, ou constitué d'une structure incorporant un cœur isotherme 46 et/ou des cavités isolantes 48 comme illustré sur la figure 3. Ceci permet d'isoler thermiquement les flux de circulation opposés, dans le tube interne 14 d'une part (flux d'admission) et dans le tube extérieur 12 d'autre part (flux de retour). L'échange thermique doit être en effet essen- tiellement opéré entre le fluide circulant dans le tube extérieur 12 et le milieu environnant, et non entre les deux flux opposés. Les sections respectives des tubes extérieur et interne sont avantageusement choisies de manière à définir un rapport optimal entre la section de passage du flux d'admission (dans le tube interne 14) et la section de passage du flux de retour (entre le tube extérieur 12 et le tube interne 14). Avec une section d'admission inférieure à la section de retour, la vitesse du flux d'admission est plus élevée que celle du flux de retour. Le flux d'admission rapide minimise les pertes dans le tube interne 14, tandis que le flux de retour lent et turbulent favorise l'échange thermique entre le tube extérieur 12 et le milieu environnant.
D'autres modes de réalisation de l'invention peuvent être envisagés, avec une configuration de tubes différente de celle que l'on vient d'exposer où, comme illustré figure 4, un tube interne 14 était emmanché dans un tube extérieur 12 définissant deux espaces concentriques 60, 62, respective- ment pour le flux de retour et le flux d'admission.
Ainsi, comme illustré figure 5, il est possible de prévoir une sonde de cap- tage avec un tube extérieur 64 et un tube intérieur 66 qui n'est plus emmanché dans le tube extérieur, mais est accolé intérieurement à celui-ci avec une paroi commune 68, du même côté de laquelle s'étendent les deux tubes. L'ensemble est par exemple réalisé par extrusion ou co- extrusion. Les dimensions des tubes extérieur 64 et intérieur 66 sont choisies de manière à définir une section de passage du flux de retour 70 notablement supérieure à la section de passage du flux d'admission 72, pour ralentir la vitesse du flux de retour et favoriser l'échange thermique. Dans la variante de la figure 6, les deux tubes ne sont plus accolés intérieurement, mais extérieurement, la sonde se présentant sous la forme de deux tubes attenants 74, 76 avec une paroi commune 78 de part et d'autre de laquelle s'étendent les deux tubes. Là encore, il est possible de choisir des dimensions de tubes différentes pour optimiser les flux respec- tifs d'admission et de retour.
Un autre variante encore, illustrée figure 7, consiste à prévoir un nombre de tubes supérieur à deux, par exemple trois tubes 80, 82, 84. Si les tubes sont de même diamètre, il est ainsi possible d'utiliser deux tubes 80, 82 pour le flux de retour et un seul tube 84 pour le flux d'admission. Ceci permet, ici encore, d'accroître globalement la section du flux de retour.
Tout ce qui a été dit plus haut concernant la présence de reliefs 44 aptes à former des turbulences dans le flux de retour, la surface lisse du tube pour le flux d'admission, ainsi que l'isolation thermique entre les flux d'admission et de retour est applicable mutatis mutandis aux différents modes de réalisation des figures 5 à 7 où les tubes sont accolés au lieu d'être enfilés l'un dans l'autre.
La figure 8 illustre schématiquement une installation dans laquelle une pluralité de sondes de captage 10, 10', 10" selon l'invention sont utilisées et montées en série pour accroître encore l'échange thermique avec le mi- lieu environnant.
L'entrée 28 de la première sonde 10 est reliée à la sortie de fluide 86 de la pompe à chaleur 88, la sortie 34 de cette première sonde est reliée à l'entrée 28' de la deuxième sonde 10', et ainsi de suite, la sortie 34" de la troisième sonde 10'" étant reliée à l'entrée de fluide 90 de la pompe à chaleur 88.
Il est également possible de monter en parallèle plusieurs sondes de cap- tage, dans le cas où la pompe à chaleur que ces sondes alimentent impose un débit qui ne peut être valablement satisfait par la section interne de l'un des tubes d'une sonde unique. Comme on le comprendra aisément, la sonde de captage de l'invention, ou une pluralité de sondes de captage selon l'invention, peuvent être enfouies dans une galerie dont le parcours a été défini en fonction des contraintes topographiques et de la nature du sous-sol. Cette galerie peut être aussi bien une galerie oblique, une galerie verticale, une galerie avec un départ oblique puis un plateau horizontal, une galerie courbe, etc. Il est possible de prévoir une installation avec des galeries plongeant à diverses profondeurs dans le sol et disposées les unes au-dessus des autres avec un espacement suffisant. Cette dernière configuration permet en particulier de solliciter une masse du milieu de captage beaucoup plus impor- tante que dans les configurations linéaires ou en deux dimensions, comme avec les systèmes de captage vertical ou horizontal conventionnels.
Les figures 9 et 10 montrent, en élévation et en coupe, un réseau de sondes ainsi installées dans le sol selon une configuration particulièrement avantageuse.
Dans l'exemple illustré, ce réseau comporte cinq sondes 10 telles que décrites plus haut, qui sont introduites dans des galeries creusées sensiblement à partir du même endroit et qui ne débouchent à l'air libre que par un seul orifice. Après avoir été introduites dans les galeries, les sondes 10 sont raccordées en série et/ou en parallèle et reliés à la pompe à chaleur 88. Dans la configuration avantageuse des figures 9 et 10, le réseau de sondes s'étend en sous-sol, radialement à partir du point de raccordement, à la manière de tentacules qui, en plan (figure 10) peuvent prendre une forme quelconque en fonction des impératifs du terrain environnant, la
seule limite étant le rayon de courbure permis par la machine de creusement de la galerie et le rayon de courbure autorisé par la sonde. En profondeur (figure 9), le réseau de sondes s'étend à une profondeur choisie en fonction des caractéristiques thermiques du sol et de la réglementa- tion, typiquement de l'ordre de 0,5 à 10 mètres au-dessous du niveau du sol, c'est-à-dire dans les régions du sous-sol susceptibles de présenter une température uniforme en toute saison (de l'ordre de 9° en climat tempéré à basse altitude). Ces sondes sont de préférence disposées avec leur extrémité terminale au point le plus bas, de manière à éviter l'appari- tion de bulles.
La masse de terrain sollicitée pour le captage des calories est ainsi délimitée par un volume tridimensionnel 92, situé à faible profondeur et sur l'emprise du terrain autour de la pompe à chaleur. Ce volume de captage 92 s'étendant à au moins 50 cm au-dessous du ni- veau du sol, il est possible d'implanter le réseau de sondes même en présence d'arbres 94, ou également en passant sous l'habitation 96, comme on peut le voir sur la figure 10. Sur cette même figure, on a également illustré deux sondes qui, en plan, se croisent, ce qui est tout à fait possible car les galeries ne seront pas forées exactement au même niveau à cet endroit. Il est ainsi possible de moduler la localisation et l'intensité des échanges thermiques avec le milieu environnant en fonction des contraintes topographiques, et en s'affranchissant de tous les inconvénients liés aux systèmes antérieurs en boucle connus. Par ailleurs, les tubes et sondes 10 sont avantageusement munis d'une isolation thermique 98, par exemple un manchon isolant, dans leur partie comprise entre le niveau du sol (collecteur de liaison à la pompe à chaleur 88) et le niveau supérieur du volume de captage 92. Ceci permet d'éviter des échanges thermiques inefficaces dans cette région du sol de faible profondeur, qui peut tomber à une température trop basse pour assurer un rendement thermique satisfaisant.
En utilisant une pluralité de sondes ayant chacune par exemple une longueur de 25 m, il est ainsi possible de solliciter une masse de milieu importante même sur une parcelle de terrain réduite, par exemple avec des dimensions maximales typiques de l'ordre de 35 à 50 m. Pour des parcel- les de plus petites dimensions encore, par exemple en zone pavillonnaire,
il est possible de prévoir plusieurs nappes de sondes superposées, par exemple une première nappe s'étendant dans un volume de captage situé entre 0,5 et 1 ,5 m au-dessous du niveau du sol, une deuxième nappe dans un volume de captage situé entre 3 m et 4 m au-dessous du niveau du sol, etc. afin d'augmenter la masse du milieu sollicité malgré une emprise au sol réduite.
Claims
1. Une sonde de captage de l'énergie thermique du sol pour pompe à chaleur, cette sonde (10) comportant un circuit de circulation de fluide ca- loporteur avec une entrée de fluide (28) et une sortie de fluide (34) aptes à être reliées à des prises respectives (86, 90) d'une pompe à chaleur (88), ce circuit comportant au moins deux tubes (12, 14 ; 64, 66 ; 74, 76 ; 80, 82, 84) s'étendant parallèlement, avec un tube d'admission de fluide (14 ; 66 ; 76 ; 84) relié à l'entrée de fluide et un tube de retour de fluide (12 ; 64 ; 74 ; 80, 82) relié à la sortie de fluide, sonde dans laquelle les tubes d'admission et de retour de fluide sont mis en communication entre eux à leurs extrémités distales, sont réalisés avec une paroi commune sur toute leur longueur, et forment un élément tubu- laire enfouissable unique avec une extrémité proximale comportant l'en- trée et la sortie de fluide, et une extrémité distale libre, sonde caractérisée en ce que la surface intérieure de la paroi du tube de retour de fluide est pourvue de reliefs (44) aptes à créer des turbulences dans le fluide circulant dans ce tube, et la surface intérieure de la paroi du tube d'admission de fluide est une surface lisse apte à favoriser un écou- lement laminaire du fluide circulant dans ce tube.
2. La sonde de captage de la revendication 1 , dans laquelle ladite paroi commune (36, 40, 46) est une paroi avec un cœur isotherme (46) et/ou enfermant des cavités isolantes (48).
3. La sonde de captage de la revendication 1 , dans laquelle la section de passage de fluide du tube de retour est supérieure à la section de passage de fluide du tube d'admission.
4. La sonde de captage de la revendication 1 , dans laquelle la section extérieure dudit élément tubulaire enfouissable unique est uniforme sur toute la longueur de cet élément.
5. La sonde de captage de la revendication 4, dans laquelle la section extérieure dudit élément tubulaire enfouissable unique est une section circulaire.
6. La sonde de captage de la revendication 1 , dans laquelle le diamètre hors-tout (d) dudit élément tubulaire enfouissable unique est inférieur à 150 mm, de préférence inférieure à 100 mm, très préférentiellement inférieure à 50 mm.
7. La sonde de captage de la revendication 1 , dans laquelle les tubes sont réalisés en un matériau souple apte à conférer de la flexibilité audit élément tubulaire enfouissable unique.
8. La sonde de captage de la revendication 1, dans laquelle l'extrémité distale dudit élément tubulaire enfouissable unique est pourvue extérieurement d'un embout rapporté (20).
9. La sonde de captage de la revendication 1 , dans laquelle lesdits tubes d'admission et de retour de fluide sont des tubes (12, 14) emmanchés l'un dans l'autre, l'un des tubes étant un tube interne (14) ouvert à son extrémité distale (22) et dont la paroi constitue ladite paroi commune, et l'autre des tubes étant un tube extérieur (12) enveloppant le tube interne et obturé à son extrémité distale (18), la surface interne (38) du tube interne (14) étant lisse et la surface externe (42) de ce même tube interne (14) étant pourvue desdits reliefs (44).
10. La sonde de captage de la revendication 1, dans laquelle lesdits tubes d'admission et de retour de fluide sont des tubes attenants (64, 66 ; 74, 76 ; 80, 82, 84).
11. La sonde de captage de la revendication 10, comprenant un seul tube d'admission (66 ; 76) et un seul tube de retour (64 ; 74) de fluide, et dans laquelle la section du tube de retour est supérieure à la section du tube d'admission.
12. La sonde de captage de la revendication 11, comprenant au moins trois tubes (80, 82, 84), avec un nombre de tubes d'admission (84) inférieur à celui des tubes de retour (80, 82) de fluide, et dans laquelle la section totale du (des) tube(s) de retour est supérieure à la section totale du (des) tube(s) d'admission.
13. La sonde de captage de la revendication 1 , comprenant en outre, sur des parties choisies de sa longueur, une isolation renforcée (98) du tube d'admission et/ou du tube de retour de fluide.
14. Un réseau de captage de l'énergie thermique du sol pour pompe à chaleur, caractérisé en ce que :
- ce réseau comprend une pluralité de sondes (10) selon l'une des revendications 1 à 13, enfouies dans des galeries creusées dans le sol, et
- il présente une configuration tridimensionnelle limitée par un volume enveloppe (92) s'étendant sur une emprise de terrain et sur une profondeur d'enfouissage données.
15. Le réseau de captage de la revendication 14, dans lequel les sondes (10) comprennent une isolation renforcée (98) du tube d'admission et/ou du tube de retour de fluide, sur leur partie s'étendant entre le niveau du sol et ledit volume enveloppe.
16. Le réseau de captage de la revendication 14, dans lequel ledit volume enveloppe s'étend à une profondeur comprise entre 0,5 et 10 mètres au-dessous du niveau du sol.
17. Le réseau de captage de la revendication 14, dans lequel lesdites sondes sont disposées avec leur extrémité terminale au point le plus bas.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0503999A FR2884905B1 (fr) | 2005-04-21 | 2005-04-21 | Sonde de captage de l'energie thermique du sol pour pompe a chaleur |
PCT/FR2006/000863 WO2006111655A1 (fr) | 2005-04-21 | 2006-04-20 | Sonde de captage de l'energie thermique du sol pour pompe a chaleur, et reseau de captage muni de telles sondes |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1872067A1 true EP1872067A1 (fr) | 2008-01-02 |
Family
ID=35478281
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP06755427A Withdrawn EP1872067A1 (fr) | 2005-04-21 | 2006-04-20 | Sonde de captage de l'energie thermique du sol pour pompe a chaleur, et reseau de captage muni de telles sondes |
Country Status (8)
Country | Link |
---|---|
US (1) | US20090025902A1 (fr) |
EP (1) | EP1872067A1 (fr) |
CN (1) | CN1854641A (fr) |
BR (1) | BRPI0610505A2 (fr) |
CA (1) | CA2604260A1 (fr) |
FR (1) | FR2884905B1 (fr) |
RU (1) | RU2007143052A (fr) |
WO (1) | WO2006111655A1 (fr) |
Families Citing this family (40)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7347059B2 (en) * | 2005-03-09 | 2008-03-25 | Kelix Heat Transfer Systems, Llc | Coaxial-flow heat transfer system employing a coaxial-flow heat transfer structure having a helically-arranged fin structure disposed along an outer flow channel for constantly rotating an aqueous-based heat transfer fluid flowing therewithin so as to improve heat transfer with geological environments |
ITMO20070021A1 (it) * | 2007-01-25 | 2008-07-26 | Kloben S A S Di Turco Adelino E C | Collettore solare per il riscaldamento di un fluido termovettore. |
CA2679918A1 (fr) * | 2007-03-06 | 2008-09-12 | A & S Umwelttechnologie Ag | Systeme de realisation de sondes geothermiques |
PL2034252T3 (pl) * | 2007-09-08 | 2016-05-31 | Dynamic Blue Holding Gmbh | Obieg sond geotermalnych |
US9121630B1 (en) | 2008-04-07 | 2015-09-01 | Rygan Corp. | Method, apparatus, conduit, and composition for low thermal resistance ground heat exchange |
US9816023B2 (en) * | 2008-04-07 | 2017-11-14 | Rygan Corp | Method, apparatus, header, and composition for ground heat exchange |
WO2010053798A1 (fr) * | 2008-10-28 | 2010-05-14 | Trak International, Llc | Procédés et équipement pour le chauffage et le refroidissement de zones de bâtiments |
KR101124125B1 (ko) * | 2009-04-30 | 2012-03-21 | 스톤 석화 김 | 복합형 루프시스템 |
US20110036112A1 (en) * | 2009-08-17 | 2011-02-17 | American Ecothermal, Inc. | Turbulence Inducing Heat Exchanger |
CN101672188B (zh) * | 2009-09-23 | 2011-12-07 | 同济大学 | 隧道洞口段衬砌加热系统 |
US9777969B2 (en) * | 2009-10-28 | 2017-10-03 | Tai-Her Yang | Pipe member equipped with heat insulation core pipeline and U-shaped annularly-distributed pipeline |
ITBS20090199A1 (it) * | 2009-11-05 | 2011-05-06 | Studio Architettura Srl | Impianto geotermico con sonde entro murature interrate |
DE102010019411B4 (de) * | 2010-05-04 | 2015-01-22 | Sts Spezial-Tiefbau-Systeme Gmbh | Injektions-Kammersonde |
CN101846474A (zh) * | 2010-05-14 | 2010-09-29 | 沈学明 | 高效热交换波纹内套管式地埋管 |
NO332364B1 (no) * | 2010-10-14 | 2012-09-03 | Heatwork As | Anordning for varmeutveksling |
FI20115359A0 (fi) * | 2011-04-14 | 2011-04-14 | Runtech Systems Oy | Laitteisto maalämpöjärjestelmän toteuttamiseksi ja menetelmä sen hyödyntämiseksi |
ES2407542B1 (es) * | 2011-11-08 | 2014-04-29 | Abn Pipe Systems, S.L.U. | Sonda para el intercambio de calor en aplicaciones aerotérmicas y geotérmicas. |
GB2491664B (en) * | 2011-11-11 | 2014-04-23 | Greenfield Master Ipco Ltd | Orienting and supporting a casing of a coaxial geothermal borehole |
US20140298843A1 (en) * | 2013-04-08 | 2014-10-09 | Latent Energy Transfer System, Llc | Direct exchange heat pump with ground probe of iron angled at 25 degrees or less or other material angled at 4 degrees or less to the horizontal |
CN103196249A (zh) * | 2013-04-26 | 2013-07-10 | 王春梅 | 一种中深地层封闭循环热交换系统 |
US20150007960A1 (en) * | 2013-07-02 | 2015-01-08 | Kegan Nobuyshi Kawano | Column Buffer Thermal Energy Storage |
DE202014102027U1 (de) * | 2014-04-30 | 2015-08-03 | Klaus Knof | Erdsonde |
JP6222064B2 (ja) * | 2014-12-04 | 2017-11-01 | 東京エレクトロン株式会社 | 継ぎ手 |
RU2591362C1 (ru) * | 2015-06-11 | 2016-07-20 | Открытое акционерное общество "ИНСОЛАР-ИНВЕСТ" | Геотермальная теплонасосная система |
CN105423786B (zh) * | 2015-11-20 | 2018-11-27 | 浙江陆特能源科技股份有限公司 | 单管超级热传导装置 |
FR3044078B1 (fr) * | 2015-11-24 | 2020-01-10 | Brgm | Echangeur geothermique ferme a haute temperature et haute pression pour une formation magmatique ou metamorphique |
US10088199B2 (en) * | 2016-09-09 | 2018-10-02 | Korea Institute Of Energy Research | Coaxial ground heat exchanger and ground heat exchange system including the same |
JP6260977B1 (ja) * | 2016-10-26 | 2018-01-17 | 株式会社エコ・プランナー | 地中熱交換装置及び地中熱交換装置用の貯液槽の構築方法 |
WO2018145210A1 (fr) * | 2017-02-10 | 2018-08-16 | Her Majesty The Queen In Right Of Canada As Represented By The Minister Of Natural Resources Canada | Unité d'échange de chaleur au sol à canaux multiples et système géothermique |
SE541811C2 (en) * | 2017-03-07 | 2019-12-17 | E Tube Sweden Ab | Flexible sealing tube and method for producing the same |
CN106895727B (zh) * | 2017-04-14 | 2023-02-07 | 湖南工业大学 | 一种翅片管换热器及其应用和余热锅炉 |
CN107192063A (zh) * | 2017-07-10 | 2017-09-22 | 陕西德龙地热开发有限公司 | 一种利用中深层无干扰地岩热换热孔作冷热源的系统与方法 |
SE542750C2 (en) * | 2017-07-13 | 2020-07-07 | E Tube Sweden Ab | Connector arrangement for a flexible sealing tube and a method of connecting such a flexible sealing tube |
FR3085744B1 (fr) * | 2018-09-06 | 2020-11-27 | Esiee Paris Chambre De Commerce Et Dindustrie De Region Paris Ile De France | Echangeur thermique flexible comprenant un assemblage de sondes thermiques flexibles |
CN109724277B (zh) * | 2019-03-01 | 2020-02-25 | 河北地质大学 | 地热井换热装置 |
US11953237B2 (en) | 2021-08-12 | 2024-04-09 | Bernard J. Gochis | Piles providing support and geothermal heat exchange |
EP4206557A1 (fr) * | 2021-12-28 | 2023-07-05 | Muovitech AB | Collecteur |
US11828147B2 (en) | 2022-03-30 | 2023-11-28 | Hunt Energy, L.L.C. | System and method for enhanced geothermal energy extraction |
WO2023235324A1 (fr) * | 2022-06-01 | 2023-12-07 | Applied Exponential Technologies, Llc | Échangeur de chaleur au sol à canaux concentriques |
GB2624235A (en) * | 2022-11-11 | 2024-05-15 | Kohler Mira Ltd | Plumbing or Ablutionary System |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4452303A (en) * | 1980-08-07 | 1984-06-05 | Wavin B. V. | Device and a method for recovering heat from the soil |
US5339890A (en) * | 1993-02-08 | 1994-08-23 | Climate Master, Inc. | Ground source heat pump system comprising modular subterranean heat exchange units with concentric conduits |
US5561985A (en) * | 1995-05-02 | 1996-10-08 | Ecr Technologies, Inc. | Heat pump apparatus including earth tap heat exchanger |
DE19919555C1 (de) * | 1999-04-29 | 2000-06-15 | Flowtex Technologie Gmbh & Co | Verfahren zur Erschließung geothermischer Energie sowie Wärmetauscher hierfür |
WO2002022341A1 (fr) * | 2000-09-12 | 2002-03-21 | Metallamics, Inc. | Noyau de refroidissement d'un moulage par injection et procede d'utilisation associe |
US6751974B1 (en) * | 2002-12-31 | 2004-06-22 | B. Ryland Wiggs | Sub-surface and optionally accessible direct expansion refrigerant flow regulating device |
DE10327602B4 (de) * | 2003-05-22 | 2006-12-28 | FKW HANNOVER Forschungszentrum für Kältetechnik und Wärmepumpen GmbH | Erdwärmesonde |
-
2005
- 2005-04-21 FR FR0503999A patent/FR2884905B1/fr not_active Expired - Fee Related
- 2005-10-26 CN CNA2005101192029A patent/CN1854641A/zh active Pending
-
2006
- 2006-04-20 EP EP06755427A patent/EP1872067A1/fr not_active Withdrawn
- 2006-04-20 RU RU2007143052/06A patent/RU2007143052A/ru not_active Application Discontinuation
- 2006-04-20 WO PCT/FR2006/000863 patent/WO2006111655A1/fr active Application Filing
- 2006-04-20 US US11/919,085 patent/US20090025902A1/en not_active Abandoned
- 2006-04-20 BR BRPI0610505-0A patent/BRPI0610505A2/pt not_active IP Right Cessation
- 2006-04-20 CA CA002604260A patent/CA2604260A1/fr not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2006111655A1 * |
Also Published As
Publication number | Publication date |
---|---|
FR2884905B1 (fr) | 2007-07-20 |
CA2604260A1 (fr) | 2006-10-26 |
WO2006111655A1 (fr) | 2006-10-26 |
CN1854641A (zh) | 2006-11-01 |
BRPI0610505A2 (pt) | 2012-01-10 |
US20090025902A1 (en) | 2009-01-29 |
FR2884905A1 (fr) | 2006-10-27 |
RU2007143052A (ru) | 2009-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1872067A1 (fr) | Sonde de captage de l'energie thermique du sol pour pompe a chaleur, et reseau de captage muni de telles sondes | |
FR2905973A1 (fr) | Accessoire d'aide au forage d'un reseau de galeries radiales | |
WO2009007606A2 (fr) | Echangeur vissé vertical enterré pour installation de chauffage ou de rafraichissement | |
EP2181301A1 (fr) | Dispositif passif de regulation thermique a micro boucle fluide a pompage capillaire | |
EP2885568A1 (fr) | Raccord intermédiaire de connexion d'éléments de conduite rigide de transport de fluide, réseau de conduites et procédé d'assemblage associés | |
FR3065976A1 (fr) | Piscine hors sol | |
FR3071045B1 (fr) | Systeme souterrain de stockage de chaleur pour installation de production de chauffage et/ou d'eau chaude sanitaire | |
JP2003302109A (ja) | 地中熱交換器 | |
FR3036174B1 (fr) | Dispositif de stockage geothermique reversible dans un massif de sol reconstitue | |
EP2480839B1 (fr) | Dispositif d'echangeur geothermique comprenant une enceinte destinee a etre enfouie dans un sous-sol terrestre et a contenir un echangeur geothermique | |
FR2817024A1 (fr) | Systeme de capteur enterre pour pompe a chaleur | |
FR2913487A1 (fr) | Amelioration aux echangeurs gaz/sol ou liquides/sol et installations de chauffage ou de climatisation utilisant de tels echangeurs ameliores. | |
FR2950957A1 (fr) | Methode et systeme de stockage d'energie thermique par doublet non reversible | |
FR3054878B1 (fr) | Dispositif de stockage d'energie thermique | |
CH712934A2 (fr) | Réseau urbain d'échange thermique. | |
BE1013840A6 (fr) | Installation geothermique. | |
FR2820813A1 (fr) | Capteur geothermique oblique | |
FR3066256B1 (fr) | Station de recuperation d'energie geothermique et de production d'electricite | |
WO2009050396A2 (fr) | Installation de chauffage comportant un ballon de distribution | |
FR2866102A1 (fr) | Radiateur muni de plaques rayonnantes et procede de fabrication de ce radiateur | |
BE879592A (fr) | Nouveau procede de recuperation et de stockage de calories dans le sous-sol | |
JP2018179322A (ja) | 地熱利用設備及び地熱利用方法 | |
FR3123419A1 (fr) | Echangeur de chaleur géothermique | |
FR2482272A1 (fr) | Dispositif de recuperation de l'energie geothermique | |
FR3038369A1 (fr) | Systeme de stockage et de production d'energie thermique |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20071105 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20080612 |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20081023 |